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Abstract  

Electroencephalography (EEG) has shown potential for identifying early-stage biomarkers of 

neurocognitive dysfunction associated with dementia due to Alzheimer’s disease (AD). A large body 

of evidence shows that, compared to healthy controls (HC), AD is associated with power increases in 

lower EEG frequencies (delta and theta) and decreases in higher frequencies (alpha and beta), 

together with slowing of the peak alpha frequency. However, the pathophysiological processes 

underlying these changes remain unclear. For instance, recent studies have shown that apparent 

shifts in EEG power from high to low frequencies can be driven either by frequency specific periodic 

power changes or rather by non-oscillatory (aperiodic) changes in the underlying 1/f slope of the 

power spectrum. Hence, to clarify the mechanism(s) underlying the EEG alterations associated with 

AD, it is necessary to account for both periodic and aperiodic characteristics of the EEG signal. Across 

two independent datasets, we examined whether resting-state EEG changes linked to AD reflect true 

oscillatory (periodic) changes, changes in the aperiodic (non-oscillatory) signal, or a combination of 

both. We found strong evidence that the alterations are purely periodic in nature, with decreases in 

oscillatory power at alpha and beta frequencies (AD < HC) leading to lower (alpha + beta) / (delta + 

theta) power ratios in AD. Aperiodic EEG features did not differ between AD and HC. By replicating 

the findings in two cohorts, we provide robust evidence for purely oscillatory pathophysiology in AD 

and against aperiodic EEG changes. We therefore clarify the alterations underlying the neural 

dynamics in AD and emphasise the robustness of oscillatory AD signatures, which may further be 

used as potential prognostic or interventional targets in future clinical investigations.  
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1. Introduction 

Alzheimer’s Disease (AD) is the leading cause of dementia, accounting for 60-80% of all cases (Khan, 

2016). According to the World Health Organization (2022), there are 55 million people worldwide 

living with dementia, while the number is estimated to reach 139 million by 2050. Consequently, it 

poses great economic and health challenges. Pathologically AD is primarily characterised by 

accumulation of amyloid-beta plaques and neurofibrillary tangles which are associated with synaptic 

loss and cortical volume loss. Memory impairment is one of the earliest clinical symptoms, and this 

progressively generalises across a wide range of cognitive domains (Jack et al., 2013). However, 

evidence shows that pathophysiological changes precede the appearance of clinical symptoms by 

decades, thus complicating attempts to avert or slow disease progression (Khan, 2016). Additionally, 

current early biomarkers such as the presence of amyloid-beta are not strongly predictive of cognitive 

function, thus complicating the estimation of cognitive decline (Blasko et al., 2008). This highlights 

the need for estimation of cognitively relevant neural function during the early stages of the disease 

that could provide prognostic markers of AD progression (Jack Jr. et al., 2018) and guide therapeutic 

interventions before irreversible neurophysiological and cognitive damage occurs. 

A tool that has shown potential for identifying novel early-stage biomarkers of AD is 

electroencephalography (EEG). EEG is a non-invasive method of recording the electrophysiological 

dynamics of the brain, primarily generated by post-synaptic currents that are synchronous among a 

mass of neurons (Olejniczak, 2006). As a candidate technique for identifying biomarkers of 

neurological disorders, EEG has many advantages. It is non-invasive, portable, and relatively cost-

effective compared to other functional neuroimaging methods such as functional magnetic 

resonance imaging (fMRI) and positron emission tomography (PET) (Cohen, 2017). Furthermore, 

neurophysiology departments trained in EEG are widely utilized in healthcare systems world-wide 

(Smith, 2005), meaning EEG systems and trained healthcare staff are readily available in the clinical 

setting.  
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There is growing evidence that specific EEG signatures are associated with AD, which could 

potentially be used to develop early-stage neurophysiological biomarkers (Horvath et al., 2018; Poil 

et al., 2013; Rossini et al., 2020; Tait et al., 2020). The most consistent finding comes from spectral 

analysis, in which the EEG signal is decomposed into its constituent frequency bands including delta 

(1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (15–30 Hz), and gamma (30–90 Hz). Many studies have 

shown a ‘slowing’ of the EEG signal (Besthorn et al., 1997; Dauwels et al., 2010) characterised by 

power increases in lower frequencies (delta and theta) and decreases in higher frequencies (alpha and 

beta), along with reduction of the peak alpha frequency, in AD patients compared to healthy controls 

(HC) (Babiloni et al., 2004; Benwell et al., 2020; Brenner et al., 1986; Meghdadi et al., 2021; Neto et 

al., 2016; Schreiter-Gasser et al., 1994; Tait et al., 2019). This pattern of changes, which can be 

captured in a single metric by calculating the (alpha + beta)/(delta + theta) power ratio, has also been 

found, to a lesser degree, in conditions associated with increased risk for developing AD such as type-

2 diabetes mellitus (Benwell et al., 2020; Cooray et al., 2011) and mild cognitive impairment (MCI) 

(Baker et al., 2008; Meghdadi et al., 2021). In AD, this power ratio has been shown to correlate with 

the degree of cognitive impairment (Benwell et al., 2020),  thus highlighting its potential to index 

disease severity. 

However, standard EEG spectral power analyses involve transformations that do not account for 

characteristics of the EEG signal that have also been found to carry functional significance. Recent 

methodological developments show that non-oscillatory (i.e. aperiodic) activity, which is 

superimposed with the periodic activity in the raw signal, can confound estimates of frequency band 

power (Donoghue, Haller, et al., 2020; Donoghue et al., 2021; Gerster et al., 2022; He, 2014). The 

neural power spectrum, which represents the amount of power across frequencies, reflects not only 

oscillatory activity but also the aperiodic 1/f component (Donoghue, Dominguez, et al., 2020). 

Oscillatory activity can be characterised by peak center frequency, the power over and above the 

aperiodic component, and bandwidth, whereas the aperiodic component can be measured by the 

aperiodic offset and exponent (Figure 1A). Changes in the aperiodic component can alter power in 
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the band(s) of interest and be misinterpreted as oscillatory power changes (Donoghue, Dominguez, 

et al., 2020). Therefore, the changes in the power ratio (low frequency power increase and high 

frequency decrease) observed in the EEG profiles of AD patients may not reflect true changes in the 

periodic signal but rather changes in aperiodic features (or a combination of both). For example, a 

recent study of brain maturation found that controlling for the aperiodic components reversed the 

previous finding of decreasing alpha power from childhood to adolescence (Tröndle et al., 2022), 

whilst slowing of the EEG signal induced by electroconvulsive therapy has been shown to be better 

explained by an increase of the aperiodic exponent of the signal than by changes in oscillatory power 

(Smith et al., 2022). Moreover, aperiodic features themselves have been functionally linked to both 

healthy aging (Cesnaite et al., 2022; Merkin et al., 2021; Voytek et al., 2015) and psychopathology 

(Karalunas et al., 2022; Peterson et al., 2021; Robertson et al., 2019), demonstrating their functional 

significance and the importance of incorporating them into the analysis of AD biomarkers.  
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Figure 1. Example of a parametrised spectrum and hypothesised periodic and aperiodic changes. A) 

An example power spectrum (gray solid line) parametrised into periodic and aperiodic components 

(dashed line). The periodic component (over and above the aperiodic component) and each identified 

peak can be characterised by a peak center frequency (CF), power over and above the aperiodic 

component (PW), and bandwidth (BW). The aperiodic component (dashed line) is characterised by 

the offset (intercept) and exponent (slope) respectively. B) Periodic change hypothesis, with 

simulated data representing healthy controls (HC) in gray and AD spectra in black. The aperiodic 

component for HC (gray dashed line) and AD (purple dashed line) are overlapping. This panel 

illustrates how changes in the purely periodic activity (above the aperiodic component) can give rise 

to low frequency power increase and high frequency power decrease without any changes in 

aperiodic component. C) An illustration of how changes in aperiodic component (dashed lines), 

without any concurrent changes in the periodic activity, could result in an overall increase in spectral 

power at low frequencies and a decrease in higher frequencies.  

 

Without considering the aperiodic 1/f-like component, it is impossible to elucidate the mechanism(s) 

underlying the most consistent EEG biomarker of AD (power ratio change). The changes may be 

explained by alteration(s) in the frequency and/or power of one or more neural networks subserving 

true periodic (oscillatory) activity (Figure 1B). Oscillatory neural activity is ubiquitous throughout the 

brain (Buzsáki et al., 2013), shows reliable associations with cognitive and behavioural functions 

(Başar et al., 2001; Thut et al., 2012; Ward, 2003), and has been proposed to play crucial functional 

roles including the encoding and transfer of information (Fries, 2015; Keitel et al., 2022; Singer, 2018). 

Alternatively, AD related ‘slowing’ of the spectra may be explained by an increase in the exponent of 

the 1/f-like component (see Figure 1C), which has been shown to reflect asynchronous neuronal 

spiking (Manning et al., 2009; Miller et al., 2014) and to index the neural excitation/inhibition ratio 

(Gao et al., 2017). Therefore, dissociating between these alternative mechanisms represents a crucial 

step towards uncovering the nature of electrophysiological abnormalities associated with AD. Here, 

across two independent datasets, including data previously published by Benwell et al. (2020) and 

Flores Sandoval et al. (2023), we separated the aperiodic EEG signal from the oscillatory signal, while 

also parameterizing the aperiodic features: offset and exponent (Donoghue et al., 2020) Thus, we 

were able to test whether EEG changes associated with AD reflect true oscillatory changes, changes 

in aperiodic features of the signal, or a mixture of both.  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 12, 2023. ; https://doi.org/10.1101/2023.06.11.544491doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.11.544491
http://creativecommons.org/licenses/by/4.0/


 

7 
 

2. Methods 

2.1. Study design 

This study was carried out using two independent cohorts of Alzheimer’s patients and cognitively 

healthy controls. The data for both cohorts 1 and 2 was collected at the Berenson-Allen Center for 

Non-Invasive Brain Stimulation (BA-CNBS) and at Beth Israel Deaconess Medical Center (BIDMC) in 

Boston, MA, USA and previously published in Benwell et al. (2020) for cohort 1 and in Flores Sandoval 

et al. (2023) for N = 23 participants out of cohort 2.  

2.2. Participants 

Resting state EEG and neuropsychological test data were analysed from individuals who took part in 

research at the BA-CNBS between 2012-2020. The research was approved by local institutional ethics 

boards and all participants gave written informed consent prior to data collection in accordance with 

the Declaration of Helsinki. The following groups were included: 

Cohort 1: A total of 45 individuals. 18 (11 females, 52-86 years old) had a probable diagnosis of mild-

to-moderate AD according to DSM-5/NINCDS-ADRDA criteria (McKhann et al., 2011) with a clinical 

dementia rating (CDR) of 1 and a Mini-Mental State Examination (MMSE) (Folstein et al., 1975) score 

between 18 and 24. Six participants were on cholinesterase inhibitors, 9 on cholinesterase inhibitors 

and memantine, and 3 were not medicated with dementia-specific medication. Additionally, 27 

healthy controls (17 female, 50-77 years old) with normal cognition (MMSE ≥ 27) and without a clinical 

diagnosis of diabetes (glucose metabolism HbA1c < 6.5%) were included. Additional general inclusion 

criteria were an age adjusted score above 80 on the 50-item Wechsler Test of Adult Reading. Note 

that this cohort were included in a previously published study (Benwell et al., 2020).   

Cohort 2: A total of 44 individuals were included. 29 adults with amyloid positive early AD (13 female, 

53-80 years old). Amyloid status of was determined based on [18F]-Florbetapir PET and, where PET 

was not available, on assessment of cerebrospinal fluid with a lumbar puncture. Further inclusion 
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criteria for the amyloid positive early AD group were a diagnosis of mild cognitive impairment (MCI) 

or mild AD by a board certified neurologist according to Petersen criteria (Petersen et al., 1997) and 

guidelines from the National Institute of Aging and Alzheimer’s Association workgroup (N = 25), and 

the NINCDS-ADRDA criteria (McKhann et al., 2011) (N = 4). Additionally, 17 individuals had a CDR 

score of 0.5 and MMSE score ≥ 21; and 12 individuals had a CDR = 0.5-1 and MMSE ≥ 20  (Folstein et al., 

1975). 15 healthy cognitively normal (MMSE ≥ 27 and CDR = 0) controls (7 female, 55-87 years old) 

were also included. Data from a subset of cohort 2 (N =23, 17 AD) has been published in Flores 

Sandoval et al. (2023). 

For both cohorts 1 and 2, general inclusion criteria were an absence of other unstable medical and 

neuropsychiatric conditions. All participants underwent a structured neurological examination, 

medical history review, formal neuropsychological testing, and an EEG visit. Demographic 

characteristics (Supplementary Table S1), including age and education, were compared between AD 

and HC groups within both cohorts using independent samples t-tests, whilst non-parametric 

Kruskal-Wallis tests were used to compare MMSE scores. Handedness and gender proportions were 

also compared using Fisher’s exact test. Both AD groups were older than healthy controls, statistically 

significantly within cohort 1, and therefore Age was added as a covariate to all subsequent statistical 

between-group comparisons.  

 

2.3. Neuropsychological testing 

Cohorts 1 and 2: Neuropsychological testing was performed on a separate visit from the EEG 

recording by a trained psychometrist. Tests and inventories were drawn from the National 

Alzheimer's Coordination Center's Uniform Data Set version 1.1 (NACC-UDS) (Beekly et al., 2007) for 

Cohort 1, and version 3.0 for Cohort 2 (Weintraub et al., 2018). See Table 1 for tests used to examine 

each cognitive domain. 
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Table 1. Neuropsychological tests and versions for each cohort 

Cognitive domain Cohort 1 (N = 45, AD = 18) Cohort 2 (N = 31, AD = 25) 

 Normative values reference Normative values reference 

Executive function WAIS-R Digit Symbol Substitution Test (v 1.1 2005) 

Digit Span Forward  

(v 1.1 2005) 

Digit Span Backward (v 1.1 

2005) 

Category Fluency: Animals (v 

1.1 2005) 

Trail Making Test: Part A (v 1.1 

2005) 

Trail Making Test: Part B (v 1.1 

2005) 

 

Number Span Test: Forward (v 

3.0 2015) 

Number Span Test: Backward 

(v 3.0 2015) 

Category Fluency: Animals (v 

3.0 2015) 

Trail Making Test: Part A (v 3.0 

2015) 

Trail Making Test: Part B (v 3.0 

2015) 

Learning and Memory Logical Memory IA: Immediate 

(v 1.1 2005) 

Logical Memory IA: Delayed 

(30-40min) (v 1.1 2005) 

Rey Auditory Verbal Learning 

Test (RAVLT) 10 items  

Craft Story 21: Immediate (v 

3.0 2015) 

Craft Story 21: Delayed (20 

min) (v 3.0 2015) 

Rey Auditory Verbal Learning 

Test (RAVLT) 15 items  

Dementia Severity Activities of Daily Living (ADL) 

70-item ADAS-Cog (Mohs et al., 1983) 

Note: The cognitive test scores were only available for 31 participants out of total 44 (of those 25 

belonged to the AD group) in cohort 2. 

The raw scores for each of the above neuropsychological measures were z-scored according to 

normative values that were published for cognitively healthy individuals around the overall mean age 

across groups (Amariglio et al., 2012; Gale et al., 2007; Goldberg et al., 2010; Graham et al., 2004; 

Weintraub et al., 2018). Trail Making Test-A, Trail Making Test-B, ADAS-Cog Total, ADAS-Cog Recall, 

and ADAS-Cog Recognition scores were multiplied by -1 to ensure higher scores corresponded to 

better performance on all tests. Next, the z-scores from tests measuring similar cognitive functions 

were averaged together to form composite indices reflecting broader cognitive domains as shown in 

Table 1 (for similar approach see: (Benwell et al., 2020; Buss et al., 2018, 2020; Crane et al., 2012; 

Gibbons et al., 2012; Zadey et al., 2021). Three composite scores were computed: Dementia Severity 

- testing general cognitive functioning and functional independence; Executive function – testing 
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attention, working memory, set-shifting, strategic thinking, and psychomotor processing speed; and 

Learning and Memory – testing verbal memory with and without context. 

2.4. Electroencephalography acquisition and pre-processing 

Cohorts 1 and 2: All participants underwent 5-minute resting-state EEG recordings using an extended 

version of the International 10-20 system with the ground and reference electrodes placed on the 

forehead. Two additional electrooculographic electrodes were placed at the outer canthi and below 

the left eye to capture horizontal and vertical eye movements. Electrode impedances were kept 

below 5 kΩ. The recording was obtained while participants sat in a semi-reclined chair with their eyes 

closed. They were instructed to remain quiet and relaxed, and to blink their eyes a few times every 1-

2 minutes to maintain alertness or if observably drowsy.  

The Cohort 1 EEG data was recorded using a 64-channel system (eXimia EEG, v.3.2., Nexstim Ltd, 

Finland) with a sampling rate of 1450Hz. Within Cohort 2, data from 17 participants (10 AD) was 

recorded with a 60-channel system (eXimia EEG, version 3.2, Nexstim Ltd, Finland; 1450Hz sampling 

rate); and for 27 participants (19 AD) with a 62-channel EEG system (BrainVision, BrainProducts, 

GmbH, Germany; sampling rate 1000Hz). All montages were equalised by including only the 50 

shared electrodes in all subsequent analyses (F1, FZ, F2, F5, F6, FP1, FP2, C1, CZ, C2, C3, C4, C5, 

C6,CP1,CPZ,CP2,CP3,CP4, CP5, CP6, FC1, FC2, FC3, FC4, FC5, FC6, F7, F8, FT7, FT8, TP7, TP8, TP9, 

TP10, T3, T4, O1, OZ, O2, P1, PZ,P2, P3, P4, P7, P8, POZ, PO3, PO4).  

Cohorts 1 and 2: EEG data was pre-processed offline employing the same methodology and criteria 

for both cohorts 1 & 2 using custom written scripts in MATLAB 2016a, 2017a, and 2021a (Mathworks, 

USA) and incorporating EEGLAB toolbox functions (Delorme & Makeig, 2004). First, low-pass 

(100Hz) and high-pass (1Hz) zero-phase second order Butterworth filters were applied and a 55-65Hz 

notch filter was used to filter for line noise. The recordings were subsequently divided into 3-second 

epochs for visualisation and excessively noisy or faulty channels were removed (M(SD)= 2.63(2.03), 

range = 0-9). Next, the data were re-referenced to the average of all electrodes and noisy epochs 
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removed using a semi-automated artifact rejection procedure (M(SD)= 22.09(11.60), range = 2-88). 

This resulted in an average of 76.5 (±9.1, range = 45-116) usable trials per participant. Independent 

component analysis was then run using the fastICA function in EEGLAB (Delorme & Makeig, 2004), 

and components corresponding to blinks/eye movements, muscle activity, or transient channel noise 

were subtracted from the data. Lastly, previously removed channels were interpolated using a 

spherical spline method and the data were resampled to 1024Hz.  

2.5. Experimental design and statistical analysis 

2.5.1. Canonical spectral power analysis 

 

Cohorts 1 and 2: The mean absolute power spectral density (PSD) across epochs was calculated for all 

frequency bands within the spectrum from 1 to 40 Hz at all electrodes using the spectopo EEGLAB 

function (window-size = 1024 samples, window-overlap = 512 samples, 0.1 Hz resolution) (Delorme & 

Makeig, 2004). The power spectra were then averaged across all electrodes for each participant and 

used to calculate the original (i.e., non-corrected) spectra power ratio. To enable comparisons with 

parametrized spectra, the lowest frequency analysed was 3 Hz (Donoghue, Haller, et al., 2020; 

Donoghue, Dominguez, et al., 2020; Robertson et al., 2019). Absolute power estimates within each 

classic frequency band (3-4Hz delta), (4-8Hz theta), (8-13Hz alpha), and (13-30Hz beta) were obtained 

by summing the power estimates across the frequencies contained within each band and then used 

to calculate an overall 
𝑎𝑙𝑝ℎ𝑎+𝑏𝑒𝑡𝑎

𝑑𝑒𝑙𝑡𝑎+𝑡ℎ𝑒𝑡𝑎
 ratio for each participant.  

2.5.2. Spectral parameterization into periodic and aperiodic components  

 

Cohorts 1 and 2: Single-participant full scalp EEG power spectra were then parameterized using the 

‘Spectral Parameterization (specparam)’ toolbox (also known as ‘Fitting Oscillations One Over F’ 

(FOOOF) toolbox) (Donoghue, Haller, et al., 2020) in MATLAB 2021a. The ‘specparam’ algorithm 

separates the aperiodic EEG signal from the oscillatory signal through an iterative fitting procedure, 

while also parametrising the aperiodic features: offset and exponent. First, the individual PSDs were 
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visually inspected to select the appropriate aperiodic mode reflective of the nature of the aperiodic 

component in log-log space (i.e., linear vs ‘knee’). Consistent with prior work (Donoghue, Haller, et 

al., 2020; Donoghue, Dominguez, et al., 2020; Robertson et al., 2019), a 3-40 Hz frequency range (0.1 

Hz resolution) was selected for the main analyses and the spectra were fit in the ‘fixed’ (i.e., linear) 

mode. The remaining settings were as follows: peak width limits (1-12), peak threshold (1.0), aperiodic 

mode (fixed), maximum number of peaks (7), and minimum peak height at default (0). Additionally, the 

goodness-of-fit of the final model was quantified by computing frequency-wise differences between 

the raw spectra and the final model fits as well as computing R-squared and error metrics (Cohort 1: 

𝑅2(error) = AD(0.997(.026)), HC(0.997(.033)); Cohort 2: AD(0.997(.029)), HC(0.996(.032)) – indicating 

good fits). 

Both the aperiodic offset and exponent were extracted for each participant and used in subsequent 

statistical analyses. The offset, also known as broadband intercept, quantifies the overall up-and-

down translation of the power spectrum, whilst the exponent is equivalent to the (negative) slope of 

the log-log power spectrum (in ‘fixed’ mode), with smaller exponent values reflecting shallower 

spectra. Periodic parameters of the oscillatory peak with the highest power (over and above the 

aperiodic component) falling within an extended alpha range (5-15 Hz) were additionally obtained, 

including the peak center frequency (CF), power (PW; above the aperiodic component), and bandwidth 

(BW).  

To assess group differences in spectral power measures while controlling for aperiodic influences, 

aperiodic-adjusted power spectra were computed by subtracting the ‘specparam’ tool generated 

aperiodic fit from the raw spectra. The aperiodic-adjusted PSDs were then used to calculate the 

aperiodic adjusted spectral power ratio (SPR) ( 
𝑎𝑙𝑝ℎ𝑎+𝑏𝑒𝑡𝑎

𝑑𝑒𝑙𝑡𝑎+𝑡ℎ𝑒𝑡𝑎
), providing an estimate of periodic-only 

activity. 

Additionally, the raw power spectra exhibited a bend in the aperiodic component (observable when 

plotted in log-log space) across 3-40 Hz in a subset of participants in cohorts 1 & 2. Therefore, the 
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spectral parametrization was re-run with a model including an additional aperiodic parameter – knee, 

which captures a bend, or knee, in the shape of the power spectrum (see Supplementary Section 2 

for details). This allowed us to calculate the knee frequency, which represents the estimate of the 

frequency at which the aperiodic component changes from horizontal to negatively sloped. We found 

significant between-group differences in the knee-frequency in both cohorts 1 & 2 which are reported 

in full in the Supplementary Material. However, while human electrophysiological recordings often 

show a knee (especially in higher frequency ranges) (Gao et al., 2020; Seymour et al., 2022), currently 

little is known about the neurophysiological significance of the knee parameter in the EEG signal, we 

refrain from making strong interpretations of these results (see further discussion in Supplementary 

section 2).  

2.5.3. Statistics 

 

Between-group differences in all EEG measures, periodic and aperiodic, were tested using separate 

Analyses of Covariance (ANCOVAs) with Diagnostic Group as independent variable, Age as covariate, 

and EEG as dependent variable for each of the following: original SPR, aperiodic-adjusted SPR, offset, 

exponent, knee frequency (Supplementary section 2), peak power, center frequency, bandwidth. Eta 

squared (𝜂2) was calculated as a measure of effect size. For all statistical analyses both the original 

and aperiodic-adjusted SPR were log transformed to normalise their distributions.  

We also analysed the extent to which band ratio measures, previously reported to capture in a single 

variable the power shift to lower frequencies in AD (Benwell et al., 2020; Flores Sandoval et al., 2023), 

may be conflated with aperiodic changes and/or changes in periodic parameters beyond peak power 

including center frequency and bandwidth (Supplementary Section 1). Here, bivariate correlations 

(Pearson’s) were calculated between the original SPR and exponent, offset, knee frequency 

(Supplementary Section 2), peak power, center frequency, and bandwidth respectively.  

2.5.4. Neuropsychological functions and their relationship to EEG measures 
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Finally, the relationships between EEG measures and cognitive functions within the cohort 1 and 

cohort 2 AD groups were investigated using partial correlation analyses carried out separately for the 

original and aperiodic-adjusted ratio, the aperiodic exponent (obtained from the 3-40 Hz ‘fixed’ mode 

analysis), and the three dominant peak parameters (Supplementary): center frequency, bandwidth, 

and peak power. Partial correlations between the outcome measures: three composite neuro-

cognitive scores for dementia severity, learning and memory, and executive function, and each EEG 

measure were calculated while controlling for participant Age. All EEG measures were z-scored to 

facilitate comparison between different predictors.  

  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 12, 2023. ; https://doi.org/10.1101/2023.06.11.544491doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.11.544491
http://creativecommons.org/licenses/by/4.0/


 

15 
 

3. Results 

Participant characteristics 

As expected, general cognitive test scores (MMSE) were significantly lower in AD compared to HC in 

both cohorts. AD participants were additionally significantly older than controls in cohort 1 (t(43) = 

2.642, p = .011), but not in cohort 2 (t(42) = 1.799, p = .079), hence age was included as covariate in 

subsequent statistical analyses. The diagnostic groups were equal in years of education, and 

proportions of gender and handedness in both cohorts (see Supplementary Table S1). 

 

The original spectral power ratio is significantly lower in AD across both cohorts 

First, the full scalp averaged raw power spectra were used to calculate the 
𝑎𝑙𝑝ℎ𝑎+𝑏𝑒𝑡𝑎

𝑑𝑒𝑙𝑡𝑎+𝑡ℎ𝑒𝑡𝑎
 ratio for each 

participant. Figures 2A-B plot group averaged raw spectra for each cohort. In line with Benwell et al., 

(2020) and Flores-Sandoval et al., (2023), an ANCOVA testing the main effect of Group, while 

controlling for Age, showed the SPR was significantly higher in healthy controls compared to AD in 

both cohorts (Cohort 1, F(1,42)= 26.192, p < .0001, 𝜂2 =  .624, Figure 2C;  Cohort 2, F(1,41)= 6.436, p = 

.0151, 𝜂2 = .157, Figure 2D). In cohort 1, this effect was driven by high frequency power changes as no 

significant differences were found in the low frequency power (3-8 Hz) (F(1,42) = .005, p = .942, 𝜂2 < 

.001), whilst high frequency power (8-30 Hz) differed significantly (F(1,42) = 14.361, p < .001, 𝜂2 = .342 

(Figure 2E&G). In cohort 2, neither low nor high frequency power alone showed significant between-

group differences: 3-8 Hz: F(1,41) = .546, p = .464, 𝜂2 = .013; 8-30 Hz: F(1,41) = .036, p = .850, 𝜂2 < .001) 

(Figure 2F&H).  
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Figure 2: Canonical spectral power changes. A-B Mean full scalp power spectra for each diagnostic 

group. Shaded areas represent the standard error of the mean. Cohort1: green = HC, blue = AD; 

Cohort2: yellow = HC, purple = AD. C-D Comparison of the original SPR computed from the raw 

power spectra showed a significant difference between the groups in both cohorts. E-F No significant 

difference was found when considering low frequencies (delta + theta) alone in cohorts 1 and 2. G-H 

High frequency (alpha + beta) power increased significantly in cohort 1 but did not differ significantly 

in cohort 2.  *** p < .0001, ** p < .001, * p < .05, ns p > .05. 

 

Spectral Parameterization 

Figure 3 plots the grand average spectra for both AD and HC groups after full-scalp individual 

participant spectra were decomposed into periodic and aperiodic activity using the ‘specparam’ 

toolbox (Donoghue, Haller, et al., 2020). This allowed us to estimate both aperiodic parameters 

(offset and exponent) and periodic parameters (including peak power, center frequency, and 

bandwidth) at the individual level. Hence, we were able to investigate the respective contribution of 

aperiodic and periodic EEG features to the spectral power ratio and test for between-group 
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differences. Bivariate correlation analyses confirmed that the SPR captures EEG features beyond 

oscillatory power alterations (Supplementary Section 1). We therefore examined AD-related changes 

in purely oscillatory EEG measures after controlling for aperiodic features. 

 

Figure 3: Group averages of parametrized power spectra. A Cohort 1. Mean full scalp power spectra 

for each diagnostic group after ‘specparam’ parametrization. The final ‘specparam’ model fits are in 

green (HC) and blue (AD). Each power spectrum further consists of periodic activity (shaded area) and 

the aperiodic component (dashed line). B Cohort 2 (yellow = HC; purple = AD).  

 

Periodic features (including the aperiodic-adjusted SPR) differentiate between AD and HC after 

controlling for aperiodic features 

Figures 4A and 4C illustrate the group averaged full-scalp power spectra after removing the aperiodic 

component, leaving only oscillatory activity, for each cohort. We compared ‘specparam’ identified 

periodic parameters which characterised the dominant peak within the 5-15Hz range. Figure 4B 

shows that, in Cohort 1, the power over and above the aperiodic component at this peak was higher 

in HC compared to AD (F(1,42) = 24.212, p < .0001, 𝜂2 = .576) whilst the centre frequency (F(1,42) = 

1.939, p = .171, 𝜂2 = .046) and bandwidth (F(1.42) = 2.862 , p = .098, 𝜂2= .068) did not differ 

significantly. The same pattern of results was observed for Cohort 2 (Figure 4D ), with peak power 

being significantly higher in HC compared to early AD (Cohort 2: F(1,41) = 4.422, p = .042,  𝜂2 = .108) 
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and no significant differences were observed for center frequency (Cohort 2: F(1,41) = .597, p = .444, 

𝜂2= .015)  or bandwidth (Cohort 2: F(1,41) = 2.824, p = .100, 𝜂2= .069).  

 

Figure 4: Periodic activity in full-scalp power spectra is altered in AD, exhibiting a shift in activity from 

higher to lower frequencies. A-B Cohort 1 results. A The group averaged spectra after the aperiodic 

activity has been subtracted from the raw spectra for each participant (AD: blue, HC: green). The 

shaded areas represent standard error. B Between-group comparison of periodic parameters showed 

power at the dominant alpha (5-15Hz) peak is significantly reduced in AD, whilst its frequency and 

bandwidth are not.  C-D Cohort 2 results. C Group averaged periodic components of the power 

spectrum (AD: purple, HC: yellow). The shaded area represents standard error. D Peak alpha (5-15Hz) 

power differed between groups, whilst center frequency and bandwidth did not. CF: peak center 

frequency, PW: power over and above the aperiodic component, and BW: bandwidth 

 

The aperiodic-adjusted spectra (at the individual level) were also used to compute an aperiodic-

adjusted SPR (log-transformed). In line with the results of the canonical analyses (Figure 2), 

aperiodic-adjusted SPR was significantly lower in AD relative to HC in both cohorts (Cohort 1: Figure 

5A, F(1.42) = 18.366, p < .001,  𝜂2= .437; Cohort 2: Figure 5B, F(1,41) = 5.364, p =.026,  𝜂2 = .131). 

Similarly to the canonical analysis results, in cohorts 1 and 2 (Figure 5C-D, E-F), the aperiodic-adjusted 
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low frequency power (3-8 Hz) did not differ significantly between groups, whilst high frequency (8-3 

0Hz) power decreased significantly in cohort 1 and showed a trend towards significance in cohort 2 

(Cohort 1: 3-8Hz: F(1,42) = 0.257, p = .615, 𝜂2= .006 ;  8-30Hz: F(1,42) = 27.638, p < .0001, 𝜂2= .658; 

Cohort 2: 3-8Hz: F(1,41) = 0.743, p = .394, 𝜂2= .018; 8-30Hz: F(1,41) = 3.970, p = .053, 𝜂2= .097). This 

suggests that the oscillatory alterations in AD were primarily driven by alpha and beta power 

changes.  

 

 

Figure 5: A-B Comparison of the aperiodic-adjusted SPR (log-transformed) showed a significant 

between-group difference in both cohorts. C-D Low frequency power (3-8 Hz) did not differ in cohorts 

1&2, whilst E-F high frequency power (alpha + beta) decreased in AD relative to HC (this difference 

was statistically significant in cohort 1). *** p < .0001, ** p < .001, * p < .05, ns p > .05. 
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No significant differences in aperiodic features between diagnostic groups 

Figure 6 shows the results of analyses comparing the aperiodic features between AD and HC, also 

controlling for age, after parametrization of full scalp individual power spectra. The aperiodic 1/f 

components were overlapping in both AD and HC groups in Cohort 1 (Figure 6A-C) and no significant 

main effect of diagnostic group was found for either the offset or exponent: offset (F(1.42) = .114, p = 

.737, 𝜂2 = .0027); exponent (F(1,42) = .771, p = .385, 𝜂2= .018). This pattern was replicated in Cohort 2 

(Figure 6D-F), with no significant between-group differences in either offset (Cohort 2: F(1,41) = 

1.079, p = .305, 𝜂2 = .026), or exponent (Cohort 2: F(1,41) = .451, p = .506, 𝜂2 = .011) being found. These 

results, replicated across distinct cohorts, suggest AD is not associated with alteration in aperiodic 

EEG activity.  

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 12, 2023. ; https://doi.org/10.1101/2023.06.11.544491doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.11.544491
http://creativecommons.org/licenses/by/4.0/


 

21 
 

Figure 6: Aperiodic parameters of individual global power spectra do not differ between diagnostic 

groups. A-C Cohort 1. A Aperiodic component of the power spectrum (bold) averaged across 

individuals within each diagnostic group from Cohort 1. Individual full scalp aperiodic components 

are also plotted (AD = blue; HC = green). B-C Comparison of the aperiodic offset and exponent 

between AD and HC within Cohort 1 showed no significant differences after controlling for 

participant age with an ANCOVA (p > .05). D-F Cohort 2. D plots group averaged aperiodic 

component over individual components from each diagnostic group within Cohort 2 (AD = purple; HC 

= yellow). E-F Between-group comparisons controlling for age also showed no significant differences 

between HC and AD groups within Cohort 2 (p > .05).  

 

 

Relationships with neuropsychological function 

In a final analysis, we sought to investigate the potential cognitive relevance of changes in the EEG 

measures of interest (original and aperiodic-adjusted SPR, aperiodic exponent and offset) in AD.  

Table 2  

Results of partial correlations (Pearson’s) for the unique relationships between periodic and aperiodic 

parameters and neurocognitive functions while controlling for age  

 

 Note. Each predictor was z-scored to facilitate comparability of the correlation coefficients.  

 

Table 2 shows the results of partial correlation analyses testing the EEG-cognition relationships while 

Age was controlled for. The original SPR significantly predicted dementia severity in both cohorts 

(cohort 1: p = .015; cohort 2: p = .011). When only the periodic activity was included in the SPR 

(aperiodic-adjusted SPR), higher SPR was significantly associated with higher dementia severity 

Cognitive Function AD Group Original Ratio Aperiodic-
adjusted Ratio 

Exponent Offset 

  r(p) r(p) r(p) r(p) 

Dementia Severity Cohort 1 0.578 (.015) 0.382 (.130) -0.412 (.101) -0.263 (.307) 
Cohort 2 0.512 (.011) 0.483 (.017) -0.035 (.872) 0.168 (.433) 

      
Memory & Learning Cohort 1 0.228 (.379) 0.241 (.352) -0.078 (.767) 0.070 (.790) 

Cohort 2 0.255 (.228) 0.166 (.438) -0.018 (.935) 0.143 (.505) 
      
Executive Function 
 

Cohort 1 0.537 (.026) 0.586 (.013) -0.329 (.198) -0.166 (.524) 
Cohort 2 0.429 (.036) 0.441 (.031) -0.100 (.641) 0.111 (.607) 
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scores (p = .017) in cohort 2, while in cohort 1 this relationship did not reach statistical significance (p 

= .130). Higher original and aperiodic-adjusted SPR also predicted better executive function 

performance in Cohort 1 and 2. No other relationships were statistically significant. Importantly, 

these results highlight that while periodic EEG activity changes associated with AD predict disease 

severity, we did not find evidence of an association between aperiodic features and neurocognitive 

functioning in AD. 

These analyses were additionally run for all three periodic parameters (peak power, center frequency, 

and bandwidth), however, no replicable significant relationships were found between these 

measures and the three cognitive composites (Supplementary Table S2). Similarly, no EEG measures 

significantly predicted cognitive function within the healthy control group (Supplementary Table S3). 
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4. Discussion  

This study aimed to clarify the physiological processes underlying the hallmark resting-state EEG 

marker of Alzheimer’s disease, spectral power shift from high to low frequencies, by accounting for 

previously overlooked EEG components. We first successfully replicated the results of the canonical 

spectral analyses across two independent cohorts (Benwell et al., 2020; Flores Sandoval et al., 2023). 

Crucially, after parametrising the EEG power spectra into periodic (oscillatory) and aperiodic activity, 

we found that the aperiodic-adjusted Spectral Power Ratio (SPR), which isolates changes in 

oscillatory power, differed significantly between AD and HC groups in both cohorts. Specifically, in 

comparison to HC, the AD group showed an oscillatory power decrease in high frequencies (8-30 Hz) 

in both cohorts, while low frequency power (3-8 Hz) did not differ significantly. In contrast, no 

significant differences in the aperiodic component (and its parameters: offset and exponent) were 

found between AD and HC. Hence, the results highlight that AD-related EEG alterations, captured in 

the Spectral Power Ratio, are primarily driven by periodic activity, whilst we found no evidence for 

aperiodic activity changes in AD. By replicating the main findings across two cohorts, we highlight 

the robustness of these oscillatory signatures of AD. Given the rising concerns regarding the 

replicability of scientific findings (Open Science Collaboration, 2015), especially within neuroscience 

and related fields (Button et al., 2013; Pavlov et al., 2021; Poldrack et al., 2017), the reproducibility of 

the findings is important. 

Our results highlight that previously reported EEG signatures of AD are driven by periodic EEG 

activity changes, adding methodological and mechanistic clarity to previous studies. Recent work 

emphasises that periodic and aperiodic EEG features can be confounded when predefined frequency 

bands and their ratios are used (Donoghue, Dominguez, et al., 2020; Donoghue et al., 2021). Indeed, 

we found that the non-corrected SPR correlated significantly with aperiodic offset and exponent in 

the present data (in both cohorts 1 & 2: see Supplementary Section 1). Nevertheless, the SPR 

calculated from purely oscillatory activity differed between diagnostic groups, in line with previous 
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findings (Benwell et al., 2020; Babiloni et al., 2004, 2016; Brenner et al., 1986; Dauwels et al., 2010; 

Jeong, 2004; Meghdadi et al., 2021; Neto et al., 2016; Rossini et al., 2020; Schreiter-Gasser et al., 

1994; Tait et al., 2019), whereas the aperiodic features did not. These results thus lend support to an 

interpretation linking AD to abnormal neural oscillations relative to cognitively healthy controls. 

Intriguingly, this contrasts a growing body of literature showing changes in the spectral aperiodic 

exponent are associated with a range of neuropsychological pathologies (Pani et al., 2022), including 

ADHD (Karalunas et al., 2022; Robertson et al., 2019), schizophrenia (Molina et al., 2020; Peterson et 

al., 2021), stroke (Johnston et al., 2023), and Parkinson’s disease (Belova et al., 2021). 

Additionally, the present results suggest that oscillatory abnormalities captured in the SPR are 

primarily driven by high frequency (8-30 Hz) power decreases. Relative to HC, we found reduced 

alpha + beta power (in cohort 1), as well as lower alpha peak power in AD (in cohorts 1 & 2), in line 

with previous literature (Babiloni et al., 2004, 2016; Benwell et al., 2020; Huang et al., 2000; Meghdadi 

et al., 2021). Conversely, we did not find a consistent significant slowing of the peak alpha frequency 

across cohorts, after controlling for the aperiodic signal, contrasting prior studies (Benwell et al., 

2020; Moretti et al., 2004; Poza et al., 2007). This suggests, oscillatory power, rather than frequency, 

constitutes a more reliable marker of AD. Somewhat inconsistent with existing findings are our 

results regarding low frequency (delta + theta) activity (Babiloni et al., 2004; Benwell et al., 2020; 

Meghdadi et al., 2021; Moretti et al., 2004), whereby we did not observe low frequency power 

changes in cohort 1 or 2. This discrepancy may stem from the use of relative spectral power in 

previous studies that found low frequency power increases in AD (Babiloni et al., 2004; Benwell et al., 

2020; Moretti et al., 2004; Tait et al., 2019). Other studies that used both relative and absolute power, 

only report results of statistical comparisons for relative power (Meghdadi et al., 2021). When relative 

as opposed to absolute power is computed, the low frequency band power is normalised by dividing 

it by the total power of the spectrum. Consequently, the relative power at low frequencies may also 

reflect any changes in power at high frequencies, potentially conflating the observed between-group 

differences. 
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Notably, the periodic nature of neural abnormalities linked to AD we observed also highlights a 

dissociation between healthy aging and Alzheimer’s pathology. While previous research found peak 

alpha frequency and power reductions in older age (Babiloni, Binetti, Cassarino, et al., 2006) that 

appeared to be similar to the oscillatory ‘slowing’ observed in AD, recent studies have shown that 

healthy aging is accompanied by a reduction in the aperiodic exponent that may have previously been 

confounded with oscillatory changes (Cesnaite et al., 2022; Donoghue, Haller, et al., 2020; Merkin et 

al., 2021; Voytek et al., 2015). For example, after controlling for age-related flattening of the aperiodic 

exponent, Merkin et al. (2021) found that peak alpha frequency was significantly slower in older 

compared to younger adults, but alpha peak power did not differ. In contrast, our results showed that 

AD pathology was more reliably accompanied by reductions in aperiodic adjusted alpha (+beta) 

power, with no alpha peak frequency slowing observed, while the aperiodic signal did not differ 

relative to HC in either of the cohorts. Hence, we establish that AD differentiates from the often-

found aging effect on aperiodic parameters, with a periodic-specific effect found to differentiate 

between clinical and non-clinical participants. Interestingly, conceptually similar work examining 

spectral slowing in the context of stroke found influences of both periodic and aperiodic parameters 

(Johnston et al., 2023). These results highlight that differences in power ratios reflecting ‘spectral 

slowing’ can be driven by different underlying changes, and that spectral parameterizing can 

adjudicate between different changes. In doing so, we start to demonstrate that what might 

otherwise be considered similar patterns of “spectral slowing” can be shown to occur in distinct ways 

when differentiating between healthy aging and clinical disorders, and when differentiating between 

distinct disorders such as between AD and stroke. 

On a physiological level, this dissociation implies that the neural alterations accompanying healthy 

aging may be more closely linked to abnormalities in asynchronous neuronal spiking (Manning et al., 

2009) or synaptic excitation/inhibition balance (Gao et al., 2017), whilst pathological aging due to AD 
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is more associated with aberrant neural synchrony (Babiloni et al., 2016). In particular, oscillations are 

proposed to reflect the global synchronisation of pyramidal cortical neurons that facilitate the 

integration of information from the cortex, thalamus, and the brainstem (Babiloni et al., 2016). 

Consequently, oscillatory abnormalities may reflect the effect of AD related neurodegeneration on 

large-scale cortical networks necessary for neuronal communication and cognition (Rossini et al., 

2007; Uhlhaas & Singer, 2006). Interestingly, decreases in alpha power (and increases in delta + theta 

power) have been linked to a range of neurodegenerative processes including atrophy of the 

hippocampus (Babiloni et al., 2009; Fernández et al., 2003; Helkala et al., 1996), cortical gray matter 

(Babiloni et al., 2013), and subcortical white matter (Babiloni, Frisoni, et al., 2006). Recent studies 

have additionally found correlations between oscillatory ‘slowing’ and proteinopathy, such as tau 

decomposition (Coomans et al., 2021) and regional accumulation of amyloid-β plaques, while the 

strength of the latter relationship also predicted cognitive impairments (Wiesman et al., 2022). 

The oscillatory nature of electrophysiological abnormalities linked to AD may additionally inform the 

understanding of the functional consequences of AD pathophysiology. For instance, alpha 

oscillations have been proposed to inversely index the degree of global cortical excitability (Romei et 

al., 2008). They are therefore thought to reflect functional inhibition which allows adaptive regulation 

of neuronal excitability necessary for facilitating top-down control and goal-directed cognitive and/or 

behavioural function (Jensen & Mazaheri, 2010; Klimesch et al., 2007). AD related decreases in alpha 

power may thus reflect a shift towards functional disinhibition relative to HC. Consequently, this may 

lead to cognitive impairments in domains in which top-down control plays a central role, such as 

executive functions. Our results are consistent with this, as a significant relationship between the SPR 

and executive function impairments in AD was found for both Cohorts 1 and 2, with higher SPR 

predicting better executive function scores.  

We further found that the SPR was moderately associated with global dementia severity, even after 

the aperiodic signal was accounted for. This aligns with previous research linking increases in delta + 
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theta, and decreases in alpha + beta power, to greater global cognitive impairment in AD and MCI 

(Babiloni, Binetti, Cassetta, et al., 2006; Claus et al., 2000; Luckhaus et al., 2008). In contrast to 

periodic measures, we did not find any significant relationships between aperiodic parameters and 

any of the neurocognitive composite scores. Hence, these results further highlight the dissociation 

between healthy aging and pathological changes due to AD, with the former being more tightly 

linked to aperiodic activity, whilst the latter is tracked by periodic EEG activity changes. 

Overall, we show that AD-related changes in SPR are best explained by changes in spectral power 

and not by broadband changes in the EEG signal. Furthermore, the SPR has the potential to index 

disease severity. Notably, our results emphasize that alpha and beta periodic activity may be a 

particularly specific marker of AD related changes. Periodic EEG activity therefore constitutes a 

robust and generalisable marker of AD pathology that could be further tested for potential diagnostic 

and interventional applications. For instance, both invasive and non-invasive neurostimulation 

techniques (e.g., deep brain stimulation and transcranial direct current stimulation) have shown 

promising effects on the treatment of symptoms of neurodegenerative diseases including 

Parkinson’s and Alzheimer’s disease (Lefaucheur et al., 2017; Little et al., 2013; Scharre et al., 2018). 

More recently, closed-loop neurostimulation approaches, where electrical stimulation is delivered 

based on an ongoing electrophysiological biomarker of the pathology, have begun to be developed 

(Iturrate et al., 2018). The pathological changes in oscillatory activity in AD could further be 

investigated as candidate markers for these interventions, given their reliability and cognitive 

relevance. Future prospective longitudinal studies should examine whether the oscillatory 

abnormalities associated with AD can be used to detect individuals at risk of developing AD, as well 

as test their specificity to different types of dementia.  

Other aspects of the present research could also be developed upon in the future. While we show 

robust and replicable group differences in the SPR and oscillatory power measures, additional testing 

of their ability to dissociate between AD and HC at an individual level is necessary to establish the 
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suitability of oscillatory markers as prognostic tools or therapeutic targets. Additionally, we cannot 

completely rule out the presence of preclinical AD in our healthy control individuals. While no HCs 

obtained MMSE scores indicative of clinical impairment, biomarker quantification (e.g., amyloid) 

would be necessary to confirm the absence of AD. In addition, future studies may inspect the 

association between the periodic and aperiodic components of EEG activity and amyloid load. 

Conclusion 

The present results advance our understanding of EEG markers of neuro-cognitive dysfunction in AD. 

Adding methodological and mechanistic clarity to previous work, we show that the 

electrophysiological spectral slowing in AD is driven by periodic oscillations, whilst aperiodic EEG 

features remain unaffected. Our results suggest that relative to HC, AD is most consistently 

characterised by high frequency (alpha + beta) power decreases and a lower SPR, with the latter also 

showing the potential to track disease severity. Replicated across two independent datasets, these 

results help uncover mechanisms underpinning changes to neural dynamics in AD. Our results lay the 

foundation for further investigations aimed at establishing potential diagnostic and interventional 

clinical applications of oscillatory AD signatures. 
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