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ABSTRACT
The increasing popularity of machine learning (ML) approaches in computational modeling, most prominently ML interatomic potentials,
opened possibilities that were unthinkable only a few years ago—structure and dynamics for systems up to many thousands of atoms at
an ab initio level of accuracy. Strictly referring to ML interatomic potentials, however, a number of modeling applications are out of reach,
specifically those that require explicit electronic structure. Hybrid (“gray box”) models based on, e.g., approximate, semi-empirical ab initio
electronic structure with the aid of some ML components offer a convenient synthesis that allows us to treat all aspects of a certain physical
system on the same footing without targeting a separate ML model for each property. Here, we compare one of these [Density Functional
Tight Binding with a Gaussian Process Regression repulsive potential (GPrep-DFTB)] with its fully “black box” counterpart, the Gaussian
approximation potential, by evaluating performance in terms of accuracy, extrapolation power, and data efficiency for the metallic Ru and
oxide RuO2 systems, given exactly the same training set. The accuracy with respect to the training set or similar chemical motifs turns out
to be comparable. GPrep-DFTB is, however, slightly more data efficient. The robustness of GPRep-DFTB in terms of extrapolation power is
much less clear-cut for the binary system than for the pristine system, most likely due to imperfections in the electronic parametrization.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0141233

I. INTRODUCTION

The last couple of decades marked the beginning of what we
may call the era of machine learning in atomistic computational
modeling. The first approaches emerged toward addressing the most
natural problem a computational chemist has to tackle—the solu-
tion of the Born–Oppenheimer ground state Schrödinger equation.
Machine learning interatomic potentials, which address precisely
that issue, are by far the most established and advanced class of
ML applications in computational molecular and materials science.
From the pioneering works of Behler and Parrinello1 and Bartók
et al.2 with the development of the first neural network potentials
(NNP) and Gaussian approximation potentials (GAP), respectively,
to the myriad present day approaches (e.g., Refs. 3–8, only to name
a few), the toolbox available to this day is likely to suit any need. For
a more comprehensive overview, we refer the reader to the excellent
review in Ref. 9.

However, there is reason to believe that explicit electronic
structure methods are not and will never be completely surpassed.
First and foremost, the explicit electronic structure allows us to
compute properties as observables within the quantum mechanics
formalism in a rigorous and straightforward manner. In addition,
properties that are not observable (e.g., partial charges) are much
more easily evaluated on the basis of explicit electronic structure.
One notorious challenge for ML interatomic potential is, in fact,
the correct treatment of charges due to the use of local representa-
tions of atomic environments, which neglect long-range electrostatic
interactions—work in that direction is an active field of research,
with the recent development of approaches such as kernel charge
equilibration (kQEq).10 Furthermore, one simply cannot do, e.g.,
theoretical spectroscopy with ML potentials alone (except Raman
or rotational/vibrational). Clearly, spectra can be learned just like
any other data (see, e.g., Ref. 11), but a theoretical spectroscopy
ML model for a certain physical system is not necessarily related to
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an ML model for structural, thermodynamic, and dynamic prop-
erties of the same system unless specifically targeted to combine
different models to learn the potential energy surface jointly with
electronic properties.12 Relatedly, in parallel to the development of
ML interatomic potentials, a plethora of approaches are emerging
to directly target electronic structure, such as learning the electron
density13 or learning molecular orbitals.14 These offer the immedi-
ate advantage that any property that is represented by a quantum
mechanics (QM) observable is directly accessible within the same
formalism as QM—a more general approach than directly targeting
properties.

A convenient synthesis of the best of two worlds is also met
in approaches that combine some form of ML with some form
of, usually approximate, QM. Notable examples are based on den-
sity functional tight binding15 (DFTB) in combination with ML to
either fit the repulsive potential16,17 or to use the DFTB model as an
approximate but physically robust baseline to then learn only the dif-
ference with some more accurate (typically DFT or beyond) model
(see, e.g., Ref. 18). Both of these types of approaches are essentially
forms of Δ-learning.

In this work, we intend to explore the complex answer to one
simple question: how will two analogous approaches—one fully ML,
say “black box,” and one only partially ML, say “gray box”—perform
in terms of accuracy, transferability, and data efficiency given the
exact same training set?

For this purpose and without any pretense of completeness, we
choose two widely established methods for which all the required
software is readily and publicly available: (i) the GAP approach as
the “black box” contestant, and (ii) self-consistent-charge density
functional tight binding15 (SCC-DFTB, from here on referred to
as DFTB) with a Gaussian Process Regression repulsive potential,16

from now on referred to as GPrep-DFTB, as the semi-empirical,
“gray box” contestant. Essentially, the second is an adapted
Δ-learning version of the first, where the semi-empirical physical
baseline is represented by repulsion-less DFTB (cf. Sec. II B 2) and
semilocal DFT is the reference method—the latter being directly
machine learned in the full-ML GAP approach. To compare the two
models, we chose a monoatomic system (metallic ruthenium) and
a binary system (ruthenium oxide) as benchmarks. This choice is
first motivated by the fact that a training set for ruthenium oxide
was already available in our group. However, the technological rel-
evance of the associated materials in heterogeneous catalysis is a
pleasant side aspect—this work will carry the additional benefit of
making two cheap models (and, more importantly, the associated
datasets) available for public use for the large-scale modeling of these
materials. Furthermore, transition metal oxides, in general, are a
challenging class of materials for DFTB due to the large internal
charge transfer between metal and oxygen and the many oxidation
states that appear and coexist. In that regard, this comparison is all
but trivial.

Intuitively, one may expect that a “gray box” approach would
guarantee more robust transferability and larger stability with
respect to extrapolation. Overall accuracy may be expected to be
comparable. One could expect GAP to be more accurate within the
training set thanks to the many-body descriptor, with GPrep-DFTB
being intrinsically more of a compromise due to the less sophisti-
cated pairwise nature of the ML descriptor. However, for the same
reason regarding transferability, there is a chance that GPrep-DFTB

is on average more accurate across a larger configurational space. In
the following, we will discuss whether these intuitive expectations
are met.

II. METHODS
A. Gaussian approximation potential (GAP)

Gaussian Approximation Potential (GAP) is one of the
widely used descriptor-based machine-learning interatomic poten-
tials using Gaussian process regression (GPR).2,19,20 The GAPs
herein are trained for a surrogate model of the potential energy sur-
face (PES) of particularly stable surfaces, and they calculate the total
energy EGAP of the system from its atomic coordinates X as

EGAP(X) =∑
i,j

δ2
2B

M2B

∑

m=1
cm,2B ⋅ k2B(rij , rm)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
E2B

+∑

i
δ2

MB

MMB

∑

m=1
cm,MB ⋅ kMB(χi, χm)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
EMB

. (1)

In detail, it consists of a two-body (2B) E2B and a many-body (MB)
EMB energy contribution. E2B sums over all atomic pairs of atoms
i and j, while EMB sums over each atom i. The second sum goes over
a set of M2B/MB representative data points and includes the regres-
sion coefficients cm,2B/MB and the kernel basis functions k2B/MB. The
kMB measures the similarity between two local geometric descriptors
(representations) χ computed from X. The 2B contribution simply
depends on interatomic distances rij within a specific cutoff radius
rcut. The MB contribution is based on the Smooth Overlap of Atomic
Positions (SOAPs), which provides a translationally, rotationally,
and permutationally invariant local atomic representation.21

The RuO2 GAP employed in this work is identical to that
employed in our previous work.22 To train the Ru GAP, the same
active-learning algorithm proposed by Timmermann et al. is used.22

As a brief recap, in the case of the RuO2 GAP, an initial model is
trained on a set of atomic information, gas phase O2 dimer data
with varying O–O bond lengths, rutile RuO2 bulk structures at opti-
mized and constrained lattice constants and those with displaced
internal coordinates, and different terminations of all five low-index
facets in the bulk-truncated geometry and the DFT local optimized
geometry. Similarly, for the Ru GAP, the initial training set includes
single-atom information, optimized and constrained bulks with face
centered cubic (fcc) and hexagonal close packed (hcp) crystal struc-
tures, those with displaced internal coordinates, and their surface
structures in bulk-truncated and DFT local optimized geometries.
Ru facets are limited to surfaces up to a maximum Miller index of
two for non-cubic hcp and three for cubic fcc, generating a total
of 12 and 13 surface orientations for hcp and fcc Ru, respectively.
Each potential is then refined by generating new surface configura-
tions via GAP-driven global optimization (simulated annealing) for
all low-index surfaces. The generated structures are compared to the
structures in the training database via SOAP similarity, and some of
those that are dissimilar to the database, selected via farthest point
sampling (FPS),22,23 are added to the training set after DFT geometry
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relaxations. In detail, we measure the similarity between two surface
structures, A and B, via a kernel distance,

κ(A, B) =
√

2 − 2min
a∈A
b∈B

(kMB(χa, χb)). (2)

New structures having a larger κ than a system-specific parameter
κcrit are then considered to be sufficiently dissimilar. The values
of κcrit for Ru and RuO2 were tested and selected as 0.050 and
0.075, respectively. This refinement cycle is repeated until the FPS
does not capture further unknown basins from the global optimiza-
tion. Each converged training set consequently contains collective
PES minima for all considered facets. Most technical hyperparam-
eters were optimized by heuristics and four-fold cross-validations
on the initial training sets. The cutoff radius of the atomic descrip-
tor was selected via the convergence of the force locality, which is
illustrated in Sec. II A. All hyperparameters used for the 2B and
MB SOAP descriptors are tabulated in Table I. More details on the
hyperparameter selection process are described in Ref. 22.

Converged training databases for RuO2 and Ru contain 182
structures (of which 148 are surfaces) and 197 (of which 140 are
surfaces), respectively.

B. GPrep-DFTB
1. DFTB electronic parametrization

To briefly recall the idea behind DFTB, for the details of which
we refer the reader to, e.g., Refs. 24 and 25, the self-consistent charge
DFTB (SCC-DFTB) energy is obtained as a second order expan-
sion of the DFT energy around a non-interacting density. Using
tight binding approximations, the latter is recast into simple alge-
braic expressions that only depend on a handful of parameters
(the so-called electronic part of the interaction), plus a repulsive
energy that, in principle, lumps all the energy contributions together
that are missing from the electronic energy. The parameters involved
in the electronic interaction are the so-called onsite energies εl,
corresponding to free atom eigenvalues of the valence orbitals of
angular momentum l, the Hubbard parameters U l (in principle,
orbitally resolved, but most often a single value U), and the coef-
ficients of a confinement potential used to mimic the compression
of atomic densities upon chemical bonding. Onsite energies were

TABLE II. Optimized electronic parameters. The values are given in atomic
units (Hartree for energy, Bohr for distances) for consistency with the standard
Slater–Koster file format.

Parameter Ru (metal) Ru (RuO2) O (RuO2)

εd (hartree) −0.229 194 −0.229 194 ⋅ ⋅ ⋅

εp (Ha) −0.031 323 −0.031 323 −0.338 655
εs (Ha) −0.171 091 −0.171 091 −0.928 529
U (Ha) 0.329 726 0.329 726 0.495 405
r0 (bohr) 10.000 2.863 5.970
rcut (bohr) 46.629 4.362 7.422

kept fixed at the computed free atom eigenvalues (see Sec. IV),
while U values were kept fixed at those tabulated in Ref. 26. A
Woods–Saxon potential was employed to confine the atomic den-
sities, with two parameters per atomic species that were optimized
with a particle swarm optimization (PSO) approach as proposed by
Chou et al.27 Electronic parameters for Ru and for the Ru–O system
were optimized separately. The cost function consists of a measure of
deviation (using distance matrix as metrics, as performed in Ref. 28)
between the DFTB and DFT band structures at (i) equilibrium
hcp Ru geometry as well as compressed with a factor 0.9 for the
monoatomic Ru system, and (ii) equilibrium rutile RuO2 geome-
try as well as compressed with a factor 0.9 for the composite Ru–O
system. The resulting optimal confinement parameters are reported
in Table II, and the corresponding band structures are shown
in Fig. 1.

As one may immediately notice, the “optimal” DFTB band
structure does not necessarily correspond to a perfect overlap with
the valence DFT band structure. There are many reasons to pre-
fer some compromise: first and foremost, it is commonly known
in the DFTB parametrization community that “too perfect” band
structures often make repulsion hard to fit. This is mostly due to
the fact that a good band structure at equilibrium geometry does
not guarantee a good band structure at out-of-equilibrium geome-
try, where artifacts may appear due to the limited DFTB basis set.
This is especially important at compressed geometries, where the
DFT-DFTB force residues, which are ultimately fitted in the repul-
sion parametrization, dominate. More specifically in this case, for

TABLE I. Hyperparameters used for the GAP models in this work.

RuO2 Ru

Description Symbol 2B SOAP 2B SOAP

Cutoff (Å) rcut 5.0 5.5
Kernel width (Å) σ 1.0 0.600 1.0 0.688
Scaling factor (eV) δ 0.326 0.086 0.414 0.174
SOAP basis nmax/lmax ⋅ ⋅ ⋅ 8/4 ⋅ ⋅ ⋅ 8/4
Number of sparse points M 25 2000 25 2000
Kernel exponent ζ ⋅ ⋅ ⋅ 2 ⋅ ⋅ ⋅ 2
Regularization factors σε (eV)/σf (eV/Å) 0.001/0.01 0.001/0.01
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FIG. 1. PSO-optimized band structures
for hcp Ru (top) and rutile RuO2 (bot-
tom). The DFTB band structure is shown
in magenta, while the DFT reference
is shown in blue. Equilibrium geometry
band structures are shown on the left
side. The right side shows band struc-
tures for compressed geometries with a
compression factor of 0.9. All the band
structures are aligned with respect to the
DFT Fermi level. The spurious conduc-
tion bands visible between the Gamma
and A special points for hcp Ru are prob-
lematic because they can intrude into
the valence region upon compression.
The chosen confinement potential avoids
that; however, a truly optimal confine-
ment potential that would yield a perfect
valence band structure for equilibrium
hcp Ru would suffer from this issue.

pure Ru, spurious conduction bands appear around the Gamma
point, which does not matter much at equilibrium and elongated
geometries (because they remain unoccupied), but intrudes the
valence region at compressed geometries. This caused the electronic
interaction to dip too much at shorter distances, making it impos-
sible to fit a good repulsion (see Appendix B). For this reason,
we also included compressed band structures in the cost function,
and the final confinement represented a compromise allowing a
decent band structure at equilibrium geometry (especially around
the Fermi level) while preventing spurious bands from intruding too
much at compressed geometries. We did not observe a similar prob-
lem for the Ru–O system; nonetheless, for consistency, we used an
analogous cost function.

One thing that is worthwhile pointing out is that the optimal
confinement for the individual atoms in a pure system does not
necessarily coincide with the optimal confinement for a composite
system. In particular, for Ru, the optimal confinement for the pure
system is much longer and softer than that for the Ru–O system. The
wavefunction range, which results from both r0 and rcut, is a useful,
single interpretable indicator of the effect of confinement. For Ru
in the pure system, the resulting wavefunction range is circa 5.0 Å
compared to circa 1.8 Å for the composite system. In other words, in
the oxide, optimal band structures are found because the atomic size
of Ru is almost three times smaller in the oxide than in the pristine
metal. Nicely, this reflects the fact that the atomic sizes change signif-
icantly upon oxide formation [Ru(IV) in RuO2 is much smaller than
Ru(0)]. The compression ratio naturally found by PSO is compara-
ble with the ratio of neutral and ionic radii of Ru. One has to keep
in mind, however, that the resulting electronic parameters for Ru in
Ru–O are most likely not at all optimal to describe crystalline Ru, at
least not without a significant effort in the repulsion parametrization
and certainly with a cost in terms of accuracy-transferability trade-

off. We did not explore this further because it would be out of scope
for the present work.

2. DFTB repulsion parametrization: GPrep
In the following, we briefly recap the derivation of GPrep,

following the same notation as Ref. 16. In standard DFTB imple-
mentations, the repulsive potential is empirically approximated by a
sum of pairwise potentials,

Erep = EDFT − EDFTB ≃
1
2∑I

∑

J(≠I)
Vrep(RIJ), (3)

where the sum runs over atom pairs IJ with interatomic distance
RIJ = ∣RI − RJ ∣. The GPrep approach16 can be considered a simpli-
fied version of the GAP approach. The main simplification lies in
the use of a pairwise descriptor rather than the many-body SOAP
descriptor. In principle, nothing precludes the usage of many-body
descriptors or, more generally, of many-body formulations of the
DFTB repulsion itself, regardless of whether the repulsion is fit-
ted using machine learning or not (see, e.g., Refs. 17, 29, and 30).
However, a pairwise repulsion directly complies with Eq. (3) and
allows for the generation of parameter files in the standard .skf
format compatible with all the available software implementations
of DFTB.

In a Gaussian Process Regression (GPR) formulation, Vrep is
modeled as a linear combination of kernel functions,

Vrep(R) = ∑
I,J∈{X}

αIJ ⋅ k(R, RIJ), (4)

where the sum is over all pairs in the set of reference structures {X},
with regression coefficients αIJ and the kernel function k(R, RIJ).
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In line with the GAP approach, we use a sparse formulation of
GPR by defining a set of sparse training points and constructing the
covariance matrix by projecting the full dataset onto those. We use
the Gaussian (squared exponential, SE) kernel,

kSE
(R, R′) = exp(

−∣R − R′∣2

θ2 ), (5)

where θ is a length-scale parameter.
To ensure that Vrep(R) smoothly vanishes at Rcut, we multiply

the SE kernel with a damping function so that

kdamp
(R, R′) = e−βR fcut(R)kSE

(R, R′), (6)

where the parameter β enforces a smooth decay over a transition
length d. Among the GPrep hyperparameters, only the cutoff radius
has a direct physical meaning. A common practice within the DFTB
community is to choose between the first and second nearest neigh-
bor distances of the physical system one is interested in (see, e.g., the
discussion in Refs. 24 and 29). It is immediately obvious that such a
choice is system-dependent. However, due to the two-body approxi-
mation, certain parametrizations require larger cutoff radii to attain
the desired accuracy (see, e.g., Ref. 28) or a many-body correction to
the repulsive potential (see, e.g., Refs. 29–31). Here, for the sake of
simplicity, we limit ourselves to choosing the shortest possible cutoff
radii based on the bond length distributions of our training data, as
shown in Appendix C. The employed hyperparameters are reported
in Table III. Since forces can be computed analytically as derivatives
of kdamp

(R, R′), we directly train on forces. The training targets are
defined as the force components of the total force acting on every
atom belonging to the set of training structures, associated with a
list of all the bonds between said atom and atoms within a chosen
cutoff (in principle independent from the repulsive cutoff, which is
a hyperparameter of the GPR process) and the corresponding bond
types and bond lengths.

As mentioned earlier, GPrep can be considered a form of
Δ-learning, where the baseline model is repulsion-less DFTB (i.e.,
the electronic part of the interaction). As such, one may argue
that the repulsive potential is a simpler object to fit than the total
energy as in the GAP approach, as a large part of the underlying
physics is already captured in the much less empirical electronic
parametrization—to recall, for the latter, the only truly empirical
parameters are those of the confinement potential, which is entirely
“artificial.”

For Ru and RuO2, we perform distinct parametrizations for
both the electronic and the repulsive parts. We will thus optimize
the Ru confinement potential for the metallic system and the Ru and
O confinement potentials for the oxide system separately. Consis-
tently, we train two separate sets of repulsive potentials: one for pure
Ru, consisting of only the Ru–Ru pairwise repulsive potential, and
one for RuO2, comprising Ru–Ru, Ru–O (=O–Ru), and O–O repul-
sive potentials. Due to the difference in electronic parts, the Ru–Ru
potentials of the two sets will significantly differ. We use the same
training sets previously converged for the GAP training; however,
we would not expect significantly different trends and conclusions
had we performed the other way around—converging a training set
for GPrep and then using it to train a GAP. In principle, and as a
further refinement, one may join the two training sets to generate
both GAP and GPrep-DFTB models to describe both the metallic
and the oxide systems on the same footing—perhaps at the expense
of some accuracy. The resulting repulsive potentials are plotted in
Appendix C.

III. COMPARISON CRITERIA
In an attempt to cover a comprehensive enough picture of

performance, we choose the following evaluation criteria.

A. Accuracy
As a property-based criterion, we compare lattice parameters,

bond lengths, mechanical properties (Birch–Murnaghan equation of
state), and relative energy spacing for bulk crystals represented in
the training set, i.e., hcp and fcc Ru and rutile RuO2. For RuO2, we
also evaluated the surface phase diagrams for 100 and 110 surfaces
within the ab initio thermodynamic framework.32 This is a particu-
larly challenging test for force-trained GPrep, as a good fit for forces
does not guarantee an equally good fit for relative energetics across
different compositions. This is mainly due to the repulsive cutoff, a
hyperparameter of the ML procedure. The truncation of the repul-
sive potential at a finite distance, where the effective interaction is
not necessarily vanishing, causes different energy offsets for each
atomic pair. Even if these are small in the pairwise interaction, the
resulting errors can quickly accumulate (and couple) in extended
calculations with many atoms.

TABLE III. Hyperparameters used for the GPrep models in this work.

RuO2 Ru

Description Symbol Ru–Ru Ru–O O–O Ru–Ru

Number of sparse points M 21 17 17 21
Start (Å) rstart 2.0 1.0 1.0 2.0
Cutoff (Å) rcut 4.0 2.6 3.6 4.0
Kernel width θ 1.0 1.0 1.0 0.6
Damping exponent β 1.0 1.0 2.0 1.0
Regularization factor σn 0.05 0.05
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B. Extrapolation power
As a standard quantitative criterion, we evaluate the RMSE of

forces vs some validation set(s). As an additional, property-based
criterion, we compare lattice parameters, bond lengths, mechan-
ical properties (Birch–Murnaghan equation of state), and (where
applicable) relative energy ordering and spacing for bulk crys-
tals not represented in the training set, i.e., bcc and sc Ru and
anatase RuO2.

C. Data efficiency
We compare the learning curves for the two models. We evalu-

ate two different forms of learning curves. One is the standard RMSE
vs number of training points. Additionally, we evaluate the RMSE
vs the training set generations employed in the iterative training
workflow for GAP, as described in detail in Ref. 22. Here, the valida-
tion set is different for each generation, comprising all the farthest
point samples (e.g., for generation 4, it includes all farthest point
samples from generation 4, 5, 6, etc.) and randomly selected struc-
tures from DFT geometry optimizations. Since the total number of
farthest point samples is getting smaller as generations go by, the
total number of validation structures decreases. As GAP is trained
on energies as well as forces, the RMSE of energies was also used
as a loss measure in Ref. 22 as well as the RMSE of forces. Since
for GPrep, we did not follow an iterative procedure (which is, how-
ever, in principle possible and good practice—see, e.g., Ref. 28) but
exclusively used the final GAP training sets, we rather constructed a
learning curve by evaluating the RMSE of force residues (as GPrep
is trained on those) for random subsets of the final training set with
an increasing number of samples. Albeit substantially different, both
forms of learning curves give an idea of how many DFT calculations
are necessary to obtain a good fit. For completeness, we construct an
additional learning curve for GPrep analogous to that of GAP, using
the same training and validation sets.

IV. COMPUTATIONAL DETAILS
Structural relaxations, pre- and post-processing, visualiza-

tion, and analysis were performed with the Atomic Simulation
Environment (ASE).33

A. Density functional theory calculations
All DFT calculations are performed using a plane-wave basis set

within SG15 optimized norm-conserving Vanderbilt pseudopoten-
tials34 as implemented in the QuantumEspresso software package.35

The semi-local generalized gradient approximation (GGA) in the
revised Perdew–Burke–Ernzerhof (rPBE)36 form is used as the elec-
tronic exchange and correlation (xc) functional. GGA functionals
are routinely used in computational studies of metals and metallic
oxides and have been generally shown to be adequate for the descrip-
tion of RuO2.22,32,37–40 The kinetic cutoff energy for the expansion of
the wave function is set to 80 Ry. Brillouin-zone integrations are car-
ried out on a grid of k-points with reciprocal distances of 0.02 Å−1,
producing, e.g., (11 × 11 × 16) k-point grids for bulk rutile RuO2.
Optimized lattice parameters for the bulk RuO2 are obtained by
minimizing the stress tensor and all internal degrees of freedom until
the external pressure falls below 0.5 kbar. Geometry optimization for

all slab calculations employs Broyden–Fletcher–Goldfarb–Shanno
(BFGS) minimization41–43 until residual changes in total energy and
all force components fall below 1.4 × 10−2 meV and 0.3 meV/Å,
respectively.

B. Density functional tight binding calculations
All the DFTB calculations were performed using the implemen-

tation in dftb+25 version 21.1 with the same k-point density as the
reference DFT calculations. A Fermi filling with an electronic tem-
perature of 0.001 hartree (corresponding to ∼316 K) was employed.
The SCC convergence criterion was set to 10−5. Structural relax-
ations were performed using the BFGS algorithm as implemented
in ASE until the maximum force acting on each atom is less than
10 meV/Å. The cell optimization was turned on freely for all the
cell degrees of freedom as well as the atomic coordinates using
the UnitCellFilter module in ASE. All the DFTB calculations are
not shell-resolved, consistent with the usage of a single Hubbard
U value per atomic species. Slater–Koster tables for the electronic
parametrization were generated with a developer version of hotbit24

(available from the authors upon request) interfaced with the par-
ticle swarm optimization as implemented in the Python package
pyswarm.44 The all-electron DFT calculations of confined atomic
wavefunctions for the Slater–Koster table were performed at the
LDA level. The free-atom eigenvalues (on-site energies) were calcu-
lated with the all-electron electronic structure code FHI-aims with
the rPBE functional, ZORA relativistic corrections, colinear spin
polarization, and a custom basis set based on the so-called “tight”
defaults, employing all the available tiers of basis functions and
extending the damping cutoff to 8 Å.

C. Ru and RuO2 extended validation set
Extended validation sets of bulk Ru and bulk RuO2 structures

have been generated using the evolutionary algorithm USPEX.45–47

We performed USPEX calculations for 10 generations, where the
first generation of structures (200 items) was created randomly
using the Python library PyXtal48 and the topology-based crys-
tal structure generator.49 After each new generation consisted of
20% randomly generated structures, the remaining 80% were cre-
ated using heredity, soft-mutation, and transmutation operators.
For a better representation of short-range interactions, we included
structures with interatomic distances as short as 1.2 Å. Those were
generated by lowering the threshold IonDistance parameter. The
number of atoms in the generated structures varied from 8 to 32.
Partial structural relaxations were performed on each structure
using DFT with the same functional and computational parameters
used in the generation of the training set, and snapshots extracted
from the relaxation trajectories were added to the validation set. At
this point, we have assembled 21 031 structures of Ru configura-
tions and 24 385 of RuO2 configurations. Out of these, we selected
the 300 most diverse structures per set using FPS,22,23 which were
then used for the final force validation. The full dataset remains
available for further training or validation (see Data Availability
statement).

J. Chem. Phys. 158, 224115 (2023); doi: 10.1063/5.0141233 158, 224115-6

© Author(s) 2023

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0141233/17992519/224115_1_5.0141233.pdf

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

V. RESULTS AND DISCUSSION
A. Ru
1. Ru crystals

Tables IV–VII show the resulting cell parameters, selected bond
lengths, and Birch–Murnaghan bulk modulus for hcp Ru, fcc Ru
(these two were included in the training set), bcc Ru, and sc Ru (not
in the training set), respectively. All the values are calculated with
respect to orthorhombic supercells.

For hcp and fcc crystals, which were both represented in the
training set, the performance of GAP and GPrep-DFTB is compa-
rable. All the structural properties are reproduced correctly. The
supercell angles, not reported in the table, are all consistently 90○.

TABLE IV. Cell parameters, selected bond lengths, and Birch–Murnaghan bulk
modulus for hcp Ru.

Method a (Å) b (Å) c (Å) c/a
RNN

(Å)
dE (eV
/f.u.)

B
(GPa)

DFT 2.723 4.716 4.282 1.573 2.656 0 290.617
GAP 2.737 4.741 4.359 1.728 2.692 0 288.133
GPrep-DFTB 2.754 4.771 4.305 1.563 2.676 0 374.021

TABLE V. Cell parameters, selected bond lengths, and Birch–Murnaghan bulk
modulus for fcc Ru.

Method a (Å) b (Å) c (Å)
RNN

(Å)
dE

(eV/f.u.) B (GPA)

DFT 2.692 2.692 3.807 2.692 0.114 285.386
GAP 2.725 2.725 3.853 2.725 0.105 284.273
GPrep-DFTB 2.720 2.720 3.848 2.721 0.124 369.200

TABLE VI. Cell parameters, selected bond lengths, and Birch–Murnaghan bulk
modulus for bcc Ru.

Method a (Å) b (Å) c (Å) RNN (Å)
dE

(eV/f.u.) B (GPa)

DFT 2.642 2.642 2.642 2.642 0.609 259.199
GAP 2.989 2.989 2.989 2.588 0.597 132.048
GPrep-DFTB 3.076 3.076 3.076 2.664 0.859 387.447

TABLE VII. Cell parameters, selected bond lengths, and Birch–Murnaghan bulk
modulus for sc Ru.

Method a (Å) b (Å) c (Å) RNN (Å)
dE

(eV/f.u.) B (GPa)

DFT 2.511 2.511 2.511 2.511 1.102 204.922
GAP 2.611 2.611 2.611 2.611 0.892 346.780
GPrep-DFTB 2.550 2.550 2.550 2.550 1.281 287.200

Both GAP and GPrep-DFTB show some tendency to expand the
hcp cell parameters, with the expansion of a and b slightly more
pronounced for GPrep-DFTB. However, GPrep-DFTB expands pro-
portionally in the c direction, resulting in a more accurate c/a ratio.
For fcc, both models show a slight, consistent expansion in all three
directions. The energy spacing is reproduced well, being slightly
underestimated for GAP and slightly overestimated for GPrep-
DFTB. Here, GAP reproduces perfectly the mechanical properties,
with the bulk modulus being almost exactly the same as in DFT.
GPrep-DFTB, conversely, shows a consistent overestimation, indi-
cating that the resulting interaction is somewhat stiffer than the DFT
reference.

For bcc and sc crystals, which were both not included in
the training set, the performance of GAP and GPrep-DFTB dif-
fers significantly. GAP reproduces the cell parameters for bcc bet-
ter than GPrep-DFTB, as well as the energy difference, but the
compression–expansion curve presents a local minimum and a local
maximum, indicating the presence of a spurious additional local
minimum at a larger volume. Therefore, the number in Table VI is
not to be interpreted as a true bulk modulus, as it is merely the result
of an ill-defined Birch–Murnaghan fit. GPrep-DFTB produces (con-
sistently with all the other crystals) slightly expanded cell parameters
and an overestimated bulk modulus, as well as a slightly overesti-
mated energy difference, but the Birch–Murnaghan equation of state
is well defined.

For the sc crystal, GPrep-DFTB consistently outperforms GAP.
The bulk modulus is still slightly overestimated, but less than the
other crystals and closer to DFT than GAP. The structural and ener-
getic parameters are much closer to the reference than GAP, as is the
bulk modulus.

These results are visually summarized in Fig. 2. It has to be
noted that the value of the bulk modulus is extremely sensitive to
rather small variations in the computed energy of compressed and
extended geometry. From a simple visual inspection of Fig. 2, it is
quite clear that even a rather large numerical discrepancy in the
bulk modulus values, as observed for GPrep-DFTB with respect to
the DFT reference, is not really a major failure. More importantly,
the ordering of bulk moduli is correct, and the values are propor-
tional. Therefore, despite a systematic overestimation, an evaluation
of relative values appears to be robust.

Not surprisingly, the compressive branch of the EOS curve
seems to be generally more affected than the expansive branch, indi-
cating a certain tendency of GPrep to produce systematically more
repulsive potentials at short distances than they should be. GAP
clearly does not suffer from that, as it is trained on energies as well
as forces. However, the quite clear drop in performance on the EOS
curves for unseen types of structures shows how critical the diversity
of the training set is.

Overall, if we consider the correct reproduction of properties
that are in some form represented in the training set as a measure
of accuracy, we may conclude that both models perform equally
well. However, GPrep-DFTB seems to do a better job at captur-
ing unseen features, such as the structural and energetic properties
of crystals, that were in no way present in the training set. This
hints at better transferability or extrapolation power, as it is rea-
sonable to expect from a semi-empirical model where part of the
interaction is fundamentally approximated ab initio. That is to say,
the electronic part of the interaction is only dependent on directly
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FIG. 2. Birch–Murnaghan fit for the volume-energy equation of state for hcp Ru (red
dots), fcc Ru (blue dots), fcc Ru (orange dots), and sc Ru (green dots). Top and bot-
tom show the plots for GAP and GPrep-DFTB, respectively, together with the DFT
curves. The curves obtained with the GAP model are in excellent agreement with
DFT for hcp Ru and fcc Ru, while for bcc Ru and sc Ru, the predictions are unre-
liable. The curves obtained with the GPrep-DFTB model are in good agreement
with DFT for hcp Ru and fcc Ru, with some overestimation of the bulk modulus,
and for bcc Ru and sc Ru, the predictions are equally robust.

computable properties (the on-site energies and Hubbard values)
and the confinement potential, which is represented by two empiri-
cal parameters (or even one if a quadratic confinement is used) per
atomic species fitted to simple properties as band structures of one

or a few selected structures. In this sense, the electronic part does
not depend on any extended training set, while the repulsive part
of the interaction, which does depend on an extended training set,
is only a correction and also a simpler object (pairwise potential).
The latter may be less accurate, being a less sophisticated object, but
should ensure a more robust “one fits all” representation—perhaps
not perfect for every chemical motif, but at least adequate for any.
To be fair, the accuracy of GPrep repulsive potentials can be tuned
to a great extent by tuning hyperparameters (as discussed, e.g., in
Ref. 16 or shown practically in Ref. 50, where the hyperparameters
of a pre-existing parametrization28 were re-tuned to reproduce cor-
rect energetics) even without extending the training set, but surely at
the expense of at least some transferability.

2. Force correlation plots
Figure 3 shows correlation plots of predicted total force

components vs reference force components for validation set 1, cor-
responding to the last validation set in the iterative GAP training
workflow. This validation set consists of bulk and surface structures
not included in the training set but still based on hcp and fcc bulk
motifs. Technically, this would be more of a test set. The accuracy of
GPrep-DFTB is higher than that of GAP, as a further indication of
superior extrapolation power. However, the distributions are overall
comparable, as further evidenced by the error density histograms,
which show a narrow distribution for both models. The RMSE is
0.231 eV/Å for GPrep-DFTB and 0.364 eV/Å for GAP.

Figure 4 shows correlation plots of predicted total force compo-
nents vs reference force components for validation set 2, consisting
of completely different bulk structures generated as described in
Sec. IV. This validation set includes much higher forces than valida-
tion set 1. The RMSE is 1.842 eV/Å for GPrep-DFTB and 3.132 eV/Å
for GAP. Here, the overall distribution is significantly narrower and
straighter for GPrep-DFTB (as indicated also by the RMSE) than
for GAP, albeit with a positive deviation in the slope (which is also
present in both models for validation set 1), suggesting a systematic
overestimation of forces. Interestingly, though, the GPrep-DFTB
force correlation for validation set 2 exhibits a subset of forces
with extremely large scatter and a tendency toward underestima-
tion of forces for those, indicating that, despite a generally better
extrapolation power than GAP, some structural motifs appear to be

FIG. 3. Correlation plot between refer-
ence (DFT) forces and surrogate model
forces (left: GAP; right: GPrep-DFTB) for
validation set 1. Validation set 1 includes
structures not included, but relatively
similar to those included in the training
set. The RMSE is 0.364 eV/Å for GAP
and 0.231 eV/Å for GPrep-DFTB. Insets
show the error density histograms. Both
distributions are narrowly accumulated
toward 0.
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FIG. 4. Correlation plot between refer-
ence (DFT) forces and surrogate model
forces (left: GAP; right: GPrep-DFTB)
for validation set 2. Validation set 2
includes structures generated by USPEX
structure prediction that were completely
unseen in the training procedure. The
RMSE is 3.132 eV/Å for GAP and 1.482
eV/Å for GPrep-DFTB. Insets show the
error density histograms. Both distribu-
tions are narrowly accumulated toward
0, with the GPrep-DFTB distribution nar-
rower than that of GAP.

problematic. However, the error density histograms show narrow
distributions for both models, with the GPrep-DFTB distribution
narrower than that of GAP despite the higher RMSE.

3. Learning curves
Figure 5, left, shows learning curves for GAP (top) and GPrep-

DFTB (bottom), constructed using increasing numbers of data

points randomly drawn from the full training set. The validation
error is calculated with respect to the full training set; hence, it
converges to the training error. The RMSE values for GPrep are cal-
culated with respect to force residues (repulsion-less DFTB vs DFT)
rather than total force components, as those are what GPrep learns
directly. The training error is plotted in blue, and the validation error
is plotted in orange. GPrep shows larger RMSE and oscillations for
smaller training sets but converges more quickly than GAP.

FIG. 5. Left: learning curves for GAP
(top) and GPrep-DFTB (bottom), con-
structed using increasing numbers of
data points randomly drawn from the full
training set. The validation error is cal-
culated with respect to the full training
set; hence, it converges to the train-
ing error. GPrep shows larger RMSE
and oscillations for smaller training sets
but converges more quickly than GAP.
Right: learning curves for GAP (top)
and GPrep-DFTB (bottom), based on the
iterative GAP training procedure. The
GAP curve corresponds to the iterative
procedure used in Ref. 22. Here, the
validation sets used in each point are
constructed as explained in Sec. III C
and roughly correspond to validation set
1. The RMSE values for both energy
and forces fall below 0.3 meV/Å for
both models already at the third itera-
tion (3 generations) and exhibit no con-
siderable change afterward. However,
for GAP, it takes substantially longer
(9 generations) to attain convergence
based on the active learning algorithm
and the FPS.22 For GPrep, the train-
ing RMSE does not change significantly
across generations, and the validation
RMSE trend is slightly flatter.
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Figure 5, right, shows learning curves for GAP (top) and
GPrep-DFTB (bottom) with respect to the generations used in the
iterative GAP training procedure. The GAP curve corresponds to
the iterative procedure used in Ref. 22. Here, the validation sets used
at each point are constructed as explained in Sec. III C and roughly
correspond to validation set 1. The RMSE values for both energy and
forces fall below 0.3 meV/Å for both models already at the third iter-
ation (3 generations) and exhibit no considerable change afterward.
However, for GAP, it takes substantially longer (9 generations) to
attain convergence based on the active learning algorithm and the
FPS.22 For GPRep, the curve was constructed strictly following that
for the GAP model (but only for force residues), obtained using the
same training and validation sets as for GAP (i.e., without repeating
the procedure from scratch). As can be seen, the loss is somewhat
flatter with respect to the GAP training set generation. Similarly
to what was observed for GAP, the validation RMSE converges at
the third generation, with a slightly smaller variation. The training
RMSE does not change significantly across generations. The training
behavior as a function of the number of force residues (not shown
here) does not change across generations, consistently converging
before 5000.

GPrep appears to be less affected by the iterative refinement of
the training set. In our own experience, indeed, the repulsive poten-
tials change dramatically only when entirely different structural
motifs that would not be captured by sampling and FPS evaluation
are added to the training set, as observed for the parametrization of
graphite intercalation compounds.28,50

In terms of data greediness, this is an indication that GPrep
training is slightly more data efficient than GAP training. This is not
surprising since GPrep has to learn a much simpler object (a pairwise
potential) than GAP, and this simpler object, in turn, only represents
a correction to the total energy.

B. RuO
1. RuO crystals

Analogously to how we performed for Ru crystals, we compare
cell parameters, selected bond lengths, and mechanical properties
for ideal RuO2 crystals. To recall, for the RuO2 system, the train-
ing contained exclusively rutile-based structures. For an estimation
of the extrapolation power, we also compare anatase, which was not
included in the training set.

Table VIII reports cell parameters, Ru–O first nearest neighbor
distance, and bulk modulus for rutile RuO2. All the values are calcu-
lated with respect to orthorhombic supercells. The supercell angles,
not reported in the table, are all consistently 90○. Here, both GAP
and GPrep-DFTB are extremely accurate, showing excellent agree-
ment with the DFT references, with only a slight overestimation of
the bulk modulus for GPrep-DFTB in line with what was observed
for metallic Ru as reported in Sec. V A 1.

For anatase RuO2 (Table IX), the structural details predicted
by the GAP model are closer to the DFT reference, while GPrep-
DFTB slightly expands in the a and c directions of the unit cell and
slightly compresses in the c direction. The bulk modulus is again
overestimated with GPrep-DFTB and marginally smaller with GAP.
Consistent with metallic Ru, the GPrep-DFTB overestimation of the
bulk modulus is systematic with correct proportions. However, the

TABLE VIII. Cell parameters, selected bond lengths, and Birch–Murnaghan bulk
modulus for rutile RuO2. RNN refers to Ru–O distances.

Method a (Å) b (Å) c (Å) RNN (Å) dE (eV/f.u.) B (GPa)

DFT 4.543 4.543 3.140 1.964 0 239.910
GAP 4.556 4.556 3.143 1.970 0 235.812
GPrep-DFTB 4.544 4.544 3.146 1.974 0 281.962

TABLE IX. Cell parameters, selected bond lengths, and Birch–Murnaghan bulk
modulus for anatase RuO2. RNN refers to Ru–O distances.

Method a (Å) b (Å) c (Å) RNN (Å) dE (eV/f.u.) B (GPa)

DFT 3.866 3.866 9.948 1.993 0.457 177.224
GAP 3.846 3.846 9.939 1.980 0.648 180.243
GPrep-DFTB 3.938 3.938 9.808 1.968 0.413 248.934

energy difference is much closer to the DFT reference for GPrep-
DFTB than for GAP.

Overall, both the accuracy (rutile structure) and extrapolation
power (anatase structure) appear comparable, with a slightly better
performance of GPrep-DFTB with respect to relative energetics and
of GAP with respect to mechanical properties and structural details
of anatase. These results are visually summarized in Fig. 6.

2. Force correlation plots
Figure 7 shows the force correlation plots for GAP (left) and

GPrep-DFTB (right) for validation set 1, corresponding to the last
validation set used in the iterative GAP training procedure. This val-
idation set consists of surface structures for all low-index surfaces
of rutile RuO2, as described in Sec. II A. The RMSE is 0.245 eV/Å
for GAP and 0.603 eV/Å for GPrep-DFTB. Despite the not-so-
large RMSE values, the correlation appears surprisingly bad for both
models, especially considering the good agreement with the DFT ref-
erence in the structural details at equilibrium crystal geometries as
well as mechanical properties.

Both models show a tendency to predict almost arbitrarily large
values for very small forces, mostly acting on ruthenium atoms,
as evidenced by the vertical feature in both correlation plots. Such
a specific feature cannot stem from a simple overestimation, as it
occurs for both Ru models but clearly has some deeper flaws. This
effect is much more pronounced for GPrep-DFTB and appears to
be symmetric, as confirmed upon closer inspection of the predicted
force vectors (cf. the dataset given in section Data Availability State-
ment), which also shows that it only tends to happen for some,
mostly undercoordinated surface atoms. The affected atoms are
largely the same across the validation set, i.e., undercoordinated Ru
atoms at the surface. While for GPrep-DFTB, the inability to cor-
rectly resolve forces acting on undercoordinated Ru atoms could be
ascribable to imperfections in the electronic part of the parametriza-
tion, which may be unable to capture subtleties in different oxidation
states for Ru. It is unclear why it tends to happen (albeit to a much
lesser extent) for GAP as well. One possible reason could be the nar-
row distribution of forces in the training data. Retraining GPrep by
including validation set 1 in the training set does not significantly
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FIG. 6. Birch–Murnaghan fit for the volume-energy equation of state for rutile RuO2
(red dots) and anatase RuO2 (blue dots). The top and bottom show the plots for
GAP and GPrep-DFTB, respectively, together with the DFT curves. The curves
obtained with the GAP model are in excellent agreement with DFT, except for an
overestimation of the relative energy. The curves obtained with the GPrep-DFTB
model are in excellent agreement with DFT, except for an overestimation of the
bulk modulus.

improve the force correlation, as shown in Appendix D, which fur-
ther points toward imperfections in the electronic part. It is less
clear why this happens for GAP, albeit to a smaller extent. To ver-
ify whether the vertical feature in the correlation of forces acting
on Ru atoms is a result of overfitting, we performed scans of both

the energy and force regularization parameters σε and forces σ f .
Results are reported in Appendix E. A more regular model performs
worse than our choice in terms of both RMSE and force correla-
tion; therefore, we can exclude that overfitting is the issue. A less
regular model mitigates the effect and exhibits better RMSE, but not
dramatically so.

Most likely, the structures affected by this would converge to
roughly correct equilibrium geometries thanks to error cancella-
tion. However, such a drawback is not to be overlooked, as it may
affect dynamics in, e.g., MD simulations or MD-based structural
searches, such as minima hopping or the dimer methods for a tran-
sition state search. To verify if both models are capable of driving
physical dynamics, we performed two test MD runs in the NVT
ensemble for 1 ps at 300 K, starting from an exemplary surface
structure. Both simulations run smoothly, and neither ends up in
unphysical configurational spaces, so one may conclude that the
forces are at least reasonable for both models. Results are reported
in Appendix F.

Figure 8 shows the force correlation plots for GAP (left) and
GPrep-DFTB (right) for validation set 2, generated analogously to
how they were performed for metallic Ru as described in Sec. IV. The
RMSE is 3.236 eV/Å for GAP and 702.600 eV/Å for GPrep-DFTB.
Despite the astronomically high value of the RMSE for GPrep, the
correlation here is clearer for both models, with GAP performing
better than GPrep-DFTB. The error density histograms are reason-
ably narrow for both models, but significantly less than those for
metallic Ru.

Again, one may conclude that GAP and GPrep-DFTB show
comparable accuracy, in line with what was observed for pure Ru
as reported in Sec. V A. Not too surprisingly, GPrep-DFTB strug-
gles a little more with the multi-component system than it does
with the pure metallic system. The training procedure itself is not
more expensive, data-greedy, or technically complicated for multi-
component systems than it is for monoatomic systems. However,
there is an additional complication given by the fact that a different
set of hyperparameters (with the exception of the data noise factor
σn, which is a global regularization hyperparameter) is needed for
each atomic species pair. As discussed in Ref. 16, there are multiple
choices of hyperparameters giving similar RMSE, which can, how-
ever, differ significantly in the fine details of the repulsive potentials.

FIG. 7. Correlation plot between refer-
ence (DFT) forces and surrogate model
forces (left: GAP; right: GPrep-DFTB)
for validation set 1. Magenta dots rep-
resent forces acting on oxygen atoms,
while teal dots represent forces acting
on ruthenium atoms. The validation set
contains structures not included in the
training set that are relatively similar to
those in the training set. The RMSE is
0.254 eV/Å for GAP and 0.603 eV/Å
for GPrep-DFTB. Insets show the error
density histograms. The distributions are
similar to each other and both are much
broader than observed for metallic Ru.
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FIG. 8. Correlation plot between reference (DFT) forces and surrogate model forces (left: GAP; right: GPrep-DFTB) for validation set 2. Magenta dots represent forces
acting on oxygen atoms, while teal dots represent forces acting on ruthenium atoms. Validation set 2 includes structures generated by USPEX structure prediction that were
completely unseen in the training procedure. The RMSE is 3.236 eV/Å for GAP and 702.600 eV/Å for GPrep-DFTB. While the RMSE for GPrep-DFTB is astronomically high,
the correlation is much clearer here than for validation set 1. Similarly to what was observed for Ru, the large RMSE is caused by a relatively small number of outliers with a
large scatter. However, the main correlation trend is not as sharp as for Ru. Insets show the error density histograms. The distribution for GAP here is narrower than that of
GPrep-DFTB.

Throughout this work, the hyperparameters for GPrep were not sys-
tematically optimized, choosing safe standard values for Ru and only
minor tweaking for RuO2.

For RuO2, we limit ourselves to evaluating the force correla-
tion only for one validation set. We do not expect trends to be
substantially different for an extended validation set.

3. Ab initio thermodynamics
As a final measure of accuracy, we evaluate the surface phase

diagram for the 110 and 100 low-index surfaces of rutile RuO2. The
training set is mostly representative of 100 surface terminations;
however, 110 are also present. We calculate surface free energies
within the ab initio thermodynamic framework32,51 as

γ(T, p) =
1

2A
[Gslab

(T, p, NRu, NO)

−NRu ⋅ gbulk
RuO2(T, p) + (2NRu −NO)μO],

where Gslab is the Gibbs free energy of the double surface slab, gbulk

is the bulk Gibbs free energy per formula unit, μO = gO is the oxy-
gen chemical potential, i.e., the Gibbs free energy per molecule of
the oxygen gas reservoir, and NO is the number of Ru and O atoms,
respectively. Different surface terminations have different oxygen
contents. Gslab is directly approximated as Eslab

tot, DFT.
We thus calculate Eslab

tot, DFT for five different surface termina-
tions: 110 O-bridge, 110 O-cus, 110 O-poor (or Ru-terminated),
100 O-bridge, and 100 O-cus. Both O-bridge terminations are sto-
ichiometric with respect to the bulk. O-cus terminations have two
additional O atoms per formula unit, and O-poor terminations have
two fewer O atoms per formula unit. Top views of the surfaces are
shown in Fig. 9; more details about the individual structures can be
found, e.g., in Refs. 32 and 51.

Figure 9 shows the surface phase diagram for 100 and 110 ter-
minations of rutile RuO2 as obtained by DFT (left), GAP (center),

and GPrep-DFTB (right). Surface free energies as a function of the
oxygen chemical potential μO are plotted in purple for 110 termi-
nations and magenta for 100 terminations. Shaded lines show the
free energy of each termination as a function of the oxygen chemi-
cal potential, while solid lines mark the most stable terminations at
each point. The GAP surface diagram shows overall good agreement,
only with a small overestimation of the energy spacing between the
100 O-bridge and 110 O-bridge terminations. The transition points
between O-bridge and O-cus terminations are captured qualitatively
correctly, and the O-poor termination is correctly predicted to never
be stable in the range of allowed chemical potentials (black vertical
lines in Fig. 9), although its surface free energy is predicted to be
lower than the reference.

For GPrep-DFTB, the quantitative agreement with DFT is even
better than GAP for stoichiometric and oxygen-poor terminations
(100 O-bridge, 110 O-bridge, and 110 O-poor). Both O-cus termi-
nations, however, are overstabilized, only moderately for the 110
termination but greatly for the 100 termination. This is somewhat
puzzling, given that 100 terminations were more represented in the
training set than 110 terminations. Correctly capturing relative ener-
getics across different compositions is a particularly challenging test,
as the truncation of repulsive potentials at a chosen cutoff introduces
different energy offsets for each species pair. The latter issue is not
specific to Gprep but rather to DFTB as well as any truncated inter-
atomic potential. For GAP, the two-body contribution of which is
also truncated, the issue is mitigated by the many-body contribu-
tion. Similarly, for DFTB, many-body formulations of the repulsive
potential are equally expected to provide more accurate energetics.29

For DFTB, however, it is possible that this behavior is not solely
ascribable to the repulsive potential but also to imperfections in the
electronic part of the parametrization. All terminations have differ-
ent oxidation states for Ru atoms, with the O-bridge ones stoichio-
metric with respect to the bulk (i.e., Ru is always formally in the IV
oxidation state). It is possible that the electronic parametrization is
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FIG. 9. Surface phase diagram for 100 and 110 terminations of RuO2 as obtained
by DFT (top) and GPrep-DFTB (bottom). Gray lines show the corresponding DFT
energies. Black vertical lines mark the allowed range of oxygen chemical poten-
tials, as discussed in Ref. 32. Surface free energies (shaded lines) as a function
of the oxygen chemical potential μO are plotted in purple for 110 terminations and
magenta for 100 terminations. Solid lines mark the most stable terminations at
each point. Top views of the surfaces are also shown here by the corresponding
free energy lines; more details about the individual structures can be found, e.g.,
in Refs. 32 and 51. The Wulff reconstructions at ΔμO = −1.5, −1.0, and −0.5 eV
are also shown. To construct the latter, the (DFT) surface-free energies of the
remaining facets are taken from Ref. 22. The GAP surface diagram shows over-
all better agreement with the reference DFT. The GPrep-DFTB surface diagram
shows better quantitative agreement with the reference DFT for the stoichiometric
(110 O-bridge and 100 O-bridge) and oxygen poor (110 O-poor) terminations but
severely over-stabilizes the oxygen rich terminations (110 O-cus and 100 O-cus).

not able to fully capture subtle changes in the charge transfer for
the (relatively complex) non-stoichiometric surface terminations. A
strong indication that this is indeed the case here emerges from
analyzing the Mulliken charges resulting from the self-consistent
charge procedure in DFTB. These directly enter the DFTB energy
expression as part of the approximated electronic interaction. As the
Mulliken charges are basis-set dependent, they do not necessarily
correspond to those obtained by DFT; however, they do correlate.
As shown in Appendix G, for all the surface terminations, the oxy-
gen atoms in bridge positions show consistently underestimated
negative charges. While this does not significantly affect the stoichio-
metric and O-poor terminations, for the O-rich (cus) terminations,

the additional oxygen atoms at the surface feel a lower Coulombic
repulsion than they should, hence the overstabilization. The effect
is much more evident for the 100-cus termination, which presents
twice as many extra oxygen atoms as the 110-cus termination. This
drawback is not trivial to fix and depends on the intricate interplay
between on-site energies, Hubbard U values (not optimized in this
work), and confinement coefficients. Solving it, or even just mitigat-
ing it, requires a complete reparametrization of the electronic part,
possibly including the DFT-DFTB correlation of Mulliken charges
into the PSO cost function. Therefore, we do not attempt to solve
it here but rather leave it as a reminder of how subtle details can
go wrong in the electronic parametrization, which is commonly
regarded in the DFTB community as significantly easier than the
parametrization of the repulsive potential.

VI. CONCLUSION
We have compared GAP (fully ML interatomic potential,

“black box”) and GPrep-DFTB (semi-empirical density functional
tight binding with machine-learned repulsive potential, “gray box”)
models for metallic Ru and oxide RuO2, using exactly the same
training sets, in terms of accuracy, extrapolation power, and data
efficiency. To do so, we evaluated the structural and mechanical
properties of known crystals (hcp and fcc Ru, rutile RuO2) repre-
sented in the training sets as a measure of accuracy, as well as those
of other ideal crystals (body centered cubic, bcc, simple cubic, sc Ru,
and anatase RuO2) not represented in the training sets as a measure
of extrapolation power. Furthermore, we evaluated the force corre-
lation vs validation sets, both containing structural motifs relatively
similar to those present in the training sets and (for Ru) completely
different structural motifs. For RuO2, we also evaluated the surface
free energy diagram for 100 facets and 110 facets. Finally, we eval-
uated data efficiency by discussing the learning curves of the two
models.

Not surprisingly, the accuracy with respect to structural motifs,
forces, and energetics within the coverage of the training set is
fully comparable. GPrep-DFTB shows generally better extrapolation
power, albeit with some exceptions, such as the massive overstabi-
lization of the RuO2(100) O-cus terminated surface. This serves as a
warning that no method is bulletproof, and any approximate model
should be subject to continuous scrutiny. To be fair, the correct
treatment of multicomponent systems, especially in terms of relative
energetics across compositional ranges, is a challenging task for any
approximate interatomic model, from classical force fields to DFTB.
While GPrep-DFTB solves the problem of multidimensional fitting
of the repulsive potential from a technical point of view, it does not
necessarily solve the existence of multiple offsets in the resulting
potentials caused by the truncation of the latter at a chosen cutoff
(unless employing extremely long cutoff radii, which is problematic
for a number of different reasons). However, it is unclear whether,
in this context, the shortcomings can be addressed with a more care-
ful optimization of hyperparameters or if the underlying electronic
parametrization has to be revisited.

The intuitive notion that a “gray box” approach is more trans-
ferable than a “black box” approach is hereby quite clearly supported
for single-species metallic Ru but not at all clear-cut for the binary
oxide system. The “black box” approach employed here, anyway,
does not perform badly at all for Ru, either, and outperforms the
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“gray box” in some aspects for RuO2. In terms of data efficiency, we
observe a moderately better performance of GPrep, which seems to
be less sensitive than GAP to small changes in the diversity of the
training set, as shown by the flatter learning behavior with respect to
the number of generations, as well as being slightly faster in learning
vs the number of data points. Converging a GAP requires several
iterations of one to two hundred calculations of considerable size.
GPrep converges with only a few thousand force residue data points,
corresponding to only a handful of expensive DFT calculations. The
increased extrapolation power ensures that one should not worry
too much about showing all the possible motifs. Clearly, iterative
training approaches can be applied as well (as performed, albeit not
in an automated manner but rather driven by chemical intuition,
in Ref. 16), but the fact that they are not strictly necessary is good
news. As a possible outlook, we propose that one may, in principle,
bootstrap a GPrep-DFTB model with only a handful of DFT calcula-
tions, then generate large training sets with GPrep-DFTB and train
a GAP on those. Once the GAP is converged, one may, in principle,
retrain it on DFT, but only on the final training set, thus avoiding
expensive DFT calculations throughout the entire iterative training
workflow. Relatedly, since the two models do show overall similar
performance, the GAP can also be used to generate a large num-
ber of extremely diverse candidate training structures, out of which
a subset of the most dissimilar ones can be chosen using FPS and
used to tune the DFTB repulsion for better transferability. All in
all, we encourage continuous scrutiny across the two approaches, as
the complete interchangeability of training sets enables parametriza-
tion scenarios where GPrep-DFTB can benefit from GAP and
vice versa.
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APPENDIX A: GAP LOCALITY TEST

The GAP estimates the total energy of the system by the sum
of local contributions, which are divided by an applied cutoff radius
rcut, and neglects any long-range interactions originated from elec-
trostatics or dispersion outside of the cutoff. To minimize such
errors from long-range interactions, we have tested a force locality
for symmetry inequivalent atoms i in Ru and RuO2 surface models.
Based on bulk-truncated surface supercells X, we generated a set of
perturbed configurations {X′} in which all atom positions outside
of rcut from atom i are randomly displaced. The induced force at
center atom i is then measured as the force difference of the ground-
state and the perturbed configurations ΔFi = ∣FX′

i − FX
i ∣ as a function

of rcut, as illustrated in Fig. 10 for Ru (top) and RuO2 (bottom). In
detail, the random perturbations are applied uniformly with a stan-
dard deviation of 0.05 Å, so the maximum displacement of atoms is
not larger than 0.2 Å. As a result, ΔFi is converged for all atoms i at
rcut of 5.5 and 5.0 Å for Ru and RuO2, respectively.

APPENDIX B: SPURIOUS BANDS IN ELECTRONIC
PARAMETRIZATION

Figure 11 shows band structures for hcp Ru at equilibrium
geometry and compressed geometry with a compression factor of
0.9. The equilibrium band structure is in perfect agreement with
DFT in the valence region. However, as mentioned in Sec. II B 1,
spurious conduction bands are present between Γ, A and H special
points for hcp Ru. A lack of agreement in the conduction bands is
common for DFTB due to the minimal basis set approximations.
The spurious bands appearing here are not problematic at equilib-
rium, as they are not occupied and thus do not affect total energies.
Upon compression, though, these bands spill into the valence region,
where they end up being occupied. As a result, the electronic part of
the DFTB interaction becomes artificially overattractive at short dis-
tances. In all the attempted repulsion parameterizations with these
electronic parameters, GPrep could not properly compensate for this
effect and, as a result, the total DFTB interaction presented spuri-
ous minima at distances around 2 Å. This caused, e.g., the simple
cubic crystal to systematically relax to a much more compressed
geometry.

APPENDIX C: REPULSIVE POTENTIALS

Figure 12 shows bond distributions in the Ru training set
(Ru–Ru bonds, top left) and in the RuO2 training set (Ru–Ru bonds,
top right; Ru–O bonds, bottom left; O–O bonds, bottom right).
Peaks are centered around the nearest neighbor’s distances. The
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FIG. 10. Force locality in Ru(224̄1) (top)
and RuO2(101) (bottom).

FIG. 11. Band structures for hcp Ru obtained by including only the equilibrium band structure in the PSO cost function. The DFTB band structure is shown in magenta, while
the DFT reference is shown in blue. The optimal equilibrium geometry band structure is shown on the left side. The right side shows the band structure for a compressed
geometry with a compression factor of 0.9. All the band structures are aligned with respect to the DFT Fermi level. The equilibrium band structure is in perfect agreement
with DFT in the valence region. However, the spurious conduction bands visible between Γ, A and H special points for hcp Ru here clearly bleed into the valence region upon
compression.

cutoff radii were chosen to only include the first peak for each distri-
bution. This ensures that the shortest possible repulsive potentials
are generated, thus avoiding spurious contributions from higher
order nearest neighbors.

Figure 13 shows repulsive potentials for Ru–Ru (top left, Ru
parametrization, top right, RuO2 parametrization), Ru–O (bottom
left), and O–O (bottom right) as obtained by GPrep. Green-shaded
areas mark bond ranges within which the first nearest neighbor dis-
tances of all evaluated structures fall. These serve merely as a visual
aid to the regions of the potentials that are most important for

equilibrium geometries. As a normal consequence of the different
electronic parametrization, the repulsive potentials for the Ru–Ru
pair for pure Ru and RuO2 differ greatly.

APPENDIX D: FORCE CORRELATION
WITH EXTENDED TRAINING SET

Figure 14 shows the force correlation plot between DFT forces
and GPrep-DFTB forces for RuO2 obtained after refitting the GPrep
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FIG. 12. Bond distributions in the Ru
training set (Ru–Ru bonds, top left) and
in the RuO2 training set (Ru–Ru bonds,
top right; Ru–O bonds, bottom left; O–O
bonds, bottom right). Peaks are centered
around the nearest neighbor’s distances.

FIG. 13. Repulsive potentials for Ru–Ru (top left, Ru parametrization; top right, RuO2 parametrization), Ru–O (bottom left), and O–O (bottom right). Green-shaded areas
mark bond ranges within which the first nearest neighbor distances of all evaluated structures fall.
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FIG. 14. Correlation plot between reference (DFT) forces and surrogate model
forces (left: GAP; right: GPrep-DFTB) for validation set 1, obtained after refitting
the GPrep repulsion and including validation set 1 in the training set. Magenta dots
represent forces acting on oxygen atoms, while teal dots represent forces acting
on ruthenium atoms. The RMSE is 0.560 eV/Å.

repulsion, including validation set 1 in the training set. Magenta
dots represent forces acting on oxygen atoms, while teal dots rep-
resent forces acting on ruthenium atoms. The RMSE is 0.560 eV/Å.
The inclusion of the validation set into the training set does not sig-
nificantly improve the force correlation, neither quantitatively nor
qualitatively, suggesting that the issue is not in the training set but
rather in the electronic parametrization.

APPENDIX E: GAP REGULARIZATION SCAN

To clarify whether the vertical feature in the correlation of
forces acting on Ru (see Fig. 7) is the result of overfitting, we sys-
tematically varied the regularization factor for both energy σε and
forces σ f and evaluated the RMSE of forces for different values of
σε and σε/σ f ratios. The results, reported in Fig. 15, show that the
best choices for regularization parameters could be [0.0005, 0.0025]
or [0.001, 0.005], but our choice (orange triangle at 10−3) of [0.001,
0.01] is also similarly good. Of note, changing the regularization for
GPrep does not have a significant effect, confirming that, indeed,
for DFTB, the imperfections of the electronic parametrization are
predominant.

Figure 16 shows force correlation plots for a less regu-
lar model (RMSE = 0.190 eV/Å) and a more regular model
(RMSE = 0.361 eV/Å). It is evident that larger regularization accen-
tuates the feature, while lower regularization mitigates it. Therefore,
this is not the result of overfitting but rather of underfitting. As such,
the RuO2 GAP (which is already published) may certainly be revised,
but the force correlation performance shown in Fig. 8 reassures us
that the model is not bad at all.

APPENDIX F: EXEMPLARY MD SIMULATIONS

Figure 17 shows the temperature, potential energy, and total
energy for two test MD runs in the NVT ensemble for 1 ps at 300 K,
starting from an exemplary RuO2 surface structure. Both simula-
tions run smoothly, equilibrate quickly, show no energy drifts after

FIG. 15. RMSE of energy and forces for different choices of the GAP regularization
parameters σε and forces σ f .

equilibration, and neither ends up in unphysical configurational
spaces, so one may conclude that the forces are at least reasonable
for both models. However, some qualitative aspects differ, indicating
that the resulting potential energy surfaces are substantially differ-
ent. The GAP run exhibits much larger atomic displacements at the
beginning of the run (before equilibration) and quickly transitions
to a different structure reconstruction even before reaching thermal-
ization. The DFTB run equilibrates smoothly and stays in the same
local basin. The new GAP local minimum turns out to be signifi-
cantly more stable on DFTB energetics as well as on DFT energetics.
The initial and final structures, locally optimized on GAP energetics,
are shown in Fig. 17, overlayed on the GAP plot.

APPENDIX G: MULLIKEN CHARGES

Figure 18 shows Mulliken charges as obtained by DFT and
DFTB with single-point calculations at the DFT-relaxed geometries
for the 100 O-cus, 110 O-cus, 100 O-bridge, and 110 O-bridge sur-
faces. As the Mulliken charges are basis-set dependent, the values are
not expected to be the same. However, we find an excellent correla-
tion between DFT and DFTB charges with a proportionality factor of
∼3.15. The correlation plot shows two significant clusters of outliers
(circled in Fig. 18), which correspond to bridge atoms in both 100
O-cus and 100 O-bridge. These atoms have a less negative partial
charge in DFTB than they should. This causes a diminished elec-
trostatic repulsion between these and the other oxygen atoms in the
structure. For the cus termination, there are additional oxygen atoms
on the cus positions, which should have a corresponding energy
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FIG. 16. Force correlation plots for a less
regular GAP model (left) and a more reg-
ular GAP model (right), with [σε, σε/σ f ]
= [0.0005, 0.0025] and [0.01, 0.1],
respectively. The RMSE values are
0.190 and 0.361 eV/Å, respectively.

FIG. 17. Potential energy, total energy,
and temperature for the test MD runs for
10 ps in the NVT ensemble for an exem-
plary RuO2 surface structure for GAP
(left) and GPrep-DFTB (right).

FIG. 18. Mulliken charges as obtained by DFT and DFTB with single-point calcula-
tions at the DFT-relaxed geometries for the 100 O-cus, 110 O-cus, 100 O-bridge,
and 110 O-bridge surfaces.

penalty, the lack of which causes the overstabilization of this termi-
nation. As shown in the correlation plot, for the 110 surface, there
are similar outliers (also corresponding to bridge oxygen atoms), but
with a smaller effect due to both the fact that the deviation is smaller
and the fact that there are fewer additional oxygen atoms in the 110
O-cus termination. Correspondingly, a smaller overstabilization is
observed for the 110 O-cus termination.

REFERENCES
1J. Behler and M. Parrinello, Phys. Rev. Lett. 98, 146401 (2007).
2A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, Phys. Rev. Lett. 104, 136403
(2010).
3A. V. Shapeev, Multiscale Model. Simul. 14, 1153 (2016).
4L. Zhang, J. Han, H. Wang, R. Car, and W. E, Phys. Rev. Lett. 120, 143001 (2018).
5R. Drautz, Phys. Rev. B 99, 014104 (2019).
6J. Vandermause, S. B. Torrisi, S. Batzner, Y. Xie, L. Sun, A. M. Kolpak, and B.
Kozinsky, npj Comput. Mater. 6, 20 (2020).
7D. P. Kovács, C. van der Oord, J. Kucera, A. E. A. Allen, D. J. Cole, C. Ortner,
and G. Csányi, J. Chem. Theory Comput. 17, 7696 (2021).
8I. Batatia, D. P. Kovács, G. N. C. Simm, C. Ortner, and G. Csányi, “Mace: Higher
order equivariant message passing neural networks for fast and accurate force
fields,” arXiv:2206.07697 (2022).
9O. T. Unke, S. Chmiela, H. E. Sauceda, M. Gastegger, I. Poltavsky, K. T. Schütt,
A. Tkatchenko, and K.-R. Müller, Chem. Rev. 121, 10142 (2021).
10C. G. Staacke, S. Wengert, C. Kunkel, G. Csányi, K. Reuter, and J. T. Margraf,
Mach. Learn.: Sci. Technol. 3, 015032 (2022).
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