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Abstract

Secondary tropical forests play an increasingly important role in carbon bud-

gets and biodiversity conservation. Understanding successional trajectories is

therefore imperative for guiding forest restoration and climate change mitiga-

tion efforts. Forest succession is driven by the demographic strategies—
combinations of growth, mortality and recruitment rates—of the tree species

in the community. However, our understanding of demographic diversity in

tropical tree species stems almost exclusively from old-growth forests. Here,

we assembled demographic information from repeated forest inventories along

chronosequences in two wet (Costa Rica, Panama) and two dry (Mexico)

Neotropical forests to assess whether the ranges of demographic strategies pre-

sent in a community shift across succession. We calculated demographic rates

for >500 tree species while controlling for canopy status to compare demo-

graphic diversity (i.e., the ranges of demographic strategies) in early succes-

sional (0–30 years), late successional (30–120 years) and old-growth forests

using two-dimensional hypervolumes of pairs of demographic rates. Ranges of

demographic strategies largely overlapped across successional stages, and early

successional stages already covered the full spectrum of demographic strate-

gies found in old-growth forests. An exception was a group of species charac-

terized by exceptionally high mortality rates that was confined to early

successional stages in the two wet forests. The range of demographic strategies
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did not expand with succession. Our results suggest that studies of long-term

forest monitoring plots in old-growth forests, from which most of our current

understanding of demographic strategies of tropical tree species is derived, are

surprisingly representative of demographic diversity in general, but do not

replace the need for further studies in secondary forests.

KEYWORD S
demographic rates, growth, life-history strategies, mortality, old-growth forest, recruitment,
secondary succession, survival

INTRODUCTION

Tropical forests store almost half of global forest carbon
and harbor a large proportion of the world’s biodiversity
(FAO, 2020; Pan et al., 2011; Slik et al., 2015). With only
one third of tropical forests being undisturbed primary for-
ests and rates of deforestation remaining high (FAO, 2020;
Pan et al., 2011), secondary tropical forests regrowing after
land abandonment are of increasing importance for carbon
storage and sequestration as well as biodiversity conserva-
tion (Chazdon et al., 2016; Lewis et al., 2019; Rozendaal
et al., 2019). Understanding successional trajectories is
therefore imperative for guiding efforts of forest manage-
ment and global change mitigation. Tree demographic
strategies (or life-history strategies) are an important driver
of successional dynamics (sensu Finegan, 1996). However,
empirical knowledge of how community-wide variation in
demographic strategies changes along successional gradi-
ents remains limited.

Demographic strategies emerge from trade-offs that
all organisms are faced with when allocating limited
resources between fast growth, high survival or reproduc-
tive success (Stearns, 1992) and that constrain the range of
viable combinations of these demographic rates (Rüger
et al., 2018; Salguero-G�omez et al., 2016). Recently, com-
parative analyses of life-history variation have improved
our understanding of the consistency of demographic
trade-offs structuring tropical forest communities world-
wide (Kambach et al., 2022; Russo et al., 2021). However,
most of our knowledge of demographic strategies stems
from old-growth forests.

Fast-growing and short-lived species typically domi-
nate the first decades of succession and long-lived pio-
neers and slow-growing shade-tolerant species typically
dominate later successional stages and old-growth forests
(Finegan, 1996; Lai et al., 2021; Martínez-Ramos
et al., 2021; Rüger et al., 2023). However, while we know
that abundances, basal area and biomass of species with
different demographic strategies shift during succession
in these predictable ways (Rüger et al., 2023), it remains
unknown whether the community-wide range of demo-
graphic strategies shifts in the same way during succession.
To our knowledge, a systematic comparison of the range
of demographic strategies between early successional, late
successional, and old-growth forests has not been
performed. Specifically, it is unclear whether certain demo-
graphic strategies are confined to certain successional
stages. While some early successional species can also
occur in tree fall gaps in old-growth forests (Schnitzer &
Carson, 2001), others are dependent on large-scale distur-
bances for regeneration and therefore occur uniquely
in early successional forests (Marra et al., 2014; Revilla
et al., 2023). However, it is unclear whether these species
are characterized by unique demographic strategies that
might remain undetected based on tree demographic
research conducted exclusively in old-growth forests.
Furthermore, despite comparisons of functional traits of
tree species during succession in wet and dry tropical for-
ests (e.g., Letcher et al., 2015; Poorter et al., 2021), we lack
comparisons of demographic strategies.

In tropical wet forests, early successional environ-
ments are characterized by high resource levels
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(especially light; Montgomery & Chazdon, 2001). Species
that occur abundantly in these environments are, thus,
commonly thought to trade off high growth and recruit-
ment for high mortality rates (Chazdon, 2014;
Finegan, 1996; Tilman, 1988). These fast demographic
rates are related to acquisitive values of functional traits
such as low wood density or high specific leaf area and
leaf nutrient content (Rüger et al., 2012, 2018; Wright
et al., 2010). Conversely, species that are more abundant
in late successional environments are expected to grow
slowly but invest more resources in the ability to live for
a long time, represented by trait values indicative of
resource conservation such as high wood density or low
specific leaf area.

Indeed, using functional traits as proxies, several
studies have confirmed that, in tropical wet forests, tree
species with acquisitive trait values tend to dominate in
early successional stages, while species with more conser-
vative trait values gain in dominance as succession pro-
ceeds (e.g., Becknell & Powers, 2014; Boukili &
Chazdon, 2017; Lohbeck et al., 2013; Poorter et al., 2004).
Under such a scenario, we expect that the ranges of
viable demographic strategies gradually shift from acquis-
itive strategies (fast growth, high mortality, high recruit-
ment) toward more conservative strategies (slow growth,
low mortality, low recruitment) during succession in
tropical wet forests (Figure 1a).

In tropical dry forests, where water is considered a
more important resource in shaping forest communities
than light availability, early successional stages are char-
acterized by dry and hot conditions changing toward
moister and cooler environments as succession proceeds
(Lebrija-Trejos et al., 2011). Therefore, trait values have
been found to reflect a shift from strategies associated

with greater resource conservation and drought tolerance
early in succession to more acquisitive strategies
(e.g., lower wood density, leaf dry matter content) later in
succession (Buzzard et al., 2016; Derroire et al., 2018;
Lebrija-Trejos et al., 2010; Lohbeck et al., 2013; Poorter
et al., 2019). However, acquisitive leaf trait values related
to light capture efficiency (e.g., high specific leaf area)
have also been found to decrease during succession
(Derroire et al., 2018; Lohbeck et al., 2013), making
it unclear whether successional shifts toward more conser-
vative (H1) or more acquisitive (H2) demographic strategies
should be expected in tropical dry forests (Figure 1b,c).

Environmental differences between early and late suc-
cessional tropical dry forests are thought to be less pro-
nounced compared with wet forests, mainly due to greater
canopy openness (Ewel, 1977; Lebrija-Trejos et al., 2011).
Indeed, Letcher et al. (2015) observed a trend toward less
successional habitat specialization among tree species in
certain tropical dry forests. Based on this, we hypothesize
that potential shifts in demographic strategies may be less
pronounced in dry than in wet forests. However, as light
availability becomes more heterogenous during succession
in both forest types, we hypothesize that the range of
viable demographic strategies expands as succession pro-
gresses (Figure 1).

Here, we assemble a unique chronosequence dataset
of repeated forest inventories from four Neotropical for-
ests varying in rainfall. We calculate growth, mortality,
and recruitment rates for >500 tree species and use
hypervolumes (i.e., the area occupied by species in the
two-dimensional case of pairs of demographic rates)
to quantify demographic diversity in three successional
stages. In this study, we used the term demographic
diversity only to refer to the range of demographic
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F I GURE 1 Hypotheses for potential shifts of the ranges of demographic strategies from early successional forests (ESF) to late

successional forests (LSF) and old-growth forests (OGF) for (a) tropical wet forests and (b, c) tropical dry forests. H1 (b) and H2 (c) represent

opposing hypotheses for tropical dry forests. It is not clear whether shifts from acquisitive to conservative demographic strategies or vice

versa are to be expected because wood density and leaf dry matter content have been found to shift from conservative to acquisitive values,

whereas specific leaf area has been found to shift from acquisitive to conservative values. Axis labels can be any combination of growth,

mortality or recruitment since for example high values for all three demographic rates are expected in wet ESF.
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strategies present in a tree community (Needham
et al., 2022). Successional changes in the abundance and
basal area of different demographic strategies in the same
forests have been studied by Rüger et al. (2023). We
addressed the following questions: (1) Are there changes
in demographic diversity during succession in wet and
dry tropical forests? We specifically ask: (1a) Do ranges of
demographic strategies shift as hypothesized during suc-
cession in wet and dry tropical forests? (1b) Are there
demographic strategies, that are exclusive to particular
successional stages? (1c) Do ranges of demographic strat-
egies expand during succession? (2) If we detect any
changes, we ask whether they are caused by intraspecific
changes in demographic rates or by species turnover?

Answers to these questions will reveal to what degree
our understanding of demographic diversity gained from
old-growth forests can be extended to secondary forests,
for which much less information on demographic rates
and strategies is available. This information will enhance
our understanding of the mechanisms underlying succes-
sion and improve our ability to predict successional
dynamics in tropical forests with the help of demographic
forest models.

MATERIALS AND METHODS

Study sites and forest inventory data

We used inventory data from nine long-term forest
monitoring projects along chronosequences from four
Neotropical lowland forest sites located in Costa Rica,
Panama and Mexico. The sites differ in rainfall with mean
annual precipitation ranging from 3900 mm without any
dry season to 900 mm with 90% of annual rainfall occur-
ring within 5.5 months of the year (Table 1). The forest in

Costa Rica is a tropical wet evergreen broadleaved forest
with a high proportion of palms (Chazdon et al., 2007;
Clark & Clark, 2000; Letcher & Chazdon, 2009). The forest
in Panama is a semideciduous tropical moist forest with a
3-month dry season (Condit et al., 2019; Denslow &
Guzman, 2000; van Breugel et al., 2013). The predominant
natural disturbance regimes in both wet sites are occasional
windthrows and lightning strikes. The two sites in Mexico
are both deciduous tropical dry forests differing from
the wet sites in shorter stature, higher canopy openness
and lower species richness (Table 1; Letcher et al., 2015).
Forests in the Yucat�an peninsula have undergone anth-
ropogenic influences since ancient Mayan times and experi-
ence regular strong wind storms (Hern�andez-Stefanoni
et al., 2014; Rico-Gray & García-Franco, 1991; Saenz-
Pedroza et al., 2020). The forest in Oaxaca is shorter in
height, has arborescent cacti and has been only mildly
affected by human disturbances (Gallardo-Cruz et al., 2010;
Lebrija-Trejos et al., 2008; Pérez-García et al., 2010), but it is
also regularly subjected to strong wind (Dechnik-V�azquez
et al., 2016).

The four chronosequence sites comprised a total of
252 secondary forest plots and 23 old-growth forest plots
ranging in size from 0.04 to 50 ha (Appendix S1:
Table S1; Appendix S1: Figure S1). Plots were located in
complex landscapes mainly consisting of fragments of
old-growth and second-growth forests, plantations, agri-
cultural land and pastures. Most secondary forest plots
were established on abandoned agricultural land used
primarily for low-intensity crop farming or cattle ranching
(Chazdon et al., 2007; Denslow & Guzman, 2000;
Lebrija-Trejos et al., 2011; Letcher & Chazdon, 2009;
van Breugel et al., 2013). Some plots were only clear-cut
but not farmed (Chazdon et al., 2007; Letcher & Chazdon,
2009). In general, previous forest vegetation was
completely removed, yet in a few cases some remnant

TAB L E 1 Location, mean annual temperature (MAT), mean annual precipitation (MAP), dry season length (<100 mm precipitation

per month), number of species, number of species with 10 or more individuals, average old-growth forest (OGF) canopy height and length of

the chronosequences used in this study.

Location
Latitude and
longitude

MAT
(�C)

MAP
(mm)

Length of dry
season (months)

No. species
(N ≥ 10)

OGF canopy
heighta (m)

Chronosequence
length

Costa Rica 10�260 N,
84�000 W

26 3.900 … 485 (355) 20–35 1–57 years + OGF

Panama 9�900 N,
79�510 W

27 2.600 3 470 (391) 15–28 0–120 years + OGF

Yucat�an,
Mexico

20�050 N,
89�290 W

26 1.100 6 154 (106) 8–13 3–85 years

Oaxaca,
Mexico

16�390 N,
95�000 W

28 900 7 125 (90) 7–8 4–70 years + OGF

Note: The sampling area differs strongly between sites and the number of species included in the analyses may not be indicative of total species richness.
aCanopy heights are from Clark et al. (2021), Mascaro et al. (2011), Dupuy et al. (2012) and Lebrija-Trejos et al. (2008).
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trees remained, which we excluded from the analyses.
The age of the youngest plots ranged from 0 to 4 years
across sites, whereas the oldest secondary forest plots
ranged from 57 to 120 years after agricultural abandon-
ment (Appendix S1: Figure S2). All free-standing woody
individuals above the plot-specific size threshold (generally
1 or 5 cm diameter at breast height (dbh); range: 1–10 cm
dbh; Appendix S1: Table S1) were measured, marked and
remeasured 1 to 10 years later. We selected census inter-
vals of 5 years, if possible (range: 4–10 years; Appendix S1:
Table S1). In the wet sites (Costa Rica, Panama), only the
largest stem of an individual was measured in some plots.
In the dry sites (Yucat�an, Oaxaca), where resprouting is an
important mode of regeneration and, thus, multistemmed
individuals are abundant (Vieira & Scariot, 2006), all
stems of an individual were measured, but not individually
marked.

We assigned all census intervals to one of three
successional stages (Appendix S1: Table S1; Figure S2).
Census intervals from secondary forest plots ending less
than 30 years after abandonment were classified as early
successional forests (ESF) and intervals ending less than
120 years after abandonment were classified as late suc-
cessional forests (LSF), although most plots were not
older than 90 years. Census intervals from old-growth
forest plots were classified as old-growth forests (OGF).
Available data from OGFs in Yucat�an were not sufficient
to be included in the analysis.

Canopy layer assignment

The growth and mortality rates of individual trees depend
on their size and light availability. To account for these
differences, we assigned trees to discrete canopy layers
based on their size and the size of their neighbors follow-
ing the Perfect Plasticity Approximation approach of
Purves et al. (2008) and Bohlman and Pacala (2012). To
do this, we first divided all plots into subplots that were
either predefined by the sampling design, or trees
were assigned to subplots based on their spatial coordi-
nates. The size of these subplots ranged from 625 to
1000 m2 in wet sites (except for a 100 m2 plot in a
<20-year-old forest) depending on the sampling design
and plot sizes (Appendix S1: Table S1). In the dry sites,
where trees are generally smaller than in wet forests,
subplot sizes ranged from 100 to 125 m2 except for some
400 m2 plots in Yucat�an (Appendix S1: Table S1). Next,
we sorted trees by dbh of the largest living stem within
subplots. We then estimated the crown area for all trees
using allometric equations (see Appendix S1). Starting
from the largest, we assigned trees to the top canopy
layer (layer 1) as long as the cumulative estimated area of
their crowns did not exceed the subplot area. Smaller

trees were successively assigned to lower canopy layers in
the same way. Calculating demographic rates in discrete
canopy layers has proven useful in capturing variance in
demographic strategies between co-occurring species
(Bohlman & Pacala, 2012; Rüger et al., 2018) and in
predicting forest dynamics (Rüger et al., 2020).

Demographic rates

We calculated demographic rates for species with
interpretable stem growth, that is, excluding palms and
hemi-epiphytes (Appendix S1: Table S2). We determined
dbh increment and mortality for all observations and sub-
sequently calculated species-level annual growth
and mortality rates for each canopy layer and successional
stage. Individual annual tree growth gi was calculated as

gi ¼
size2 − size1

t
, ð1Þ

with size being the dbh of the largest living stem of an
individual in wet sites and dbh equivalent of the total
basal area (ba) of all living stems of an individual in dry
sites in the first and second censuses, respectively, and
t being the time elapsed between the two size measure-
ments in years. We used the dbh equivalent of the total
basal area as the measure of size in the dry sites, because
there were many individuals with multiple stems that
were not individually marked and, thus, stem-level dbh
growth could not be calculated. The dbh equivalent
(dbhe) is the dbh that a single stem would have with the
same basal area as all the stems of a multistemmed indi-
vidual together:

dbhe ¼
ffiffiffiffiffiffiffiffi
4
π
ba

r
: ð2Þ

Species-level growth rates per canopy layer (gj,l) were
calculated as the median growth of all individuals i of
species j in layer l:

gj,l ¼median gj,l,i
� �

: ð3Þ

Species-level annual mortality rates per canopy layer
(mj,l) were determined as

mj, l ¼ 1−
N2

N1

� �1
t

, ð4Þ

with N1 being the number of living individuals in the first
census, N2 being the number of individuals remaining
alive in the second census and t being the mean census
interval length in years (measured to the nearest day).
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Multistemmed individuals were deemed alive if at least
one stem was alive and dead if all stems were dead.

Species-level per capita recruitment rates for each
successional stage were determined as

rj ¼Nj,r

Nj
, ð5Þ

with Nj,r being the mean number of recruits per hectare
that surpassed the 1 cm dbh threshold between two con-
secutive censuses divided by the mean census interval
length in years and Nj being the average number of indi-
viduals per hectare of the respective species in the respec-
tive successional stage across plots. Only plots or subplots
with a minimum dbh threshold of 1 cm were used to deter-
mine Nj,r, whereas all plots of the respective successional
stage were used to determine Nj. In some successional
stages, only a few small plots had a minimum dbh thresh-
old of 1 cm, which limited our ability to assess recruitment
rates. However, recruitment over the 1 cm dbh threshold is
a more frequent event than recruitment over the 5 cm dbh
threshold. Thus, recruitment rates could be quantified for
more species using the lower threshold.

Quantification of demographic diversity

We used two-dimensional hypervolumes based on Gaussian
kernel density estimations (Blonder et al., 2014) to represent
and quantify the range of demographic strategies spanning
pairs of demographic rates: growth versus mortality, growth
versus recruitment and mortality versus recruitment.
Because many species did not occur in all canopy layers
and species with nonobserved values cannot be included in
hypervolume analyses, we calculated hypervolumes using
only growth and mortality rates from a single canopy layer.
That means, we quantified demographic diversity separately
for canopy trees (layer 1), subcanopy trees (layer 2), and
understory trees (layer 3). We focused on growth and mor-
tality rates from canopy layer 2 to maximize the number of
species included in the analyses (Appendix S1:
Tables S3–S5). To ensure representability, we also examined
hypervolumes using growth and mortality rates from can-
opy layers 1 and 3. Only species with at least 10 or 5 observa-
tions for mortality per canopy layer were included in the
analyses for wet and dry sites, respectively. Species with
mortality rates of 0 or 1 or with recruitment rates of 0 were
excluded from the respective hypervolumes (see
Appendix S1: Tables S3–S5). In total, 353, 503 and 463 spe-
cies met the criteria for inclusion in the analyses in canopy
layers 1, 2 and 3, respectively.

We natural log-transformed all demographic rates to
ensure approximate Gaussian multivariate distributions.
We estimated kernel bandwidths (the parameter defining

the smoothness of the probability densities) for each
hypervolume per site using the cross-validation method
(Blonder et al., 2014; Duong, 2007). We used the same
bandwidths for all successional stages per site to ensure
comparability among sites (Blonder, 2018). Hypervolume
boundaries represent the smallest volume that captures
80% of the total probability densities. All species contrib-
uted equally to the hypervolume calculations. We used
the hypervolume R package (version 3.0.4) for all analyses
(Blonder et al., 2014).

To quantify the overlap of demographic strategies
in different successional stages, we calculated overlap
statistics for all hypervolumes using the “hypervolume_
overlap_statistics” function. We used bootstrapping and
rarefaction techniques (r = 100 replicates, n = 10 species
per replicate) to account for differences in the number of
species included and to obtain 95% confidence intervals.
Likewise, we derived volumes of all two-dimensional
hypervolumes (i.e., areas) to quantify the amount of
demographic diversity using the “hypervolume_gaussian”
function. We assumed statistically significant differences
if the confidence intervals did not overlap.

Quantification of the causes of shifts
in demographic diversity

To evaluate whether shifts in the range of demographic
strategies were due to intraspecific variation in demo-
graphic rates across successional stages, we performed
major axis regressions between species’ demographic
rates in different successional stages. To evaluate whether
shifts in the range of demographic strategies were due to
species turnover, we assessed successional trends in the
abundance of species that exhibited a demographic
strategy that was exclusive to one particular successional
stage. As we only found unique demographic strategies
in the early successional stage, we modeled abundances
per ha of the species with this unique strategy as a
function of stand age with the form: Ln(abundance)
= a × stand ageb. Parameters a and b were estimated
using the “nls” R function. For parameter estimation, we
only used data points from the point in time when
species reached their highest abundance onwards.

All analyses were carried out in R version 4.2.2 (R Core
Team, 2022). Taxonomy was standardized according to The
Plant List version 1.1 (http://www.theplantlist.org) using
the Taxonstand package (Cayuela et al., 2012).

RESULTS

We used 1,550,171 observations from 352,243 individual
trees (of this total, 101,777 observations were from 80,317
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individual trees in secondary forests) to calculate demo-
graphic rates for a total number of 503 species from 77 fam-
ilies. The number of individual trees ranged from 3302 in
Oaxaca to 312,328 in Panama (Appendix S1: Table S2).

Do ranges of demographic strategies shift
during succession?

In all forest sites, the ranges of demographic strategies
present in the three successional stages largely over-
lapped (Figure 2). The ranges of growth rates were largely
consistent across succession in all sites except Oaxaca,

where they slightly shifted toward slower growth later in
succession. In Costa Rica and Panama, the ranges of
mortality rates were largest in ESF, where they extended
further toward high mortality rates. In Oaxaca, the
ranges of mortality rates shifted slightly toward lower
mortality later in succession. The ranges of recruitment
rates shifted slightly toward fewer recruits during
succession in all sites except Yucat�an. These results were
robust to the choice of canopy layer (Appendix S1:
Figures S3–S5) and were not biased by the number of
species included (Appendix S1: Figure S6). The measured
average hypervolume overlap across pairs of demo-
graphic rates between successional stages did not differ
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F I GURE 2 Two-dimensional hypervolumes representing ranges of demographic strategies for different pairs of demographic rates

(a–d: growth–mortality, e–h: growth–recruitment, i–l: mortality–recruitment) for all sites and successional stages (ESF, early successional

forest; LSF, late successional forest; OGF, old-growth forest). All axes are log-transformed (Ln). Growth and mortality rates are from

individuals assigned to canopy layer 2 because this layer contains the most individuals and species. Hypervolume boundaries represent the

smallest volume that captures 80% of the total Gaussian probability densities. All species contributed equally to the hypervolume calculation.

Points represent species and point sizes indicate relative abundances within the successional stage. dbh, diameter at breast height.
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across sites and was also similar among all successional
stages within sites (Figure 3a; Appendix S1: Figure S7).

Are there demographic strategies that are
exclusive to particular successional stages?

In the wet forests in Costa Rica and Panama, we found
a demographic strategy exclusive to ESF, which was pri-
marily associated with exceptionally high mortality rates
of 10% or more (Figure 2a,b). This group of high mortal-
ity species consisted of 17 and 28 species in Costa Rica
and Panama, respectively. Many of these species are typi-
cally considered pioneer species (e.g., Cecropia insignis,
Ochroma pyramidale, Trema integerrima, Byrsonima
crassifolia, Conostegia xalapensis, Vernonanthura patens,
Vismia baccifera, Vismia macrophylla; see Appendix S1:
Figures S8 and S9). Many species within this group did
not grow particularly fast, especially in Panama. In
Costa Rica, no recruits were recorded for most of the

species in this group (Figure 2i), whereas in Panama,
most of these species had fairly high recruitment rates
(Figure 2j).

Do ranges of demographic strategies
expand during succession?

Demographic diversity (the area of the 2-dimensional
hypervolumes) did not generally increase with succes-
sion, but tended to decrease in Panama and increase in
the dry sites (Figure 3b; Appendix S1: Figure S10).

Are shifts in demographic strategies due
to intraspecific variation or due to species
turnover?

Overall, intraspecific variation in growth and mortality
rates across succession was low in all sites (Appendix S1:
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F I GURE 3 (a) Mean overlap statistics and (b) mean areas of the two-dimensional hypervolumes representing the ranges of

demographic strategies for all successional stages (ESF, early successional forest; LSF, late successional forest; OGF, old-growth forest).

Colored bars represent the median rarefied and bootstrapped values, error bars represent 95% confidence intervals (r = 100 replicates,

n = 10 species per successional stage). All values are means across pairs of demographic rates. Individual values per pair of demographic

rates are given in Appendix S1: Figures S10 and S11.
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Figures S11–S14). In Panama and Oaxaca, recruitment
rates were higher in secondary forests than in OGFs
(Appendix S1: Figures S12 and S14), whereas in
Costa Rica and Yucat�an, results for the major axis regres-
sions on recruitment rates were inconclusive (Appendix S1:
Figures S11 and S13).

Most of the species that exhibited an exclusive demo-
graphic strategy (i.e., species with mortality >10% in wet
ESF) decreased substantially in abundance during the first
30 years of succession (Figure 4; Appendix S1: Figures S8
and S9). In Costa Rica, only five out of the 17 species were
also found in LSF (four species) or OGF (one species). In
Panama, 11 out of the 28 species forming this group in
ESF were also found in LSF (two species) or OGF (nine
species), albeit at low abundances. Species from this group
that were present in more than one successional stage gen-
erally had lower mortality rates in later successional stages
(Appendix S1: Figures S11 and S12).

DISCUSSION

We used demographic rates from 503 woody plant species
to compare ranges of demographic strategies along suc-
cessional gradients in four Neotropical forests. Contrary
to our expectations, we found not only that demographic
strategies largely overlapped across successional stages,

but also that the amount of demographic diversity was
similar along succession. Interestingly, we found a group
of species with exceptionally high mortality rates that
occurred exclusively in ESF in wet sites. Our results sug-
gest that insights gained from analyses of demographic
rates in OGFs are largely representative of forests of all
successional stages, with the exception of a strategy asso-
ciated with high mortality that only occurs in early suc-
cessional wet forests.

Demographic strategies largely overlap
across succession

In contrast with our hypotheses, we found a high degree
of overlap of demographic strategies across successional
stages in all four sites. Almost all demographic strategies
that were present in OGFs were present in secondary for-
ests after 30 years of succession in both the wet and dry
tropical forests that we studied. This suggests that most
species, regardless of their life-history strategies, can
establish in ESF (Egler, 1954) and highlight the impor-
tance of stochastic processes for successional trajectories
(Chazdon, 2008; Norden et al., 2015). At the same time,
tropical wet forests recover quickly and the range of
microsites that can develop during the first 30 years of suc-
cession may accommodate the full range of demographic
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F I GURE 4 Observed (gray) and modeled (black) abundances >1 cm dbh over time of species with annual mortality >10% exclusive to

wet early successional forests in (a) Costa Rica and (b) Panama. Models are of the form Ln(abundance) = a × stand ageb. Parameters a and

b were estimated using the “nls” R function. The model did not converge for two species in Costa Rica and three species in Panama due to

irregular patterns in abundance over time. The model does not accurately capture that one species in Costa Rica and seven species in

Panama had increased abundances in old-growth forest (OGF). Individual models are shown in Appendix S1: Figures S8 and S9.
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strategies exhibited by species that occur in older forests
(Denslow & Guzman, 2000). This does not mean that the
abundance of species with different demographic strategies
does not shift across succession (Rüger et al., 2023), but
here we focus on the presence or absence of demographic
strategies.

Only for recruitment rates, we found the expected shift
toward lower recruitment rates during succession in all
sites except Yucat�an. Recruitment rates strongly depend
on seedling and sapling performance and, hence, on
resource (primarily light) availability on the forest floor
(Kupers et al., 2019; Montgomery & Chazdon, 2001).
Because light availability at the forest floor decreases dur-
ing succession (Denslow & Guzman, 2000), recruitment
rates are predicted to do the same.

In Oaxaca, the driest forest site, the range of demo-
graphic strategies shifted slightly toward lower growth,
mortality and recruitment rates, that is, toward more
conservative life-history strategies during succession. In
Yucat�an, the second dry forest site, however, we detected
a slight shift toward higher recruitment, hindering our
ability to generalize more broadly from our results. The
forest in Yucat�an stands out in that it occurs in a land-
scape that has been shaped by human land use for many
centuries (Rico-Gray & García-Franco, 1991). Thus, the
pool of tree species might have been restricted over time
to those species that are able to cope with frequent distur-
bance, including the ability to resprout (Rico-Gray &
García-Franco, 1991; Sanaphre-Villanueva et al., 2017).
This is also indicated by the smaller range of growth and
mortality rates of the dry forest in Yucat�an compared
with that of Oaxaca.

High mortality strategy is exclusive to early
successional stages in wet forests

We expected to find the most acquisitive demographic
strategies with the highest growth, mortality and recruit-
ment rates in early successional wet forests. Yet, the group
of species exclusively observed in these forests was
associated with high mortality (>10%) and moderately high
recruitment rates, but not particularly with fast growth.
Potentially, higher growth rates might be masked because
the entire life cycle of these short-lived species is completed
within the early successional stage (0–30 years since aban-
donment), including senescent stages when trees might
reach their maximum stature and growth might decline
(Cailleret et al., 2017; Martínez-Ramos et al., 2021).

Although some of these high-mortality species were
highly abundant in ESF, no recruits were recorded for
most of them in Costa Rica. Here, recruitment rates
might be less informative than in other forests because

only a few plots that were 12 years or older had informa-
tion on trees ≥1 cm dbh and met our criterion for the cal-
culation of recruitment rates (Appendix S1: Table S1).
Additionally, recruitment in the plots at the La Selva
Biological Station (referred to in Appendix S1: Table S1 as
Sarapiquí) is known to be affected by collared peccaries
(Huanca-Nuñez et al., 2023; Kuprewicz, 2013). Given their
high abundance during the first ~15 years of succession,
many of the high-mortality species might actually have
similarly high recruitment rates in ESF as many of the
high-mortality species in Panama, where data availability
was more consistent throughout the chronosequence.
Hence, in contrast with common assumptions, early suc-
cessional specialist demographic strategies in these forests
might indicate a trade-off of high mortality and high
recruitment rather than consistently high growth rates.
However, as mentioned above, high early growth rates of
species with short lifespans might be left undetected in
this study integrating over the first 30 years of succession.

The fact that the high-mortality strategy was
restricted to the ESF was primarily due to species turn-
over, as projected by Finegan (1996). Most of the species
were either completely absent after 30 years of succession
or persisted at very low abundance. However, the few
species from this group that were present in OGFs
exhibited lower mortality rates there, indicating that
intraspecific variation in mortality rates also contributes
to this shift (Umaña et al., 2018). The same pattern has
also been observed for some species in other tropical
rainforests (Martínez-Ramos et al., 2021).

In the dry sites, we did not find an exclusive demo-
graphic strategy in ESF. In tropical dry forests, species
that are present in ESF can persist for a longer time and
do not have a unique demographic strategy. Because of a
lower and (seasonally) more open canopy, early and late
successional environments are less distinct in dry com-
pared with wet forests (Lebrija-Trejos et al., 2011; Letcher
et al., 2015). Moreover, many resprouting species in ESF
might in fact be species that were abundant predisturbance
and therefore follow demographic strategies associated
with late-successional environments (Boucher et al., 2001;
Lebrija-Trejos et al., 2008). Additionally, resprouting trees
in ESF are likely to rely on belowground carbohydrate
reserves of the old root system and therefore might have
similar demographic rates as in OGFs (Poorter et al., 2010).

Ranges of demographic strategies do not
expand during succession

Contrary to our expectations, we did not find a general
pattern of increasing diversity in demographic strategies
during succession. Indeed, demographic diversity seems
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to recover to OGF values within the first 30 years of
succession. Similarly, Poorter et al. (2021) found that
structural heterogeneity and species richness in second-
ary tropical forests recovered to 90% of OGF values
at around 30 years after abandonment, whereas species
composition only recovered after more than a century.
Although we did not examine shifts in the relative abun-
dance of demographic strategies (but see Rüger
et al., 2023), this may nevertheless indicate that demo-
graphic diversity (defined solely as the range of demo-
graphic strategies employed in a forest) is more closely
linked to species richness than to species composition
and that many different species exhibit similar demo-
graphic strategies and have similar demographic niches.

Limitations

When interpreting our results, it should be noted that we
used a chronosequence approach that substitutes space
for time and thus infers temporal trends from static data
(Walker et al., 2010). Moreover, data availability as well
as data collection methodologies varied widely across
sites (Appendix S1: Figure S1), and plots within each
chronosequence also varied in extent and minimum dbh
threshold (Appendix S1: Table S1). Last, it should be
noted that only a small number of plots was measured
down to 1 cm dbh, especially in the dry sites. This pre-
cluded the reliable calculation of recruitment rates.
While our results are robust to this heterogeneity and
independent of the number of species included
(e.g., Appendix S1: Figure S6), this emphasizes the need
for more permanent monitoring plots with small dbh
cut-offs in ESF.

CONCLUSION

Overall, we found that the secondary forests in our
study harbored similar levels of demographic diversity
as the OGFs, indicating that early successional stages
(0–30 years since abandonment) contain the full spectrum
of life-history strategies found in OGFs. Based on these
findings, demographic data from OGFs is surprisingly
informative for understanding the diversity of demo-
graphic strategies in these tropical forests. An exception
was a group of species with exceptionally high mortality
rates that was confined to early successional stages in the
wet forests. This suggests that studies of demographic
diversity of OGFs might be more informative than
previously thought, but that they do not obviate the need
for further demographic studies in secondary forests.
These results also imply that accurate predictions of early

successional dynamics in tropical wet forests need to
account for this demographic strategy that occurs uniquely
during the first 30 years of succession. However, predic-
tions of forest recovery and successional changes in the
dominance of different demographic strategies in tropical
dry forests, and after the first decades in wet forests, can
likely be based on information on the diversity of demo-
graphic strategies from OGFs (Rüger et al., 2020, 2023).
These findings enhance our understanding of the mecha-
nisms underlying tropical forest succession across rainfall
gradients and improve our ability to predict successional
dynamics in tropical forests with the help of demographic
forest models (Purves et al., 2008; Rüger et al., 2020).
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