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Abstract

A body of current evidence suggests that there is a sensitive period for musical train-

ing: people who begin training before the age of seven show better performance on

tests of musical skill, and also show differences in brain structure—especially in motor

cortical and cerebellar regions—compared with those who start later. We used sup-

port vector machine models—a subtype of supervised machine learning—to investi-

gate distributed patterns of structural differences between early-trained (ET) and

late-trained (LT) musicians and to better understand the age boundaries of the sensi-

tive period for early musicianship. After selecting regions of interest from the cere-

bellum and cortical sensorimotor regions, we applied recursive feature elimination

with cross-validation to produce a model which optimally and accurately classified ET

and LT musicians. This model identified a combination of 17 regions, including 9 cere-

bellar and 8 sensorimotor regions, and maintained a high accuracy and sensitivity

(true positives, i.e., ET musicians) without sacrificing specificity (true negatives,

i.e., LT musicians). Critically, this model—which defined ET musicians as those who

began their training before the age of 7—outperformed all other models in which age

of start was earlier or later (between ages 5–10). Our model's ability to accurately

classify ET and LT musicians provides additional evidence that musical training before

age 7 affects cortico-cerebellar structure in adulthood, and is consistent with the

hypothesis that connected brain regions interact during development to reciprocally

influence brain and behavioral maturation.
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1 | INTRODUCTION

A body of current evidence suggests that there is a sensitive period

for musical training: people who begin training before the age of

seven show better performance on certain tests of musical skill, and

also show differences in brain structure—especially in motor cortical

and cerebellar regions—compared with those who start later. In both

children and adults, those who begin early (≤7; early-trained [ET]) out-

perform those who begin later (>7; late-trained [LT]) on tests of mel-

ody discrimination and rhythm reproduction (Baer et al., 2015;
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Bailey & Penhune, 2010; Ireland et al., 2019; Kraus et al., 2009;

Penhune, 2020; Vaquero et al., 2016; Watanabe et al., 2007). In addi-

tion, ET musicians exhibit greater cortical surface area and gray matter

volume in the ventral premotor cortex (vPMC) (Bailey et al., 2014),

and smaller volumes in the basal ganglia (Vaquero et al., 2016) and the

cerebellum (Baer et al., 2015; Shenker et al., 2022) as compared to LT

musicians.

Previous studies, however, have all relied on univariate methods

to assess differences in brain structure across multiple regions inde-

pendently. However, it seems likely that experience-dependent plas-

ticity for complex skills such as music would engage a more spatially

distributed network, and that a multivariate technique would be more

sensitive to the distributed pattern of changes associated with early

training. The current research therefore uses support vector machine

(SVM) models—a subtype of supervised machine learning (ML)—to

investigate distributed patterns of structural differences between ET

and LT musicians in cortical motor and cerebellar regions known to be

structurally and functionally connected.

Brain structural differences between ET and LT musicians were

initially observed in a study examining the corpus callosum (Schlaug

et al., 1995). Musicians were found to have larger surface area of the

anterior corpus callosum, an effect that was greater in those who

began their training at or before the age of 7. A subsequent study of

musicians found that the size of the primary motor cortex (M1) was

inversely correlated with the age of start (AoS) of musical training:

those who began training at an earlier age showed larger M1 than

those who began later in life (Amunts et al., 1997). Following these

early studies, research from our group and others identified additional

neuroanatomical differences associated with early musical training:

greater cortical surface area and gray matter in the right vPMC (Bailey

et al., 2014); greater functional anisotropy—a proxy measure of white

matter fiber density—in the posterior midbody/isthmus of the corpus

callosum (Steele et al., 2013); smaller gray matter volume in the right

putamen (Vaquero et al., 2016); and smaller volumes in hemispheric

and vermal cerebellar regions (Baer et al., 2015; Shenker et al., 2022;

van Vugt et al., 2021).

In a recent study using a large sample (N = 108) we identified a

differential pattern of structural differences between ET and LT

musicians in the motor cortex and cerebellum (Shenker et al., 2022).

Our results identified negative correlations between cerebellar vol-

ume and motor cortical thickness and surface area in ET musicians,

suggesting that early musical training has differential impacts on the

maturation of cortico-cerebellar networks important for optimizing

sensorimotor performance (Shenker et al., 2022). This result is con-

sistent with the interactive specialization framework, which proposes

that connected brain regions or networks interact during develop-

ment to reciprocally influence maturation (Johnson, 2011). Indeed,

widespread structural changes occur as the brain matures, and cog-

nitive and behavioral maturation is likely the result of distributed

patterns of subtle changes that are influenced by experience and its

timing (Bray et al., 2009). As a multivariate method, SVM is well

suited to identify patterns of linked differences in structure charac-

teristic of early musicianship.

In much previous work, ET musicians have typically been defined

as those who began musical training at or before age 7. As described

above, Schlaug et al. (1995) observed that differences between musi-

cians and non-musicians were driven by those who began before age

7. Subsequent studies showing behavioral and anatomical differences

between ET and LT musicians have used this age cut-off. However,

we know that the maturational trajectories of brain and behavior are

variable, and that maturation or experience in one domain influences

maturation in other domains (Werker & Hensch, 2015). It is therefore

unlikely that there is an abrupt change in sensitivity to musical experi-

ence at age 7, but rather gradual changes in sensitivity to different

aspects of training.

Evidence for a broader range of sensitivity comes from a study

which aggregated behavioral data in a large sample of musicians and

examined how different age cut-offs affected the relationship

between AoS and performance on a rhythm synchronization task

(Bailey & Penhune, 2013). The authors applied different AoS cutoffs

to produce varying ET versus LT group splits, and examined whether

AoS was correlated with performance on the task. The results showed

that AoS was correlated with rhythm synchronization performance if

musicians began their training at or prior to age 9, but not afterwards.

This correlation was strongest when age 7 was used to divide the

groups.

Further, a recent study of child musicians found that children

who began musical training before age 7 performed better on a mel-

ody discrimination task, but not the rhythm synchronization task,

compared to children who began later (Ireland et al., 2019). This

observation suggests that children's rhythmic abilities may take time

to mature, and that on-going training after age 7 may be required for

adult behavioral differences to appear; indeed, 7–13 year-old children

showed continuing improvement on rhythm synchronization tasks

with increasing age (Ireland et al., 2018). Although the ET/LT cut-off

at age 7 has persisted in the literature—and has often led to interest-

ing results—there has been little systematic study of whether it is, in

fact, the optimal point by which to split these groups. Therefore, an

additional goal of the current study was to investigate the age cut-off

for defining early musicianship by comparing the predictive power of

ML models using different AoS cut-offs.

Using ML to identify patterns of structural differences between

ET and LT groups requires a classification method that attempts to

predict group membership based on a combination of features (Bray

et al., 2009). Of the multitude of classification methods, SVM is proba-

bly the most common. SVM aims to calculate a linear vector—known

as a hyperplane—which separates a cluster of data points into two dis-

tinct categories (Amari & Wu, 1999). SVM has been widely used for

classifying data across multiple domains, from identifying cancerous

tissues (Furey et al., 2000) and brain tumors (Othman et al., 2011) to

distinguishing individuals with Alzheimer's disease from healthy indi-

viduals (Kloppel et al., 2008; Magnin et al., 2009).

Albouy et al. (2019) combined SVM with both structural and

functional magnetic resonance imaging (fMRI) to identify patterns of

activations which could distinguish healthy controls from participants

with congenital amusia (although the authors noted that the relatively
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low sensitivity of the model might limit its predictive capacity).

Another study used SVM to try to classify musicians and non-

musicians based on cortical thickness (Puoliväli et al., 2020). They pro-

duced a predictive model that was capable of classifying musicians

and nonmusicians with a pattern of cortical thickness differences

mostly in the frontal, parietal, and occipital lobes of the left hemi-

sphere. However, this model was only accurate in classifying nonmusi-

cians, while its ability to correctly identify musicians was near chance,

possibly due to the heterogeneity of musicians comprising the sample.

Given that the pattern of differences between expert and nonexpert

groups is likely to be nuanced, larger, more well-defined samples are

crucial for more accurate predictive power.

Overall, the existing research provides significant evidence of the

differences between musicians with an AoS before or after age

7, although the application of ML tools within this area of study is mini-

mal. The present study employed SVM to identify patterns of cortico-

cerebellar structural variation in regions known to be structurally and

functionally connected which can differentiate between ET and LT

musicians. Cortical thickness and surface area of cortical sensorimotor

regions as well as the volume of cerebellar regions—a subset of which

were previously found to be associated with early musical training—

were provided to the SVM classifier for training. Using recursive feature

elimination (RFE) with cross-validation (Sanz et al., 2018), the most

salient features were identified to produce a classifier which could accu-

rately predict ET and LT musicianship. The performance of the classifier

was evaluated by comparing accuracy, specificity, and sensitivity of the

model. To investigate the optimal AoS to distinguish the effects of early

musicianship, we produced and compared several models using different

cut-offs from ages 5 through 10. We hypothesized that SVM could be

used to successfully predict ET and LT musicians using a sub-selection

of regional cerebellar volumes and cortical sensorimotor surface area

and cortical thickness. Additionally, we used SVM to explore the fit of

the classifier at different AoS cut-offs to better understand the age

boundaries of the sensitive period for early musicianship.

2 | MATERIALS AND METHODS

2.1 | Participants

A total of 133 participants were included, comprising 79 ET musicians

and 54 LT musicians. As per previous research, ET musicians were

defined as those who began musical training at or before the age

7 (Amunts et al., 1997; Bailey & Penhune, 2013; Schlaug et al., 1995;

Shenker et al., 2022). Participant data were aggregated from studies

using the same T1 data acquisition protocol on the same scanner (see

below). Participants gave informed consent at the time of the original

studies, and only those who had agreed to the re-use of their data were

included. Protocols were approved by the Concordia University Human

Research Ethics Committee and the Human Research Ethics Board of

the Montreal Neurological Institute. All participants were also adminis-

tered the Musical Experience Questionnaire (Bailey & Penhune, 2010),

from which information on musical training was extracted. Participants

were the same as those in Shenker et al. (2022). A subsample of individ-

uals in both the ET (25%) and LT (37%) musician groups were previously

included in the samples used in the Bailey et al. (2014) and Baer et al.

(2015) studies. The primary instruments reported by participants were:

piano/keyboard (55), strings (12), wind (10), drums/percussion (7), voice

(14), guitar (21), bass (8), and brass (5). One musician did not report

his/her primary instrument. There were no statistically significant differ-

ences between the groups for years of musical experience and current

hours of practice. Group characteristics are summarized in Table 1.

2.2 | Image acquisition and preprocessing

Structural MRI scans were acquired using a Siemens Trio 3 T MRI

scanner with a 32-channel head coil (TR = 2300 ms, TE = 2.98 ms,

voxel size = 1 � 1 � 1 mm3). T1 images were converted to the MINC

file format and preprocessed with the CoBrA Laboratory bpipe library

(https://github.com/CobraLab/minc-bpipe-library) to perform N4 bias

field correction and cropping in order to constrain the field of view to

primarily skull and brain tissue. Total brain volume (TBV) was esti-

mated from the whole-brain mask produced by BEaST brain extrac-

tion (Eskildsen et al., 2012).

2.3 | Cerebellar segmentation and volume
calculation

The cerebellum was segmented using MAGeTBrain (https://github.

com/CoBrALab/MAGeTbrain), an automated method using multiple

automatically generated templates of different brains (Chakravarty

et al., 2013; Park et al., 2014). This tool uses five expert-defined cere-

bellar atlases to segment a subset of participant scans to generate an

expanded set of study-specific atlases, or templates. These study-

specific templates are then registered to all study scans to produce a

large number of candidate segmentations for each participant. Finally,

a process of majority voxel voting—where the most frequently occur-

ring label among all the candidate segmentations at each voxel is

retained—produces the final labeled images for computing volume.

Segmentation parameters and cerebellar atlas were consistent with

our previous work (Shenker et al., 2022): the cerebellum was

TABLE 1 Group demographics.

ET (n = 79) LT (n = 54)

Age (years) 22.8 ± 3.5 24.7 ± 5.2

Sex (m/f) 40/39 38/16

Age of onset musical training 5.4 ± 1.1 10.4 ± 2.7

Years of musical training 12.2 ± 4 9.2 ± 4.6

Years of musical experience 15.2 ± 4.4 13.3 ± 5.1

Current hours of practice per week 11.8 ± 11.3 8.5 ± 10.2

Note: Values are means (±SD).

Abbreviations: F, female; M, male.

SHENKER ET AL. 3
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segmented into 33 separate regions across left and right hemispheres

and vermal region as described in Park et al. (2014) (Figure 1a), and

volumes were weighted by each participant's total brain volume

(TBV). All cerebellar regions were included in the analysis.

2.4 | Segmentation of cortical sensorimotor
regions

To examine cortical thickness and surface area in sensorimotor

regions, anatomical boundaries were identified based on the

volumetric Human Motor Area Template (HMAT; see Figure 1b)

which includes: bilateral primary motor cortex (M1), ventral and

dorsal premotor cortex (vPMC and dPMC), supplementary motor

area (SMA), presupplementary motor area (pre-SMA), and primary

somatosensory cortex (S1) for a total of 24 variables (Mayka

et al., 2006). To extract these values, T1-weighted MRI images

were converted to MINC and pre-processed via the CIVET pipeline,

version 2.1.0 (Ad-Dab'bagh, 2006), and average cortical thickness

and total surface area within each cortical sensorimotor region

were calculated and extracted (for additional details, see Shenker

et al., 2022).

F IGURE 1 Segmentations of cerebellar and cortical regions. (a) Example segmentation and labeling of cerebellar regions on one subject using
MAGeTBrain (Chakravarty et al., 2013). (b) Example segmentation and labeling of cortical sensorimotor regions on one subject using the HMAT
parcellation (Mayka et al., 2006) applied to the surface mesh output of CIVET (Ad-Dab'bagh, 2006).

4 SHENKER ET AL.
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2.5 | Machine learning

ML was used in order to more directly investigate structural patterns

and salient features which can more accurately delineate ET and LT

musicians. SVM models were implemented in scikit-learn (version

1.0.2), a Python-based ML framework (Pedrosa et al., 2018). Fifty-

seven features were included in all SVMs: cerebellar volume from

MAGeTBrain (33 variables) and cortical thickness (12 variables) and

surface area from HMAT (12 variables). The hyperparameters C and

gamma were optimized using scikit-optimize, and these optimal values

were calculated and used uniquely for each model. Two-fold recursive

feature elimination (RFE) was used to identify the optimal number of

features for SVM models. The RFE algorithm uses weights generated

by the SVM classifier as a ranking criterion, eliminating features one-

by-one in order to find an optimal subset of features for classification

(Huang et al., 2014; Kuhn & Johnson, 2018). These features were

then fed back into the classifier using 10-fold cross validation. A linear

kernel was used for each SVM model, as it has been suggested that

this is required for RFE to perform most accurately (Guyon

et al., 2002; Kuhn & Johnson, 2018). For each model, the following

steps were performed: (1) optimize hyperparameters C and gamma;

(2) train the model using all predictors; (3) perform feature ranking

using RFE; (4) keep the most relevant features as identified by RFE;

(5) reoptimize hyperparameters; (6) train the model using only the

most relevant features; (7) evaluate model performance. To evaluate

the outcome of the models, we used permutation tests to estimate

chance performance: using 1000 permutations, chance was estimated

at 54% (p = .316).

Our primary model defined ET musicians as those who began

their musical training at or before the age of 7. Additional models

using different AoS cut-offs (age of onset ≤ age 5, 6, 8, 9, 10, respec-

tively) were tested in order to better understand the age boundaries

of the sensitive period for early musicianship.

3 | RESULTS

Of the 57 features included in the model, RFE identified 17 that were

optimal for classifying ET and LT musicians. These included volumes

of cerebellar motor lobules III–VI and inferior lobule VIIB, as well as

cortical thickness in right primary motor, sensorimotor and vPMC (see

Figure 2 for the list of regions). These features are consistent with

F IGURE 2 Comparison of standardized mean regional volume (cerebellum), surface area, or cortical thickness for optimal 19 regions included
in SVM models.

SHENKER ET AL. 5

 10970193, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26395 by M
PI 374 H

um
an C

ognitive and B
rain Sciences, W

iley O
nline L

ibrary on [19/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



regions showing differences in our previous study examining cortico-

cerebellar covariation in the same groups (Shenker et al., 2022). The

average cerebellar volume, surface area, or cortical thickness of each

region within each group (ET/LT) is visualized in Figure 2. Although no

direct statistical comparisons are made, the overall pattern is consis-

tent with the inverted correlational relationship between cerebellar

and motor cortical regions in ET musicians seen in our previous study

with overall smaller cerebellar volumes being related to greater corti-

cal thickness (Shenker et al., 2022).

Our primary model, in which ET musicians began their training at

or before age 7, achieved an overall accuracy of 74%

(sensitivity = 78%, specificity = 69%) with a Cohen's kappa of 0.47,

denoting “moderate” agreement (Artstein & Poesio, 2008; Landis &

Koch, 1977) and an area under the curve (AUC) value of 0.735.

Models in which AoS was defined at 1 year earlier or 1 year later than

the primary model (i.e., AoS ≤ 6, ≤8) performed moderately well, but

with greater false positives and/or fewer true positives than the

AoS≤7 model. Additional models with ages of start ≤5, 9, and 10 all

performed more poorly, with a range of Cohen's kappa coefficients

from 0.13 to 0.27 and two which were noncalculable (denoting “poor”
agreement) and AUC values ranging from 0.5 to 0.541. Metrics of all

models are summarized in Table 2 and compared as a series of

receiver operating characteristic (ROC) curves—which were produced

by calculating and plotting the true positive rate against the false posi-

tive rate for each AoS model—in Figure 3.

4 | DISCUSSION

The goal of this study was to identify the most salient motor cortical

and cerebellar structural features which could be used by a ML algo-

rithm to accurately classify ET and LT musicians. The performance of

the classifier was evaluated by comparing accuracy, specificity, and

sensitivity of the model. Our primary model (AoS ≤ age 7) identified a

combination of 17 regions which most optimally and accurately classi-

fied ET and LT regions, including bilateral motor-related regions of the

cerebellum and motor and premotor regions of the cortex, predomi-

nantly in the right hemisphere. Critically, this model—which defined

ET musicians as those who began their training before the age of 7—

outperformed all other models in which AoS was earlier or later

(between ages 5–10).

These results parallel and expand upon those of our previous

study: we examined differences in cortico-cerebellar covariation in ET

and LT groups and found that ET musicians had decreased overall and

regional cerebellar volume, and that this effect was associated with

increased cortical thickness in right premotor regions (Baer

et al., 2015; Bailey et al., 2014; Shenker et al., 2022). As depicted in

Figure 2, mean volume, surface area, and cortical thickness of features

used by our SVM model follow these same patterns. The cerebellar

regions identified by our model are largely those which are known to

exhibit denser connectivity to sensorimotor areas: both human and

non-human primate studies have identified connections between sen-

sorimotor areas M1, PMC, and SMA and cerebellar lobules III–VI and

VIIA–VIIIB (Kelly & Strick, 2003; Palesi et al., 2017; Salmi et al., 2010).

In addition, the salient cerebellar features identified by this model are

not lateralized—three regions in both the left and right hemisphere

TABLE 2 Confusion matrices and performance metrics of SVM
models.

Note: True positives and true negatives (ET and LT musicians, respectively)

are found in the top left and bottom right cell of each matrix. Our primary

model (AoS ≤ 7) is highlighted.

6 SHENKER ET AL.
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and six vermal regions—which is consistent with previous findings

identifying ET/LT differences across both hemispheres of the cerebel-

lum (Baer et al., 2015; Shenker et al., 2022). In contrast, the majority

of the salient cortical features are lateralized to the right

hemisphere—including the right vPMC, larger in ET musicians, as pre-

viously identified by Bailey et al. (2014). This finding is consistent with

previous research suggesting hemispheric specialization in music per-

ception and performance research (see, e.g., Bermudez &

Zatorre, 2005; Halwani et al., 2011; Palomar-García et al., 2016).

By leveraging a multivariate ML approach, we have been able to

identify a distributed pattern of cerebellar and cortical features pre-

dictive of early and late musical training. Previous research studies

have each identified separate features in cortical and subcortical

regions related to early training (Baer et al., 2015; Bailey et al., 2014;

Steele et al., 2013; van Vugt et al., 2021). However, using a multivari-

ate approach has allowed us to examine not just individual structural

differences but more nuanced patterns of coordinated change. Our

current findings suggest that early training in musicianship is, indeed,

associated with a broad pattern of differences across a larger network.

This outcome is consistent with the interactive specialization model of

brain development, which posits that functionally connected regions

develop in tandem, and that experience that promotes plasticity in

one part of the network will promote plasticity in the others

(Johnson, 2011). Indeed, complex abilities such as music perception

and performance—which comprise multiple, overlapping skills—require

the contribution of interacting brain networks (Zatorre et al., 2007).

F IGURE 3 ROC curves and AUC values of models varying the age of onset of musical training criterion. The blue line represents the model
based on AoS ≤ 7, the classifier that most accurately predicted group membership.

SHENKER ET AL. 7
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In addition, our primary model—based on AoS ≤ 7—outperformed

models with other AoS cutoffs (≤6, ≤8, ≤9, and ≤ 10). The AoS ≤ 7

model demonstrated high accuracy and sensitivity (true positives,

i.e., correct classification of ET musicians when they really were ET

musicians) without sacrificing specificity (true negatives, i.e., correct

classification of LT musicians when they really were LT musicians).

Models testing classification at other age cut-offs were less accurate:

models in which AoS was defined at 1 year earlier or 1 year later than

the primary model (i.e., AoS ≤ 6, ≤8) performed moderately well, but

AoS ≤ 6 produced more false positives and AoS ≤ 8 produced fewer

true positives than the AoS ≤ 7 model. Models using AoS ≤ 5,

AoS ≤ 9, and AoS ≤ 10 showed little to no predictive power. In other

words, the unique pattern of cortico-cerebellar structural variation

identified by the classifier could most accurately predict groups based

on the AoS ≤ 7 cut-off, and other models were capable of classifying

one group but not the other or were prone to classification errors.

Together, these results indicate that musical training at or before age

7 has a joint effect on cortical and cerebellar structure in adulthood

and supports the hypothesis that the sensitive period for coordinated

developmental plasticity in cortico-cerebellar regions—promoted by

early musical training—may end at or around age 7. However, sensi-

tive periods for complex skills such as music or language are unlikely

to exhibit abrupt cut-offs. Instead, such skills are likely to depend on a

cascade of developmental and experience-dependent plasticity

effects with basic sensory processes being affected earlier and more

complex processes affected later (Penhune, 2022; Werker &

Hensch, 2015).

Previous research has demonstrated that the cortico-cerebellar

connectivity underlying the motor and cognitive functions associated

with musicianship changes across the lifespan and may therefore con-

tribute to sensitive periods for the effects of training (Fjell

et al., 2019; Kipping et al., 2017; Tiemeier et al., 2010). Earlier onset

of musical training when sensorimotor regions are rapidly developing

(Ducharme et al., 2016; Gogtay et al., 2004) may be particularly effec-

tive in stimulating plasticity, both locally and in connected regions.

Grey matter volume of anterior motor regions—including M1 and

PMC—have a peak rate of change between the ages of 6 and 8 (Giedd

et al., 1999). Evidence that functional connectivity between the cere-

bellum and cortex is greatest at age 6–7 further supports the possibil-

ity of correlated change. Kipping et al. (2017) investigated cortico-

cerebellar functional connectivity networks using resting-state fMRI

in children aged 4–5, 6–7, and 9–10. They identified age-related dif-

ferences in both the extent and strength of these cortico-cerebellar

networks and found that functional connectivity in the majority of

these networks peaked at age 6–7. These observations suggest that

plasticity is heightened during these developmental windows, and that

long-term plasticity may be the product of experience during periods

of peak maturational change at both the local circuit and network

levels.

It is unlikely, however, that all musician-associated skills fall into

one distinct sensitive period. There is evidence of multiple sensitive

periods across the cortex associated with diverse behaviors, and these

cascading sensitive periods occur at different temporal windows and

are sensitive to different types of behavior (Penhune, 2021). Studies

in language acquisition, for example, have noted multiple sensitive

periods—with windows opening and closing at different ages—for dis-

tinct aspects of language: a window for the acquisition of syntax

which appears to close around age 7, while that of consonant discrimi-

nation of non-native speech sounds begins closing after 10–

12 months of age (Werker & Hensch, 2015). While the sensitive

period described in the current research appears to close around age

7, this window—possibly one of many—may be unique to the complex

pattern of cortico-cerebellar plasticity and may not represent the

totality of differences between ET and LT musicians. Research in chil-

dren supports this hypothesis: while children who began musical train-

ing before age 7 outperformed same-aged LT peers on simple melody

discrimination, there was no difference in children's performance on

rhythm synchronization or transposed melody discrimination tasks

(Ireland et al., 2019). Adult ET musicians, however, do outperform

adult LT musicians on rhythm synchronization tasks (Baer

et al., 2015). Early start of music training may enhance plasticity, both

directly and through network connections, and early experience may

have a metaplastic effect such that early plasticity may serve as a scaf-

fold on which later experience can build (Steele & Penhune, 2010).

Finally, it is important to note that the current research focused

only on cortical sensorimotor regions and the cerebellum due to previ-

ous evidence of their implication in early musical training. Future stud-

ies with a larger number of participants—and enough statistical

power—would benefit from replicating these analyses across the

whole brain in order to uncover potential contributions from—and

interactions between—other brain regions. More specifically, future

research in this domain might consider investigating the basal ganglia.

Previous work examining structural and functional differences

between ET and LT musicians has shown a reduced volume of the

putamen (Vaquero et al., 2016) and a pattern of cortico-striatal func-

tional connectivity that was unique to ET musicians (van Vugt

et al., 2021). These findings suggest that the cortico-cerebellar

network-level differences observed in this study may be part of a

larger series of network-level changes associated with early training.

Similarly, it would be interesting to examine interactions between the

auditory and motor systems given the importance of sensorimotor

integration to musical performance (Zatorre et al., 2007). Finally, a

larger sample size would additionally allow us to better control for the

potential impacts of biological sex, which could be the source of some

variance in the current analyses.

5 | CONCLUSION

This study used a multivariate classification approach to identify pat-

terns of cortico-cerebellar structural variation which can differentiate

ET and LT musicians, emphasizing that early experience promotes

plasticity at a network level. In addition, these patterns were most

robust when classifying musicians who began their training at or

before age 7, providing new evidence for a sensitive period for music

experience in middle childhood. Together with previous work, this
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study helps build a more nuanced understanding of how early musical

experience interacts with sensitive periods to effect network-level

changes in the brain.
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