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ABSTRACT

It is widely assumed that C-Band Synthetic Aperture Radar
(SAR) signal do not reach the forest floor in dense forests, and
that hence C-Band SAR cannot be used for sub-canopy flood
mapping in tropical forests. Indeed, flooded and non-flooded
forests are not distinguishable in single C-Band acquisitions.
The question is whether long-term seasonal dynamics in C-
Band SAR time series data encode flooding dynamics under-
neath the canopy. In this paper we investigate the relationship
of Sentinel-1 backscatter with sub-canopy flooding in the
Amazon rain forest. We use the Empirical Mode Decompo-
sition to extract annual modes in the backscatter signal and
use the correlation to the water level of a nearby river to
understand the dynamics of the Sentinel-1 signal. Clusters of
these correlations coincide well with known forest flooding
areas in the VH signal. The analysis shows that the Sentinel-1
C-Band backscatter is influenced by floodings underneath the
canopy in the Amazon rain forest. The presented approach
could allow to systematically map flooded areas throughout
tropical rain forests.

I. INTRODUCTION

The lower Amazon basin floodplain forests are dominated by
an annual flood pulse from the Andes to the Atlantic ocean
which leads to large floodings under the forest [1]. L-Band
Synthetic Aperture Radar (SAR) is suitable for detecting these
floodings even in single acquisitions [2] due to its longer
wavelength penetrating through forest canopy. Flooding is
assumed not to influence the C-Band SAR backscatter signal
and has been shown to be temporally invariant over tropical
rain forest in copolarized RADARSAT-1 and ERS-1/2 data [3].
These results have been confirmed by radiative transfer models
but they assumed that the cross-polarized data is influenced
by changes in the canopy only [4]. Consequently, the Amazon
rain forest is assumed to appear as a homogeneous scatterer
for the calibration and validation of C-Band SAR systems [5],
[6], [7]. With Sentinel-1 we now have time series in high
spatial resolution based on C-Band SAR, both in co- and cross-
polarisation.

Flooded Forest Mapping with Radar in the Amazon

According to the literature review by Tsygantskaya et al. [8] on
flooded vegetation mapping with SAR, the majority of studies
use single time steps. A broad consensus is that only longer
wavelengths like L-Band or P-Band are able to penetrate the
dense forest canopy of the Amazon rainforest to induce a
double bounce between tree trunks and water surface [9],
[10], [11], [12]. According to several references, C-Band data,
instead, should only be used for flooded forest mapping in
sparse vegetation and leaf-off situations [13], [2]. Therefore,
flooded forest mapping studies in the Amazon Basin have
indeed mostly used L-Band SAR data [14], and L-Band HH
has worked best for detecting flooded Amazon rainforest [15],
[16].

Flooded Forest Mapping with C-Band SAR

So far, C-Band SAR backscatter has been used to detect flood-
ing under sparse temperate forests [17], [18], [19]. According
to Townsend et al. 2002 [19] the detection of flooded forests
depends only on the basal area and the height to the bottom
of the canopy and not on other forest structure parameters
like the canopy density or the leaf area index. Haarpaintner
and Hindberg (2019) [20] compared L-Band and C-Band data
for the classification of different wetland classes and found
that L-Band is better suited for the delineation of flooded
forest, but they suggested that the dense time series of C-
Band SAR backscatter may compensate for the shallower
vegetation penetration depth. Slagter et al. [21] used multi-
temporal statistics to map different wetland classes - but they
were not able to map flooded forests and stated that more
sophisticated time series methods are needed for the analysis
of Sentinel-1 time series.

Schlaffer et al. [22] analysed a time series of Envisat ASAR
backscatter signals of 100 time steps over two years to map
wetland classes and soil moisture dynamics. They distin-
guished between permanent water, seasonally flooded, per-
manent flooded vegetation, seasonally flooded vegetation and
land. For this classification they decomposed the time se-
ries into subsignals with different temporal frequencies using
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Fig. 1. Workflow of this paper. First we produced a preprocessed Sentinel-1
backscatter time series from GRD data. This time series has been decomposed
into fast, annual and trend components. For the further analysis we only used
the annual frequency component. Then we correlated the time series of every
pixel against the time series of a gauge level at the nearby river as a flood
seasonality proxy.

Fourier analysis. They found a clear seasonality due to flood-
ing only for non-vegetated or sparsely vegetated land cover
classes.

In summary, while C-Band SAR data has been used for flood
mapping under temperate forests, its application for forest
flood mapping in the tropics is rarely explored. Time series
analysis using decomposition has shown to be a promising
approach to derive seasonality from SAR data [22].

In this study we hypothesize that C-Band SAR data is not
homogeneous in space and time over seasonally flooded Ama-
zon forests, and that flooding patterns can be properly retrieved
from Sentinel-1 time series. However, like [22] we also assume
that a decomposition into discrete temporal frequencies is
needed to extract the dynamics of interest, which otherwise
might be hidden in a low signal-to-noise ratio. However, it has
also been suggested that highly data adaptive decomposition
methods shall be preferred for satellite remote sensing appli-
cations in order to address non-linearities in the underlying
dynamics [23]. One relevant approach is Empirical Mode
Decomposition (EMD)[24], a fully data driven alternative to
the Fourier transform. EMD is able to identify subsignals
even in the presence of changing amplitudes and frequen-
cies, allowing to summarize complex temporal dynamics in
a few components. In this study, we compare seasonal signals
identified via EMD in Sentinel-1 data with the water levels
of a nearby river to test whether flooding-induced signal
seasonality can be identified. Our aim is to understand how
well this approach distinguishes seasonally flooded from non-
flooded forests compared to using the original signal.

II. METHODS

In this paper we analyse time series of Sentinel-1 Ground
Range Detected (GRD) data. We first preprocessed the data
to radiometrically terrain corrected gamma naught (γ0

T ) time
series (see section III-B for details). Then we decomposed the
backscatter time series using Empirical Mode Decomposition
(EMD) (section II-A) into three sub signals with a high (sub-
seasonal), annual, and low (inter-annual) temporal frequency
(section II-B). We correlate seasonal sub signals with river
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Fig. 2. Frequency binning of the Intrinsic Mode Functions into Fast, Annual
and Trend bins for two example time series. The annual signal might be in
different IMFs, therefore we perform the frequency binning. The derived IMFs
are on the left and are coloured according to their frequency classification.
Identically coloured time series on the left side are summed together to
compute the signals on the right. The sum of the different frequency signals
(B), (C) and (D) return the original signal (A).

water level data over known areas of seasonally flooded and
non-flooded forests to determine whether extracted signatures
can capture flooding seasonality. See Figure 1 for an overview
of the workflow of this paper.

A. Empirical Mode Decomposition

We applied the Empirical Mode Decomposition (EMD) [24]
to decompose the backscatter time series into subsignals. This
method has been previously used to filter unwanted effects
from both optical remote sensing data [25], [26], but also from
C-Band SAR data [27], [28]. EMD is an alternative to the
Fourier transform without having to set an a priori base for the
decomposition. EMD works via sifting the signal by selecting
the dominant mode. To do that we follow these steps:

1) Find the local extrema
2) Interpolate a smooth function through the local minima

and maxima respectively.
3) Compute the average of these two interpolations. This

is the mean of the envelope.
4) Subtract this mean envelope from the original signal.
5) Repeat the first four steps with the residual of the

subtraction. These siftings are done until either the mean
envelope is zero or the number of local maxima and
minima differ at most by one and is fix for multiple
iteration steps.

The resulting time series is called an intrinsic mode function
(IMF) and we can subtract this from the original data and
repeat the sifting process. By doing that we decompose the
signal into multiple IMFs. Figure 2 (a-g) show the IMFs
for two example time series. The IMFs have the following
properties:
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1) the number of local maxima and zero crossings differ at
most by one

2) the local maxima are positive
3) the local minima are negative.

The IMFs are ordered by temporal frequency in descending
order. The IMFs do not have to be physically meaningful by
themselves [24], as the decomposition could be too finely
grained or the resulting IMFs could be a mixture of mul-
tiple frequencies. To combine all IMFs containing seasonal
information into one seasonal subsignal, next we applied a
frequency binning approach.

B. Frequency Binning

We implement a frequency binning approach to derive fast,
annual and trend subsignals of our Sentinel-1 time series
data. To classify the frequency of an IMF we first detect
the local maxima. Then we compute the time spans between
subsequent local maxima. We sort these time spans into bins
by selecting every signal which has a time span of 295 to
435 days as annual signals. Every shorter span is classified
as fast and every longer span is classified as trend. We then
classify the IMF as either fast, annual, or trend according to
the maximal number of classifications of the distance between
local extrema. The final fast, annual and trend time series are
the sum of the so classified IMFs. For most pixels, IMF 5
represents the annual frequency but for some pixels this IMF
is classified as a slow moving trend signal, see figure 2 for
the frequency binning of two example time series.

C. Correlation Analysis

To analyse the relationship between the Sentinel-1 SAR signal
and the flooded forest, we compute the pearson correlation
between the water level of the nearby river and the time
series signal. The flood occurrence in the surrounding forests
is driven by the water height of the river. Therefore, this
correlation can be interpreted as a proxy for the seasonality
of the SAR signal which is concurrent with the seasonality of
the flood occurrence.

We test the significance of the correlation with a p-value of
0.05. Because we have more than 45 million time series, we
control for this multiple testing following the methodology
proposed by Cortés et al. (2021) [29]. This ensures that
the probability of observing one false positive in all of our
results is limited to 5%. The method is permutation based,
and we use the block shuffle method (block size = 7) of the
TimeseriesSurrogates.jl package [30] to generate permutations
with similar temporal autocorrelation of the water gauge level
data.

III. TEST SITE AND DATA SETS

A. Test site

The test site is located at the Juruá river, a southern tributary
of the Amazon main stem. The region has a mean annual
precipitation of 3679mm measured over a three year period
(2008 to 2010) [31] and a mean annual temperature of 27 °C.

Fig. 3. Area of interest at the Juruá river. The flooding references have been
generated from L-Band acquisitions. Background Image: MapTiler Satellite.
Reserva Extrativista do Medio Juruá © Openstreetmap contributors.

The rainy season lasts from November to April and the non-
rainy season from May to October. The humidity ranges from
92% to 98% and peaks from January to April. The Juruá
river is subject to an annual mono-modal flood pulse, which
originates in the Andes. The flood pulse is asynchronous to
the precipitation and begins six weeks after the start of the
rainy season. The water level varies by 15m between high
and low water in normal conditions and the peak is reached
three weeks after the start of the flood pulse. The elevation
of the region ranges from 65m to 170m above sea level. For
smaller tributaries of the Juruá the flooding is driven by local
precipitation. This leads to less predictable flooding patterns
[31]. At certain water levels, the overflow of levees can lead
to rapid flooding of cut-off lakes and depressions in the flood
plain.

In this study we differentiate between floodplain forests and
the non-flooded upland forest (terra firme). The floodplain
forest and the terra firme forest both have low levels of leaf fall
and leaf flush throughout the year with a marked seasonality.
The leaf fall peaked in both forest types in March to April
and leaf flush peaked in March in floodplain forests, but was
temporally more stable in terra firme. Floodplain forest has a
higher amount of fine woody litter - like twigs, branches and
bark - in the leaf traps compared to terra firme forest. Peaks in
leaflessness - when one to two percent of the trees are leafless
- occur in June for the floodplain forest and in September in
terra firme forests [31].

B. Sentinel-1 Data

We processed the Sentinel-1 data with the workflow described
in [32] as implemented in the pyroSAR python package
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[33]. The preprocessing includes thermal noise and border
noise removal, calibration, multilooking, radiometric terrain
correction and geocoding to a 30m pixel spacing. We use a
stack of 100 Sentinel-1 acquisitions from October 2016 until
February 2020 from the descending orbit number 127. The
acquisitions have a temporal resolution of 12 days with a few
gaps in the time series.

C. Reference Data

As reference for the flooding occurrence we use a land cover
map based on 12 PALSAR ScanSAR acquisitions from 2006
to 2009 with 100m pixel spacing [34]. The map was produced
at 30m pixel size. To avoid mixed backscattering contributions
from different classes and to address potential geolocation
inaccuracies, we use only inner polygons with a buffer size of
90 meters. The classification distinguishes between floodplain
forests with different flooding period lengths and terra firme as
well as open water areas and non-forest areas. The map covers
the main floodplain and the two tributaries from the south. The
water level imaged range from 31 cm to 1458 cm [34]. For
the visual inspection in Figure 7, we use a water inundation
duration map produced from a PALSAR-2 (L-Band) HH time-
series where flooding timing was combined with the Gavião
water gauge to determine the mean flood duration [35].

For the water level of the Juruá river, which flows through our
area of interest, we used the water height information at the
Gavião station in Carauarı́ [36]. The water level reaches up
to 18 meters above the lowest measurement during the study
period. The blue line in Figure 6 shows the water level time
series of this station.

IV. RESULTS

To test whether flooding below dense forest canopy can be
detected in the Amazon using Sentinel-1 C-Band backscatter
time series, we first compare time series of known seasonally
flooded and non-flooded regions against the water level of
the nearby river. We then analyse, whether the patterns in the
averaged time series can also be extracted on the pixel level to
differentiate between flooded and non-flooded forests.

Figure 6 shows the time series of spatial averages for the VH
and VV data for seasonally flooded and non-flooded forests.
In the spatial average of frequently flooded areas there is a
seasonality in the Sentinel-1 time series which corresponds to
the seasonality of the water level of the nearby river system,
which is not visible in the non-flooded forest. This seasonality
is more pronounced on the VH data. If such an aggregated
pattern emerges, it must be also contained in single pixel time
series, even if hardly visible due to very low signal-to-noise
ratios.

In the RGB of Sentinel-1 data for different time steps in VH
(Figure 4 (a)) and VV (Figure 5 (a)) there are no distinct
spatial features visible except for the permanent open water
areas in black and the recurrently flooded open areas in red.
There seems to be a slight shift in the texture in the VH
data (Figure 4) between the southeastern part of the area

Fig. 4. Comparison of different ways to detect the heterogeneity in the
Sentinel-1 VH data. (A): RGB composite of original acquisitions during low,
median and high water levels (B): RGB composite of different temporal
statistics (C): Correlation of the water level to the original Sentinel-1 VH
time series (D): Correlation of the water level to the annual Sentinel-1 VH
time series. The colormap represents the color scale of the correlation maps
(C) and (D).

and the areas closer to the main stem of the river. This
texture is more pronounced in the RGB of the temporal mean,
5th and 95th percentile (Figure 4 (b)) but it is not clearly
distinguishable.
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Fig. 5. Comparison of different ways to detect the heterogeneity in the
Sentinel-1 VV data. (A): RGB composite of original acquisitions during
low, median and high water level (B): RGB composite of different temporal
statistics (C): Correlation of the water level to the original Sentinel-1 VV time
series (D): Correlation of the water level to the annual Sentinel-1 VV time
series. The colormap represents the color scale of the correlation maps (C)
and (D).

Fig. 6. Temporal box plot comprised of the spatial mean as colored line
and the 25th to 75th percentiles as shaded areas example reference areas
of seasonally flooded forest (left) and non-flooded forest (right). The blue
line depicts the water level at the Gavião station. The Sentinel-1 VH (top)
time series show a seasonality in the flooded forest which corresponds to the
seasonality of the water level. In the Sentinel-1 VV (bottom) time series there
is a small seasonality in the spatial mean. The non-flooded forest does not
show such seasonality.

A. Frequency Binning of Sentinel-1 data

B. Correlation maps

Figures 4/5 (c) and (d) illustrate the correlation between the
water level and the S1 signal for a small subset of the area
of interest. Areas at the edge of the river show a consistent
negative correlation to the water level in both polarisations.
The VH original signal already shows a distinction of the
flooded and non-flooded areas with a low but spatially consis-
tent significant correlation to the water level. In the correlation
for the extracted annual VH data the clusters of significant
correlation are denser and the correlation values are higher, but
there are more random small clusters at the edge of the image.
The VV data shows only few areas of positive correlation
with the water level in the original data. In the annual
signal positive correlated pixels are randomly distributed over
the whole image and no clear distinction between flooding
regimes is visible. Taken together, flooding regimes are better
distinguished in the VH signal.

Figure 7 shows the comparison of the L-Band based inunda-
tion length map and the significant correlation between the
Sentinel-1 VH annual data and the water level. There is a
good agreement between the longer flooded areas and the
correlation. The edge between the flooded and non-flooded
areas in the north west is also clearly distinguishable in the
correlation map.

We show the correlation between the water level and the
Sentinel-1 VH annual signal for the whole area of interest in
Figure 8. We identify a broad band of high correlation around
the river. This is surrounded by areas of sparser significant
correlation patterns which are mostly non-flooded forest. In the
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Fig. 7. Classification of the average annual inundation length based on L-
Band data (top) [35] Map of the temporal correlation between the gauge water
level and the Sentinel-1 VH annual signal (bottom). The positive correlations
are clustered near the river and show a generally good overlap with the flooded
forests with a yearly inundation length of more than 90 days.

southeast of the area there is some region of higher correlation
values in single pixels which is not linked to a nearby river. In
the northwest, we see small river bands which are tributaries
of the next large river system.

V. DISCUSSION

First, we discuss the differences of the results obtained based
on VH and VV data. Second, we discuss the effect of the
derived annual signal in the correlation with the water level.
Third, we discuss possible explanations for the emerging
detection potential of sub-canopy floodings in the C-Band VH
data.

One question is why we find denser correlation patterns
between the seasonal Sentinel-1 signal with the observed water
levels compared to the original data as seen in Figure 4
and 5 (c) and (d). This effect can be partly explained by
the denoising of the signal by removing the fast oscillating
parts of the original signal, which enhances the underlying
seasonality. In fact, small rivers in the northern part of the
area of interest are visible in the VH correlation results for
the annual signal (Figure 8. However, the denoising also leads
to a higher number of false positives which cannot be fully
removed by the multiple testing correction leading to the noisy
appearance of the correlation map of the annual signal.

The small areas with large negative correlation in the middle
of figures 4 and 5 (c) and (d) are pixels of open areas near the
river which are flooded during high water and therefore have
a drop in backscatter. These areas are also visible in the RGB
of the original data as small reddish lines at the river edge
and as purple in the multi temporal statistics. The visibility in
the RGB maps implies a huge change in backscatter between
flooded and non-flooded states (Figure 4 and 5 (a).

We see a clear difference in the correlation to the water level
for seasonally flooded compared to non-flooded forest areas
in the Sentinel-1 VH but not in the VV signal. In the VH
signal there are clusters around the river of high correlation to
the water level which indicate that these high correlations are
coming from the common driver of being flooded. The cor-
relation results in VH (Figure 7) (show very similar edges as
the reference areas which have been retrieved from PALSAR-
2 L-Band data. In the VV signal these clusters are not visible
(Figure 5. Therefore, the backscatter behaviour of flooded
forest is different to the forest in the non-flooded state in the
VH signal. The correlation with the water level of the Juruá
river can be interpreted as an indicator for seasonality, because
the water level has a yearly seasonality.

We see two possible explanations for this higher seasonality in
the VH data in flooded forests. Either a direct interaction of the
radar signal with the water surface beneath the canopy or an
indirect effect induced by the flooding. The first explanation
could be that the VH signal increases during flooding due
to a double bounce between the stems and the water surface,
which is then depolarized on the way back through the canopy.
This would be a direct measurement of the flooded state and
would indicate that the water surface is reached by the C-Band
signal. There is a relationship between C-Band HH data and
inundation under the forest and unexpectedly forest structure
parameters like leaf area index, canopy height and canopy
closure did not show a statistically significant influence on
this relationship [37]. A second explanation could be that the
standing water underneath the canopy might change the water
content in the canopy. Possible drivers might be transpiration,
and therefore a higher water pressure in the leaves, or higher
evaporation from the water below the canopy which is then
captured on the leaves. There could also be a structural change
in the canopy density during the flooding period. There is only
a small seasonality of the leaves in the dominant tree species
[31], which should not be high enough to explain the changes
in the SAR signal.

VI. CONCLUSION AND OUTLOOK

Our analysis revealed seasonality in cross-polarized Sentinel-1
data over floodplain forests in the Amazon. This is in contrast
to the use of the Amazon rainforest as an homogeneous
scattering area with medium backscatter intensity for the
calibration and validation of C-Band SAR data [38], [6]. It
is therefore advisable to check how much this spatiotemporal
heterogeneity would influence the calibration and validation
results over the Amazon rain forest. These results affirm that
for validation and calibration studies for cross polarized C-
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Fig. 8. Correlation between the gauge water level and the annual Sentinel-1 VH signal for the whole area of interest after applying the multiple testing
correction. The river is surrounded by a distinct band of higher correlation values. The open water areas near the river are visible as negative correlations.
Except for the open water areas, the whole area is covered in dense tropical rain forest.
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Band data such as Schmidt et al. (2020)[5], it is advantageous
to circumvent the use of larger river systems.

This study furthermore illustrates the possibility of detecting
flooding events in the presence of dense forest canopy using
Sentinel-1 C-Band backscatter time series. For further devel-
opment of a flooded forest mapping product from Sentinel-1
time series, it would be valuable to employ clustering and
texture analysis methods. Further research is also needed to
explain in detail the source of the seasonality in the Sentinel-
1 VH time series. This would require e.g. in situ measurements
of the water content inside the canopy and measurements of
the structural parameters of the canopy to refute the indirect
explanation of the influence of the flooding on the Sentinel-1
backscatter time series.
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SOFTWARE

The analysis of this paper has been done in the Julia program-
ming language [39]. We used the YAXArrays.jl package for
the handling of the raster data cube [40] and the Figure 3 has
been set in QGIS [41] and Figures 2 to 8 have been plotted
in Makie.jl [42].

REFERENCES

[1] W. J. Junk, M. T. F. Piedade, J. Schöngart, M. Cohn-Haft, J. M.
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