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Abstract
The mechanisms by which a protein’s 3D structure can be determined based on its amino acid
sequence have long been one of the key mysteries of biophysics. Often simplistic models, such as
those derived from geometric constraints, capture bulk real-world 3D protein-protein properties
well. One approach is using protein contact maps (PCMs) to better understand proteins’
properties. In this study, we explore the emergent behaviour of contact maps for different
geometrically constrained models and compare them to real-world protein systems. Specifically, we
derive an analytical approximation for the distribution of amino acid distances, denoted as P(s),
using a mean-field approach based on a geometric constraint model. This approximation is then
validated for amino acid distance distributions generated from a 2D and 3D version of the
geometrically constrained random interaction model. For real protein data, we show how the
analytical approximation can be used to fit amino acid distance distributions of protein chain
lengths of L≈ 100, L≈ 200, and L≈ 300 generated from two different methods of evaluating a
PCM, a simple cutoff based method and a shadow map based method. We present evidence that
geometric constraints are sufficient to model the amino acid distance distributions of protein
chains in bulk and amino acid sequences only play a secondary role, regardless of the definition of
the PCM.

1. Introduction

Proteins, the molecular machines of every living
organism, perform vital tasks required for life to
persist. These range from transport (e.g. haemo-
globin) [1], signal transduction (e.g. rhodopsin) [2],
immune responses (e.g. antibodies), and hormonal
regulation (e.g. insulin) [3, 4]. All natural proteins
are made of 20 different amino acids which dictate
the 3D conformations the proteins adopt in order to
function [5]. One of the great challenges has been to
understand how the primary structure, i.e. the amino
acid sequence, can lead to the fully folded functional
protein, known as the protein folding problem [6].
The last 50 years have seen many different routes
to computationally predict biologically active—or

native—protein structures without having to solve a
crystal structure of the protein [7]. This folding prob-
lem can loosely be grouped into two aspects. Firstly,
can we predict the dynamics and kinetics of folding,
i.e. the pathway from a nascent protein to its folded
native state? Secondly, can we simply predict the fol-
ded structure without necessarily requiring informa-
tion on what path was followed?

When looking at the folding kinetics and path-
ways often the famous funnel picture comes to mind
in which a protein goes down a free energy funnel
to its folded state [8, 9]. Historically different routes
have been taken to try and generate an ensemble
of folding trajectories to understand the kinetics
and folding paths, ranging from lattice models [10–
15], coarse-grained models [16, 17] to atomistic
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molecular dynamics simulations [18]. The challenge
here is that often the dynamics are slow and kinetic-
ally frustrated bymetastable states on the folding path
and therefore cannot easily be used to predict the res-
ulting native state of a protein for a large number of
sequences.

For the challenge of predicting a native struc-
ture without the necessity of also understanding the
folding pathway, non-simulation-based approaches
have dominated. The critical assessment of structure
prediction, first run in 1994, allowed for a plethora
of different structure prediction approaches such as
Rosetta [19, 20], as well as more physics-based sim-
ulation approaches discussed above to be compared
systematically and as a result facilitate the develop-
ment of newmethods. AlphaFold 2, a machine learn-
ingmodel for structure prediction, has revolutionised
this field by providing models for native structures
that have experimental accuracy [21, 22]. This model
was trained on structural data from the Research Col-
laboratory for Structural Bioinformatics ProteinData
Bank [23] (RCSB PDB). A clear step change is that it
does provide a rich resource of structures to under-
stand emergent patterns in proteins on a more fun-
damental level.

Often using 1- or 2-dimensional features to study
properties of folded proteins can already give good
insights into protein structure. One example of such
a feature is protein contact maps (PCMs) [24–26].
A PCM is a matrix representation of spatially close
amino acids, given a certain cutoff distance as determ-
ined typically from a protein structure. PCMs have
shown promise in understanding protein folding pat-
terns around for example the co-evolution of native
contacts [27], incorporating information from 3D-
folds [28], as well as revealing allosteric communic-
ation pathways [29, 30].

In the past, it has been shown that the topology of
amino acids has a significant contribution to the fold-
ing mechanism of a protein, and as such, the result-
ing native structure and its corresponding PCM [17].
Therefore, using topological models, such as geomet-
rically constrainedmodels to generate simplisticmax-
imally compact structures that resemble a protein’s
native conformations, is a valid approach [31].

From a physicist’s perspective, it is interesting to
understand the emergent behaviour, in terms of fold-
ing or structure, in the ensemble of all protein struc-
tures. For example, early works showed that for a set
of 11 proteins, the relative contact order (CO) is cor-
related with the folding rate of these proteins [32].
The CO takes an average of the amino acid distance
(we will introduce the amino acid distance later as s)
between all pairs of amino acids in contact in the nat-
ive state and normalises this according to the chain
length of the protein.

Here, we are interested in understanding what
underlying features of PCMs can reveal on the scale

of the proteome rather than a set of individual pro-
teins. As such, different heuristic models for generat-
ing simplified PCMs have been introduced in the past
by Atilgan et al [33] and Bartoli et al [34]. Atilgan
et al proposed a random shuffle model to generate
artificial PCMs with similar properties to real pro-
tein models. To this end, Bartoli et al built a model
for PCMs in which they assume ad hoc that proteins
have a distribution of amino acid distances P(s) that
follows P(s)≈ s−1. The amino acid distance s is the
separation of two connected amino acids along the
backbone chain and gives rise to the simplest imple-
mentation of a connection probability in a protein.
Bartoli et al justified their approximation only heur-
istically in the sense that resulting PCMs have similar
properties to real-world PCMs.

In this paper, we provide a new analytical approx-
imation that explains why the heuristic of s−1 is
a good initial assumption for modelling PCMs,
and offer additional correction terms. The analyt-
ical approximation is derived from a 2D geometric-
ally constrained model which allows for a closed-
form expression of P(s). From this, we can recover the
approximate heuristic of s−1, but it also provides fur-
ther correction terms.We validate that the approxim-
ation fits amino acid distance distributions obtained
from simulations of the 2D geometrically constrained
model [35] it is derived from. Furthermore, we show
that this approximation also results in a valid fit
for maximally compact structures and their result-
ing PCMs computed from simulation data of a 3D
version of the constrained model [31], and even to
real-world proteins. This means that the analytical
approximation is a good starting point for artifi-
cially modelling PCMs in the future. In the same
way simplistic folding dynamic models such as lat-
tice models and geometric constrained models have
been used to look at folding properties [35, 36], the
same is true for generating ensembles of PCMs of nat-
ive proteins.

The paper is structured as follows: in section 2,
we provide a brief overview of the geometrically con-
strained models used in our study. In section 3, we
describe our approach to constructing PCMs using
simulations from the 2D and 3D versions of the geo-
metrically constrained model, as well as from struc-
tural data in the RCSB PDB database. In section 4,
we present our analytical approximation for model-
ling the amino acid distance distribution P(s) in the
2D version of the geometrically constrained model.
Next, in section 5, we report our findings from apply-
ing the 2D analytical approximation to PCMs gener-
ated from 2D and 3D simulations of the geometrically
constrained model, as well as to the structural data
from the RCSB PDB database. Overall, this section
showcases the utility of our analytical approximation
for accurately generating PCMs, and highlights the
novel insights we gain from this approach.
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2. 2D and 3D geometrically constrained
models

Different approaches have been used in the past
for geometrical models describing protein folding,
some of which derived characteristics of the second-
ary structure from constraints on bond and torsion
angles [37–39] or on the formation mechanisms of
the tertiary structure [31, 35], and others are mod-
elled by self-avoiding random walks on lattices [36,
40]. Here we will focus on models representing max-
imally folded structures in 2D, and 3D as introduced
in [35] and [31], respectively. The 3D geometrical
model and the analytical approximation of its 2D ana-
logue both build on the idea that inherently geomet-
rical objects, such as amino acids, imply that any res-
ulting PCMnetwork ensemblemodelling them has to
be spatially embedded.

In [35], we introduced a simplified, 2D version of
this geometrically constrained model. It starts from
a closed chain (i.e. a ring) of L unit discs and sub-
sequently adds links, such that connected discs touch,
yet no discs intersect. The advantage of this model
is that it can be approximated by a purely topolo-
gical simplification, which can be treated analytically.
Figure 1 illustrates the construction of the 2Dgeomet-
ric model. The 3D version gives rise to the geometric
constraints directly, rather than through an approx-
imation by means of a topological constraint.

The topological constraints in the resulting net-
work model are: (a) new links always form between
two units that are part of the same face of the graph
(region enclosed by a cycle in the network). This
prevents the overlapping of discs. (b) No links form
across the outer face. This prevents the enclosure of
a unit by less than six other units (which is geomet-
rically impossible) such that (c) the maximum degree
of each unit is six, as six is the maximum number of
unit discs one central unit disc can touch. (d) Once
connected by a link, pairs of units do not disconnect.
In [31], this geometrically constrained model was
extended to 3D spheres using simulations to generate
compact artificial protein-like polymer structures.

3. PCMs and shadow contact maps (SCMs)

For structural data of proteins, we are looking at
two ways of generating PCMs. The first is a straight-
forward cutoff-based contact map, the second is
based on SCMs as introduced by Noel, Whitford
and Onuchic [28]. The complex interaction pattern
between the amino acids in a protein can be naturally
expressed as a network or graph, in which each amino
acid is represented by a node and spatial proximity is
encoded as a link. Whenever two central Cα atoms
are closer together than a threshold dc, they are con-
nected, linked, or in ‘close contact’. These connections
can be determined from the 3D functional or folded
structure of the protein and are encoded in a so-called

Figure 1. (a) The amino acid distance s (green) is defined as
the number of amino acids (AAs) (here represented by a
circle) along the protein backbone chain (black) between
two connected AAs (pink). (b) Shows an example AA
distance of length s= 3 (solid green line). When adding a
new connection from node A, the previously created
connection prohibits new ones (dashed pink lines). The
green dotted link from A is still permitted and can be made.
(c) Shows an example of an existing AS distance s= 7 (solid
green), where there are now more permitted (dotted green)
links and fewer prohibited (dotted pink) ones.

(protein) contact map. This contact map is effectively
an adjacency matrix Astruc

Astruc
ij =

{
0, if di,j > dc or i= j

1, if di,j ⩽ dc.
(1)

Themain idea behind SCMs is a shadowing radius
rS, which defines the size of the amino acids mod-
elled as beads, in addition to the cutoff threshold
dc, which allows some non-physical contacts to be
occluded. Namely, the shadow map excludes next-
nearest neighbour contacts as well as contacts includ-
ing an intervening atom. The SCM is constructed by
first defining all contacts within the cutoff (similar to
the PCM). Then, contacts are removed by consider-
ing if an atom falls within a ‘shadow’ produced by
a second atom screening the light from the centre
of a third atom [28]. Furthermore, contacts in the
SCM are only recorded for distances of |j − i|> 3 for
amino acids i and j.

3.1. Contact maps in a geometrically constrained
protein model
Based on the simple observation that amino acids
are objects in space that cannot overlap indefin-
itely, in [31] we introduced the 3D version of the

3
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Figure 2. (a) RSCB PDB chain length frequencies. Pink bars show protein structures whose chain lengths match the resolution of
the structure accounting for the whole sequence. Only pink RCSB PDB samples were used for the average contact map analysis.
(b) Example of a protein contact map taken from RCSB PDB ID: 3UFG, with a cutoff of 8 Å. Pink squares indicate a contact
present between amino acids. (c) Example of a shadow contact map constructed using an AlphaFold 2 predicted structure
(UniProt ID: Q9PPK3) corresponding to the RCSB PDB structure shown in (b) with a distance cutoff of 8 Å and a shadow radius
of 1 Å.

2D geometrically constrained model. Starting from a
chain of identical spheres, each in contact only with
the neighbours it is connected to, additional connec-
tions aremade by randomly selecting two spheres and
moving them towards each other until they touch.
The new links formed that way cannot be broken in
later steps and function as constraints on subsequent
link formation steps. If the contact of the two selected
spheres is geometrically impossible without break-
ing previously made connections or leading to over-
laps of any spheres, the link is not made and is taken
out of the pool of possible connections. This pro-
cess is repeated until no more links can be formed
without violating the geometric constraints and the
final structure can be expressed as the adjacency
matrix

Asim
ij =

{
1, if |i− j|= 1 or i and j connected

0, otherwise.
(2)

3.2. PCMs from structural protein data
The underlying formation mechanisms of individual
protein folds are incredibly complex and depend on
the surrounding solvent, as well as the specific amino
acid sequence and their interactions. Here, we assess
if the geometrically constrained protein model’s con-
tact map distributions capture real protein behaviour
and make it a viable model for PCMs and provide
a better explanation for the heuristic used by Bartoli
et al [34]. We study the ensemble of PCMs from real
protein structures and will look at ‘averaged’ contact
maps over many different proteins that have differ-
ent amino acid sequences, but their overall sequence
or chain length is the same. We are specifically only
interested in the contact maps and not the kinetics or
folding paths of how the PCM was generated. We use

the RCSB Protein Data Bank (RCSB PDB), a database
of structurally resolved protein amino acid sequences
through x-ray crystallography, nuclear magnetic res-
onance (NMR) or cryo-EM experiments. The RCSB
PDB contains just over 200 000 protein structures to
date [23]. The distribution of protein chain lengths in
theRCSBPDB is illustrated in figure 2(a). These chain
lengths vary from small fragments of less than 10
amino acids to large agglomerates of over 2000 amino
acids. The most frequently occurring chain lengths,
however, are between 100 and 300 amino acids as
shown in figure 2(a). The pink subset of the bar plot
shown in figure 2(a) is the set of structures used
that fulfil the criterion on protein chain lengths of
L≈ 100 (85⩽ L⩽ 115) amino acids, L≈ 200 (185⩽
L⩽ 215) amino acids and L≈ 300 (285⩽ L⩽ 315)
amino acids and represent all RCSB PDB structures
used in our analysis of standard PCMs. The second
database we use consists of synthetically generated
structures using AlphaFold 2 with sequences taken
from SwissProt [41] for both the standard PCM and
SCM analysis. SwissProt is a manually curated data-
base of protein sequences containing over 500 000
protein sequences, whose protein chain length distri-
bution is shown in figure S2 in teal. The pink bars
indicate the subset of AlphaFold 2 structures used
for the second type of contact map analysis using
the SCM. Only AlphaFold 2 per-residue confidence
scores [21] of an average score of 90 or higher were
used. Lastly, we removed structures that described
the same protein but originated from different organ-
isms, by selecting only unique protein names.

For the cutoff-based PCMs, RCSB PDB struc-
tures were downloaded in pdb format, read in with
MDAnalysis version 2.0.0 [42] and only Cα were
selected and used for the analysis. Proteins were cat-
egorised by length and placed into three groups. For
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each of the sequences, all pairwise Cα distances were
calculated, and two atoms were said to be in contact
if their distance was less than 8 Å. See figure S7 of the
supplementary material (SI) for different cutoffs of
the contactmaps. A cutoff of 8Å is a typical value used
in the literature [43]. The contacts (1 or 0) were then
recorded in the adjacency matrix Astruc. An example
of a PCM is shown in figure 2(b).

We used AlphaFold 2 structures for the SCM
approach as experimental PDB files consistently failed
in the preprocessing step to define SCMs when using
SMOG 2 [44] and SCM.jar [28]. As the structures in
AlphaFold 2 are predicted frommachine learning, no
manual editing was required. Manual editing of the
RCSB PDB (10 091 for L≈ 300, table S1 of the SI)
structures which required loop modelling, or adding
side chain information did not seem like a sensible
choice. An example of an SCM is shown in figure 2(c).

We study the distribution of distances between
connected amino acids in real and simulated proteins
calculated from adjacency matrices through PCMs
and SCMs. These distances were then histogrammed
to calculate the mean amino acid distance distri-
butions shown in section 5. The pseudo-algorithms
(algorithm S1 and S2) describing the above two pro-
cesses are shown in the SI. All code for the construc-
tion of the contact maps and their analysis is available
on GitHub at [45]. The derived analytical approxim-
ation in section 4, was used for data fitting. All fits
were carried out using SciPy 1.7.0 and with scripts
for the fits available on GitHub at [45]. The second-
ary structure protein analysis was done using a local
DSSP server [46], and the scripts for the processing
of the DSSP output are available in the same GitHub
repository [45].

4. Analytical approximation for the
geometrically constrained model

To assess how we can best describe the distribution of
the probability of amino acid distances P(s) obtained
from an average PCM for the geometrically con-
strained model, we consider the amino acid distance
distribution for the simplified 2D model as proposed
in [35]. We make the assumption that each distance
is equally likely, from which we propose an analytical
approximation for P(s), derived from the geometric
models, and schematically summarised in figure 1.

We introduce the auxiliary variable Fk(s), defined
to be the number of possible links with an amino acid
distance of s if k links have been added before. Before
any links are added, because we are looking for an
average PCM over the whole proteome restricted to a
particular chain length, we make the assumption that
all amino acid distances are equally likely, so there are
F0(s) = N possibilities of making a link of distance s
each, with 2⩽ s< N

2 .

As we addmore links, not only are links taken out
of this pool, because they have already been realized,
but each existing link can also geometrically prohibit
other connections. Adding a link of length s1 prohibits
2(s− 1) links of length s< s1 and 2(s1 − 1) links of
length s⩾ s1 (see figure 1(b)). To find the expected
number of links still available in the second step, we
average over all possible amino acid distances s1 of the
first link added.

The expected distribution of possible links after
one step is thus given by the average over available link
pools taken over all possible values of s1:

F1(s) =
1

N
2 − 1

N/2∑
s1=2

{
F0(s)− 2(s− 1), for s< s1

F0(s)− 2(s1 − 1), for s⩾ s1

≈ 2

N

N/2∑
s1=2

{
N− 2(s− 1), for s< s1

N− 2(s1 − 1), for s⩾ s1.
(3)

After k− 1 links are made, the probability that
the kth link, being randomly chosen from the pool of
available links, has length s obeys

Pknext(s) =
Fk(s)

Ck
, (4)

where Ck =
∑N/2

s=2 Fk(s). In subsequent steps, we use
this probability to perform a weighted average over
new links being added and get the same reduction
(compare figure 1) but starting from the pool Fk−1(s)
of the step before rather than the initially available N
links. The probability of a link of length s is thus the
average overall added link probabilities from the first
to the last added link. In 2D, this is repeated forN − 3
steps until no more links can be added [35], giving

P(s) =
1

N− 3

N−4∑
k=0

Pknext(s). (5)

However, we must subtract fewer links to account for
some of them having left the pool in earlier steps. To
this end, we multiply the number of blocked links by

Fk−1(s)

F0(s)
= Fk−1(s)

1

N
. (6)

This ignores any length-dependent bias in which
links have been removed. Having considered some
examples this assumption seems to hold well. This
leads to the following recursion:

Fk(s) =

N/2∑
sk=2

Pknext(sk)

(
Fk−1(s)− Fk−1(s)

× 1

N

{
2(s− 1), for s< sk

2(sk − 1)), for s⩾ sk

)
,

5
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which generalizes (3) and simplifies to

Fk(s) = Fk−1(s)

1− 1

N

s∑
sk=2

2(sk − 1)Pknext(sk)

− 1

N

N/2∑
sk=s+1

2(s− 1)Pknext(sk)


= Fk−1(s)

1− 1

N

s∑
sk=2

2(sk − 1)Pknext(sk)

−2(s− 1)

N

N/2∑
sk=2

Pknext(sk)−
s∑

sk=2

Pknext(sk)


and thus:

Fk(s) = Fk−1(s)

(
1− 2

N
(s− 1)+

2

N
s

s∑
sk=2

Pknext(sk)

− 2

N

s∑
sk=2

skP
k
next(sk)

)
. (7)

Together with the initial condition F0(s) = N, this
expression constitutes an iteration rule from which
Fk(s) can be found for all k and s. Aiming to decouple
those dynamics for different s, we make a heuristic
guess P̃knext(sk) for P

k
next(sk). It consists of two separ-

ate approximations which are used in steps k< a and
steps k⩾ a respectively, where the threshold 1⩽ a⩽
N
2 is a free parameter. In the early stage, we use a uni-
form probability

P̃k≪N/2
next (s)≈ Pk=0

next(s) =
2

N
. (8)

For later steps, the probability of a link to still being
in the pool decreases with s. We thus approximate
Pnext(s)with an ansatz for the k−average, namely, that
it drops off as s−1, leading to

P̃k≫1
next (s)≈

N−4∑
k=a

Pknext(s)≈
s−1

H N
2
− 1

, (9)

where H N
2
is the harmonic number serving as a nor-

malization factor. As we will see later, this approxima-
tion holds most precisely for intermediate values of k,
with the k−average of P̃k≫1

next (s)≈ P(s), making it self-
consistent. Errors for smaller and larger values of k are
thought to approximately cancel out. Substituting (8)
and (9) into (7) results in the following two recursions
for the early and late evolution of the amino acid dis-
tance distribution respectively.

Fk≪ N
2
(s)≈ Fk−1(s)

(
1− 2

N
(s− 1)+

4

N2
s(s− 1)

− 2

N2
(s2 + s− 2)

)
= Fk−1(s)(1− flow(s)), (10)

where

flow(s) =− 2

N2
s2 +

(
2

N
+

6

N2

)
s−
(
2

N
+

4

N2

)
,

and

Fk≫1(s)≈ Fk−1(s)

(
1− 2

N
(s− 1)+

2
N
s

s∑
sk=2

1
sk(H N

2
− 1)

− 2
N

s∑
sk=2

sk
1

sk(H N
2
− 1)

)

= Fk−1(s)

[
1−
( 2
N

− 2
N

Hs − 1
H N

2
− 1

+
2

N(H N
2
− 1)

)
s

+
2

N(H N
2
− 1)

+
2
N

]
= Fk−1(s)(1− fhigh(s)), (11)

where

fhigh(s) =
2

N

(
H N

2
−Hs + 1

H N
2
− 1

s−
H N

2

H N
2
− 1

)
.

We can now use the recursive expressions (10)
and (11) to write down a closed expression for Fk(s),
using flow for the first a steps and fhigh for the rest:

Fk(s) = N
a∏

i=1

(1− flow(s))
k∏

i=a+1

(
1− fhigh(s)

)
= N

(
1− flow(s)

1− fhigh(s)

)a (
1− fhigh(s)

)k
. (12)

This can now be used to find an approxima-
tion for the amino acid distance distribution P(s). By
inserting (12) into (5), using (4), we can state that
the probability distribution of the realized amino acid
distances of all added links is then given by the average
over the available pools at each link addition step.

P(s) =
1

N− 3

N−4∑
k=0

Pknext(s)

≈ N

N− 3

(
1− flow(s)

1− fhigh(s)

)a

×
N−4∑
k=0

1

⟨Ck⟩k
(
1− fhigh(s)

)k
(13)

where ⟨Ck⟩k approximates the individual Ck’s as the
average of Ck over k. This approximation allows the
use of the geometric series for solving the equation:

P(s)≈
(
1− flow(s)

1− fhigh(s)

)a
Γ

fhigh(s)
, (14)

where Γ = N
(N−1) ⟨Ck⟩k collects all constant factors

and is used as a free fitting parameter, as the details of
the evolution of Ck, as well as the role of dimension-
ality (3D vs. 2D) are unknown. The resulting expres-
sion in (14) by visual inspection of figure 3 resembles
a power law, thus justifying the earlier approximation
of Pknext(s)≈ P̃knext(s) introduced in (9).
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Figure 3. The analytical approximation fitted to amino acid distance distributions for (a) 2D and (b) 3D simulated data. The pink
area shows the 95% confidence interval. (c) Example of a PCM taken from one of the 3D simulation runs. The pink squares
indicate a contact between two nodes.

5. Results and discussion

Our analysis centres around understanding how the
analytical approximation can be used to understand
the PCMs generated from simulations in 2D and
3D from [31, 35], and protein structural data. We
use RSCB PDB data for the standard PCMs and
AlphaFold 2 data for SCMs. To this end, equation (14)
is used as a fitting function in order to determine the
two parameters Γ and a.

5.1. The analytical approximation fits PCMs
generated from 2D and 3D simulation data
Figure 3 compares (14)with respect to (a) PCMs from
2D and (b) 3D simulation data introduced in [35]
and [31], respectively. Figure 3(c) shows an example
of an adjacency matrix Asim as generated from a 3D
simulation run. The 2D simulation data was gener-
ated from 10 repeats with chain lengths of 498 amino
acids taken from [35]. The 3D simulation data con-
sists of adjacency matrices computed from 30 sim-
ulation runs and was analysed as was explained in
section 3. The amino acid distance distributions are
plotted to show the mean frequencies of each amino
acid distance up to L

2 ∼ 250 and L
2 ∼ 150 for 2D and

3D simulations, respectively. The shaded areas rep-
resent the 95% confidence intervals. The theoretical
approximation from (14) was fitted to both 2D and
3D simulation data separately. The two parameters,
a and Γ in (14), are given in table 1. See table S2 in
the SI for the parameters for 3D simulation data in
the L≈ 100 and L≈ 200 ranges. The fitted approxim-
ation captures the behaviour of the simulation data
well for both 2D and 3D simulations.

5.2. The analytical approximation can describe the
amino acid distance distributions of structural
data frommany proteins
To understand how the ensemble of ‘real-world’
PCMs behave and how the standard PCM and SCM
distributions compare we looked at data both from
the RCSB PDB and AlphaFold 2. See the SI for a

Table 1. Fit parameters from fitting the analytical approximation
to the 2D simulated data as well as the 3D simulated data in the
L≈ 300 chain length range.

Simulation a Γ (10−3)

2D 6± 1 0.3± 0.1
3D 300 1± 1 7.0± 0.2

detailed validation using the Kolmogorov–Smirnov
statistics of how the AlphaFold 2 amino acid distance
distributions have the same underlying distribution
as RCSB PDB data when using mean confidence
scores of 90% or more (see figure S4). The num-
ber of structures used for the analysis in each chain
length range is shown in table S1 of the SI for both
RCSB andAlphaFold 2 data. All RCSBPBD structures
were converted into PCMs, as described in section 3.
From the PCMs we computed the amino acid dis-
tance distribution in the same way as was done for the
3D simulations. All AlphaFold 2 structures were pro-
cessed and converted to the SCM-derived adjacency
matrix.

In the first instance, we investigated if the amino
acid distance distribution from the structural data
from the RCSB PDB can be modelled by the analyt-
ical approximation. In order to answer this, we look
at the scaling of the distribution of RCSB PDB data in
the first instance.

Figure 4(a) shows the distributions of the amino
acid distances for RCSB PDB logarithmically scaled
for the different protein chain lengths of L≈ 100
(light purple circles), L≈ 200 (medium purple
squares), and L≈ 300 (palatinate triangles). For all
three lengths, the distributions show an approximate
power law decay in their tail, which is consistent with
the simulated results.

Moreover, we fit the analytical approximation to
the RCSB PDB amino acid distance distribution in
figure 4(b) in the L≈ 300 range. The theoretical fit
is represented by a solid black line. The parameters
given by the analytical approximation are a= 4± 1

7
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Figure 4. (a) Amino acid distance distributions for contact maps derived from the RCSB PDB database for protein chains in the
ranges of L≈ 100, L≈ 200, and L≈ 300 amino acids. (b) Amino acid distance distributions of RCSB PDB for protein chains in
the L≈ 300 range. The analytical approximation (solid line) is fitted to the tail of the data. The pink shaded area shows a 95%
confidence level. (c) Secondary structure content distribution in the RCSB PDB structures in the L≈ 300 chain length range. The
solid lines show the probability density function of the secondary structure content plotted with SciPy v.1.10.0. The scatter points
show every 10th individual data point of secondary structure content in each structure in this length range. (d) Comparison
between the amino acid distances from RCSB PDB and distances obtained from AlphaFold 2 using the SCM [28]. The light green
triangles show the distribution of amino acid distances for a regular cutoff map with shadow radius of 0 Å and the dark squares
show the distribution with a shadow radius of 1 Å.

and Γ = (7.4± 0.8) · 10−4. The shaded area shows a
95% confidence level (C.L.). Similar fits for L≈ 100
and L≈ 200 results as well as amino acid distance
distributions obtained from AlphaFold 2 structures
are presented in figures S5(a), (b) and S3 of the SI,
respectively.

We observe that for intermediate values of s, i.e.
30≲ s≲ L

2 , the distributions are described well by the
analytical approximation. However, the curves devi-
ate for amino acid distances in the 5≲ s≲ 30 range
(see figure 4(b)). Comparing this to the simulation
distributions and their theoretical fits (figure 3), we
see an under-representation of amino acid distances
calculated from PCMs from RCSB PDB data.

To understand this under-representation better,
we looked at the secondary structure content of the
PCMs. The reasoning behind this is that the range
in which the under-representation is observed is at a
specific distance range, where contacts arise from the
proteins’ secondary structure elements. In figure 4(c),
we show the secondary structure content distribu-
tions for proteins in the L≈ 300 chain length range
from RCSB PDB. We see that proteins mostly con-
tain secondary structures in the combined α-helix—
β-sheet region. For protein chain length regions of
L≈ 100 and L≈ 200 proteins with predominantly α
and β-sheet regions exist, are shown in figures S5(c)
and (d) of the SI, respectively.

8
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Therefore we next looked at different thresholds
used that define a contact between two amino acids.
We changed the threshold value dc from the original
8 Å to 10, 15 and 21 Å, see figure S4 in the SI.
For 10 Å, the shape of the distribution was similar
to that of in figure 4(b), but for 15 Å the under-
representation starts to disappear, whereas for 21 Å
it disappears almost completely. It is thus likely that
with a threshold of 8 Å some inter-secondary struc-
ture contacts are being excluded, e.g. for large β-
sheet content. Tuning this threshold value allows for
themodulation of the under-representation of amino
acid distances in the 5≲ s≲ 30 region. Compared to
simulations where this is not observed due to the neg-
lect of the existence of secondary structure.

Next we wanted to understand if a different
definition of the PCM, namely using the SCMs will
give a different overall behaviour. Figure 4(d) shows
a comparison of amino acid distance distributions
obtained from the PCMs and from the SCMs [28].
The SCM distributions were obtained from 6231
structures obtained from the AlphaFold 2 database in
the L≈ 300 chain length range.

Figure 4(d) shows the RSCB PDB distribution in
palatinate circles and the AlphaFold 2 SCM distribu-
tion with a shadow radius of rS = 1 Å in dark green
squares. In addition, we plot a ‘standard’ contact map
with the AlphaFold 2 structures obtained from the
SCM by setting the shadow radius to rS = 0 Å. At the
shorter distances of s≈ 7, the SCMs seem to produce
more contacts than the PCM, but otherwise, the dis-
tributions overlap almost entirely. It is likely that the
occlusion of contacts mostly only affects the shorter
distances, as Noel, Whitford and Onuchich also sug-
gest [28], and does not affect the intermediate dis-
tances, on which our analytical analysis is focused.

6. Conclusion

The tertiary structures of folded proteins have long
been one of themost important mysteries of biophys-
ics. While for individual structures, detailed molecu-
lar dynamics or statistical models are essential in
approaching these questions, general statements for
the ensemble of folded proteins can be made with
much simpler models.

Here, we introduced and analysed the amino acid
distance s and its probability distribution P(s) for
both real-world and geometrically constrainedmodel
simulations. For the equivalent model in 2D, we have
used a mean-field approach to derive an analytical
approximation for the amino acid distance distri-
bution P(s), and we show its agreement with the
simulated geometrically constrained folding model
andmeasured distributions from real-world proteins.
Thereforewe demonstrate that the geometrically con-
strained model’s amino acid distance distribution
P(s) can match real-world data well. In addition, the
derived analytical approximation can serve as a good

basis to model and generate protein-like adjacency
matrices as was done in [34]. It also highlights that
the proposed heuristic of P(s)≈ s−1 is a good starting
point to describe amino acid distance distributions.
However, here we managed to derive a more broad
approximation for which a power law can be seen as
a special case (14).

Gaining a better understanding of the ensemble
of folded protein structures can help guide the way
to a better understanding of the constraints within
which structures may occur. Together with an under-
standing of secondary structure principles, such as
that in [38, 39], this can help to narrow down the
complex energy landscapes and find paths through
them more effectively in the future.
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