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a b s t r a c t 

Aggregating voxel-level statistical dependencies between multivariate time series is an important intermediate 

step when characterising functional connectivity (FC) between larger brain regions. However, there are numerous 

ways in which voxel-level data can be aggregated into inter-regional FC, and the advantages of each of these 

approaches are currently unclear. 

In this study we generate ground-truth data and compare the performances of various pipelines that estimate 

directed and undirected linear phase-to-phase FC between regions. We test the ability of several existing and novel 

FC analysis pipelines to identify the true regions within which connectivity was simulated. We test various inverse 

modelling algorithms, strategies to aggregate time series within regions, and connectivity metrics. Furthermore, 

we investigate the influence of the number of interactions, the signal-to-noise ratio, the noise mix, the interaction 

time delay, and the number of active sources per region on the ability of detecting phase-to-phase FC. 

Throughout all simulated scenarios, lowest performance is obtained with pipelines involving the absolute value of 

coherency. Further, the combination of dynamic imaging of coherent sources (DICS) beamforming with directed 

FC metrics that aggregate information across multiple frequencies leads to unsatisfactory results. Pipelines that 

show promising results with our simulated pseudo-EEG data involve the following steps: (1) Source projection 

using the linearly-constrained minimum variance (LCMV) beamformer. (2) Principal component analysis (PCA) 

using the same fixed number of components within every region. (3) Calculation of the multivariate interaction 

measure (MIM) for every region pair to assess undirected phase-to-phase FC, or calculation of time-reversed 

Granger Causality (TRGC) to assess directed phase-to-phase FC. We formulate recommendations based on these 

results that may increase the validity of future experimental connectivity studies. 

We further introduce the free ROIconnect plugin for the EEGLAB toolbox that includes the recommended methods 

and pipelines that are presented here. We show an exemplary application of the best performing pipeline to the 

analysis of EEG data recorded during motor imagery. 
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. Introduction 

In recent years, the field of functional neuroimaging has seen a shift

rom the mere localization of brain activity towards assessing interaction

atterns between functionally segregated and specialized brain regions

 Friston, 2011; Schoffelen and Gross, 2019 ). Functional connectivity

FC), in contrast to structural connectivity, expresses a statistical depen-

ency between two or more neuronal time series. It has been proposed
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hat FC reflects inter-areal brain communication ( Fries, 2015 ). More-

ver, empirical FC estimates have been linked to various cognitive func-

ions ( Schoffelen and Gross, 2019 ) and show pathological alterations in

any neurological diseases like Parkinson’s Disease, Alzheimer’s Dis-

ase, and epilepsy ( Van Diessen et al., 2015 ). 

Electroencephalography (EEG) and Magnetoencephalography

MEG) are suitable tools for recording neural activity non-invasively

ith high temporal resolution. Pipelines for analysing inter-regional
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C from M/EEG recordings typically consist of a series of processing

teps: artifact cleaning, source projection, aggregation of signals within

egions of interests (ROIs), and, finally, FC estimation. At each step,

esearchers can choose between a huge selection of processing methods,

here every decision has the potential to crucially affect the final result

f an analysis and its interpretation ( Colclough et al., 2016; Mahjoory

t al., 2017; Wang et al., 2014 ). This not only complicates the com-

arison of results from different FC studies, it also raises the question:

hich pipelines are suitable for reliable source-level FC detection from

/EEG? 

In the absence of a robust ground truth on information flow patterns

n the human brain, computer simulations are a straightforward way to

ddress such questions ( Ewald et al., 2012 ). Indeed, numerous works

ave aimed to validate parts or aspects of M/EEG FC methodologies by

mploying simulated activity. Several studies have focused on assessing

he accuracy of different inverse solutions ( Allouch et al., 2022; Anzolin

t al., 2019; Bradley et al., 2016; Castaño Candamil et al., 2015; Grova

t al., 2006; Halder et al., 2019; Hashemi et al., 2021; Haufe et al., 2008;

011; Hincapié et al., 2017; Jaiswal et al., 2020 ). Others have tested the

erformance of different FC metrics ( Allouch et al., 2022; Anzolin et al.,

019; Astolfi et al., 2007; Haufe et al., 2013; Silfverhuth et al., 2012;

ommariva et al., 2019 ); however, not always on source-reconstructed

ata exhibiting realistic levels of source leakage. 

Many studies aim at aggregating FC within physiologically defined

OIs ( Basti et al., 2020; Idaji et al., 2021; Palva et al., 2010; 2011;

choffelen et al., 2017; Supp et al., 2007 ). This approach has various

dvantages. First, it is computationally more tractable (both memory-

nd time-wise) than the computation of FC between many pairs of in-

ividual sources, and it can avoid numerical instabilities for FC metrics

hat require full-rank signals. Second, interpreting or even visualizing

C between thousands of separate sources is almost impossible. Third,

tatistical testing is far easier due to a much reduced number of multi-

le comparisons. And, forth, across-subject statistical analyses are eased

y working on a standardized set of regions rather than in individual

natomical spaces lacking a common set of source locations. 

There have been various suggestions on how to reduce the signal

imensionality within ROIs. While some approaches focus on selecting

ne source for each ROI that best represents the activity of all sources in

t ( Ghumare et al., 2018; Hillebrand et al., 2012; Perinelli et al., 2022 ),

thers involve some kind of averaging or weighted averaging over all

ource time series of a ROI ( Korhonen et al., 2014; Palva et al., 2010;

011 ). This approach can be made more general by using the strongest

rincipal component (PC) of all sources of a ROI as a representative time

eries of that ROI ( Basti et al., 2020; Ghumare et al., 2018; Hillebrand

t al., 2012; Rubega et al., 2019; Supp et al., 2007 ). The assumption

ehind this is that the projection of the data that captures the highest

mount of variance within a ROI (its strongest PCs) also reflects the

onnectivity structure of that ROI best. While most works use only the

rst PC per region, the use of multiple components has also been sug-

ested (e.g. Schoffelen et al., 2017 ). For this approach, the subsequent

C estimation is usually calculated between pairs of multivariate time

eries. Another approach, used for example in Schoffelen et al. (2017) ,

s to apply a multivariate FC metric (here, a multivariate extension of

ranger causality, Barrett et al., 2010 ) to the first 𝐶 PCs of each pair

f ROIs. Comparable undirected metrics are the multivariate interac-

ion measure (MIM) and the maximized imaginary coherency (MIC)

 Basti et al., 2020; Ewald et al., 2012 ), which are currently already

n use for source-to-source FC estimation (e.g. D’Andrea et al., 2019 ).

hese are promising approaches towards more reliable FC estimation.

ut their virtue in the context of inter-regional FC estimation is still

nclear. Moreover, a comprehensive approach evaluating entire data

nalysis pipelines rather than individual steps is still lacking (see Haufe

nd Ewald, 2019; Mahjoory et al., 2017 ). 

Consequently, this work addresses the following questions: First,

hich pipelines are promising candidates for inferring phase-to-phase

C? Second, which pipelines are promising candidates for inferring the
2 
irectionality of an interaction? And, most importantly, which pipelines

re not suitable to detect FC from data that is corrupted by signal mix-

ng? In addition, we investigate how the number of PCs per ROI af-

ects FC estimation. Finally, we evaluate how the performance of de-

ecting ground-truth interactions varies depending on crucial data pa-

ameters like the signal-to-noise ratio (SNR), the number of ground-

ruth interactions, the noise composition, and the length of the inter-

ction delay. All pipelines are tested within an EEG signal simulation

ramework that builds on our prior work ( Haufe and Ewald, 2019 ).

ote that we focus here on 1:1-phase-to-phase coupling with non-

ero time delay, which is the most commonly studied type of FC.

ther coupling types including phase–amplitude, amplitude–amplitude,

hase–frequency, frequency–frequency, and amplitude–frequency cou-

ling (e.g., Jirsa and Müller, 2013 ) are not studied here. Further note

hat we do not intend to propose a realistic model of EEG data or

he whole brain. Rather, we aim to identify metrics and pipelines that

an accurately reconstruct ROI-level functional connectivity (FC) in the

resence of signal mixing, which heavily affects popular metrics used

o infer directed and undirected linear FC. That is, we don’t address the

uestion of whether networks estimated using FC metrics provide an

ccurate depiction of actual brain networks. 

The best-performing methods and pipelines identified in this study

re implemented in the free ROIconnect plugin for the EEGLAB toolbox.

e describe the functionality of ROIconnect and apply it to investigate

EG phase-to-phase FC during left and right hand motor imagery. 

. Methods 

.1. Data generation 

We generate time series at a sampling rate of 100 Hz with a recording

ength of three minutes ( 𝑁 𝑡 = 100 ⋅ 60 ⋅ 3 = 18000 samples). For spectral

nalyses, we epoch the data into 𝑁 𝑒 = 90 segments of 𝑇 = 200 samples

2 seconds) length. 

Ground-truth activity of interacting sources (c.f. Fig. 1 a) is gener-

ted as random white noise filtered in the alpha band (8 to 12 Hz).

hroughout, we use zero-phase forward and reverse second-order digi-

al band-pass Butterworth filters. The interaction between two regions

s modeled as unidirectional from the sending region to the receiving re-

ion. This is ensured by defining the activity at the receiving region to

e an exact copy of the activity at the sending region with a certain time

elay (see Section 3 ). Additionally, pink (1 ∕ f scaled) background noise is

dded to the sending and receiving regions independently. More specif-

cally, both the ground-truth signal and the pink background noise are

rst normalized to have unit-norm in the interacting frequency band. To

his end, every interacting ground-truth signal time series 𝐠 𝑥 ∈ ℝ 

𝑁 𝑡 at

egion 𝑥 is divided by its 𝓁 2 -norm: 𝐠 𝑥 n = 

𝐠 𝑥 ||𝐠 𝑥 ||𝓁 2 . Every pink background

oise time series 𝐩 𝑥 ∈ ℝ 

𝑁 𝑡 is filtered in the interacting frequency band

o obtain 𝐩 𝑥 8−12Hz ∈ ℝ 

𝑁 𝑡 . The unfiltered noise time series is then divided

y the 𝓁 2 -norm of its filtered version: 𝐩 𝑥 n = 

𝐩 𝑥 ||𝐩 𝑥 8−12Hz ||𝓁 2 . Subsequently,

 weighted sum of the normalized signal time series and the normalized

oise time series is calculated: 

 𝑥 = 𝜃𝐠 𝑥 n + (1 − 𝜃) 𝐩 𝑥 n ∈ ℝ 

𝑁 𝑡 (1) 

he result is called the (interacting) signal ( Fig. 1 b). The parameter 𝜃

akes values between 0 and 1 and defines the source-level SNR in decibel

dB): 𝑆𝑁𝑅 𝜃 = 20 ∗ 𝑙𝑜𝑔 10 ( 
𝜃

1− 𝜃 ) . The source-level SNR is set to 3.5 dB

 𝜃= 0.6). The transposed column vectors of all 2 𝑁 𝐼 signal time series 𝐬
orm the signal sources 𝐉̃ 𝐼 ∈ ℝ 

2 𝑁 𝐼 ×𝑁 𝑡 , with 𝑁 𝐼 region pairs containing

he 2 𝑁 𝐼 interacting signals. 

In contrast, activity of a non-interacting source at region y 𝐛 𝑦 ∈ ℝ 

𝑁 𝑡 

referred to as brain noise ( Fig. 1 c) – is generated using random pink

oise only without additional activity in the alpha band. The transposed

olumn vectors of all 𝑅 − 2 𝑁 𝐼 brain noise time series 𝐛 form the brain

oise sources 𝐉̃ ∈ ℝ 

𝑅 −2 𝑁 𝐼 ×𝑁 𝑡 , with 𝑅 denoting the number of regions. 
𝑏 
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Fig. 1. Example of simulated data in time and 

frequency domain. (a) Ground-truth activity at 

two interacting sources was generated as random 

white noise filtered in the alpha band (8 to 12 Hz). 

Left: the one-second window of data in the time 

domain. Right: power spectral density (PSD). (b) 

Two interacting signals, generated as a mixture 

of the ground-truth activity and pink background 

noise ( SNR 𝜃 = 3.5 dB). Left: one-second window 

of data in the time domain. Right: PSD. (c) Brain 

noise, generated as random pink noise without ad- 

ditional activity in the alpha band (shown is the 

activity of an exemplary non-interacting source). 

Left: one-second window of data in time domain. 

Right: PSD. (d) PSD of activity at the sensor level 

is generated by mixing white sensor noise, and the 

interacting signal, and the brain noise at the sen- 

sor level (SNR = 3.5 dB). (e) PSD of reconstructed 

source-level activity. Shown are PSDs of the first 

principal component of all 68 regions. 
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We use a surface-based source model with 𝑁 𝑣 = 1895 dipolar sources

laced in the cortical gray matter. Regions are defined according to the

esikan-Killiany atlas ( Desikan et al., 2006 ), which is a surface-based at-

as with 𝑅 = 68 cortical regions. Depending on the number of interacting

oxels (see Experiment 6, Section 3 ), one or two time series per region

re generated. Every ground-truth time series is placed in a randomly

elected source location within a region, so that every region contains

he same number of ground-truth time series. The 𝑁 𝐼 region pairs con-

aining the 2 𝑁 𝐼 interacting signals are chosen randomly, and all other

egions contain time series with brain noise. 

In the next step, source activity is projected to sensor space by using

 physical forward model of the electrical current flow in the head, sum-

arized by a leadfield matrix. The leadfield describes the signal mea-

ured at the sensors for a given source current density. It is a function of

he head geometry and the electrical conductivities of different tissues

n the head. The template leadfield is obtained from a boundary ele-

ent method (BEM) head model of the ICBM152 anatomical head tem-

late, which is a non-linear average of the magnetic resonance (MR) im-

ges of 152 healthy subjects ( Mazziotta et al., 1995 ). We use Brainstorm

 Tadel et al., 2011 ) and openMEEG ( Gramfort et al., 2010 ) software

o generate the headmodel and leadfield. 𝑁 𝑠 = 97 sensors are placed

n the scalp following the standard BrainProducts ActiCap97 channel

etup. Note that the spatial orientation of all simulated dipolar sources

s chosen to be perpendicular to the cortex surface, so the three spa-

ial orientations that define the dipole orientation of the source activity

rientations are summarized into one. This assumption implies a scalar

eadfield 𝐋 s ∈ ℝ 

𝑁 𝑠 ×𝑁 𝑣 . We denote the columns of 𝐋 s that correspond

o the interacting sources by 𝐋 𝐼 ∈ ℝ 

𝑁 𝑠 ×2 𝑁 𝐼 and those corresponding to

he brain noise sources by 𝐋 𝑏 ∈ ℝ 

𝑁 𝑠 ×𝑅 −2 𝑁 𝐼 . Signal sources 𝐉̃ 𝐼 and brain

oise sources 𝐉̃ 𝑏 are then separately projected to sensor space: 

̃
 𝐼 = 𝐋 𝐼 ∗ 𝐉̃ 𝐼 (2) 

̃
 𝑏 = 𝐋 𝑏 ∗ 𝐉̃ 𝑏 , (3) 

ith 𝐐̃ 𝐼 and 𝐐̃ 𝑏 ∈ ℝ 

𝑁 𝑠 ×𝑁 𝑡 . 

At sensor level, we mix the different signal and noise components.

e generate white sensor noise 𝐐̃ 𝑠 ∈ ℝ 

𝑁 𝑠 ×𝑁 𝑡 with equal variance at all

ensors. The multivariate sensor-space time series corresponding to all

hree signal components —brain noise, interacting signals, and sensor

oise —are divided by their Frobenius norms with respect to the inter-

cting frequency band (8–12 Hz): 

̃
 𝐼n = 

𝐐̃ 𝐼 ||𝐐̃ 𝐼 8−12Hz ||𝓁2 , (4) 

̃
 𝑏 n = 

𝐐̃ 𝑏 ||𝐐̃ || , (5) 
𝑏 8−12Hz 𝓁2 

3 
̃
 𝑠 n = 

𝐐̃ 𝑠 ||𝐐̃ 𝑠 8−12Hz ||𝓁2 , (6) 

ith 𝐐̃ 𝐼 8−12Hz , 𝐐̃ 𝑏 8−12Hz and 𝐐̃ 𝑠 8−12Hz ∈ ℝ 

𝑁 𝑠 ×𝑁 𝑡 . Then the three compo-

ents are combined as follows: first, we add brain noise and sensor noise

ith a specific brain noise-to-sensor noise-ratio (BSR) to obtain the to-

al noise 𝐐̃ 𝑛 and normalize it with respect to the interacting frequency

and: 

̃
 𝑛 = 𝜃bsr ̃𝐐 𝑏 n + (1 − 𝜃bsr ) ̃𝐐 𝑠 n (7) 

̃
 𝑛 n = 

𝐐̃ 𝑛 ||𝐐̃ 𝑛 8−12Hz ||𝓁2 . (8) 

he default BSR value is set to 0 dB, i.e., 𝜃bsr = 0 . 5 . Second, we sum up

ignal and total noise with a specific global (sensor-level) SNR: 

̃
 = 𝜃snr ̃𝐐 𝐼n + (1 − 𝜃snr ) ̃𝐐 𝑛 n (9) 

̃
 n = 

𝐐̃ ||𝐐̃ 8−12Hz ||𝓁2 (10) 

he default SNR value is set to 3.5 dB, i.e., 𝜃snr = 0 . 6 . An example of

he power-spectral density of the resulting activity on sensor level is

llustrated in Fig. 1 d. As a last step, we high-pass filter the generated

ensor data with a cutoff of 1 Hz. 

.2. Source reconstruction 

We test four different inverse solutions for source reconstruction: ‘ex-

ct’ low-resolution electromagnetic tomography (eLORETA), linearly-

onstrained minimum variance beamforming (LCMV), dynamic imaging

f coherent sources (DICS), and Champagne. Inverse source reconstruc-

ions are based on the same leadfield used to simulate the signals. Full

D currents are estimated for each source dipole. That is, prior informa-

ion about the dipoles’ orientation is not used. A normal direction could

n principle be estimated from the reconstructed cortical surface mesh

which we used here for signal generation); however, such estimation is

onsidered to be rather unstable, since we do not have a good estimate

f the cortical surface orientation in practice. The aggregation of the

hree spatial dimensions is discussed in Section 2.3 . 

Exact’ low-resolution electromagnetic tomography 

The starting point to solve the source localization problem is the lin-

ar forward model 𝐐̃ = 𝐋 v ̃𝐉 , where 𝐐̃ ∈ ℝ 

𝑁 𝑠 ×𝑁 𝑡 stands for the sensor

easurements, 𝐉̃ ∈ ℝ 

3 𝑁 𝑣 ×𝑁 𝑡 is the vector-valued activity of the dipolar

rain sources to be recovered, and 𝐋 v ∈ ℝ 

𝑁 𝑠 ×3 𝑁 𝑣 is the vector-valued

inear leadfield matrix that maps the electrical activity from sources
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o sensor level. Here, 3 𝑁 𝑣 stand for the three spatial dimensions that

ogether define the dipole orientation of the source activity. The solu-

ion of this equation is ill-posed since the number of brain sources 𝑁 𝑣 

s much smaller than the number of measurement sensors 𝑁 𝑠 . There-

ore eLORETA imposes the constraint of spatially smooth current den-

ity distributions ( Pascual-Marqui, 2007; Pascual-Marqui et al., 2011 ).

riefly, eLORETA uses a weighted minimum norm criterion to estimate

he source distribution: 

̂
 = arg min 

𝐉̃ 

[||𝐐̃ − 𝐋 v ̃𝐉 ||2 + 𝑎 ̃𝐉 ⊤𝐖 ̃𝐉 
]
, (11) 

here 𝑎 ≥ 0 denotes a regularization parameter, and 𝐖 is a block-

iagonal symmetric weight matrix: 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝐖 𝟏 𝟎 … 𝟎 
𝟎 𝐖 2 … 𝟎 
⋮ ⋮ ⋱ ⋮ 
𝟎 𝟎 … 𝐖 𝑁 𝑣 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
∈ ℝ 

3 𝑁 𝑣 ×3 𝑁 𝑣 , (12) 

here 𝟎 is the 3 × 3 zero matrix and 𝐖 𝑣 the 3 × 3 weight matrix at the

 -th voxel defined in Equation (15) . The solution of Equation (11) is

iven by: 

̂
 = 𝐖 

−1 𝐋 ⊤v ( 𝐋𝐖 

−1 𝐋 ⊤v + 𝑎 𝐊 ) †𝐐̃ = 𝐏 E ⊤𝐐̃ , (13) 

here 𝐊 ∈ ℝ 

𝑁 𝑠 ×𝑁 𝑠 is a centering matrix re-referencing the leadfield

nd sensor measurements to the common-average reference, 𝐴 

† is the

oore-Penrose pseudo-inverse of a matrix 𝐴 , and 𝐏 E ∈ ℝ 

𝑁 𝑠 ×3 𝑁 𝑣 is the

LORETA inverse filter. eLORETA then first computes 

 = ( 𝐋 v 𝐖 

−1 𝐋 ⊤v + 𝑎 𝐊 ) † (14) 

nd then for 𝑣 = 1 , … , 𝑁 𝑣 , calculates weights 

 𝑣 = [ 𝐋 v ⊤𝑣 𝐌 𝐋 v 𝑣 ] 1∕2 , (15) 

ith 𝐋 v 𝑣 ∈ ℝ 

𝑁 𝑠 ×3 denoting the leadfield for a single source location. It

hen iterates Equation (14) and (15) until convergence and use the final

eights to calculate 𝐉̂ . eLORETA has been shown to outperform other

inear solutions in localization precision ( Allouch et al., 2022; Halder

t al., 2019; Pascual-Marqui, 2007 ). 

In this study, we choose the regularization parameter based on the

est result in a five-fold spatial cross-validation ( Hashemi et al., 2021 )

ith fifteen candidate parameters taken from a logarithmically spaced

ange between 0 . 01 ∗ Tr( 𝐂𝐨𝐯 𝐐̃ ) and Tr( 𝐂𝐨𝐯 𝐐̃ ) , where Tr(A) denotes the

race of a matrix 𝐴 and 𝐂𝐨𝐯 𝐐̃ ∈ ℂ 

𝑁 𝑠 ×𝑁 𝑠 denotes the sample covariance

atrix of the sensor-space data. 

inearly-constrained minimum variance beamforming 

The LCMV ( Van Veen et al., 1997 ) filter 𝐏 L ∈ ℝ 

𝑁 𝑠 ×3 𝑁 𝑣 belongs to

he class of beamformers. It estimates source activity separately for ev-

ry source location. While LCMV maximizes source activity originating

rom the target location, it suppresses noise and other source contribu-

ions. Let 𝐋 v 𝑣 ∈ ℝ 

𝑁 𝑠 ×3 and 𝐏 L 𝑣 ∈ ℝ 

𝑁 𝑠 ×3 denote the leadfield and projec-

ion matrix for a single source location, respectively. The LCMV pro-

ection filter minimizes the total variance of the source-projected signal

cross the three dipole dimensions: 

 

L 
𝑣 = 𝑎𝑟𝑔 min 

𝐏 𝑣 
Tr 
(
𝐏 𝑣 ⊤𝐂𝐨𝐯 𝐐̃ 𝐏 𝑣 

)
(16) 

nder the unit-gain constraint 

 𝑣 
⊤𝐋 v 𝑣 = 𝐈 3×3 . (17) 

he source estimate 𝐉̂ 𝑣 ∈ ℝ 

3×𝑁 𝑡 at the 𝑣 -th voxel is given by 

̂
 𝑣 = 

[
( 𝐋 v ⊤𝑣 𝐂𝐨𝐯 𝐐̃ 

−1 𝐋 v 𝑣 ) −1 𝐋 v ⊤𝑣 𝐂𝐨𝐯 𝐐̃ 
−1 
]
𝐐̃ = 𝐏 L 𝑣 

⊤𝐐̃ . (18) 

Previous simulations indicated that LCMV overall shows a higher

onnectivity reconstruction accuracy than eLORETA but is more

trongly affected by low SNR ( Anzolin et al., 2019 ). We show a power

pectrum of exemplary LCMV-reconstructed source activity in Fig. 1 e. 
4 
ynamic imaging of coherent sources 

DICS ( Gross et al., 2001 ) is the frequency-domain equivalent of

CMV. In contrast to LCMV, DICS estimates spatial filters separately

or each spectral frequency. The DICS filter 𝐏 D is evaluated for a given

requency 𝑓 using the real part of the sensor-level cross-spectral density

atrix 𝐒 𝐐 : 

 

D 
𝑣 ( 𝑓 ) = 

(
𝐋 v ⊤𝑣 𝐒 𝐐 ( 𝑓 ) 

−1 𝐋 v 𝑣 
)−1 𝐋 v ⊤𝑣 𝐒 𝐐 ( 𝑓 ) −1 (19) 

ith 

 𝐐 ( 𝑓 ) = 

⟨ 
𝐪 ( 𝑓, 𝑒 ) 𝐪 ∗ ( 𝑓, 𝑒 ) 

⟩ 
𝑒 
∈ ℂ 

𝑁 𝑠 ×𝑁 𝑠 , (20) 

here ( ⋅) ∗ denotes complex conjugation and 𝐪 ( 𝑓, 𝑒 ) denotes the Fourier

ransform of the sensor measurements 𝐪̃ ( 𝑡, 𝑒 ) . That is, the time-domain

ensor signal 𝐐̃ is cut into 𝑁 𝑐 epochs of 𝑇 time samples to derive

̃
 ( 𝑡, 𝑒 ) , then multiplied with a Hanning window of length 𝑇 , and Fourier-

ransformed epoch by epoch to derive 𝐪 ( 𝑓, 𝑒 ) . 
The beamformer filter 𝐏 D ( 𝑓 ) = [ 𝐏 D 1 ( 𝑓 ) , … , 𝐏 D 

𝑁 𝑣 
( 𝑓 )] can then be used

o project the sensor cross-spectrum to source space: 

 𝐉 ( 𝑓 ) = 𝐏 D ⊤( 𝑓 ) 𝐒 𝐐 ( 𝑓 ) 𝐏 D ( 𝑓 ) ∈ ( ℂ ) 3 𝑁 𝑣 ×3 𝑁 𝑣 . (21) 

Based on previous literature described above, we hypothesize that

he beamformer solutions (LCMV and DICS) perform better than

LORETA when used in combination with undirected FC measures.

owever, since directed FC measures need to aggregate information

cross frequencies, we hypothesize that the estimation of such measures

ight be negatively affected by DICS source reconstruction. Concretely,

e expect that DICS’ ability to optimize SNR per frequency and, thereby,

o reconstruct different sources for each frequency can be counterpro-

uctive in cases where in fact the same pairs of sources are interacting

t multiple frequencies. In contrast, we expect that LCMV, which recon-

tructs a single set of sources by optimizing the SNR across the whole

requency spectrum, would yield more consistent source cross-spectra

nd, therefore, better directed FC estimates than DICS. 

hampagne 

Champagne ( Wipf et al., 2010 ) uses hierarchical sparse Bayesian in-

erence for inverse modelling. Specifically, it imposes a zero-mean Gaus-

ian prior independently for each source voxel. The prior source covari-

nce is given by 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝚪𝟏 𝟎 ⋯ 𝟎 
𝟎 𝚪2 ⋯ 𝟎 
⋮ ⋮ ⋱ ⋮ 
𝟎 𝟎 ⋯ 𝚪𝑁 𝑣 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
∈ ( ℝ ) 3 𝑁 𝑣 ×3 𝑁 𝑣 , (22) 

here 𝚪𝑣 is the 3 × 3 covariance of the 𝑣 -th voxel. Here we use a Cham-

agne variant that models each 𝚪𝑣 as a full positive-definite matrix 

𝑣 = 

⎡ ⎢ ⎢ ⎣ 
𝛾𝑣, 1 𝛾𝑣, 4 𝛾𝑣, 5 
𝛾𝑣, 4 𝛾𝑣, 2 𝛾𝑣, 6 
𝛾𝑣, 5 𝛾𝑣, 6 𝛾𝑣, 3 

⎤ ⎥ ⎥ ⎦ (23) 

ith six parameters. The prior source variances and covariances in 𝚪
re treated as model hyperparameters and are optimized in an iterative

ay. For any given choice of 𝚪, the posterior distribution of the source

ctivity is given by ( Wipf et al., 2010 ): 

 

(
𝐉 |𝐐̃ , 𝛾

)
= 

𝑁 𝑡 ∏
𝑡 =1 

 

(
𝐣 ( 𝑡 ) , 𝚺𝐣 

)
, where (24) 

̂
 ( 𝑡 ) = 𝚪𝑳 

⊤
v 

(
𝚺𝐪 

)−1 𝐪 ( 𝑡 ) = 𝐏 C 𝐪 ( 𝑡 ) (25) 

𝐣 = 𝚪 − 𝚪𝑳 

⊤
v 

(
𝚺𝐪 

)−1 𝐋 v 𝚪 (26) 
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𝐪 = 𝜎2 𝐈 + 𝐋 v 𝚪𝑳 

⊤
v , (27) 

nd where 𝜎2 denotes a homoscedastic sensor noise variance parameter.

he posterior parameters 𝐣 ( 𝑡 ) and 𝚺𝐣 are then used to obtain the next

stimate of 𝛾 by minimizing the negative log model evidence (Bayesian

ype-II likelihood): 

 

II ( 𝛾) = − log 𝑝 
(
𝐐̃ |𝛾) = 

1 
𝑁 𝑡 

𝑁 𝑡 ∑
𝑡 =1 
𝐪 ( 𝑡 ) ⊤𝚺𝐪 −1 𝐪 ( 𝑡 ) + log ‖𝚺𝐪 ‖ . (28) 

his process is repeated until convergence. Importantly, the majority of

ource variance parameters converges to zero in the course of the opti-

ization, so that the reconstructed source distribution becomes sparse.

In the original Champagne version, a baseline or control measure-

ent is used to estimate noise covariance in sensor data. Since baseline

ata are not available in our study, we use a homoscedastic noise model

n which all sensors are assumed to be perturbed by uncorrelated Gaus-

ian white noise with equal variance, and estimate the shared variance

arameter using five-fold spatial cross-validation ( Hashemi et al., 2021 ).

gain, fifteen candidate parameters are taken from a logarithmically

paced range between 0 . 01 ∗ Tr( 𝐂𝐨𝐯 𝐐̃ ) and Tr( 𝐂𝐨𝐯 𝐐̃ ) . 

.3. Dimensionality reduction 

To aggregate time series of multiple sources within a region, an in-

uitive approach would be to take the mean across sources within each

patial dimension. However, this approach has two disadvantages: First,

t assumes a high homogeneity within all voxels of a pre-defined region,

hich is not always given. Second, it does not offer a solution for aggre-

ating the three spatial dimensions, since averaging across these might

ead to cancellations due to different polarities. 

rincipal component analysis 

An alternative approach is to reduce the dimensionality of multi-

le time series by employing a singular value decomposition (SVD)

r, equivalently, principal component analysis (PCA), and to subse-

uently only select the 𝐶 strongest PCs accounting for most of the

ariance within a region for further processing. Let 𝐉̃ r ∈ ℝ 

𝑁 𝑡 ×3 𝑅 denote

he reconstructed broad-band source time courses of 𝑅 dipolar sources

ithin a single region r after mean subtraction. The covariance matrix

𝐨𝐯 r = 

𝐉̃ ⊤r 𝐉̃ r 
𝑁−1 ∈ ℝ 

3 𝑅 ×3 𝑅 is a symmetric matrix that can be diagonalized as

𝐨𝐯 r = 𝐕𝐁𝐕 

⊤, (29) 

here 𝐁 ∈ ℝ 

3 𝑅 ×3 𝑅 is a diagonal matrix containing the eigenvalues 𝜆𝑣 
variances) of the PCs, which are, without loss of generality, assumed

o be given in descending order, and 𝐕 ∈ ℝ 

3 𝑅 ×3 𝑅 is a matrix of corre-

ponding eigenvectors in which each column contains one eigenvector.

he 𝑗 𝑡ℎ PC can then be found in the 𝑗 𝑡ℎ column of 𝐉̃ r 𝐕 . 

In practice, the PCs are calculated using an SVD of the zero-mean

ata matrix 𝐉̃ r as 

̃
 r = 𝐔𝐃𝐕 

⊤ . (30) 

sing the ‘economy version’ of the SVD, 𝐔 ∈ ℝ 

𝑁 𝑡 ×3 𝑅 is a matrix of or-

honormal PC time courses, 𝐃 ∈ ℝ 

3 𝑅 ×3 𝑅 is a matrix of corresponding

ingular values, and 𝐕 ∈ ℝ 

3 𝑅 ×3 𝑅 is the matrix of eigenvectors (or, equiv-

lently, singular vectors) defined above. Note that the square of the el-

ments of 𝐃 , divided by 𝑁 𝑡 − 1 , are identical to the variances of the

orresponding PCs (eigenvalues of 𝐂𝐨𝐯 r ). Each squared singular vector,

ormalized by the sum of all singular vectors, thus corresponds to the

ariance explained by the corresponding singular vector. We will use

his property for the two VARPC pipelines ( Section 2.5 ). 

Comparing PCA and SVD, one can easily see that 

𝐨𝐯 r = 𝐕𝐃𝐔 

⊤𝐔𝐃𝐕 

⊤ = 𝐕 

𝐃 

2 
𝐕 

⊤, (31) 

𝑁 − 1 p  

5 
nd 𝜆𝑣 = 

𝑑 2 𝑣 
𝑁−1 . Thus, the PCs can also be calculated with SVD: 

̃
 r 𝐕 = 𝐔𝐃𝐕 

⊤𝐕 = 𝐔𝐃 . (32) 

o reduce the dimensionality of the voxel data within one region, we

eep only the strongest 𝐶 PCs, i.e., the columns of 𝐔𝐃 that correspond

o the largest eigenvalues. For a more extensive overview of the rela-

ionship between SVD and PCA, we refer to Wall et al. (2003) . Note

hat in this study, we applied SVD on the time-domain source signals 𝐉̃ 𝑟 
or most of the pipelines. However, we applied PCA on the real part of

he source-level cross-spectrum, summed across frequencies, in case of

ICS. For the ease of reading, we will stick to PCA terminology for all

ipelines in the following. 

It has been popular in the literature ( Basti et al., 2020; Friston et al.,

006 ) to select only the first PC for every region and subsequently em-

loy a univariate FC measure for further processing. We describe this

pproach further in Section 2.5 , pipeline FIXPC1. 

.4. Connectivity metrics 

There are numerous approaches to estimate FC ( Schoffelen and

ross, 2019 ). One key distinction can be made between FC metrics that

easure undirected (symmetric) interactions between signals and those

hat also measure the direction of FC. 

It has been shown that the estimation of both undirected and di-

ected FC from M/EEG recordings is complicated by the presence of

ixed noise and signal sources ( Bastos and Schoffelen, 2016; Haufe

t al., 2013; Nolte et al., 2004; Schaworonkow and Nikulin, 2021; Wang

t al., 2018 ). Due to volume conduction in the brain, signal sources from

ll parts of the brain superimpose at each M/EEG sensor. Projecting the

ensor signals to source space can help disentangling separate signal

ources. However, a signal reconstructed at a specific source voxel may

till contain contributions from other sources in its vicinity. This phe-

omenon is called source leakage ( Schoffelen and Gross, 2009 ). 

Volume conduction and source leakage can lead to spurious FC de-

pite the absence of genuine interactions ( Haufe et al., 2013; Nolte et al.,

004 ). To overcome this problem, robust FC metrics have been devel-

ped ( Haufe et al., 2013; Nolte et al., 2004; 2008; Winkler et al., 2016 ).

obustness is here referred to as the property of an FC measure to con-

erge to zero in the limit of infinite data when the observed data are

ust instantaneous mixtures of independent sources ( Nolte et al., 2004 ).

obust FC metrics use that spurious interactions due to signal mixing

re instantaneous, while physiological interactions impose a small time

elay. Robust FC metrics are therefore only sensitive to statistical depen-

encies with a non-zero time delay while eliminating zero-delay contri-

utions. 

We here test six different FC measures, four to detect undirected

C (coherence, iCOH, MIC, and MIM), and two measures that estimate

he direction of interaction between two sources (multivariate GC and

RGC). This selection includes four robust FC metrics (c.f. Section 1 )

nd two non-robust ones (coherence and GC). Based on the literature

escribed above, we hypothesize that robust metrics will perform bet-

er than non-robust metrics. Please note that all tested FC metrics are

requency-resolved. That is, all metrics output an 𝑁 𝑟𝑜𝑖 ×𝑁 𝑟𝑜𝑖 ×𝑁 𝑓𝑟𝑒𝑞 ten-

or that contains the estimated FC for all region pairs at all frequencies.

owever, since we expect the interaction to be located in the interacting

requency band between 8 and 12 Hz (see Section 2.1 ), we select only

hose frequency bins within this band and average the FC scores across

hem. As a result, we obtain an 𝑁 𝑟𝑜𝑖 ×𝑁 𝑟𝑜𝑖 matrix. 

All tested FC metrics are derived from the cross-spectrum. Let

̃
 ( 𝑡, 𝑒 ) ∈ ℝ 

𝐾 and 𝐲̃ ( 𝑡, 𝑒 ) ∈ ℝ 

𝐿 be two multivariate time series where 𝑡 ∈
1 , … , 𝑇 } indexes samples within epochs of 2 seconds length and 𝑒 in-

exes epochs. Often, 𝐾 = 𝐿 = 3 represents the three dipole orientations

f two reconstructed current sources. In other cases, 𝐾 and 𝐿 denotes

he number of retained data dimensions of two brain regions after (e.g.,

CA) dimensionality reduction. These time-domain data are then multi-

lied with a Hanning window and Fourier transformed into 𝐱( 𝑓, 𝑒 ) and
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( 𝑓, 𝑒 ) , where 𝑓 ∈ {0 , 0 . 5 , … , 50} indexes frequencies. The joint cross-

pectrum is then computed from the Fourier-transformed data as 

 [ 𝐱𝐲 ] ( 𝑓 ) = 

[ 
𝐒 𝐱𝐱 ( 𝑓 ) 𝐒 𝐱𝐲 ( 𝑓 ) 
𝐒 𝐲𝐱 ( 𝑓 ) 𝐒 𝐲𝐲 ( 𝑓 ) 

] 
∈ ( ℂ ) ( 𝐾+ 𝐿 ) ×( 𝐾+ 𝐿 ) , (33) 

here 𝐒 𝐱𝐲 = ⟨𝐱 ( 𝑓, 𝑒 ) 𝐲 ∗ ( 𝑓, 𝑒 ) ⟩𝑒 ∈ ℂ 

𝐾×𝐿 . 

oherence and imaginary part of coherency 

(Absolute) coherence (COH) and iCOH are measures of the syn-

hronicity of two time series. Both coherence and iCOH are derived from

he complex-valued coherency, which is a generalization of correlation

n the frequency domain. As such, coherency quantifies the linear re-

ationship between two time series at a specific frequency. Its phase

xpresses the average phase difference between the two time series,

hereas its absolute value expresses the stability of the phase differ-

nce. 

Complex-valued coherency 𝐂 𝐱𝐲 ∈ ℂ 

𝐾×𝐿 is the normalized cross spec-

rum ( Nunez et al., 1997 ): 

 𝐱𝐲 ( 𝑓 ) = 

𝐒 𝐱𝐲 ( 𝑓 ) (
𝐒 𝐱𝐱 ( 𝑓 ) 𝐒 𝐲𝐲 ( 𝑓 ) 

)1∕2 . (34) 

ased on the terminology of Nolte et al. (2004) , we define coherence as

he absolute part of coherency: 𝐂𝐎𝐇 𝐱𝐲 ( 𝑓 ) = 

|||𝐂 𝐱𝐲 ( 𝑓 ) 
||| ∈ ℝ 

𝐾×𝐿 , where

⋅ | denotes the absolute value. Coherence captures both zero-delay and

on-zero-delay synchronization between two time series. This can be

roblematic in the context of M/EEG measurements, where substantial

ero-delay synchronization can be introduced by signal spread due to

olume conduction or source leakage in absence of genuine interactions

etween distinct brain areas ( Nolte et al., 2004 ). In contrast, the imag-

nary part of coherency is a robust FC measure since it is only non-

ero for interactions with a phase delay different from multiples of 𝜋

 Nolte et al., 2004 ). Here, we use the absolute value of the imaginary

art of coherency, 𝐢𝐂𝐎𝐇 𝐱𝐲 ( 𝑓 ) = 

|||𝐂 

ℑ 
𝐱𝐲 ( 𝑓 ) 

||| ∈ ℂ 

𝐾×𝐿 , as a measure of syn-

hronization strength, where 𝐂 

ℑ denotes the imaginary part of 𝐂 . 

Note that both coherence and iCOH are not designed to aggregate

C between two multivariate time series into one FC score. A single

C score can be obtained by taking the average across all elements of

𝐎𝐇 𝐱𝐲 or 𝐢𝐂𝐎𝐇 𝐱𝐲 , respectively. 

ultivariate interaction measure and maximized imaginary coherency 

The multivariate interaction measure (MIM) and maximized imagi-

ary coherency (MIC, Ewald et al., 2012 ) are multivariate generaliza-

ions of iCOH and are therefore also robust against source leakage. 

MIM is defined as follows: 

𝐈𝐌 𝐱𝐲 ( 𝑓 ) = Tr 
[ (
𝐂 

ℜ 

𝐱𝐱 (f ) 
)−1 𝐂 

ℑ 
𝐱𝐲 (f ) 

(
𝐂 

ℜ 

𝐲𝐲 (f ) 
)−1 (

𝐂 

ℑ 
𝐱𝐲 (f ) 

)⊤] 
, (35) 

here 𝐂 

ℜ denotes the real part of 𝐂 . In contrast, MIC aims at maximiz-

ng iCOH between the two multivariate time series. That is, MIC finds

rojections from two multi-dimensional spaces to two one-dimensional

paces such that iCOH between the projected signals becomes maximal:

𝐈𝐂 𝐱𝐲 ( 𝑓 ) = max 
𝐚 , 𝐛 

( 

𝐚 ⊤𝐒̃ ℑ 𝐱𝐲 ( 𝑓 ) 𝐛 |𝐚 | |𝐛 |
) 

, (36) 

here 𝐒̃ is a whitened version of the cross-spectrum 𝐒 ( Ewald et al.,

012 ), and where 𝐚 ∈ ℝ 

𝐾×1 and 𝐛 ∈ ℝ 

𝐿 ×1 are projection weight vectors

orresponding to the subspaces, or regions, of 𝐱 and 𝐲, respectively. Note

hat, while the imaginary part itself can be positive or negative, flipping

he sign of either 𝐚 or 𝐛 will also flip the sign of the imaginary part.

hus, without loss of generality, maximization of Eq. (36) will find the

maginary part with strongest magnitude. 

All undirected FC metrics (COH, iCOH, MIC, and MIM) are bounded

etween 0 and 1. 
6 
ultivariate Granger causality and time-reversed Granger causality 

Granger Causality (GC) defines directed interactions between time

eries using a predictability argument ( Bressler and Seth, 2011; Granger,

969 ). Considering two univariate time series 𝑥̃ ( 𝑡 ) and 𝑦̃ ( 𝑡 ) , we say that 𝑦̃

ranger-causes 𝑥̃ if the past information of 𝑦̃ improves the prediction of

he presence of 𝑥̃ above and beyond what we could predict by the past of

̃ alone. That is, GC does not only assess the existence of a connection but

lso estimates the direction of that connection. We here use a spectrally

esolved multivariate extension of GC ( Barnett and Seth, 2014; Barrett

t al., 2010; Geweke, 1982 ), which allows us to estimate Granger-causal

nfluences between groups of variables at individual frequencies. There

re multiple strategies to arrive at spectral Granger causality estimates.

ere, we follow recommendations made in Barnett et al. (2018) ; Barnett

nd Seth (2014, 2015) ; Faes et al. (2017) that ensure stable and unbiased

stimates, and use Matlab code provided by the respective authors. 

We first transform the joint cross-spectrum into an autocovari-

nce sequence 𝐆 [ 𝐱𝐲 ] ( 𝑝 ) ∈ ℝ 

( 𝐾 + 𝐿 )×( 𝐾 + 𝐿 ) with lags 𝑝 ∈ {0 , 1 , … , 𝑁 𝑃 } , 𝑁 𝑃 =
0 , using the inverse Fourier transform. The autocovariance spectrum

s further used to estimate the parameters 𝐀 ( 𝑝 ) ∈ ℝ 

( 𝐾 + 𝐿 )×( 𝐾 + 𝐿 ) , 𝑝 ∈
1 , … , 𝑁 𝑃 } and 𝚺 = Cov 𝑡 [ 𝝐( 𝑡 ) ] ∈ ℝ 

( 𝐾 + 𝐿 )×( 𝐾 + 𝐿 ) of a linear autoregressive

odel 
 

𝐱 ( 𝑡 ) 
𝐲 ( 𝑡 ) 

] 

= 

∑𝑁 𝑃 

𝑝 =1 𝐀 ( 𝑝 ) 

[ 

𝐱 ( 𝑡 − 𝑝 ) 
𝐲 ( 𝑡 − 𝑝 ) 

] 

+ 𝝐( 𝑡 ) (37) 

f order 𝑁 𝑃 using Whittle’s algorithm ( Barnett and Seth, 2014; Whittle,

963 ). Autoregressive model parameters are next converted into a state-

pace representation ( 𝐀 , 𝐂 , 𝐊 , Σ) corresponding to the model 

( 𝑡 ) = 𝐀̄ 𝐳( 𝑡 ) + 𝐊̄ 𝜺 ( 𝑡 ) (38) 

 

𝐱̄ ( 𝐭) 
𝐲̄ ( 𝑡 ) 

] 

= 𝐂̄ 𝐳( 𝑡 ) + 𝜺 ( 𝑡 ) , (39) 

sing the method of Aoki and Havenner (1991) , where 𝐱̄ ( 𝑡 ) =
 ̄𝐱 ⊤( 𝑡 ) , ̄𝐱 ⊤( 𝑡 − 1) , … , ̄𝐱 ⊤( 𝑡 − 𝑁 𝑃 )] ⊤ and 𝐲̄ ( 𝑡 ) = [ ̄𝐲 ⊤( 𝑡 ) , ̄𝐲 ⊤( 𝑡 − 1) , … , ̄𝐲 ⊤( 𝑡 −
 𝑃 )] ⊤ are temporal embeddings of order 𝑁 𝑃 , 𝐳( 𝑡 ) ∈ ℝ 

( 𝐾+ 𝐿 ) 𝑁 𝑃 and

 ( 𝑡 ) ∈ ℝ 

( 𝐾+ 𝐿 ) 𝑁 𝑃 are unobserved variables, and all parameters are ( 𝐾 +
 ) 𝑁 𝑃 × ( 𝐾 + 𝐿 ) 𝑁 𝑃 matrices. Subsequently, the transfer function 𝐇 ( 𝑧 ) ≡
 − 𝐂̄ ( 𝐈 − 𝐀̄ 𝑧 ) −1 𝐊̄ 𝑧 ∈ ℂ 

( 𝐾 + 𝐿 ) 𝑁 𝑃 ×( 𝐾 + 𝐿 ) 𝑁 𝑃 of a moving-average representa-

ion 
 

𝐱 ( 𝑡 ) 
𝐲 ( 𝑡 ) 

] 

= 𝐇 ( 𝑧 ) ⋅ 𝜺 ( 𝑡 ) (40) 

f the observations is derived, where 𝐈 ∈ ℝ 

( 𝐾 + 𝐿 ) 𝑁 𝑃 ×( 𝐾 + 𝐿 ) 𝑁 𝑃 denotes the

dentity matrix and where 𝑧 = 𝑒 − 𝑖 4 𝜋𝑓∕ 𝑇 for a vector of frequencies 𝑓 ∈
0 Hz , 0 . 5 Hz , … , 50 Hz } , 𝑇 = 200 , and a factorization of the joint cross-

pectrum is obtained as 𝐒 [ 𝐱𝐲 ] ( 𝑓 ) = 𝐇 ( 𝑓 ) Σ𝐇 

∗ ( 𝑓 ) ( Barnett and Seth, 2015 ).

requency-dependent Granger scores 

 𝐱→𝐲 ( 𝑓 ) = log 
‖𝐒 𝐲𝐲 ( 𝑓 ) ‖‖𝐒 𝐲𝐲 ( 𝑓 ) − 𝐇 𝐲𝐱 ( 𝑓 ) Σ𝐱𝐱 |𝐲 𝐇 

∗ 
𝐲𝐱 ( 𝑓 ) ‖ (41) 

nd (analogously)  𝐲→𝐱 ( 𝑓 ) are then calculated, where 𝐇 ( 𝑓 ) and Σ are

artitioned in the same way as 𝐒 ( 𝑓 ) , where Σ𝐱𝐱 |𝐲 ≡ Σ𝐱𝐱 − Σ𝐱𝐲 Σ
−1 
𝐲𝐲 Σ𝐲𝐱 de-

otes a partial covariance matrix, and where || ⋅ || denotes matrix deter-

inant ( Barnett and Seth, 2015 ). Finally, differences 

 

net 
𝐱→𝐲 ( 𝑓 ) ≡  𝐱→𝐲 ( 𝑓 ) −  𝐲→𝐱 ( 𝑓 ) (42) 

nd  

net 
𝐲→𝐱 ( 𝑓 ) = −  

net 
𝐱→𝐲 ( 𝑓 ) summarizing the net information flow between

he multivariate time series 𝐱̃ ( 𝑡 ) and 𝐲̃ ( 𝑡 ) are calculated ( Winkler et al.,

016 ). 

Just like coherence, GC is not robust, i.e. can deliver spurious re-

ults for mixtures of independent sources as a result of volume con-

uction or source leakage (e.g., Haufe et al., 2013; 2012 ). This can be

asily acknowledged by considering a single source that spreads into

wo measurement channels, which are superimposed by distinct noise
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erms. In that case, both channels will mutually improve each other’s

rediction in the sense of GC ( Haufe and Ewald, 2019 ). This prob-

em is overcome by a robust version of GC, time-reversed GC (TRGC),

hich introduces a test on the temporal order of the time series. That

s, TRGC estimates the directed information flow once on the original

ime series and once on a time-reversed version of the time series. If

C is reduced or even reversed when the temporal order of the time

eries is reversed, it is likely that the effect is not an artifact coming

rom volume conduction ( Haufe et al., 2013; 2012; Vinck et al., 2015;

inkler et al., 2016 ). Formally, multivariate spectral GC as introduced

bove can be evaluated on the time-reversed data by fitting the autore-

ressive model in Eq. (37) on the transposed autocovariance sequence

 

TR 
[ 𝐱𝐲 ] ( 𝑝 ) = 𝐆 

⊤
[ 𝐱𝐲 ] ( 𝑝 ) , 𝑝 ∈ {0 , 1 , … , 𝑁 𝑃 } . This yields net GC scores  

TR net 
𝐱→𝐲 ( 𝑓 )

or the time-reversed data, which are subtracted from the net scores ob-

ained for the original (forward) data to yield the final time-reversed GC

cores: 

 

TRGC 
𝐱→𝐲 ( 𝑓 ) ≡  

net 
𝐱→𝐲 ( 𝑓 ) −  

TR net 
𝐱→𝐲 ( 𝑓 ) (43) 

nd (analogously)  

TRGC 
𝐲→𝐱 ( 𝑓 ) ≡  

net 
𝐲→𝐱 ( 𝑓 ) −  

TR net 
𝐲→𝐱 ( 𝑓 ) = −  

TRGC 
𝐱→𝐲 ( 𝑓 ) . 

.5. Pipelines 

In the following section, we describe the processing pipelines that

ere tested. All pipelines take the sensor measurements 𝐐̃ as input. Then

ll pipelines calculate and apply an inverse model 𝐏 to project sensor

ata to source level. From there, we aggregate voxel activity within re-

ions by employing PCA and estimate inter-regional FC with various FC

etrics described above. We describe several strategies of combining

CA with the calculation of FC in the following subsections. This step

esults in a 𝑁 𝑟𝑜𝑖 ×𝑁 𝑟𝑜𝑖 ×𝑁 𝑓𝑟𝑒𝑞 FC matrix which is then averaged across

he frequency bins within the interaction frequency band (8–12 Hz). The

utput of all pipelines is one connectivity score for every region com-

ination. We describe the processing exemplarily for the calculation of

C between two regions X and Y. 

ipelines FIXPC1 to FIXPC6: Fixed number of principal components 

The first six pipelines use PCA dimensionality reduction. Afterwards,

epending on the pipeline, a fixed number 𝐶 of either one, two, three,

our, five, or six strongest PCs are selected for further processing. Then,

C is calculated: in case of univariate measures (i.e., coherence and

COH), we first calculate FC scores between all PC combinations of the

wo regions X and Y and then average across all pairwise FC scores. In

ase of multivariate FC measures, we directly calculate a single FC score

etween the PCs of region X and those of region Y. This approach has

een used previously (e.g. Schoffelen et al., 2017 ). 

ipelines VARPC90 and VARPC99: Variable numbers of principal 

omponents 

Pipelines VARPC90 and VARPC99 are equivalent to the FIXPC

ipelines, with the difference that we do not select the same fixed num-

er of PCs for every region. Instead, we select the number of PCs such

hat at least 90% (VARPC90) or 99% (VARPC99) of the variance in each

OI is preserved (c.f. Section 2.3 ). Thus, an individual number of PCs

s chosen for each region. FC is then calculated analogously to pipelines

IXPC1 to FIXPC6. The idea of selecting the number of PCs such that a

re-defined fraction of the variance is retained has been used in previous

iterature (e.g. Gómez-Herrero et al., 2008 ). 

ipeline MEANFC: Mean first FC second 

In this pipeline, the time series of all voxels within one region are

veraged separately for the three orthogonal dipole orientations. Then,

or univariate FC measures, FC is calculated between all 3 ∗ 3 dimension

ombinations of the 3D-time series of region X and region Y. Afterwards,

he average of these nine FC scores is taken. Multivariate FC measures

re directly calculated between the 3D time series. 
7 
ipeline CENTRAL: Central voxel pick 

In this pipeline, we select only the central voxel of each region for

urther processing. The central voxel of a region is defined as the voxel

hose average Euclidean distance to all other voxels in the region is

inimal. To calculate the FC score between the 3D time series of the

entral voxel of region X and the 3D time series of the central voxel of

egion Y, we proceed analogous to pipeline MEANFC: in case of univari-

te FC measures, the FC score for all combinations of dipole orientations

s calculated and then averaged. In case of multivariate FC measures,

nly one FC score is calculated between the two 3D time series. Select-

ng the time series of the central voxel as the representative time series

or the region is an idea that has been used in previous studies already

 Perinelli et al., 2022 ). 

ipeline FCMEAN: FC first mean second 

In pipeline FCMEAN, the multivariate FC between each 3D voxel

ime series of region X with each voxel time series of region Y is calcu-

ated first. That is, if 𝑅 𝑋 is the number of voxels of region X and 𝑅 𝑌 is

he number of voxels in region Y, 𝑅 𝑋 ∗ 𝑅 𝑌 FC scores for all voxel com-

inations are calculated. To obtain a single FC score between region X

nd region Y, we then average all 𝑅 𝑋 ∗ 𝑅 𝑌 FC scores. Due to computa-

ional and time constraints, we test this pipeline only for MIM and MIC.

his approach has also been used in the literature before ( Babiloni et al.,

018 ). 

ipeline TRUEVOX: True voxel pick 

This pipeline is used as a baseline. Here we select the voxel for fur-

her processing that indeed contains the activity of the given ROI —i.e.

he ground-truth voxel (see Section 2.1 ). All further processing is anal-

gous to pipeline CENTRAL. In configurations with two active voxels

er region (see Section 3 , Experiment 6), FC scores are calculated for

 ∗ 3 ∗ 3 voxel- and dipole orientation combinations. 

.6. Performance evaluation 

We use a rank-based evaluation metric to assess the performance of

he pipelines. All processing pipelines result in one FC score for every

egion–region combination. To evaluate the performance of a pipeline,

e first sort all FC scores in a descending order and retrieve the rank

 ∈ ℝ 

𝑁 𝐼 , with 𝑁 𝐼 ∈ {1 , 2 , 3 , 4 , 5} denoting the number of ground-truth

nteractions. Based on this rank vector, we calculate the percentile rank

PR): 

 𝑅 

′ = 

∑𝑁 𝐼 
𝑖 

(
1 − 

𝑟 𝑖 
𝐹 

)
𝑁 𝐼 

, (44) 

ith 𝐹 denoting the total number of FC scores. The 𝑃 𝑅 

′ is then normal-

zed to the perfect-skill 𝑃 𝑅 𝑝𝑠 and no-skill 𝑃 𝑅 𝑛𝑠 cases, and is therefore

efined between 0 and 1: 

 𝑅 𝑝𝑠 = 

∑𝑁 𝐼 
𝑖 

(
1 − 

𝑖 

𝐹 

)
𝑁 𝐼 

(45) 

 𝑅 𝑛𝑠 = 

∑𝑁 𝐼 
𝑖 

(
1 − 

𝐹− 𝑖 +1 
𝐹 

)
𝑁 𝐼 

(46) 

 𝑅 = 

𝑃 𝑅 

′ − 𝑃 𝑅 𝑛𝑠 

𝑃 𝑅 𝑝𝑠 − 𝑃 𝑅 𝑛𝑠 

. (47) 

e report all PR values rounded to the second decimal. In case of the

hase-based FC metrics, the PR is calculated on the original FC scores.

n case of GC and TRGC, we separately evaluate each pipeline’s inter-

ction detection ability, and its ability to determine the direction of the

nteraction. For evaluating the detection, we calculate the PR on the ab-

olute values of the FC scores, whereas for evaluating the directionality

etermination performance, we calculate the PR only on the positive

C scores. Note that this is sufficient for the anti-symmetric directed FC

easures used here. 



F. Pellegrini, A. Delorme, V. Nikulin et al. NeuroImage 277 (2023) 120218 

Fig. 2. Experimental setup. Every experiment consisted of five consecutive 

steps: (1) Signal generation. (2) Source projection. (3) Dimensionality reduction 

within regions. (4) Functional connectivity estimation. (5) Performance evalu- 

ation. Every experiment was carried out 100 times. 
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.7. Statistical assessment 

In Experiment 1C, we provide a suggestion on how to statistically

ssess the presence of FC. Here, we obtain p-values by testing against

 surrogate distribution consistent with the null hypothesis of zero in-

eraction between all region pairs. The 10,000 samples of the surro-

ate distribution are drawn by shuffling epochs relative to each other

hen computing the cross-spectrum. More specifically, we calculate the

ross-spectrum between the time series of one region and the shuffled

ime series of another region with the Welch method, where the diago-

al entries of the cross-spectrum (spectral powers) are obtained without

huffling. From the shuffled cross-spectrum, MIM is calculated. We ob-

ain p-values by counting the number of shuffled MIM-samples that are

igher than the true MIM score and dividing this number by the total

umber of samples in the null distribution. FDR-correction ( 𝛼-level =
.05) is used on the upper triangle of the region–region p-value matrix

o set a significance threshold. 

.8. ROIconnect Toolbox 

Based on our experimental results (see Section 3 ), we identified a set

f recommended methods and pipelines. These have been implemented

n a Matlab toolbox and are made available as a plugin to the free EEGlab

ackage 2 . This toolbox also contains code for analyzing spectral power

n EEG source space, and for visualizing power and FC results in source

pace. A comprehensive description of the functionality and usage of

he toolbox is provided in Appendix A . Moreover, an exemplary appli-

ation of the toolbox to the analysis of a real EEG dataset is provided in

ection 4 . 

. Experiments and results 

We conducted a set of experiments to assess the influence of the dif-

erent pipeline parameters on the reconstruction of ground-truth region-

o-region FC. We describe the general experimental setting in Fig. 2 .

ach experiment consisted of the following steps: (1) Signal gener-

tion. (2) Source projection. (3) Dimensionality reduction within re-

ions. (4) Functional connectivity estimation. (5) Performance evalu-

tion. Each experiment was carried out 100 times ( = iterations). If not

ndicated otherwise, all experiments had the following default setting: 

•
 LCMV inverse solution 

2 https://github.com/sccn/roiconnect 

F

8 
• SNR = 3.5 dB 

• BSR = 0 dB 

• number of interactions = 2 
• time delay of the interaction = 50 to 200 ms 
• number of generated sources per region = 1 

If not stated otherwise, the following parameters were drawn ran-

omly in each iteration: ground-truth interacting (seed and target)

egions (two distinct regions uniformly drawn between 1 and 𝑁 𝑟𝑜𝑖 ),

round-truth active voxel(s) within regions (uniformly drawn between

 and 𝑅 roi ), time delay (uniformly drawn between 50 and 200 ms). Fur-

hermore, brain noise and sensor noise, as well as the signal were gen-

rated based on (filtered) random white noise processes as described

bove. 

Fig. 3 to Fig. 11 show the results of experiments 1–6. In addition,

ll main results are summarized in Table 1 . All figures (plotting code

dapted from Allen et al., 2019 ) follow the same scheme: in every sub-

lot, the 100 dots on the right side mark the performance, i.e. the PR,

easured in each of the 100 iterations. On the left, a smooth kernel

stimate of the data density is shown. The red and black lines rep-

esent the mean and median PR of the experiment, respectively, and

he boxcar marks the 2.5th and 97.5th percentiles. Please note that

he Y-axis is scaled logarithmically in all plots. We tested differences

etween pipeline performances with a one-sided Wilcoxon signed-rank

est. Please note that a p-value 𝑝 A,B corresponds to a one-sided test for

 > 𝐴 . 

Matlab code to reproduce all experiments is provided under 3 . 

.1. Experiment 1 

xperiment 1A 

In Experiment 1A, we evaluated the performance of different FC met-

ics in detecting the ground-truth interactions. The ability to detect FC

as tested for coherence, iCOH, MIC, MIM, GC, and TRGC. The ability

o detect the correct direction of the interaction was tested for GC and

RGC (see Section 2.4 ). 

In Fig. 3 , we show the performances of different FC metrics. We see

hat MIM, MIC and TRGC (detection) all have a mean PR of over 0.97

nd clearly outperform the other measures in detecting the ground-

ruth FC. The non-robust metrics coherence (mean PR = 0.59) and

C (mean PR = 0.95) detect the ground-truth interactions less reliably

 𝑝 coherence,MIM 

< 10 −4 ; 
𝑝 GC,MIM 

= 0 . 0040 ). When comparing GC and TRGC in their ability to

nfer the direction of the interaction, TRGC (mean PR = 0.98) outper-

orms GC (mean PR = 0.96; 𝑝 GC,TRGC < 10 −4 ). 

xperiment 1B 

In Experiment 1B, we tested the influence of different strategies of

imensionality reduction within regions. In Fig. 4 , we show the com-

arison for MIM (interaction detection) and TRGC (directionality de-

ermination). For MIM, we observe that the FIXPC pipelines show a

etter performance than most of the other pipelines. Within the FIXPC

ipelines, the pipelines with two, three, or four PCs perform best (all

ean PR = 0.99, 𝑝 FIXPC5,FIXPC3 < 10 −4 ). Only the TRUEVOX (baseline)

ipeline using ground-truth information on voxel locations expectantly

hows a higher performance (mean PR = 1.00; 𝑝 FIXPC3,TRUEVOX < 10 −4 ).
he two VARPC pipelines show a substantially reduced performance

mean PR = 0.96 and mean PR = 0.73, respectively; both 𝑝 VARPC,FIXPC3 <

0 −4 ). The MEANFC and CENTRAL pipelines (mean PR = 0.98 and

ean PR = 0.96, respectively) also show reduced performance in com-

arison to the FIXPC3 pipeline (both 𝑝 < 10 −4 ). The FCMEAN pipeline

mean PR = 0.97) also did not perform as well as the FIXPC3 pipeline

 𝑝 < 10 −4 ) while taking much longer to compute (FIXPC3 < 1 h,

CMEAN = 32 h, single core, allocated memory: 16 GB). 
3 https://github.com/fpellegrini/FCsim 

https://github.com/sccn/roiconnect
https://github.com/fpellegrini/FCsim
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Fig. 3. Comparison of different functional connectivity metrics (Experiment 1A). Red and black lines indicate the mean and median percentile rank (PR), respectively. 

The boxcar marks the 2.5th and 97.5th percentiles. 

Table 1 

Summary of the results of experiment one to six. A pipeline including robust multivari- 

ate FC metrics like MIM or TRGC, a PCA with fixed number of selected components, 

and LCMV source reconstruction yields the best performance. 

#Exp. Tested parameter Result 

1A FC metric MIM/TRGC yield best performance. 

1B pipelines Fixed PC + FC yield best performance. 

2 Inverse solution LCMV yields best performance. 

3A SNR The higher the better. 

3B BSR The less sensor noise the better. 

4 #Interactions The lower the better. 

5 Short interaction delays Longer delays yield better performance. 

6 Two active sources Overall lower performance. 

Peak performance at three to four PCs. 

Fig. 4. Comparison of different pipelines (Ex- 

periment 1B). (a) Undirected FC reconstruction 

performance achieved using the multivariate 

interaction measure (MIM). (b) Directed FC re- 

construction performance achieved using time- 

reversed Granger causality. Red and black lines 

indicate the mean and median percentile rank 

(PR), respectively. The boxcar marks the 2.5th 

and 97.5th percentile. 
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In terms of directionality estimation using TRGC, the outcome

s similar. Again, the TRUEVOX pipeline shows perfect performance

mean PR = 1.00). The FIXPC pipelines also exhibit very high perfor-

ances (FIXPC4: mean PR = 0.99). Notably, in contrast to the results ob-

ained with MIM, the VARPC90 also achieves competitive performance

mean PR = 0.99, 𝑝 VARPC90,FIXPC3 = 0 . 0235 ). Please see Figure S1 to com-

are computation times of all pipelines. 

We show the full matrix of all combinations of FC metrics and di-

ensionality reduction pipelines in Supplementary Figure S2. However,

or all further experiments, we report performances only for MIM (in-
 o  

9 
eraction detection) and TRGC (directionality determination) since they

erformed best in Experiment 1A, and we focus on the FIXPC3 pipeline

ue the high performance observed in Experiment 1B. 

xperiment 1C 

To explore how to statistically assess the presence of FC, we per-

ormed an additional experiment for a specific setting (SNR = 3.5 dB,

ne interaction between region 11 and region 49, BSR = 0 dB, LCMV

lter, dimensionality reduction to 3PCs, FC metric = MIM). Here, we

btained p-values by testing against a surrogate distribution consistent
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Fig. 5. Comparison of the ground-truth 

ROI-to-ROI connectome with the estimated 

functional connectivity per region com- 

bination and the -log 10 (p) values after 

FDR-correction for a single experiment. A 

ground-truth interaction is modeled be- 

tween region 11 and region 49.. 

Fig. 6. Comparison of different inverse solutions (Experiment 2). (a) Undirected FC reconstruction performance achieved using the multivariate interaction measure 

(MIM). (b) Directed FC reconstruction performance achieved using time-reversed Granger causality. Red and black lines indicate the mean and median percentile 

rank (PR), respectively. The boxcar marks the 2.5th and 97.5th percentile. 
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ith the null hypothesis of zero interaction between all region pairs.

n Fig. 5 , we contrast the ground-truth ROI-to-ROI connectome with

he estimated FC per region combination as well as the -log 10 (p) values

surviving ” the FDR-correction for this experiment. While in the ground-

ruth connectome only the ground-truth region combination shows a

igh MIM score, there are also some high MIM scores in other region

ombinations than the ground truth in the reconstructed source-level

onnectome. Still, the ground-truth region combination in this setting

chieves the second-highest MIM score (PR = 0.9996). However, in

ig. 5 c, we see that testing the statistical significance with a shuffling

est results in a substantial number of significant false positive interac-

ions in the vicinity of the simulated interacting region pair. We discuss

his result in Section 5 . 

.2. Experiment 2 

xperiment 2A 

In Experiment 2, we tested the influence of the type of inverse so-

ution on the pipelines performances. In Figure 6 , we show the com-

arison between eLORETA, LCMV, DICS, and Champagne. We observe

hat the two beamformer solutions and Champagne clearly outperform

LORETA (mean PR 0.65; Figure 6 a) in detecting undirected connectiv-

ty (all 𝑝 < 10 −4 ). While DICS, LCMV and Champagne all show very good

erformances, we see a slight advantage of LCMV (mean PR = 0.99) in

omparison to Champagne (mean PR = 0.97, 𝑝 Champagne,LCMV = 0 . 0013 ).
e do not observe a significant difference between DICS and LCMV

 𝑝 DICS,LCMV = 0 . 2805 ). 
In terms of directionality determination ( Figure 6 b), the picture

s different: while LCMV (mean PR = 0.98) leads to accurate direc-

ionality estimates, DICS fails to detect the direction of the ground-

ruth interaction in a high number of experiments (mean PR = 0.28,

 DICS,LCMV < 10 −4 ). eLORETA also shows a reduced overall performance

mean PR = 0.69, 𝑝 eLORETA,LCMV < 10 −4 ). Champagne shows decent per-

ormance (mean PR = 0.99), which is, however, lower than that of LCMV

 𝑝 Champagne,LCMV < 10 −4 ). 
10 
The differences in computation times of the different inverse solu-

ions are also remarkable. While LCMV (2 sec) and DICS (178 sec) are

ast to compute, eLORETA (388 sec) and Champagne (3747 sec) take

uch longer to compute as a cross-validation scheme to set the regu-

arization parameter is implemented for both. Setting the regularization

arameter to a default value would drastically reduce computation time

or eLORETA and Champagne, but would also decrease performance (re-

ults not shown). 

xperiment 2B 

To investigate further why eLORETA performs considerably less well

han LCMV in our experiments, we generated ground-truth activity with

n interaction between one seed voxel in the left frontal cortex and one

arget voxel in the left precentral cortex. We then again generated sen-

or data as described in Section 2.1 and applied pipeline FIXPC1 to cal-

ulate regional MIM scores. In Supplementary Figure S3, we show the

esulting power maps, as well as seed MIM scores and target MIM scores

or data projected with eLORETA and MIM, respectively. We see clearly

he advantage of LCMV: while both power and MIM in the eLORETA

ondition are spread out to other regions, LCMV is able to localize the

round-truth power and connectivity very precisely. 

xperiment 2C 

Does LCMV only perform so well in our experiment because our ex-

erimental setup artificially favors it? In the following additional analy-

is, we investigated whether LCMV still has an advantage over eLORETA

hen multiple pairs of correlated sources are present. More specifi-

ally, we here simulated two pairs of interacting sources where the

ime courses of the second source pair were identical to those of the

rst source pair. Results are presented in Figure 7 . Please note that in

his case, also the cross-interactions between the seed and target re-

ions were evaluated as ground-truth interactions. We see that, while

LORETA is not much affected by the correlated sources setup, LCMV

as a decreased reconstruction performance according to both MIM and

RGC. However, LCMV still performs better than eLORETA even in this

etup ( 𝑝 eLORETA,LCMV < 10 −4 ). 
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Fig. 7. Performance observed for two perfectly correlated source pairs. (a) Undirected FC reconstruction performance achieved using the multivariate interaction 

measure (MIM). (b) Directed FC reconstruction performance achieved using time-reversed Granger causality. Red and black lines indicate the mean and median, 

respectively. The boxcar marks the 2.5th and 97.5th percentile. 

Fig. 8. FC estimation performance depends on the signal-to-noise ratio and brain noise-to-sensor noise ratio (Experiment 3). (a/c) Undirected FC reconstruction 

performance achieved using the multivariate interaction measure (MIM). (b/d) Directed FC reconstruction performance achieved using time-reversed Granger 

causality. Red and black lines indicate the mean and median percentile rank (PR), respectively. The boxcar marks the 2.5th and 97.5th percentile. 
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.3. Experiment 3 

In real-world EEG measurements, data are to a certain extent cor-

upted by noise, e.g. from irrelevant brain sources, or by noise sources

rom the outside. In Experiment 3, we investigated the effect of SNR

nd BSR on FC estimation performance. In Fig. 8 a and 8 b, we show

he performance of the FIXPC3 pipeline for SNRs of -7.4 dB, 3.5 dB and

9.1 dB. For both MIM ( Fig. 8 a) and TRGC ( Fig. 8 b), we observe de-

reased performances for decreased SNRs, as expected. For an SNR of

9.1 dB, nearly all experiments show a perfect detection of ground-truth

nteractions (mean PR > 0.99). 

Is FC detection more impaired by pink brain noise or white sensor

oise? In Experiment 3B, we tested the performance for BSR environ-

ents of 100% sensor noise, 25% brain noise, 50% brain noise, 75%

rain noise, and 100% brain noise. In Fig. 8 c and 8 d, we show the per-

ormances for different BSRs. We observe a slightly better performance

or signals more strongly contaminated by correlated brain noise than

hite sensor noise (mean MIM PR 100% brain noise > 0.99) compared

o the opposite case (mean MIM PR 0% brain noise = 0.97). 
11 
Note that in Experiments 1 to 3, for better comparison between the

xperimental conditions and to avoid variation due to random factors

esides the experimental variation, we used the same generated data

ithin an iteration in every experiment and only varied the tested con-

ition. 

.4. Experiment 4 

While we focused on a very simple scenario with only two inter-

cting region pairs so far, real brain activity likely involves multiple

nteracting sources. To increase the complexity in our setup, we com-

ared performances for different numbers of interacting region pairs in

xperiment 4. As expected, Fig. 9 clearly shows that more simultane-

us true interactions lead to decreased ability to reliably detect them.

hile the detection is nearly perfect for one interaction (mean MIM PR

 0.99; mean TRGC PR > 0.99), the performance is much reduced for

 interactions (mean MIM PR = 0.91; mean TRGC PR = 0.93). This ap-

lies for both MIM and TRGC. Please note however, that despite using

 normalized version of the PR (see Section 2.6 ), the PR metric is not
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Fig. 9. FC reconstruction performance depends on the number of true interactions (Experiment 4). (a) Undirected FC reconstruction performance achieved using the 

multivariate interaction measure (MIM). (b) Directed FC reconstruction performance achieved using time-reversed Granger causality. Red and black lines indicate 

the mean and median percentile rank (PR), respectively. The boxcar marks the 2.5th and 97.5th percentile. 

Fig. 10. Performance for very small interaction delays and the default delay (Experiment 5). (a) Undirected FC reconstruction performance achieved using the 

multivariate interaction measure (MIM). (b) Directed FC reconstruction performance achieved using time-reversed Granger causality. Red and black lines indicate 

the mean and median percentile rank (PR), respectively. The boxcar marks the 2.5th and 97.5th percentile. 
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erfectly comparable for different numbers of true interactions. That is,

hen calculating the PR on randomly drawn data, the PR distribution

s close to uniform when only one interaction is assumed, but shows a

ormal distribution with increasing kurtosis for higher numbers of in-

eractions. However, the mean of the distribution equals to 0.5 for all

ssumed interactions. 

.5. Experiment 5 

While it is not entirely clear how large interaction delays in the brain

an be, they likely range between 2 and 100 ms, depending not only on

hysical wiring, but also on cognitive factors (see Section 5 ). In Exper-

ment 5, we evaluated to which degree the performance drops when

egions interact with shorter time delays of 2, 4, 6, 8, and 10 ms. While

he performance for the MIM metric is already quite impaired for a de-

ay of 10 ms (mean PR = 0.90), performance drops drastically for 4 ms

mean PR = 0.73) and 2 ms (mean PR = 0.60) ( Fig. 10 a). Detecting the

irection of the interaction with TRGC is already much more difficult

t a true delay of 10 ms (mean PR = 0.73) and is further reduced for a

elay of 2 ms (mean PR = 0.56; Fig. 10 b). 

.6. Experiment 6 

In our previous experiments, the FIXPC pipelines with two to four

Cs showed the best performance. But the ‘optimal’ number of PCs likely
ig. 11. Performance when two active sources per region are simulated (Experiment 6

nteraction measure (MIM). (b) Directed FC reconstruction performance achieved usi

edian, respectively. The boxcar marks the 2.5th and 97.5th percentile. 

12 
epends on the number of (interacting and non-interacting) signals in

he brain as well as their relative strengths. To verify that the optimal

umber of PCs depends on the number of true sources, we increased

he number of active voxels per region to two in Experiment 6. We

hen simulated two bivariate interactions between two different source

airs originating from the same regions.We show the results for pipelines

IXPC1 to FIXPC6 in Fig. 11 . Interestingly, we here see that pipelines

IXPC3 (mean MIM PR = 0.99; mean TRGC PR = 0.99) and FIXPC4

mean MIM PR = 0.99; mean TRGC PR = 0.99) perform clearly better

han FIXPC1 (mean MIM PR = 0.89; mean TRGC PR = 0.93) or FIXPC6

mean MIM PR = 0.98; mean TRGC PR = 0.98). Based on these results,

e confirm that the choice of the optimal number of fixed PCs increases

ith the number of independently active processes within one region

see Section 5 for further discussion). 

. Exploratory analysis of functional connectivity in left vs. right 

otor imagery 

To illustrate how the recommended analysis pipeline can be used to

nalyse real EEG data, we show an exploratory analysis of power and

C in left and right motor imagery. In the Berlin arm of the so-called

italBCI study ( Blankertz et al., 2010; Sannelli et al., 2019 ), 39 subjects

onducted an experiment in which they imagined a movement with ei-

her the left or the right hand (Motor Imagery Calibration set; MI-Cb

–3). Each trial consisted of a visual stimulus showing a fixation cross
). (a) Undirected FC reconstruction performance achieved using the multivariate 

ng time-reversed Granger causality. Red and black lines indicate the mean and 
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Fig. 12. Results of the exploratory analysis of 

functional connectivity in left and right hand 

motor imagery tasks. 
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4 https://github.com/fpellegrini/MotorImag 
mposed with an arrow indicating the task for the trial (i.e., left or right

otor imagery). After 4 sec, the stimulus disappeared, and the screen

tayed black for 2 sec. Every subject conducted 75 left and 75 right mo-

or imagery trials. During the experiment, EEG data were recorded with

 119-channel whole-head EEG system with a sampling rate of 1000 Hz.

or this study, we used a 90-channel whole head standard subset of

hem. For our analysis, we selected only the 26 subjects for which pre-

ious studies have reported that the left vs. right motor imagery con-

itions could be well separated using statistical and machine learning

echniques (’Category I’ in Sannelli et al., 2019 ). Further experimental

etails are provided in Blankertz et al. (2010) ; Sannelli et al. (2019) . 

We filtered the data (1 Hz high-pass filter, 48–52 Hz notch filter,

nd 45 Hz low-pass filter, all zero-phase forward and reverse second-

rder digital high-pass Butterworth filters), and then sub-sampled them

o 100 Hz. We then rejected artifactual channels based on visual inspec-

ion of the power spectrum and the topographical distribution of alpha

ower (between zero and five per participant, mean 1.19 channels) and

nterpolated them (spherical scalp spline interpolation). A leadfield was

omputed using the template head model Colin27_5003_Standard-10-5-

ap339 that is already part of the EEGLAB toolbox. We then epoched

he data from 1 to 3 sec post-stimulus presentation start and separated

eft from right motor imagery trials. 

We used the pop_roi_activity function of the newly devel-

ped ROIconnect plugin for EEGLAB to calculate an LCMV source pro-

ection filter, apply it to the sensor data, and calculate region-wise power

see Appendix A for a more detailed description). We then normalized

he power with respect to the total power between 3 and 7 Hz as well

s 15 and 40 Hz, and averaged it across frequencies between 8 and

3 Hz. The statistical significance of the differences between right- and

eft-hand motor imagery power was assessed with a paired t -test in ev-

ry region. In Supplementary Figure S4, we show the negative log 10 -

ransformed p-values, multiplied with the sign of the t-statistic. As ex-

ected, the results show a clear lateralization for the activation of the

otor areas. 

To estimate inter-regional FC, we used the pop_roi_connect
unction to calculate MIM based on the three strongest PCs of every

egion. Again, MIM was averaged across frequencies between 8 and
13 
3 Hz. To reduce the region-by-region MIM matrix to a vector of net

IM scores, we summed up all MIM estimates across one region dimen-

ion. 

Analogous to our statistical evaluation of simulated data, described

n Experiment 1C, we assessed the statistical significance of the net

C of each region against the null hypothesis of zero net interac-

ion separately for each of the two motor imagery conditions. Specifi-

ally, we first calculated the true MIM score between all region pairs

n all subjects. Then, we generated a null distribution of 1000 shuf-

ed MIM scores for every region combination in every subject. Sub-

equently, the true and shuffled net MIM scores were calculated by av-

raging across one of the region dimensions. To obtain p-values, we

ompared the true MIM of every region and subject to the respec-

ive null distribution. To aggregate the p-values across subjects, we

pplied Stouffer’s method (see, e.g., Dowding and Haufe, 2018 ). Fi-

ally, FDR-correction ( 𝛼-level = 0.05) was used to correct for multi-

le comparisons. We show the negative log10-transformed p-values in

igs. 12 a and 12 b. 

Additionally, we assessed the statistical difference between the net

IM scores of the left- vs. right-hand motor imagery condition by again

sing a paired t -test for every region. In Fig. 12 c, we show the negative

og 10 -transformed p-values, multiplied with the sign of the t-statistic.

gain, as expected, the results show a lateralization for the undirected

et FC of the motor areas. 

Matlab code of the analyses presented in this section is provided

nder 4 . 

. Discussion 

Estimating functional connectivity between brain regions from re-

onstructed EEG sources is a promising research area that has generated

 number of important results (e.g. Babiloni et al., 2018; Hipp et al.,

011; Schoffelen et al., 2017 ). However, respective analysis pipelines

onsist of a number of subsequent steps for which multiple modeling

https://github.com/fpellegrini/MotorImag
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r  

p  
hoices exist and can typically be justified. In order to identify accu-

ate and reliable analysis pipelines, simulation studies with ground-truth

ata can be highly informative. However, most existing simulation stud-

es do not evaluate complete pipelines but focus on single steps. In par-

icular, various published studies assume the locations of the interact-

ng sources to be known a-priori, while, in practice, they have to be

stimated as well. To this end, it has become widespread to aggregate

oxel-level source activity within regions of an atlas before conducting

C analyses across regions. Multiple ways to conduct this dimensional-

ty reduction step have been proposed, which have not yet been system-

tically compared using simulations. The main focus of our study was

hus to identify those EEG processing pipelines from a set of common ap-

roaches that can detect ground-truth inter-regional FC most accurately.

or the scenario modelled in this study, we observe that a pipeline con-

isting of an LCMV source projection, PCA dimensionality reduction,

he selection of a fixed number of principal components for each ROI,

nd a robust FC metric like MIM or TRGC results in the most reliable

etection of ground-truth FC (see Table 1 ). Consistent with results re-

orted in Anzolin et al. (2019) , LCMV consistently yielded higher FC

econstruction performance than eLORETA. Thus, we here answer the

uestion that Mahjoory et al. (2017) left open, namely which source

econstruction technique is most suitable for EEG FC estimation. Our

esults are also in line with a larger body of studies that highlighted

he advantages of robust FC metrics compared to non-robust ones (e.g.

aufe et al., 2013; Nolte et al., 2004; Schoffelen and Gross, 2019; Vinck

t al., 2015; Winkler et al., 2016 ). 

nverse solutions 

For some inverse solutions, the choice of the regularization param-

ter has been shown to influence the accuracy of source reconstruction

 Hashemi et al., 2021; Hincapié et al., 2016 ). While the parameter is

f little importance for methods like LCMV and DICS, which are fitted

eparately to each source and thus solve low-dimensional optimization

roblems, it should be carefully chosen for full inverse solutions like

hampagne and eLORETA, which estimate the activity at each source

oxel within a single model. To avoid a performance drop due to un-

uitable regularization parameter choice in eLORETA and Champagne,

e used the spatial cross-validation method described in ( Habermehl

t al., 2014; Hashemi et al., 2021 ). This method automatically sets the

arameter based on the data at hand and has been shown to improve

he source reconstruction ( Hashemi et al., 2021 ). 

As hypothesized, DICS resulted in poor directionality determination

erformance, while LCMV and TRGC performed well. This can be ex-

lained by the difference between LCMV and DICS: while LCMV es-

imates the inverse solution in the time domain, DICS estimates the

ource projection for every frequency separately ( Gross et al., 2001 ).

his can lead to inconsistencies across frequencies. Since directionality

stimation requires the aggregation of phase information across mul-

iple frequencies, such inconsistencies may lead to failure of detecting

rue interactions and their directionalities. Therefore, we recommend to

void using DICS source reconstruction when analysing directed FC. For

ndirected FC measures, this seems to be less of a problem. Still, in our

imulation, LCMV consistently performed (even if only slightly) better

han DICS. This can be explained by the lower effective number of data

amples that are available to DICS at each individual frequency com-

ared to LCMV, which uses data from the entire frequency spectrum.

owever, there may be cases when using DICS could result in more ac-

urate localization. For example, this could be the case when the noise

as a dominant frequency that is different from the signal. 

obust functional connectivity metrics 

In this study, we observed a strong benefit of using robust FC met-

ics over non-robust metrics in detecting genuine neuronal interactions.

verall, the performance of coherence is highly impaired by the volume
14 
onduction effect (see Figure 3, c.f. Nolte et al., 2004 ). The TRGC met-

ic performed well for the investigation of the interaction direction, but

lso satisfyingly well for the interaction detection. However, the com-

utation time for calculating TRGC exceeds that of MIM by far. Thus,

e recommend using MIM to detect undirected FC in case the direction

f the effect is not of relevance. If TRGC is calculated for estimating

he direction of interactions, the absolute value of TRGC can be used to

etect interactions as well. 

Interestingly, GC without time reversal did not perform much worse

han TRGC. This is in line with previous results ( Winkler et al., 2016 )

emonstrating that the calculation of net GC values already provides a

ertain robustification against volume conduction artifacts. Concretely,

t has been shown that net GC is more robust to mixed noise than the

tandard GC; however not as robust as TRGC ( Winkler et al., 2016 ). We

enerally recommend using robust FC connectivity metrics like iCOH,

IM/MIC, or TRGC. 

ggregation within regions 

When comparing different processing pipelines, we found that em-

loying an SVD/PCA and selecting a fixed number of components for

urther processing performs better than selecting a variable number

f components in every ROI. When further investigating this effect,

e found that, for MIM and MIC, the final connectivity score of the

ARPC pipelines was positively correlated with the number of voxels

f the two concerning ROIs (90%: MIM: 𝑟 = 0 . 50 , MIC: 𝑟 = 0 . 32 ;
9%: MIM: 𝑟 = 0 . 70 , MIC: 𝑟 = 0 . 41 ). This indicates that the flexible

umber of PCs leads to a bias in MIM and MIC depending on the size of

he two involved ROIs. This could be expected, as the degrees of free-

om for fitting MIM and MIC scale linearly with the number of voxels

ithin a pair of regions. These in- or explicit model parameters can be

uned to maximize the FC of the projected data, which may lead to over-

tting. For finite data, this leads to a systematic overestimation of FC,

o the degree of which it correlates with the number of voxels. Although

epresenting a multivariate technique as well, similar behavior was not

bserved for TRGC. Here it is likely that a potential bias of the signal

imensionalities would cancel out when taking differences between the

wo interaction directions as well as between original and time-reversed

ata. 

An interesting and so far unsolved question is how many fixed com-

onents should be chosen for further processing. In Experiment 6, we

bserved a clear performance peak around three to four components

 Fig. 11 ). In the default version with only one active source per ROI,

e saw a similar pattern, but not as pronounced as in Experiment 6.

his points towards a data-dependent optimal number of components.

uture work should investigate how this parameter can be optimized

ased on the data at hand. 

hort time delays 

In Experiment 5, we investigated to what extent the performance

rops when the true interaction occurs with a very small time delay of

 to 10 msec, which might be a realistic range for a number of neu-

al interaction phenomena in the brain. Precise data on the typical or-

er of the times within which macroscopic neural ensembles exchange

nformation are, however, hard to obtain, as these transmission times

epend not only on the physical wiring but also on cognitive factors

hat are not straightforward to model. Previous work has shown that

elays can range from 2 to 100 msec, depending on the distance and

umber of synapses between two nodes (e.g. Fries, 2005; Miocinovic

t al., 2018; Oswal et al., 2016; Shouno et al., 2017 ). For example,

swal et al. (2016) studied interaction delays between the subthala-

ic nucleus and the motor cortex and found interaction delays of 20 to

6 msec. The satisfactory performance observed in our study for undi-

ected FC at delays of 8 and 10 msec may therefore be of particular im-

ortance for clinical scientists that aim at investigating such long-range
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nteractions. Note that the range of delays that can be detected with

obust connectivity metrics strongly depends on the frequency band in

hich the interaction takes place. If the delay is very short compared

o the base frequency of the interaction, then the phase difference it in-

uces is close to either 0 or ± 𝜋, making it less and less distinguishable

rom a pure volume conduction effect as it approaches these limits. In

ddition, the directionality of an interaction can only be resolved by ana-

yzing multiple frequencies. Here, wider interaction bands lead to better

econstructions of the directionality of interactions with shorter delays,

hereas higher frequency resolutions (that is, longer data segments)

ead to better reconstructions of the directionality of interactions with

onger delays. Here, we have demonstrated that alpha-band interactions

ith physiologically plausible transmission delays can be detected at

.5 Hz frequency resolution, depending on the underlying SNR as well

s additional modeling assumptions (see Limitations below). 

tatistical assessment 

The goal of this study was to evaluate data analysis pipelines to assess

C. However, we excluded the assessment of any subsequent statistical

valuation of FC, which is not straightforward to investigate in simula-

ion studies. In a simulation setting, we are free to choose the two factors

hat influence the statistical power of a test —SNR and sample size. De-

ermining realistic ranges for both in the context of EEG FC estimation is

hallenging but critical. Second, due to source leakage, we must expect

tiny) spill-over effects from interacting to non-interacting region pairs,

n effect termed “ghost interactions ” ( Palva et al., 2018 ). As a result,

hese ghost interactions will inevitably become statistically significant

or any source pair at high enough SNRs and sample sizes —an effect that

an also be seen in Fig. 5 c. For these reasons, we here assessed the effect

izes of FC metrics instead of their statistical significance, and focused

n evaluating the performance of different FC estimation pipelines rela-

ive to one another rather than on their absolute performance. However,

uture studies should go one step further by systematically assessing sta-

istical maps derived from connectomes using our results as building

locks. 

imitations 

While this study investigates a large range of processing pipelines,

hase-to-phase FC metrics, and data parameters, it is far from being

xhaustive. Other works have shown that many other parameters like

hannel density ( Song et al., 2015 ), the location of interacting sources

 Anzolin et al., 2019 ), data length ( Astolfi et al., 2007; Liuzzi et al.,

017; Sommariva et al., 2019; Van Diessen et al., 2015 ), referencing

 Chella et al., 2016; Huang et al., 2017; Van Diessen et al., 2015 ), and

o-registration ( Liuzzi et al., 2017 ) can influence FC detection. Besides,

e here used the same head model for generating the sensor data and

stimating the inverse solution. However, we expect worse performance

hen the head model has to be estimated, and previous work has shown

hat the quality of head model estimation also influences FC detection

 Mahjoory et al., 2017 ). Likewise, there exist many other inverse solu-

ions, like MNE, wMNE, LORETA, sLORETA, and MSP, just to name a

ew. Further, there also exist other types of dimensionality reduction

echniques. For example, some works selected the source with the high-

st power within a region or the source that showed the highest correla-

ion to the time series of other sources in the ROI to be representative for

ll time series of the ROI ( Ghumare et al., 2018; Hillebrand et al., 2012 ).

thers have presented a procedure of optimizing a weighting scheme

efore averaging all time series within a ROI ( Palva et al., 2010; 2011 ).

We also did not investigate the effect of the number of epochs and the

poch length in this study. It has been shown that the number of epochs

an introduce a bias for certain connectivity metrics ( Vinck et al., 2010 ).

his is the case for connectivity metrics that yield positive values only,

ike (absolute) coherence, the absolute value of the imaginary part of

oherency, MIM, or MIC. For these metrics, for a fixed epoch length,
15 
 lower number of epochs will systematically lead to higher values of

stimated connectivity, even under the null hypothesis of no interaction.

his is due to the higher variance of the estimates for lower samples

izes, which turns into a positive bias when the absolute value is taken.

urther, Fraschini et al. (2016) argued that also the epoch length may

ave an influence on FC estimation, where shorter epochs were found

o introduce a positive bias on FC when the number of epochs was held

onstant. As a result, we recommend to use fixed numbers and length of

pochs throughout a single experiment. This is of particular importance

hen the goal is to compare different groups or experimental conditions.

As the set of coupling mechanism and corresponding FC metrics that

ave been proposed is huge, we deliberately constrained our analysis

ere to phase-phase coupling using a selection of metrics that have

reviously been shown to be robust to mixing artifacts ( Ewald et al.,

012; Haufe et al., 2013; Nolte et al., 2004 ). In contrast, non-robust

etrics have been shown to be prone to the spurious discovery of inter-

ctions ( Bastos and Schoffelen, 2016; Brunner et al., 2016; Haufe et al.,

013; Nolte et al., 2004; Van de Steen et al., 2019 ). This was confirmed

ere again for absolute coherence and GC. For a detailed overview

f the taxonomy of FC metrics we refer to the works of Bastos and

choffelen (2016) ; Marzetti et al. (2019) ; Schoffelen and Gross (2019) .

ur results are obtained for intra-frequency phase–phase coupling, and

ake no claims about non-linear interaction metrics quantifying phase–

mplitude or amplitude–amplitude coupling within or across frequen-

ies ( Colclough et al., 2015; De Pasquale et al., 2010; Hipp et al., 2012 ).

evertheless, we expect that robust-to-volume conduction measures for

hese FC types would be required to obtain optimal performance. 

A further limitation of simulation studies in general is that assump-

ions need to be made that are hard, if not impossible, to confirm. Here,

ur goal was to generate pseudo-EEG data comprising realistic effects of

olume conduction using a physical model of a human head. In terms

f the generated time series, we focused on alpha-band oscillations as

arriers of the modeled interactions. By adding pink brain noise, uni-

ormly distributed across the entire brain, as well as white sensor noise,

e obtained simulated sensor-space EEG data that resemble real data in

rucial aspects such as spectral peaks and the general 1/f shape of the

ower spectrum. On the other hand, numerous additional assumptions

ere made regarding the linear dynamics of the interacting sources, the

onception of the interaction as a pure and fixed time delay, the focus

n an interaction in the alpha band, the number of interactions, the

ignal-to-noise ratio, and the stationarity of all signal and noise sources.

everal of these experimental variables were systematically varied to

rovide a comprehensive picture of the performance of each pipeline in

 wide range of scenarios. The ranking of the pipelines’ performances

as robust in all tested scenarios. However, a remaining question is how

ealistic the individual studied parameter choices are. Our simulated en-

ironment resembles a setting of task-related (ongoing) activity with few

ominant active and interacting sources, as opposed to a resting-state

etting with numerous equally active and interacting sources. Hincapié

t al. (2017) showed that connectivity estimation pipelines including

eamformers perform well for point-like sources, whereas for extended

ortical patches, MNE source estimation was found to be more accu-

ate. In this study, we simulated point-like sources, which could lead

o an overestimation of beamformer performance. Considering that FC

nalyses are predominantly performed on ongoing (including resting-

tate) activity, the assumption of having only a few interacting source

airs standing out against non-interacting background sources may be

hallenged. However, this assumption was made here for the practi-

al purpose of enabling a comparison between approaches. Consider-

ng that FC analyses are predominantly performed on ongoing (e.g.,

esting-state) activity rather than averaged data, the assumptions of only

ew interacting source pairs standing out against non-interacting back-

round sources with relatively high SNR can certainly be questioned.

owever, these assumptions were made here for the practical purpose

f enabling a comparison between approaches rather than with the am-

ition of claiming real-world validity. 
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Future simulation studies should nevertheless strive to further in-

rease the realism of the generated pseudo-EEG signals. In this regard,

nzolin et al. (2021) presented a toolbox that mimics typical EEG ar-

ifacts like eye blinks. We restricted ourselves here to using artificial

ime series designed to exhibit the specific properties assessed by the

tudied FC metrics; that is, time-delayed linear dynamics. In contrast,

iologically inspired models such as the models implemented within

he virtual brain toolbox (TVB; Sanz Leon et al., 2013 ) provide a richer

ortfolio of non-linear dynamics and thus are alternative ground-truth

odels specifically when the goal is to validate non-linear FC metrics.

he COALIA model ( Bensaid et al., 2019 ), for example, has been used

o mimick network activity in epilepsy for the purpose of validating FC

stimates ( Allouch et al., 2022 ). Further studies used the same model

amily to study the effect of parameters such as electrode density on FC

stimates ( Allouch et al., 2023; Tabbal et al., 2022 ). Similarly, Jirsa and

üller (2013) have used TVB to evaluate metrics of cross-frequency cou-

ling. Overall, these studies provide complementary evidence that is

argely aligned with our results, for example with respect to the superi-

rity of robust connectivity metrics. The plausibility of several assump-

ions made by neural mass models has also recently been questioned

 Pathak et al., 2022 ). Nevertheless, such models hold great promise as

alidation tools in the future. 

Note in this respect that it was not our intention to propose a realistic

odel of EEG data or even the whole brain but simply to generate data

hat would allow us to test how well ROI-level FC can be reconstructed in

he presence of volume conduction/source leakage. The types of FC we

re interested here (directed and undirected linear FC) have been widely

tudied and popular metrics to infer these types of FC are known to be

eavily affected by volume conduction ( Haufe et al., 2013; Nolte et al.,

004 ). Hence, it was our intention to identify metrics and pipelines that

ave a high chance of reconstructing FC on the ROI level when signals

re mapped to the EEG and back by realistic forward and inverse models.

e deliberately do not address the question whether networks estimated

sing FC metrics provide a correct depiction of actual brain networks. 

As a further limitation, our simulations are to some extent restricted

o EEG data. However, it can be expected that, qualitatively, the results

f this paper could be transferred to MEG data. MEG analyses also suf-

er from the source leakage problem ( Colclough et al., 2016; Pizzella

t al., 2014 ) and benefit from disentangling signal sources with source

econstruction ( Marzetti et al., 2019; Schoffelen and Gross, 2019 ). More-

ver, the same FC metrics are typically used in EEG and MEG analy-

es ( Schoffelen and Gross, 2009; 2019 ). Nevertheless, differences exist,

hich would be worth studying. In contrast to EEG, which records sec-

ndary neuronal return currents, MEG records the magnetic field that is

nduced by electrical activity and arises in a circular field around an elec-

ric current ( Hämäläinen et al., 1993 ). Therefore, MEG cannot record

adial neuronal currents ( Huang et al., 2007 ). This must be taken into

ccount when estimating the inverse solution from the leadfield, i.e. it

s advised to reduce the rank of the forward model from three to two by

pplying an SVD at each source location ( Westner et al., 2021 ). 

We here provide a simulation framework that is openly accessible by

he community. Individual pipeline steps, but also simulated data can

asily be replaced by other variants, following a plug-and-play principle.

 such, we encourage readers to test aspects of the pipelines, other data,

nd other FC metrics not considered here. 

. Conclusion 

This work compared an extensive set of data analysis pipelines for

he purpose of extracting directed and undirected functional connectiv-

ty between predefined brain regions from simulated EEG data. While

everal individual steps of such pipelines have been benchmarked in

revious studies, we focused specifically on the problem of aggregating

ource-reconstructed data into region-level time courses and, ultimately,

egion-to-region connectivity matrices. Thereby, we close a gap in the

urrent literature evaluating FC estimation approaches. We show that
16 
sing non-robust FC metrics greatly reduces the ability to correctly de-

ect ground-truth FC. Further, in our simulated pseudo-EEG data, the use

f the eLORETA inverse solution also leads to worse FC detection perfor-

ance than beamformers. Moreover, the use of inverse solutions that are

requency-specific, such as DICS, may hamper the correct identification

f the directionality of interactions. Finally, unequal dimensionalities of

ignals at different ROIs may bias certain connectivity measures, such as

IC and MIM, degrading their ability to identify true interactions from a

oise floor. Thus, dimensionality reduction techniques should be applied

uch that the number of retained signal components is the same for all

egions. We expect that avoiding these pitfalls may enhance the correct

nterpretation and comparability of results of future connectivity inves-

igations. FC pipelines that show promising results with our simulated

seudo-EEG data consist of beamformer or champagne source recon-

truction, aggregation of time series within ROIs using a fixed number

f strongest PCs, and using a robust FC metric like MIM or TRGC. To

hich scenarios these results can be generalized remains to be shown in

urther studies. In practice, low SNR, high numbers of interactions, and

mall interaction delays may, however, reduce the performance even of

he best performing pipelines. 
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ata of the real data example are available upon request. 

eclaration of Competing Interest 

The authors declare that they have no known competing financial

nterests or personal relationships that could have appeared to influence

he work reported in this paper. 

redit authorship contribution statement 

Franziska Pellegrini: Methodology, Software, Investigation, Writ-

ng – original draft, Visualization. Arnaud Delorme: Validation, Soft-

are, Writing – review & editing. Vadim Nikulin: Methodology, Writ-

ng – review & editing, Supervision. Stefan Haufe: Conceptualization,

ethodology, Validation, Investigation, Resources, Writing – review &

diting, Supervision, Project administration, Funding acquisition. 

ata availability 

Data will be made available on request. 

cknowledgements 

This project was supported by the European Research Council

ERC) under the European Union’s Horizon 2020 research and innova-

ion programme (Grant agreement No. 758985) and through Deutsche

orschungsgemeinschaft (DFG, German Research Foundation) Project-

D 424778381 TRR 295. We thank Tien Dung Nguyen for contribut-

ng to the development of the ROIconnect plugin. The computations for

his work were partly run on the open Neuroscience Gateway cluster

 Sivagnanam et al., 2013 ). 

ppendix A. ROIconnect toolbox 

ROIconnect is a freely available open-source plugin to the popu-

ar MATLAB-based open-source toolbox EEGLAB for EEG data analy-

is. It adds the functionality of calculating region-wise power and inter-

egional FC on the source level. Moreover, it provides functions to visu-

lize power and FC. All functions can be accessed by the EEGLAB GUI

https://github.com/fpellegrini/FCsim
https://github.com/sccn/roiconnect
https://github.com/fpellegrini/MotorImag
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r the command line. ROIconnect uses core EEGLAB functions for im-

orting and preprocessing EEG data, and calculating the leadfield and

ource model: we refer users to other EEGLAB functions to preprocess

ata before applying ROIconnect functions. The ROIconnect plugin can

e downloaded through github 5 or installed via the EEGLAB GUI exten-

ion manager. 

ey features 

The features of ROIconnect are implemented in three main

unctions: pop_roi_activity , pop_roi_connect , and

op_roi_connectplot . 
pop_roi_activity takes an EEG struct containing EEG sen-

or activity, a pointer to a headmodel and a source model, the at-

as name, and the number of PCs for dimensionality reduction as

nput. It then calculates a source projection filter (default: LCMV)

nd applies it to the sensor data. Power is then calculated with

he Welch method for every frequency on the voxel time series and

hen summed across voxels within regions. The result is saved in

EG.roi.source_roi_power . To estimate region-wise FC, the

op_roi_activity function reduces the dimensionality of the time

eries of every region by employing a PCA and selecting the strongest

Cs (as defined in the input) for every region. The resulting time series

re then stored in EEG.roi.source_roi_data . 
pop_roi_connect calculates FC between regions. It builds on

he output of pop_roi_activity . That is, it takes the EEG struct

s input, as well as the name of the FC metrics that should be calcu-

ated. The function calculates all FC metrics in a frequency-resolved

ay. That is, the output contains FC scores for every region–region–

requency combination. To avoid biases due to different data lengths,

op_roi_connect estimates FC for time windows (‘snippets’) of

0 sec length (default), which subsequently can be averaged (default)

r used as input for later statistical analyses. The snippet length can be

exibly adjusted by the user. The output of this function is stored under

he name of the respective FC metric under EEG.roi . 
The pop_roi_connectplot function enables visualizing power

nd FC in the following modes: 

• Power as region-wise bar plot. 
• Power as source-level cortical surface topography. 
• FC as region-by-region matrix. 
• Net FC, that is, the mean FC from all regions to all regions, as cortical

surface topography. 
• Seed FC, that is, the FC of a seed region to all other regions, as cor-

tical surface topography. 

For plotting, a specific frequency or frequency band can be chosen

y the user. For matrix representations, it is also possible to just plot one

f the hemispheres or only regions belonging to specific brain lobes. 

upplementary material 

Supplementary material associated with this article can be found, in

he online version, at 10.1016/j.neuroimage.2023.120218 

eferences 

llen, M., Poggiali, D., Whitaker, K., Marshall, T.R., Kievit, R.A., 2019. Raincloud plots: a

multi-platform tool for robust data visualization. Wellcome Open Res. 4 . 

llouch, S., Kabbara, A., Duprez, J., Khalil, M., Modolo, J., Hassan, M., 2023. Effect of

channel density, inverse solutions and connectivity measures on EEG resting-state

networks reconstruction: asimulation study. Neuroimage 271, 120006 . 

llouch, S., Yochum, M., Kabbara, A., Duprez, J., Khalil, M., Wendling, F., Hassan, M.,

Modolo, J., 2022. Mean-field modeling of brain-scale dynamics for the evaluation of

EEG source-space networks. Brain Topogr. 35 (1), 54–65 . 

nzolin, A., Presti, P., Van De Steen, F., Astolfi, L., Haufe, S., Marinazzo, D., 2019. Quan-

tifying the effect of demixing approaches on directed connectivity estimated between

reconstructed EEG sources. Brain Topogr. 32 (4), 655–674 . 
5 https://github.com/sccn/roiconnec 

G  

17 
nzolin, A., Toppi, J., Petti, M., Cincotti, F., Astolfi, L., 2021. SEED-G: Simulated EEG data

generator for testing connectivity algorithms. Sensors 21 (11), 3632 . 

oki, M., Havenner, A., 1991. State space modeling of multiple time series. Econom. Rev.

10 (1), 1–59 . 

stolfi, L., Cincotti, F., Mattia, D., Marciani, M.G., Baccala, L.A., de Vico Fallani, F., Sali-

nari, S., Ursino, M., Zavaglia, M., Ding, L., et al., 2007. Comparison of different cortical

connectivity estimators for high-resolution EEG recordings. Hum. Brain Mapp. 28 (2),

143–157 . 

abiloni, C., Del Percio, C., Lizio, R., Noce, G., Lopez, S., Soricelli, A., Ferri, R., Nobili, F.,

Arnaldi, D., Famà, F., et al., 2018. Abnormalities of resting-state functional cortical

connectivity in patients with dementia due to alzheimer’s and lewy body diseases: an

EEG study. Neurobiol. Aging 65, 18–40 . 

arnett, L., Barrett, A.B., Seth, A.K., 2018. Solved problems for granger causality in neu-

roscience: a response to stokes and purdon. Neuroimage 178, 744–748 . 

arnett, L., Seth, A.K., 2014. The MVGC multivariate granger causality toolbox: a new

approach to granger-causal inference. J. Neurosci. Methods 223, 50–68 . 

arnett, L., Seth, A.K., 2015. Granger causality for state-space models. Phys. Rev. E 91

(4), 040101 . 

arrett, A.B., Barnett, L., Seth, A.K., 2010. Multivariate granger causality and generalized

variance. Phys. Rev. E 81 (4), 041907 . 

asti, A., Nili, H., Hauk, O., Marzetti, L., Henson, R.N., 2020. Multi-dimensional connec-

tivity: a conceptual and mathematical review. Neuroimage 117179 . 

astos, A.M., Schoffelen, J.-M., 2016. A tutorial review of functional connectivity analysis

methods and their interpretational pitfalls. Front. Syst. Neurosci. 9, 175 . 

ensaid, S., Modolo, J., Merlet, I., Wendling, F., Benquet, P., 2019. Coalia: a computational

model of human EEG for consciousness research. Front. Syst. Neurosci. 13, 59 . 

lankertz, B., Sannelli, C., Halder, S., Hammer, E.M., Kübler, A., Müller, K.-R., Curio, G.,

Dickhaus, T., 2010. Neurophysiological predictor of SMR-based BCI performance.

Neuroimage 51 (4), 1303–1309 . 

radley, A., Yao, J., Dewald, J., Richter, C.-P., 2016. Evaluation of electroencephalogra-

phy source localization algorithms with multiple cortical sources. PLoS ONE 11 (1),

e0147266 . 

ressler, S.L., Seth, A.K., 2011. Wiener–granger causality: a well established methodology.

Neuroimage 58 (2), 323–329 . 

runner, C., Billinger, M., Seeber, M., Mullen, T.R., Makeig, S., 2016. Volume conduction

influences scalp-based connectivity estimates. Front. Comput. Neurosci. 10, 121 . 

astaño Candamil, S., Höhne, J., Martínez-Vargas, J.-D., An, X.-W., Castellanos–

Domínguez, G., Haufe, S., 2015. Solving the EEG inverse problem based on space—

time–frequency structured sparsity constraints. Neuroimage 118, 598–612 . 

hella, F., Pizzella, V., Zappasodi, F., Marzetti, L., 2016. Impact of the reference choice

on scalp EEG connectivity estimation. J. Neural Eng. 13 (3), 036016 . 

olclough, G.L., Brookes, M.J., Smith, S.M., Woolrich, M.W., 2015. A symmet-

ric multivariate leakage correction for MEG connectomes. Neuroimage 117, 

439–448 . 

olclough, G.L., Woolrich, M.W., Tewarie, P.K., Brookes, M.J., Quinn, A.J., Smith, S.M.,

2016. How reliable are MEG resting-state connectivity metrics? Neuroimage 138,

284–293 . 

’Andrea, A., Chella, F., Marshall, T.R., Pizzella, V., Romani, G.L., Jensen, O., Marzetti, L.,

2019. Alpha and alpha-beta phase synchronization mediate the recruitment of the vi-

suospatial attention network through the superior longitudinal fasciculus. Neuroim-

age 188, 722–732 . 

e Pasquale, F., Della Penna, S., Snyder, A.Z., Lewis, C., Mantini, D., Marzetti, L., Belar-

dinelli, P., Ciancetta, L., Pizzella, V., Romani, G.L., et al., 2010. Temporal dynam-

ics of spontaneous MEG activity in brain networks. Proc. Natl. Acad. Sci. 107 (13),

6040–6045 . 

esikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buck-

ner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., et al., 2006. An automated labeling

system for subdividing the human cerebral cortex on MRI scans into gyral based re-

gions of interest. Neuroimage 31 (3), 968–980 . 

owding, I., Haufe, S., 2018. Powerful statistical inference for nested data using sufficient

summary statistics. Front. Hum. Neurosci. 12, 103 . 

wald, A., Marzetti, L., Zappasodi, F., Meinecke, F.C., Nolte, G., 2012. Estimating true

brain connectivity from EEG/MEG data invariant to linear and static transformations

in sensor space. Neuroimage 60 (1), 476–488 . 

aes, L., Stramaglia, S., Marinazzo, D., 2017. On the interpretability and computational

reliability of frequency-domain granger causality. F1000Res 6 . 

raschini, M., Demuru, M., Crobe, A., Marrosu, F., Stam, C.J., Hillebrand, A., 2016. The

effect of epoch length on estimated EEG functional connectivity and brain network

organisation. J. Neural Eng. 13 (3), 036015 . 

ries, P., 2005. A mechanism for cognitive dynamics: neuronal communication through

neuronal coherence. Trends Cogn. Sci. (Regul. Ed.) 9 (10), 474–480 . 

ries, P., 2015. Rhythms for cognition: communication through coherence. Neuron 88 (1),

220–235 . 

riston, K.J., 2011. Functional and effective connectivity: a review. Brain Connect. 1 (1),

13–36 . 

riston, K.J., Rotshtein, P., Geng, J.J., Sterzer, P., Henson, R.N., 2006. A critique of func-

tional localisers. Neuroimage 30 (4), 1077–1087 . 

eweke, J., 1982. Measurement of linear dependence and feedback between multiple time

series. J. Am. Stat. Assoc. 77 (378), 304–313 . 

humare, E.G., Schrooten, M., Vandenberghe, R., Dupont, P., 2018. A time-varying con-

nectivity analysis from distributed EEG sources: a simulation study. Brain Topogr. 31

(5), 721–737 . 

ómez-Herrero, G., Atienza, M., Egiazarian, K., Cantero, J.L., 2008. Measuring directional

coupling between EEG sources. Neuroimage 43 (3), 497–508 . 

ramfort, A., Papadopoulo, T., Olivi, E., Clerc, M., 2010. OpenMEEG: opensource software

for quasistatic bioelectromagnetics. Biomed. Eng. Online 9 (1), 1–20 . 

https://doi.org/10.1016/j.neuroimage.2023.120218
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0001
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0002
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0003
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0004
https://github.com/sccn/roiconnect
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0005
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0006
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0007
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0008
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0009
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0010
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0011
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0012
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0013
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0014
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0015
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0016
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0017
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0018
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0019
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0020
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0021
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0022
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0023
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0024
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0025
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0026
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0027
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0028
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0029
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0030
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0031
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0032
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0033
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0034
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0035
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0036
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0037
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0038


F. Pellegrini, A. Delorme, V. Nikulin et al. NeuroImage 277 (2023) 120218 

G  

G  

 

G  

 

H  

 

H  

 

H  

 

H  

 

H  

H  

H  

 

H  

 

H  

 

H  

 

H  

 

H  

 

 

H  

H  

 

H  

 

H  

 

I  

 

J  

 

J  

K  

 

L  

 

M  

 

M  

 

M  

 

M  

 

N  

 

N  

 

N  

 

 

O  

 

P  

 

P  

 

P  

 

P  

 

P  

 

 

P  

P  

P  

 

R  

 

 

S  

 

S  

 

S  

S  

S  

S  

 

S  

 

S  

 

S  

 

S  

 

S  

 

V  

 

S  

 

T  

 

T  

V  

 

 

V  

 

V  

 

ranger, C.W.J., 1969. Investigating causal relations by econometric models and

cross-spectral methods. Econometrica: J. Econom. Soc. 424–438 . 

ross, J., Kujala, J., Hämäläinen, M., Timmermann, L., Schnitzler, A., Salmelin, R., 2001.

Dynamic imaging of coherent sources: studying neural interactions in the human

brain. Proc. Natl. Acad. Sci. 98 (2), 694–699 . 

rova, C., Daunizeau, J., Lina, J.-M., Bénar, C.G., Benali, H., Gotman, J., 2006. Evaluation

of EEG localization methods using realistic simulations of interictal spikes. Neuroim-

age 29 (3), 734–753 . 

abermehl, C., Steinbrink, J.M., Müller, K.-R., Haufe, S., 2014. Optimizing the regulariza-

tion for image reconstruction of cerebral diffuse optical tomography. J. Biomed. Opt.

19 (9), 096006 . 

alder, T., Talwar, S., Jaiswal, A.K., Banerjee, A., 2019. Quantitative evaluation in es-

timating sources underlying brain oscillations using current source density methods

and beamformer approaches. eNeuro 6 (4) . 

ämäläinen, M., Hari, R., Ilmoniemi, R.J., Knuutila, J., Lounasmaa, O.V., 1993. Magne-

toencephalographytheory, instrumentation, and applications to noninvasive studies

of the working human brain. Rev. Mod. Phys. 65 (2), 413 . 

ashemi, A., Cai, C., Kutyniok, G., Müller, K.-R., Nagarajan, S.S., Haufe, S., 2021. Unifi-

cation of sparse bayesian learning algorithms for electromagnetic brain imaging with

the majorization minimization framework. bioRxiv . 2020–08 

aufe, S., Ewald, A., 2019. A simulation framework for benchmarking EEG-based brain

connectivity estimation methodologies. Brain Topogr. 32 (4), 625–642 . 

aufe, S., Nikulin, V.V., Müller, K.-R., Nolte, G., 2013. A critical assessment of connectivity

measures for EEG data: a simulation study. Neuroimage 64, 120–133 . 

aufe, S., Nikulin, V.V., Nolte, G., 2012. Alleviating the influence of weak data asym-

metries on granger-causal analyses. In: International Conference on Latent Variable

Analysis and Signal Separation. Springer, pp. 25–33 . 

aufe, S., Nikulin, V.V., Ziehe, A., Müller, K.-R., Nolte, G., 2008. Combining sparsity

and rotational invariance in EEG/MEG source reconstruction. Neuroimage 42 (2),

726–738 . 

aufe, S., Tomioka, R., Dickhaus, T., Sannelli, C., Blankertz, B., Nolte, G., Müller, K.-R.,

2011. Large-scale EEG/MEG source localization with spatial flexibility. Neuroimage

54 (2), 851–859 . 

illebrand, A., Barnes, G.R., Bosboom, J.L., Berendse, H.W., Stam, C.J., 2012. Frequen-

cy-dependent functional connectivity within resting-state networks: an atlas-based

MEG beamformer solution. Neuroimage 59 (4), 3909–3921 . 

incapié, A.-S., Kujala, J., Mattout, J., Daligault, S., Delpuech, C., Mery, D., Cosmelli, D.,

Jerbi, K., 2016. MEG Connectivity and power detections with minimum norm esti-

mates require different regularization parameters. Comput. Intell. Neurosci. 2016 . 

incapié, A.-S., Kujala, J., Mattout, J., Pascarella, A., Daligault, S., Delpuech, C., Mery, D.,

Cosmelli, D., Jerbi, K., 2017. The impact of MEG source reconstruction method on

source-space connectivity estimation: a comparison between minimum-norm solution

and beamforming. Neuroimage 156, 29–42 . 

ipp, J.F., Engel, A.K., Siegel, M., 2011. Oscillatory synchronization in large-scale cortical

networks predicts perception. Neuron 69 (2), 387–396 . 

ipp, J.F., Hawellek, D.J., Corbetta, M., Siegel, M., Engel, A.K., 2012. Large-scale cor-

tical correlation structure of spontaneous oscillatory activity. Nat. Neurosci. 15 (6),

884–890 . 

uang, M.-X., Song, T., Hagler Jr, D.J., Podgorny, I., Jousmaki, V., Cui, L., Gaa, K., Har-

rington, D.L., Dale, A.M., Lee, R.R., et al., 2007. A novel integrated MEG and EEG

analysis method for dipolar sources. Neuroimage 37 (3), 731–748 . 

uang, Y., Zhang, J., Cui, Y., Yang, G., He, L., Liu, Q., Yin, G., 2017. How different EEG

references influence sensor level functional connectivity graphs. Front. Neurosci. 11,

368 . 

daji, M.J., Zhang, J., Stephani, T., Nolte, G., Mueller, K.-R., Villringer, A., Nikulin, V.,

2021. Harmoni: a method for eliminating spurious interactions due to the harmonic

components in neuronal data. bioRxiv . 

aiswal, A., Nenonen, J., Stenroos, M., Gramfort, A., Dalal, S.S., Westner, B.U., Litvak, V.,

Mosher, J.C., Schoffelen, J.-M., Witton, C., et al., 2020. Comparison of beamformer

implementations for MEG source localization. Neuroimage 216, 116797 . 

irsa, V., Müller, V., 2013. Cross-frequency coupling in real and virtual brain networks.

Front. Comput. Neurosci. 7, 78 . 

orhonen, O., Palva, S., Palva, J.M., 2014. Sparse weightings for collapsing inverse so-

lutions to cortical parcellations optimize m/EEG source reconstruction accuracy. J.

Neurosci. Methods 226, 147–160 . 

iuzzi, L., Gascoyne, L.E., Tewarie, P.K., Barratt, E.L., Boto, E., Brookes, M.J., 2017. Op-

timising experimental design for MEG resting state functional connectivity measure-

ment. Neuroimage 155, 565–576 . 

ahjoory, K., Nikulin, V.V., Botrel, L., Linkenkaer-Hansen, K., Fato, M.M., Haufe, S., 2017.

Consistency of EEG source localization and connectivity estimates. Neuroimage 152,

590–601 . 

arzetti, L., Basti, A., Chella, F., D’Andrea, A., Syrjälä, J., Pizzella, V., 2019. Brain func-

tional connectivity through phase coupling of neuronal oscillations: a perspective

from magnetoencephalography. Front. Neurosci. 13, 964 . 

azziotta, J.C., Toga, A.W., Evans, A., Fox, P., Lancaster, J., et al., 1995. A probabilistic

atlas of the human brain: theory and rationale for its development. Neuroimage 2 (2),

89–101 . 

iocinovic, S., de Hemptinne, C., Chen, W., Isbaine, F., Willie, J.T., Ostrem, J.L.,

Starr, P.A., 2018. Cortical potentials evoked by subthalamic stimulation demonstrate

a short latency hyperdirect pathway in humans. J. Neurosci. 38 (43), 9129–9141 . 

olte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., Hallett, M., 2004. Identifying true

brain interaction from EEG data using the imaginary part of coherency. Clin. Neuro-

physiol. 115 (10), 2292–2307 . 

olte, G., Ziehe, A., Nikulin, V.V., Schlögl, A., Krämer, N., Brismar, T., Müller, K.-R., 2008.

Robustly estimating the flow direction of information in complex physical systems.

Phys. Rev. Lett. 100 (23), 234101 . 
18 
unez, P.L., Srinivasan, R., Westdorp, A.F., Wijesinghe, R.S., Tucker, D.M., Silber-

stein, R.B., Cadusch, P.J., 1997. EEG Coherency: i: statistics, reference electrode, vol-

ume conduction, laplacians, cortical imaging, and interpretation at multiple scales.

Electroencephalogr. Clin. Neurophysiol. 103 (5), 499–515 . 

swal, A., Beudel, M., Zrinzo, L., Limousin, P., Hariz, M., Foltynie, T., Litvak, V., Brown, P.,

2016. Deep brain stimulation modulates synchrony within spatially and spectrally

distinct resting state networks in parkinsons disease. Brain 139 (5), 1482–1496 . 

alva, J.M., Monto, S., Kulashekhar, S., Palva, S., 2010. Neuronal synchrony reveals work-

ing memory networks and predicts individual memory capacity. Proceed. Natl. Acad.

Sci. 107 (16), 7580–7585 . 

alva, J.M., Wang, S.H., Palva, S., Zhigalov, A., Monto, S., Brookes, M.J., Schoffelen, J.-M.,

Jerbi, K., 2018. Ghost interactions in MEG/EEG source space: anote of caution on

inter-areal coupling measures. Neuroimage 173, 632–643 . 

alva, S., Kulashekhar, S., Hämäläinen, M., Palva, J.M., 2011. Localization of cortical

phase and amplitude dynamics during visual working memory encoding and reten-

tion. J. Neurosci. 31 (13), 5013–5025 . 

ascual-Marqui, R.D., 2007. Discrete, 3d distributed, linear imaging methods of

electric neuronal activity. part 1: exact, zero error localization. arXiv preprint

arXiv:0710.3341 . 

ascual-Marqui, R.D., Lehmann, D., Koukkou, M., Kochi, K., Anderer, P., Saletu, B.,

Tanaka, H., Hirata, K., John, E.R., Prichep, L., Biscay-Lirio, R., Kinoshita, T., 2011.

Assessing interactions in the brain with exact low-resolution electromagnetic tomog-

raphy. Philos. Trans. A Math. Phys. Eng. Sci. 369, 3768–3784 . 

athak, A., Roy, D., Banerjee, A., 2022. Whole-brain network models: from physics to

bedside. Front. Comput. Neurosci. 16 . 

erinelli, A., Assecondi, S., Tagliabue, C.F., Mazza, V., 2022. Power shift and connectivity

changes in healthy aging during resting-state EEG. Neuroimage 119247 . 

izzella, V., Marzetti, L., Della Penna, S., de Pasquale, F., Zappasodi, F., Romani, G.L.,

2014. Magnetoencephalography in the study of brain dynamics. Funct. Neurol. 29

(4), 241 . 

ubega, M., Carboni, M., Seeber, M., Pascucci, D., Tourbier, S., Toscano, G., Van Mierlo, P.,

Hagmann, P., Plomp, G., Vulliemoz, S., et al., 2019. Estimating EEG source dipole

orientation based on singular-value decomposition for connectivity analysis. Brain

Topogr. 32 (4), 704–719 . 

annelli, C., Vidaurre, C., Müller, K.-R., Blankertz, B., 2019. A large scale screening study

with a SMR-based BCI: categorization of BCI users and differences in their SMR activ-

ity. PLoS ONE 14 (1), e0207351 . 

anz Leon, P., Knock, S.A., Woodman, M.M., Domide, L., Mersmann, J., McIntosh, A.R.,

Jirsa, V., 2013. The virtual brain: a simulator of primate brain network dynamics.

Front. Neuroinform. 7, 10 . 

chaworonkow, N., Nikulin, V.V., 2021. Is sensor space analysis good enough? spatial

patterns as a tool for assessing spatial mixing of EEG/MEG rhythms. bioRxiv . 

choffelen, J.-M., Gross, J., 2009. Source connectivity analysis with MEG and EEG. Hum.

Brain Mapp. 30 (6), 1857–1865 . 

choffelen, J.-M., Gross, J., 2019. Studying dynamic neural interactions with

MEG. Magnetoencephalography: from signals to dynamic cortical networks 

519–541 . 

choffelen, J.-M., Hultén, A., Lam, N., Marquand, A.F., Uddén, J., Hagoort, P., 2017. Fre-

quency-specific directed interactions in the human brain network for language. Proc.

Natl. Acad. Sci. 114 (30), 8083–8088 . 

houno, O., Tachibana, Y., Nambu, A., Doya, K., 2017. Computational model of recurrent

subthalamo-pallidal circuit for generation of parkinsonian oscillations. Front. Neu-

roanat. 11, 21 . 

ilfverhuth, M.J., Hintsala, H., Kortelainen, J., Seppänen, T., 2012. Experimental compar-

ison of connectivity measures with simulated EEG signals. Med. Biol. Eng. Comput.

50 (7), 683–688 . 

ivagnanam, S., Majumdar, A., Yoshimoto, K., Astakhov, V., Bandrowski, A.E., Mar-

tone, M.E., Carnevale, N.T., et al., 2013. Introducing the neuroscience gateway. IWSG

993, 0 . 

ommariva, S., Sorrentino, A., Piana, M., Pizzella, V., Marzetti, L., 2019. A compara-

tive study of the robustness of frequency-domain connectivity measures to finite data

length. Brain Topogr. 32 (4), 675–695 . 

ong, J., Davey, C., Poulsen, C., Luu, P., Turovets, S., Anderson, E., Li, K., Tucker, D.,

2015. EEG Source localization: sensor density and head surface coverage. J. Neurosci.

Methods 256, 9–21 . 

an de Steen, F., Faes, L., Karahan, E., Songsiri, J., Valdes-Sosa, P.A., Marinazzo, D., 2019.

Critical comments on EEG sensor space dynamical connectivity analysis. Brain To-

pogr. 32, 643–654 . 

upp, G.G., Schlögl, A., Trujillo-Barreto, N., Müller, M.M., Gruber, T., 2007. Directed cor-

tical information flow during human object recognition: analyzing induced EEG gam-

ma-band responses in brain’s source space. PLoS ONE 2 (8), e684 . 

abbal, J., Kabbara, A., Yochum, M., Khalil, M., Hassan, M., Benquet, P., 2022. Assessing

HD-EEG functional connectivity states using a human brain computational model. J.

Neural Eng. 19 (5), 056032 . 

adel, F., Baillet, S., Mosher, J.C., Pantazis, D., Leahy, R.M., 2011. Brainstorm: a

user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011 . 

an Diessen, E., Numan, T., Van Dellen, E., Van Der Kooi, A.W., Boersma, M., Hofman, D.,

Van Lutterveld, R., Van Dijk, B.W., Van Straaten, E., Hillebrand, A., et al., 2015.

Opportunities and methodological challenges in EEG and MEG resting state functional

brain network research. Clin. Neurophysiol. 126 (8), 1468–1481 . 

an Veen, B.D., Van Drongelen, W., Yuchtman, M., Suzuki, A., 1997. Localization of brain

electrical activity via linearly constrained minimum variance spatial filtering. IEEE

Trans. Biomed. Eng. 44 (9), 867–880 . 

inck, M., Huurdeman, L., Bosman, C.A., Fries, P., Battaglia, F.P., Pennartz, C.M.A.,

Tiesinga, P.H., 2015. How to detect the granger-causal flow direction in the presence

of additive noise? Neuroimage 108, 301–318 . 

http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0039
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0040
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0041
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0042
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0043
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0044
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0045
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0045
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0046
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0047
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0048
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0049
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0050
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0051
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0052
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0053
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0054
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0055
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0056
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0057
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0058
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0059
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0060
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0061
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0062
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0063
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0064
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0065
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0066
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0067
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0068
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0069
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0070
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0071
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0072
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0073
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0074
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0075
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0076
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0077
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0078
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0079
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0080
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0081
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0082
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0083
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0084
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0085
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0086
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0087
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0088
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0089
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0090
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0091
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0092
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0093
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0094
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0095
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0096
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0097


F. Pellegrini, A. Delorme, V. Nikulin et al. NeuroImage 277 (2023) 120218 

V  

 

W  

 

W  

W  

 

W  

 

W  

W  

W  

 

inck, M., van Wingerden, M., Womelsdorf, T., Fries, P., Pennartz, C.M.A., 2010. The

pairwise phase consistency: a bias-free measure of rhythmic neuronal synchroniza-

tion. Neuroimage 51 (1), 112–122 . 

all, M.E., Rechtsteiner, A., Rocha, L.M., 2003. Singular Value Decomposition and Prin-

cipal Component Analysis. In: A practical approach to microarray data analysis.

Springer, pp. 91–109 . 

ang, H.E., Bénar, C.G., Quilichini, P.P., Friston, K.J., Jirsa, V.K., Bernard, C., 2014. A

systematic framework for functional connectivity measures. Front. Neurosci. 8, 405 . 

ang, S.H., Lobier, M., Siebenhühner, F., Puoliväli, T., Palva, S., Palva, J.M., 2018. Hy-

peredge bundling: a practical solution to spurious interactions in MEG/EEG source

connectivity analyses. Neuroimage 173, 610–622 . 
19 
estner, B.U., Dalal, S.S., Gramfort, A., Litvak, V., Mosher, J.C., Oostenveld, R., Schof-

felen, J.-M., 2021. A unified view on beamformers for m/EEG source reconstruction.

Neuroimage 118789 . 

hittle, P., 1963. On the fitting of multivariate autoregressions, and the approximate

canonical factorization of a spectral density matrix. Biometrika 50 (1–2), 129–134 . 

inkler, I., Panknin, D., Bartz, D., Müller, K.-R., Haufe, S., 2016. Validity of time reversal

for testing granger causality. IEEE Trans. Signal Process. 64 (11), 2746–2760 . 

ipf, D.P., Owen, J.P., Attias, H.T., Sekihara, K., Nagarajan, S.S., 2010. Robust bayesian

estimation of the location, orientation, and time course of multiple correlated neural

sources using MEG. Neuroimage 49 (1), 641–655 . 

http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0098
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0099
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0100
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0101
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0102
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0103
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0104
http://refhub.elsevier.com/S1053-8119(23)00369-5/sbref0105

	Identifying good practices for detecting inter-regional linear functional connectivity from EEG
	1 Introduction
	2 Methods
	2.1 Data generation
	2.2 Source reconstruction
	‘Exact’ low-resolution electromagnetic tomography
	Linearly-constrained minimum variance beamforming
	Dynamic imaging of coherent sources
	Champagne

	2.3 Dimensionality reduction
	Principal component analysis

	2.4 Connectivity metrics
	Coherence and imaginary part of coherency
	Multivariate interaction measure and maximized imaginary coherency
	Multivariate Granger causality and time-reversed Granger causality

	2.5 Pipelines
	Pipelines FIXPC1 to FIXPC6: Fixed number of principal components
	Pipelines VARPC90 and VARPC99: Variable numbers of principal components
	Pipeline MEANFC: Mean first FC second
	Pipeline CENTRAL: Central voxel pick
	Pipeline FCMEAN: FC first mean second
	Pipeline TRUEVOX: True voxel pick

	2.6 Performance evaluation
	2.7 Statistical assessment
	2.8 ROIconnect Toolbox

	3 Experiments and results
	3.1 Experiment 1
	Experiment 1A
	Experiment 1B
	Experiment 1C

	3.2 Experiment 2
	Experiment 2A
	Experiment 2B
	Experiment 2C

	3.3 Experiment 3
	3.4 Experiment 4
	3.5 Experiment 5
	3.6 Experiment 6

	4 Exploratory analysis of functional connectivity in left vs. right motor imagery
	5 Discussion
	Inverse solutions
	Robust functional connectivity metrics
	Aggregation within regions
	Short time delays
	Statistical assessment
	Limitations

	6 Conclusion
	Data and code availability
	Declaration of Competing Interest
	Credit authorship contribution statement
	Acknowledgements
	Appendix A ROIconnect toolbox
	Key features

	Supplementary material
	References


