
Logical Methods in Computer Science
Volume 18, Issue 4, 2022, pp. 2:1–2:30
https://lmcs.episciences.org/

Submitted Jun. 20, 2021
Published Oct. 21, 2022

GENERAL DECIDABILITY RESULTS

FOR ASYNCHRONOUS SHARED-MEMORY PROGRAMS:

HIGHER-ORDER AND BEYOND

RUPAK MAJUMDAR, RAMANATHAN S. THINNIYAM, AND GEORG ZETZSCHE

Max Planck Institute for Software Systems (MPI-SWS), Paul-Ehrlich-Straße, Building G26, Kaiser-
slautern, Germany 67663.
e-mail address: {rupak,thinniyam,georg}@mpi-sws.org

Abstract. The model of asynchronous programming arises in many contexts, from low-
level systems software to high-level web programming. We take a language-theoretic
perspective and show general decidability and undecidability results for asynchronous
programs that capture all known results as well as show decidability of new and important
classes. As a main consequence, we show decidability of safety, termination and boundedness
verification for higher-order asynchronous programs—such as OCaml programs using Lwt—
and undecidability of liveness verification already for order-2 asynchronous programs. We
show that under mild assumptions, surprisingly, safety and termination verification of
asynchronous programs with handlers from a language class are decidable iff emptiness
is decidable for the underlying language class. Moreover, we show that configuration
reachability and liveness (fair termination) verification are equivalent, and decidability of
these problems implies decidability of the well-known “equal-letters” problem on languages.
Our results close the decidability frontier for asynchronous programs.

1. Introduction

Asynchronous programming is a common way to manage concurrent requests in a system. In
this style of programming, rather than waiting for a time-consuming operation to complete,
the programmer can make asynchronous procedure calls which are stored in a task buffer
pending later execution. Each asynchronous procedure, or handler, is a sequential program.
When run, it can change the global shared state of the program, make internal synchronous
procedure calls, and post further instances of handlers to the task buffer. A scheduler
repeatedly and non-deterministically picks pending handler instances from the task buffer
and executes their code atomically to completion. Asynchronous programs appear in many
domains, such as operating system kernel code, web programming, or user applications on
mobile platforms. This style of programming is supported natively or through libraries
for most programming environments. The interleaving of different handlers hides latencies

Key words and phrases: Higher-order asynchronous programs, Higher-order recursion schemes and
Decidability.

An abridged version of this paper appeared in TACAS 2021; missing proofs have been added to create
this version.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-18(4:2)2022
© R. Majumdar, R. S. Thinniyam, and G. Zetzsche
CC© Creative Commons

ar
X

iv
:2

10
1.

08
61

1v
4

 [
cs

.F
L

]
 2

0
O

ct
 2

02
2

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

2:2 R. Majumdar, R. S. Thinniyam, and G. Zetzsche Vol. 18:4

of long-running operations: the program can process a different handler while waiting for
an external operation to finish. However, asynchronous scheduling of tasks introduces
non-determinism in the system, making it difficult to reason about correctness.

An asynchronous program is finite-data if all program variables range over finite domains.
Finite-data programs are still infinite state transition systems: the task buffer can contain
an unbounded number of pending instances and the sequential machine implementing an
individual handler can have unboundedly large state (e.g., if the handler is given as a
recursive program, the stack can grow unboundedly). Nevertheless, verification problems for
finite-data programs have been shown to be decidable for several kinds of handlers [SV06,
JM07, CV07, GM12]. Several algorithmic approaches have been studied, which tailor to
(i) the kinds of permitted handler programs and (ii) the properties that are checked.

State of the art. We briefly survey the existing approaches and what is known about the
decidability frontier. The Parikh approach applies to (first-order) recursive handler programs.
Here, the decision problems for asynchronous programs are reduced to decision problems over
Petri nets [GM12]. The key insight is that since handlers are executed atomically, the order
in which a handler posts tasks to the buffer is irrelevant. Therefore, instead of considering
the sequential order of posted tasks along an execution, one can equivalently consider its
Parikh image. Thus, when handlers are given as pushdown systems, the behaviors of an
asynchronous program can be represented by a (polynomial sized) Petri net. Using the
Parikh approach, safety (formulated as reachability of a global state), termination (whether
all executions terminate), and boundedness (whether there is an a priori upper bound on
the task buffer) are all decidable for asynchronous programs with recursive handlers, by
reduction to corresponding problems on Petri nets [SV06, GM12]. Configuration reachability
(reachability of a specific global state and task buffer configuration), fair termination
(termination under a fair scheduler), and fair non-starvation (every pending handler instance
is eventually executed) are also decidable, by separate ad hoc reductions to Petri net
reachability [GM12]. A “reverse reduction” shows that Petri nets can be simulated by
polynomial-sized asynchronous programs (already with finite-data handlers).

In the downclosure approach, one replaces each handler with a finite-data program that
is equivalent up to “losing” handlers in the task buffer. Of course, this requires that one
can compute equivalent finite-data programs for a given class of handler programs. This
has been applied to checking safety for recursive handler programs [ABQ09]. Finally, a
bespoke rank-based approach has been applied to checking safety when handlers can perform
restricted higher-order recursion [CV07].

Contribution. Instead of studying individual kinds of handler programs, we consider
asynchronous programs in a general language-theoretic framework. The class of handler
programs is given as a language class C: An asynchronous program over a language class C
is one where each handler defines a language from C over the alphabet of handler names,
as well as a transformer over the global state. This view leads to general results: we can
obtain simple characterizations of which classes of handler programs permit decidability. For
example, we do not need the technical assumptions of computability of equivalent finite-data
programs from the Parikh and the downclosure approach.

Our first result shows that, under a mild language-theoretic assumption, safety and
termination are decidable if and only if the underlying language class C has a decidable

Vol. 18:4 DECIDABILITY FOR ASYNCHRONOUS SHARED-MEMORY PROGRAMS 2:3

emptiness problem.1 Similarly, we show that boundedness is decidable iff finiteness is
decidable for the language class C. These results are the best possible: decidability of
emptiness (resp., finiteness) is a requirement for safety and termination verification already
for verifying the safety or termination (resp., boundedness) of one sequential handler call.
As corollaries, we get new decidability results for all these problems for asynchronous
programs over higher-order recursion schemes, which form the language-theoretic basis for
programming in higher-order functional languages such as OCaml [Kob09, Ong15], as well
as other language classes (lossy channel languages, Petri net languages, etc.).

Second, we show that configuration reachability, fair termination, and fair starvation
are mutually reducible; thus, decidability of any one of them implies decidability of all of
them. We also show decidability of these problems implies the decidability of a well-known
combinatorial problem on languages: given a language over the alphabet {a, b}, decide if it
contains a word with an equal number of as and bs. Viewed contrapositively, we conclude
that all these decision problems are undecidable already for asynchronous programs over
order-2 pushdown languages, since the equal-letters problem is undecidable for this class.

Together, our results “close” the decidability frontier for asynchronous programs, by
demonstrating reducibilities between decision problems heretofore studied separately and
connecting decision problems on asynchronous programs with decision problems on the
underlying language classes of their handlers.

While our algorithms do not assume that downclosures are effectively computable, we
use downclosures to prove their correctness. We show that the safety, termination, and
boundedness problems are invariant under taking downclosures of runs; this corresponds to
taking downclosures of the languages of handlers.

The observation that safety, termination, and boundedness depend only on the down-
closure suggests a possible route to implementation. If there is an effective procedure to
compute the downclosure for class C, then a direct verification algorithm would replace all
handlers by their (regular) downclosures, and invoke existing decision procedures for this
class. Thus, we get a direct algorithm based on downclosure constructions for higher-order
recursion schemes, using the string of celebrated recent results on effectively computing the
downclosure of word schemes [Zet15, HKO16, CPSW16].

We find our general decidability result for asynchronous programs to be surprising.
Already for regular languages, the complexity of safety verification jumps from NL (NFA
emptiness) to EXPSPACE (Petri net coverability): asynchronous programs are far more
expressive than individual handler languages. It is therefore unexpected that safety and
termination remain decidable whenever they are decidable for individual handler languages.

2. Preliminaries

Basic Definitions. We assume familiarity with basic definitions of automata theory (see,
e.g., [HMU07, Sip97]). If w is a word over Σ and Γ ⊆ Σ is a subalphabet, then the projection
of w onto Γ, denoted ProjΓ(w), is the word obtained by erasing from w each symbol that
does not belong to Γ. For a language L ⊆ Σ∗, define ProjΓ(L) = {ProjΓ(w) | w ∈ L}.
The subword order v on Σ∗ is defined as w v w′ for w,w′ ∈ Σ∗ if w can be obtained

1The “mild language-theoretic assumption” is that the class of languages forms an effective full trio: it
is closed under intersections with regular languages, homomorphisms, and inverse homomorphisms. Many
language classes studied in formal language theory and verification satisfy these conditions.

2:4 R. Majumdar, R. S. Thinniyam, and G. Zetzsche Vol. 18:4

from w′ by deleting some letters from w′. For example, abba v bababa but abba 6v baaba.
The downclosure ↓w with respect to the subword order, of a word w ∈ Σ∗, is defined
as ↓w := {w′ ∈ Σ∗ | w′ v w}. The downclosure ↓L of a language L ⊆ Σ∗ is given by
↓L := {w′ ∈ Σ∗ | ∃w ∈ L : w′ v w}. Recall that the downclosure ↓L of any language L is a
regular language [Hai69].

A multiset m : Σ→ N over Σ maps each symbol of Σ to a natural number. Let M[Σ]
be the set of all multisets over Σ. We treat sets as a special case of multisets where each
element is mapped onto 0 or 1. For example, we write m = Ja, a, cK for the multiset
m ∈ M[{a, b, c, d}] with m(a) = 2, m(b) = m(d) = 0, and m(c) = 1. We also use the
notation |m| =

∑
σ∈Σ m(σ). The Parikh image Parikh(w) ∈M[Σ] of a word w ∈ Σ∗ is the

multiset such that Parikh(w)(a) is the number of times a occurs in w.
Given two multisets m,m′ ∈ M[Σ] we define the multiset m ⊕m′ ∈ M[Σ] for which,

for all a ∈ Σ, we have (m ⊕m′)(a) = m(a) + m′(a). We also define the natural order �
on M[Σ] as follows: m �m′ iff there exists m∆ ∈M[Σ] such that m⊕m∆ = m′. We also
define m′	m for m �m′ analogously: for all a ∈ Σ, we have (m	m′)(a) = m(a)−m′(a).
For Γ ⊆ Σ we regard m ∈M[Γ] as a multiset of M[Σ] where undefined values are sent to 0.

Language Classes and Full Trios. A language class is a collection of languages, together
with some finite representation. Examples are the regular (e.g. represented by finite
automata) or the context-free languages (e.g. represented by pushdown automata (PDA)).
A relatively weak and reasonable assumption on a language class is that it is a full trio,
that is, it is closed under each of the following operations: taking intersection with a
regular language, taking homomorphic images, and taking inverse homomorphic images.
Equivalently, a language class is a full trio iff it is closed under rational transductions [Ber79]
as we explain below.

We assume that all full trios C considered in this paper are effective: Given a language
L from C, a regular language R, and a homomorphism h, we can compute a representation
of the languages L ∩R, h(L), and h−1(L) in C.

Many classes of languages studied in formal language theory form effective full trios.
Examples include the regular and the context-free languages [HMU07], the indexed lan-
guages [Aho68, DG86], the languages of higher-order pushdown automata [Mas74], higher-
order recursion schemes (HORS) [Dam82, HMOS08], Petri nets (both coverability and
reachability languages) [Gre78, Jan79], and lossy channel systems (see Section 4.1). (While
HORS are usually viewed as representing a tree or collection of trees, one can also view them
as representing a word language, as we explain in Section 5.)

Informally, a language class defined by non-deterministic devices with a finite-state con-
trol that allows ε-transitions and imposes no restriction between input letter and performed
configuration changes (such as non-deterministic pushdown automata) is always a full trio:
The three operations above can be realized by simple modifications of the finite-state control.
The deterministic context-free languages are a class that is not a full trio.

An asynchronous transducer T is a tuple T = (Q,Γ,Σ, E, q0, F) with a finite set of states
Q, finite output alphabet Γ, finite input alphabet Σ, a finite set of edges E ⊆ Q×Γ∗×Σ∗×Q,

initial state q0 ∈ Q and set of final states F ⊆ Q. We write p
v|u−−→ q if (p, v, u, q) ∈ E and

the machine reads u in state p, outputs v and moves to state q. We also write p
w|w′−−−→ q if

there are states q0, q1, . . . , qn and words u1, u2, . . . , un, v1, v2, . . . , vn such that p = q0, q = qn,

w′ = u1u2 · · ·un, w = v1v2 · · · vn and qi−1
vi|ui−−−→ qi for all 0 ≤ i ≤ n.

Vol. 18:4 DECIDABILITY FOR ASYNCHRONOUS SHARED-MEMORY PROGRAMS 2:5

The transduction T ⊆ Γ∗ × Σ∗ generated by the transducer T is the set of tuples

(v, u) ∈ Γ∗ × Σ∗ such that q0
v|u−−→ qf for some qf ∈ F . Given a language L ⊆ Σ∗, we define

TL := {v ∈ Γ∗ | ∃u ∈ L : (v, u) ∈ T}. A transduction T ⊆ Γ∗ × Σ∗ is rational if it is
generated by some asynchronous transducer.

A language class C is a full trio if and only if it is closed under each of the following
operations:

• intersection with a regular language,
• taking homomorphic images, and
• taking inverse homomorphic images.

It is well known that these two concepts are equivalent:

Theorem 2.1 (Berstel [Ber79]). A language class is closed under rational transductions if
and only if it is a full trio.

Asynchronous Programs: A Language-Theoretic View. We use a language-theoretic
model for asynchronous shared-memory programs.

Definition 2.2. Let C be an (effective) full trio. An asynchronous program (AP) over C is
a tuple P = (D,Σ, (Lc)c∈C, d0,m0), where D is a finite set of global states, Σ is an alphabet
of handler names, (Lc)c∈C is a family of languages over Σ from C, one for each c ∈ C where
C = D×Σ×D is the set of contexts, d0 ∈ D is the initial state, and m0 ∈M[Σ] is a multiset
of initial pending handler instances.

A configuration (d,m) ∈ D×M[Σ] of P consists of a global state d and a multiset m of
pending handler instances. For a configuration c, we write c.d and c.m for the global state
and the multiset in the configuration respectively. The initial configuration c0 of P is given
by c0.d = d0 and c0.m = m0. The semantics of P is a labeled transition system over the set

of configurations, with the transition relation
σ−→⊆ (D ×M[Σ])× (D ×M[Σ]) given by

(d,m⊕ JσK) σ−→ (d′,m⊕m′) iff ∃w ∈ Ldσd′ : Parikh(w) = m′

Moreover, we write (d,m)→ (d′,m′) if there exists a σ ∈ Σ with (d,m)
σ−→ (d′,m′). We use

→∗ to denote the reflexive transitive closure of the relation →. A configuration c is said to
be reachable in P if (d0,m0)→∗ c.

Intuitively, the set Σ of handler names specifies a finite set of procedures that can be
invoked asynchronously. The shared state takes values in D. When a handler is called
asynchronously, it gets added to a bag of pending handler calls (the multiset m in a
configuration). The language Ldσd′ captures the effect of executing an instance of σ starting
from the global state d, such that on termination, the global state is d′. Each word w ∈ Ldσd′
captures a possible sequence of handlers posted during the execution.

Suppose the current configuration is (d,m). A non-deterministic scheduler picks one of
the outstanding handlers σ ∈m and executes it. Executing σ corresponds to picking one of
the languages Ldσd′ and some word w ∈ Ldσd′ . Upon execution of σ, the new configuration
has global state d′ and the new bag of pending calls is obtained by taking m, removing
an instance of σ from it, and adding the Parikh image of w to it. This reflects the current
set of pending handler calls—the old ones (minus an instance of σ) together with the new
ones added by executing σ. Note that a handler is executed atomically; thus, we atomically
update the global state and the effect of executing the handler.

2:6 R. Majumdar, R. S. Thinniyam, and G. Zetzsche Vol. 18:4

1 global var turn = ref 0 and x = ref 0;

2 let rec s1 () = if * then begin post a; s1(); post b end

3 let rec s2 () = if * then begin post a; s2(); post b end else post b

4 let a () = if !turn = 0 then begin turn := 1; x := !x + 1 end else post a

5 let b () = if !turn = 1 then begin turn := 0; x := !x - 1 end else post b

6

7 let s3 () = post s3; post s3

8

9 global var t = ref 0;

10 let c () = if !t = 0 then t := 1 else post c

11 let d () = if !t = 1 then t := 2 else post d

12 let f () = if !t = 2 then t := 0 else post f

13

14 let cc x = post c; x

15 let dd x = post d; x

16 let ff x = post f; x

17 let id x = x

18 let h g y = cc (g (dd y))

19 let rec produce g x = if * then produce (h g) (ff x) else g x

20 let s4 () = produce id ()

Figure 1: Examples of asynchronous programs

Let us see some examples of asynchronous programs. It is convenient to present these
examples in a programming language syntax, and to allow each handler to have internal
actions that perform local tests and updates to the global state. As we describe informally
below, and formally in Appendix A, when C is a full trio, internal actions can be “compiled
away” by taking an intersection with a regular language of internal actions and projecting
the internal actions away. Thus, we use our simpler model throughout.

Examples. Figure 1 shows some simple examples of asynchronous programs in an OCaml-
like syntax. Consider first the asynchronous program in lines 1–5. The alphabet of handlers
is s1, s2, a, and b. The global states correspond to possible valuations to the global
variables turn and x; assuming turn is a Boolean and x takes values in N, we have that D =
{0, 1}×{0, 1, ω}, where ω abstracts all values other than {0, 1}. Since s1 and s2 do not touch
any variables, for d, d′ ∈ D, we have Ld,s1,d = {anbn | n ≥ 0}, Ld,s2,d = {anbn+1 | n ≥ 0},
and Ld,s1,d′ = Ld,s2,d′ = ∅ if d′ 6= d.

For the languages corresponding to a and b, we use syntactic sugar in the form of
internal actions; these are local tests and updates to the global state. In our example,
we have L(0,0),a,(1,1) = {ε}, L(1,x),a,(1,x) = {a} for all values of x, and similarly for b. The
meaning is that, starting from a global state (0, 0), executing the handler will lead to the
global state (1, 1) and no handlers will be posted, whereas starting from a global state in
which turn is 1, executing the handler will keep the global state unchanged but post an
instance of a. Note that all the languages are context-free.

Consider an execution of the program from the initial configuration ((0, 0), Js1K). The
execution of s1 puts n as and n bs into the bag, for some n ≥ 0. The global variable turn is
used to ensure that the handlers a and b alternately update x. When turn is 0, the handler
for a increments x and sets turn to 1, otherwise it re-posts itself for a future execution.
Likewise, when turn is 1, the handler for b decrements x and sets turn back to 0, otherwise

Vol. 18:4 DECIDABILITY FOR ASYNCHRONOUS SHARED-MEMORY PROGRAMS 2:7

it re-posts itself for a future execution. As a result, the variable x never grows beyond 1.
Thus, the program satisfies the safety property that no execution sets x to ω.

It is possible that the execution goes on forever: for example, if s1 posts an a and a
b, and thereafter only b is chosen by the scheduler. This is not an “interesting” infinite
execution as it is not fair to the pending a. In the case of a fair scheduler, which eventually
always picks an instance of every pending task, the program terminates: eventually all the as
and bs are consumed when they are scheduled in alternation. However, if instead we started
with Js2K, the program will not terminate even under a fair scheduler: the last remaining b

will not be paired and will keep executing and re-posting itself forever.
Now consider the execution of s3. It has an infinite fair run, where the scheduler

picks an instance of s3 at each step. However, the number of pending instances grows
without bound. We shall study the boundedness problem, which checks if the bag can become
unbounded along some run. We also study a stronger notion of fair termination, called fair
non-starvation, which asks that every instance of a posted handler is executed under any
fair scheduler. The execution of s3 is indeed fair, but there can be a specific instance of s3
that is never picked: we say s3 can starve an instance.

The program in lines 9–20 is higher-order (produce and h take functions as arguments).
The language of s4 is the set {cndnfn | n ≥ 0}, that is, it posts an equal number of cs, ds,
and fs. It is an indexed language; we shall see (Section 5) how this and other higher-order
programs can be represented using higher-order recursion schemes (HORS). Note that the
OCaml types of produce : (o→ o)→ o→ o and h : (o→ o)→ o→ o are higher-order.

The program is similar to the first: the handlers c, d, and f execute in “round robin”
fashion using the global state t to find their turns. Again, we use internal actions to update
the global state for readability. We ask the same decision questions as before: does the
program ever reach a specific global state and does the program have an infinite (fair) run?
We shall see later that safety and termination questions remain decidable, whereas fair
termination does not.

3. Decision Problems on Asynchronous Programs

We now describe decision problems on runs of asynchronous programs.

Runs, preruns, and downclosures. A prerun of an AP P = (D,Σ, (Lc)c∈C, d0,m0)
is a finite or infinite sequence ρ = (e0,n0), σ1, (e1,n1), σ2, . . . of alternating elements of
tuples (ei,ni) ∈ D ×M[Σ] and symbols σi ∈ Σ. The set of preruns of P will be denoted
Preruns(P). Note that if two asynchronous programs P and P′ have the same D and Σ,
then Preruns(P) = Preruns(P′). The length, denoted |ρ|, of a finite prerun ρ is the number
of configurations in ρ. The ith configuration of a prerun ρ will be denoted ρ(i).

We define an order E on preruns as follows: For preruns ρ = (e0,n0), σ1, (e1,n1), σ2, . . .
and ρ′ = (e′0,n

′
0), σ′1, (e

′
1,n
′
1), σ′2, . . ., we define ρ E ρ′ if |ρ| = |ρ′| and ei = e′i, σi = σ′i and

ni � n′i for each i ≥ 0. The downclosure ↓R of a set R of preruns of P is defined as
↓R = {ρ ∈ Preruns(P) | ∃ρ′ ∈ R. ρ E ρ′}.

A run of an AP P = (D,Σ, (Lc)c∈C, d0,m0) is a prerun ρ = (d0,m0), σ1, (d1,m1), σ2, . . .

starting with the initial configuration (d0,m0), where for each i ≥ 0, we have (di,mi)
σi+1−−−→

(di+1,mi+1). The set of runs of P is denoted Runs(P). Finally, ↓Runs(P) is the downward
closure of Runs(P) with respect to E.

2:8 R. Majumdar, R. S. Thinniyam, and G. Zetzsche Vol. 18:4

An infinite run c0
σ0−→ c1

σ1−→ . . . is called fair if for all i ≥ 0, if σ ∈ ci.m then there is

some j ≥ i such that cj
σ−→ cj+1. That is, whenever an instance of a handler σ is posted,

some instance of σ is executed later. Fairness does not guarantee that every specific instance
of a handler is executed eventually. We say that an infinite fair run starves a handler σ
if there exists an index J ≥ 0 such that for each j ≥ J , we have (i) cj .m(σ) ≥ 1 and (ii)

whenever cj
σ−→ cj+1, we have cj .m(σ) ≥ 2. In this case, even if the run is fair, a specific

instance of σ may never be executed.
Now we give the definitions of the various decision problems.

Definition 3.1 (Properties of finite runs). The Safety (Global state reachability)
problem asks, given an asynchronous program P and a global state df ∈ D, is there a
reachable configuration c such that c.d = df? If so, df is said to be reachable (in P) and
unreachable otherwise. The Boundedness (of the task buffer) problem asks, given an
asynchronous program P, is there an N ∈ N such that for every reachable configuration c, we
have |c.m| ≤ N? If so, the asynchronous program P is bounded ; otherwise it is unbounded.
The Configuration reachability problem asks, given an asynchronous program P and a
configuration c, is c reachable?

Definition 3.2 (Properties of infinite runs). All the following problems take as input an
asynchronous program P. The Termination problem asks if all runs of P are finite. The
Fair Non-termination problem asks if P has some fair infinite run. The Fair Starvation
problem asks if P has some fair run that starves some handler.

Our main result in this section shows that many properties of an asynchronous program
P only depend on the downclosure ↓Runs(P) of the set Runs(P) of runs of the program P.
The proof is by induction on the length of runs. Please see Appendix B for details. For any
AP P = (D,Σ, (Lc)c∈C, d0,m0), we define the AP ↓P = (D,Σ, (↓Lc)c∈C, d0,m0), where ↓Lc
is the downclosure of the language Lc under the subword order.

Proposition 3.3. Let P = (D,Σ, (Lc)c∈C, d0,m0) be an asynchronous program. Then
↓Runs(↓P) = ↓Runs(P). In particular, the following holds. (1) For every d ∈ D, P can
reach d if and only if ↓P can reach d. (2) P is terminating if and only if ↓P is terminating.
(3) P is bounded if and only if ↓P is bounded.

Intuitively, safety, termination, and boundedness is preserved when the multiset of
pending handler instances is “lossy”: posted handlers can get lost. This corresponds to these
handlers never being added to the task buffer. However, if a run demonstrates reachability
of a global state, or non-termination, or unboundedness, in the lossy version, it corresponds
also to a run in the original problem (and conversely).

In contrast, simple examples show that configuration reachability, fair termination, and
fair non-starvation properties are not preserved under downclosures.

4. General Decidability Results

In this section, we characterize those full trios C for which particular problems for asynchro-
nous programs over C are decidable. Our decision procedures will use the following theorem,
summarizing the results from [GM12], as a subprocedure.

Theorem 4.1 [GM12]. Safety, boundedness, configuration reachability, termination, fair
non-termination, and fair non-starvation are decidable for asynchronous programs over
regular languages.

Vol. 18:4 DECIDABILITY FOR ASYNCHRONOUS SHARED-MEMORY PROGRAMS 2:9

Algorithm 1: Checking Safety

Input: Asynchronous program P = (D,Σ, (Lc)c∈C, d0,m0) over C, state d ∈ D
run concurrently

begin /* find a safe overapproximation */

foreach tuple (Ac)c∈C of regular languages Ac ⊆ Σ∗ do
if Lc ∩ (Σ∗ \Ac) = ∅ for each c ∈ C then

if P′ = (D,Σ, (Ac)c∈C, d0,m0) does not reach d then
return d is not reachable.

begin /* find a run reaching d */

foreach prerun ρ of P do
if ρ is a run that reaches d then

return d reachable.

4.1. Safety and termination. Our first main result concerns the problems of safety and
termination.

Theorem 4.2. Let C be a full trio. The following are equivalent:

(i) Safety is decidable for asynchronous programs over C.
(ii) Termination is decidable for asynchronous programs over C.
(iii) Emptiness is decidable for C.

Proof. We begin with “(i)⇒(iii)”. Let K ⊆ Σ∗ be given. We construct

P = (D,Σ, (Lc)c∈C, d0,m0)

such that m0 = JσK, D = {d0, d1}, Ld0,σ,d1 = K and Lc = ∅ for c 6= (d0, σ, d1). We see
that P can reach d1 iff K is non-empty. Next we show “(ii)⇒(iii)”. Consider the alphabet
Γ = (Σ ∪ {ε}) × {0, 1} and the homomorphisms g : Γ∗ → Σ∗ and h : Γ∗ → {σ}∗, where
for x ∈ Σ ∪ {ε}, we have g((x, i)) = x for i ∈ {0, 1}, h((x, 1)) = σ, and h((x, 0)) = ε. If
R ⊆ Γ∗ is the regular set of words in which exactly one position belongs to the subalphabet
(Σ ∪ {ε})× {1}, then the language K ′ := h(g−1(K) ∩R) belongs to C. Note that K ′ is ∅ or
{σ}, depending on whether K is empty or not. We construct P = (D, {σ}, (Lc)c∈C, d0,m0)
with D = {d0}, m0 = JσK, Ld0,σ,d0 = K ′ and all languages Lc = ∅ for c 6= (d0, σ, d0). Then
P is terminating iff K is empty.

To prove “(iii)⇒(i)”, we design an algorithm deciding safety assuming decidability of
emptiness. Given asynchronous program P and state d as input, the algorithm consists of
two semi-decision procedures: one which searches for a run of P reaching the state d, and
the second which enumerates regular overapproximations P′ of P and checks the safety of
P′ using Theorem 4.1. Each P′ consists of a regular language Ac overapproximating Lc for
each context c of P. We use decidability of emptiness to check that Lc ∩ (Σ∗ \Ac) = ∅ to
ensure that P′ is indeed an overapproximation.

Algorithm 1 clearly gives a correct answer if it terminates. Hence, we only have to argue
that it always does terminate. Of course, if d is reachable, the first semi-decision procedure
will terminate. In the other case, termination is due to the regularity of downclosures: if d
is not reachable in P, then Proposition 3.3 tells us that ↓P cannot reach d either. But ↓P
is an asynchronous program over regular languages; this means there exists a safe regular
overapproximation and the second semi-decision procedure terminates.

2:10 R. Majumdar, R. S. Thinniyam, and G. Zetzsche Vol. 18:4

Algorithm 2: Checking Termination

Input: Asynchronous program P = (D,Σ, (Lc)c∈C, d0,m0) over C
run concurrently

begin /* find a terminating overapproximation */

foreach tuple (Ac)c∈C of regular languages Ac ⊆ Σ∗ do
if Lc ∩ (Σ∗ \Ac) = ∅ for each c ∈ C then

if P′ = (D,Σ, (Ac)c∈C, d0,m0) terminates then
return P terminates.

begin /* find a self-covering run */

foreach prerun ρ of P do
if ρ is a self-covering run then

return P does not terminate.

To prove “(iii)⇒(ii)”, we adopt a similar method as for safety. Algorithm 2 for termina-
tion consists of two semi-decision procedures. By standard well-quasi-ordering arguments, an
infinite run of an asynchronous program P is witnessed by a finite self-covering run. The first
semi-decision procedure enumerates finite self-covering runs (trying to show non-termination).
The second procedure enumerates regular asynchronous programs P′ that overapproximate
P. As before, to check termination of P′, it applies the procedure from Theorem 4.1. Clearly,
the algorithm’s answer is always correct. Moreover, it gives an answer for every input.
If P does not terminate, it will find a self-covering sequence. If P does terminate, then
Proposition 3.3 tells us that ↓P is a terminating finite-state overapproximation. This implies
that the second procedure will terminate in that case.

Let us point out a particular example. The class L of languages of lossy channel systems
is defined like the class of languages of Well-Structured Transition Systems (WSTS) with
upward-closed sets of accepting configurations as in [GRB07], except that we only consider
lossy channel systems [ABJ98] instead of arbitrary WSTS. Then L forms a full trio with
decidable emptiness. Although downclosures of lossy channel languages are not effectively
computable (an easy consequence of [May03]), our algorithm employs Theorem 4.2 to decide
safety and termination.

4.2. Boundedness.

Theorem 4.3. Let C be a full trio. The following are equivalent:

(i) Boundedness is decidable for asynchronous programs over C.
(ii) Finiteness is decidable for C.

Proof. Clearly, the construction for “(i)⇒(iii)” of Theorem 4.2 also works for “(i)⇒(ii)”: P
is unbounded iff K is infinite.

For the converse, we first note that if finiteness is decidable for C then so is emptiness.
Given L ⊆ Σ∗ from C, consider the homomorphism h : (Σ ∪ {λ})∗ → Σ∗ with h(a) = a for
every a ∈ Σ and h(λ) = ε. Then h−1(L) belongs to C and h−1(L) is finite if and only if
L is empty: in the inverse homomorphism, λ can be arbitrarily inserted in any word. By
Theorem 4.2, this implies that we can also decide safety. As a consequence of considering
only full trios, it is easy to see that the problem of context reachability reduces to safety: a

Vol. 18:4 DECIDABILITY FOR ASYNCHRONOUS SHARED-MEMORY PROGRAMS 2:11

Algorithm 3: Checking Boundedness

Input: Asynchronous program P = (D,Σ, (Lc)c∈C, d0,m0) over C
F ← ∅, I ← ∅;
foreach context c = (d, σ, d′) ∈ C do

if Lc is infinite then
if c is reachable in P then /* using algorithm for safety */

return P is unbounded.

I ← I ∪ {c}
else

F ← F ∪ {c}

foreach context c ∈ F do
foreach finite set A ⊆ Σ∗ do /* find a finite A with Lc = A */

if Lc ∩ (Σ∗ \A) = ∅ and Lc ∩ {w} 6= ∅ for each w ∈ A then
Ac ← A;

break; /* end inner foreach */

foreach context c ∈ I do
Ac ← ∅

if P′ = (D,Σ, (Ac)c∈C, d0,m0) is bounded then
return P is bounded.

else
return P is unbounded.

context c = (d, σ, d′) ∈ C is reachable in P if there is a reachable configuration (d,m) in P
with m(σ) ≥ 1. This latter condition can be checked by moving from d to a special state
via a σ transition.

We now explain Algorithm 3 for deciding boundedness of a given aysnchronous program
P = (D,Σ, (Lc)c∈C, d0,m0). For every context c, we first check if Lc is infinite (feasible by
assumption). This paritions the set of contexts of P into sets I and F which are the contexts
for which the corresponding language Lc is infinite and finite respectively. If any context
in I is reachable, then P is unbounded. Otherwise, all the reachable contexts have a finite
language. For every finite language Lc for some c ∈ F , we explicitly find all the members of
Lc. This is possible because any finite set A can be checked with Lc for equality. Lc ⊆ A
can be checked by testing whether Lc ∩ (Σ∗ \A) = ∅ and Lc ∩ (Σ∗ \A) effectively belongs to
C. On the other hand, checking A ⊆ Lc just means checking whether Lc ∩ {w} 6= ∅ for each
w ∈ A, which can be done the same way. We can now construct asynchronous program P′

which replaces all languages for contexts in I by ∅ and replaces those corresponding to F by
the explicit description. Clearly P′ is bounded iff P is bounded (since no contexts from I
are reachable) and the former can be decided by Theorem 4.1.

We observe that boundedness is strictly harder than safety or termination: There are full
trios for which emptiness is decidable, but finiteness is undecidable, such as the languages of
reset vector addition systems [DFS98] (see [TZ19] for a definition of the language class) and
languages of lossy channel systems.

4.3. Configuration reachability and liveness properties. Theorems 4.2 and 4.3 com-
pletely characterize for which full trios safety, termination, and boundedness are decidable.

2:12 R. Majumdar, R. S. Thinniyam, and G. Zetzsche Vol. 18:4

We turn to configuration reachability, fair termination, and fair starvation. We suspect
that it is unlikely that there is a simple characterization of those language classes for which
the latter problems are decidable. However, we show that they are decidable only for a
limited range of infinite-state systems. To this end, we prove that decidability of any of these
problems implies (a) decidability of the others as well, and also implies (b) the decidability
of a simple combinatorial problem (called the Z-intersection problem) that is known to be
undecidable for many expressive classes of languages.

Let Z ⊆ {a, b}∗ be the language Z = {w ∈ {a, b}∗ | |w|a = |w|b}. The Z-intersection
problem for a language class C asks, given a language K ⊆ {a, b}∗ from C, whether K∩Z 6= ∅.
Informally, Z is the language of all words with an equal number of as and bs and the Z-
intersection problem asks if there is a word in K with an equal number of as and bs.

Theorem 4.4. Let C be a full trio. The following statements are equivalent:

(i) Configuration reachability is decidable for asynchronous programs over C.
(ii) Fair termination is decidable for asynchronous programs over C.
(iii) Fair starvation is decidable for asynchronous programs over C.

Moreover, if decidability holds, then Z-intersection is decidable for C.

Proof. We prove Theorem 4.4 by providing reductions among the three problems and
showing that Z-intersection reduces to configuration reachability. We use diagrams similar
to automata to describe asynchronous programs. Here, circles represent global states of the
program and we draw an edge

d d′
σ|L

in case we have Ld,σ,d′ = L in our asynchronous program P. Furthermore, we have
Ld,σ,d′ = ∅ whenever there is no edge that specifies otherwise. To simplify notation, we draw

an edge d d′
w|L in an asynchronous program for a word w ∈ Σ∗, w = σ1 . . . σn with

σ1, . . . , σn ∈ Σ, to symbolize a sequence of states

d 2 · · · n d′
σ1|{ε} σ2|{ε} σn−1|{ε} σn|L

which removes Jσ1, . . . , σnK from the task buffer and posts a multiset of handlers specified
by the language L.
Proof of “(ii)⇒(i)” Given an asynchronous program P = (D,Σ, (Lc)c∈C, d0,m0) and a
configuration (df ,mf) ∈ D ×M[Σ], we construct asynchronous program P′ as follows. Let
z be a fresh letter and let mf = Jσ1, . . . , σnK. We obtain P′ from P by adding a new state
d′f and including the following edges:

df d′f
zσ1 · · ·σn|{z} z|{z}

Starting from (d0,m0 ⊕ JzK), the program P′ has a fair infinite run iff (df ,mf) is reachable
in P. The ‘if’ direction is obvious. Conversely, z has to be executed in any fair run ρ of
P′ which implies that d′f is reached by P′ in ρ. Since only z can be executed at d′f in ρ,
this means that the multiset is exactly mf when df is reached during ρ. Clearly this initial
segment of ρ corresponds to a run of P which reaches the target configuration.
Proof of “(iii)⇒(ii)” We construct P′ = (D,Σ′, (L′c)c∈C′ , d0,m

′
0) given

P = (D,Σ, (Lc)c∈C, d0,m0)

Vol. 18:4 DECIDABILITY FOR ASYNCHRONOUS SHARED-MEMORY PROGRAMS 2:13

over C as follows. Let Σ′ = Σ ∪ {s}, where s is a fresh handler. Replace each edge

d d′
σ|L by d d′

σ|L ∪ Ls
s|ε

at every state d ∈ D. Moreover, we set m′0 = m0 ⊕ JsK. Then P′ has an infinite fair run
that starves some handler if and only if P has an infinite fair run. From an infinite fair run
ρ of P, we obtain an infinite fair run of P′ which starves s, by producing s while simulating
ρ and consuming it in the loop. Conversely, from an infinite fair run ρ′ of P′ which starves
some τ , we obtain an infinite fair run ρ of P by omitting all productions and consumptions
of s and removing two extra instances of s from all configurations.
Proof of “(i)⇒(iii)” From P = (D,Σ, (Lc)c∈C, d0,m0) over C, for each subset Γ ⊆ Σ and
τ ∈ Σ, we construct an asynchronous program PΓ,τ = (D′,Σ′, (Lc)c∈C′ , d

′
0,m

′
0) over C such

that a particular configuration is reachable in PΓ,τ if and only if P has a fair infinite run
ρΓ,τ , where Γ is the set of handlers that is executed infinitely often in ρΓ,τ and ρΓ,τ starves
τ . Since there are only finitely many choices for Γ and τ , decidability of configuration
reachability implies decidability of fair starvation. The idea is that a run ρΓ,τ exists if and
only if there exists a run

(d0,m0)
σ1−→ · · · σn−→ (dn,mn) = (e0,n0)

γ1−→ (e1,n1)
γ2−→ · · · γk−→ (ek,nk), (4.1)

where
⋃k
i=1{γi} = Γ, for each 1 ≤ i ≤ k ni ∈ M[Γ], mn � nk, and for each i ∈ {1, . . . , k}

with γi = τ , we have ni−1(τ) ≥ 2. In such a run, we call (d0,m0)
σ1−→ · · · σn−→ (dn,mn) its

first phase and (e0,n0)
γ1−→ · · · γk−→ (ek,nk) its second phase.

Let us explain how PΓ,τ reflects the existence of a run as in Eq. (4.1). The set Σ′ of

handlers of PΓ,τ includes Σ, Σ̄ and Σ̂, where Σ̄ = {σ̄ | σ ∈ Σ} and Σ̂ = {σ̂ | σ ∈ Σ} are
disjoint copies of Σ. This means, a multiset M[Σ′] contains multisets m′ = m⊕ m̄⊕ m̂ with

m ∈M[Σ], m̄ ∈M[Σ̄], and m̂ ∈M[Σ̂]. A run of PΓ,τ simulates the two phases of ρ. While
simulating the first phase, PΓ,τ keeps two copies of the task buffer, m and m̄. The copying
is easily accomplished by a homomorphism with σ 7→ σσ̄ for each σ ∈ Σ. At some point,
PΓ,τ switches into simulating the second phase. There, m̄ remains unchanged, so that it
stores the value of mn in Eq. (4.1) and can be used in the end to make sure that mn � nk.

Hence, in the second phase, PΓ,τ works, like P, only with Σ. However, whenever a
handler σ ∈ Σ is executed, it also produces a task σ̂. These handlers are used at the end
to make sure that every γ ∈ Γ has been executed at least once in the second phase. Also,
whenever τ is executed, PΓ,τ checks that at least two instances of τ are present in the task
buffer, thereby ensuring that τ is starved.

In the end, a distinguished final state allows PΓ,τ to execute handlers in Γ and Γ̄
simultaneously to make sure that mn � nk. In its final state, PΓ,τ can execute handlers

γ̂ ∈ Γ̂ and γ ∈ Γ (without creating new handlers). In the final configuration, there can be
no σ̂ with σ ∈ Σ \ Γ, and there has to be exactly one γ̂ for each γ ∈ Γ. This guarantees that
(i) each handler in Γ is executed at least once during the second phase, (ii) every handler
executed in the second phase is from Γ, and (iii) mn contains only handlers from Γ (because
handlers from Σ̄ cannot be executed in the second phase).

Let us now describe PΓ,τ in detail. We have Σ′ = Σ ∪ Σ̄ ∪ Γ̂ ∪ {z}, where z is a fresh

letter. The set of states is D′ = D∪ D̃∪{df}, where D̃ = {d̃ | d ∈ D} is a disjoint copy of D
for simulating the second phase, and df is a fresh state. Moreover, we change the languages

2:14 R. Majumdar, R. S. Thinniyam, and G. Zetzsche Vol. 18:4

Lc in the following way:

d d′
σ|L d d′

σσ̄|h±(L)

where h± : Σ∗ → (Σ ∪ Σ̄)∗ is the homomorphism with σ 7→ σσ̄ for every σ ∈ Σ. This means,

for every context c = (d, σ, d′), we have d
σσ̄|h±(L)−−−−−−→ d′ in PΓ,τ . Note that since C is a full

trio, it is in particular closed under homomorphisms. Hence, h±(L) belongs to C. Moreover,
PΓ,τ can spontaneously switch to simulating the second phase: For each d ∈ D, we have

d d̃
z|{z}

Here, the handler z merely allows us to move to state d̃ without interfering with the other
handlers. In the second phase, PΓ,τ simulates P slightly differently. We perform the following
replacement:

d d′
σ|L

 d̃ d̃′
σ|Lσ̂ if σ 6= τ

d̃ d̃′
ττ |Lττ̂ if σ = τ

(4.2)

Note that since C is a full trio, the languages Lv = {uv | u ∈ L} belong to C for every word
v. Finally, PΓ,τ can spontaneously switch to its distinguished state df , so that we have for

every d̃ ∈ D̃ and every γ ∈ Γ:

d̃ df
z|{ε}

γγ̄|{ε}

γ|{ε}

γ̂|{ε} (4.3)

The initial configuration of PΓ,τ is (d0,m
′
0), where m′0 = m0⊕m̄0⊕JzK, where m̄0 is obtained

from m0 by replacing every occurrence of σ ∈ Σ in m0 with σ̄. The final configuration
is (df ,mf), where mf ∈ M[Γ̂] is the multiset with mf (γ̂) = 1 for every γ ∈ Γ. It is now
straightforward to check that (df ,mf) is reachable in PΓ,τ if and only if P has an infinite
fair run that starves τ .
Decidability of Z-intersection To complete the proof of Theorem 4.4, we reduce Z-intersection
to configuration reachability. Given K ⊆ {a, b}∗ from C, we construct the asynchronous
program P = (D,Σ, (Lc)c∈C, d0,m0) over C where D = {d0, 0, 1}, Σ = {a, b, c}, by including
the following edges:

d0 0 1
c|K

a|{ε}

b|{ε}

The initial task buffer is m0 = JcK. Then clearly, the configuration (0, JK) is reachable in P
if and only if K ∩ Z 6= ∅.

If the construction seems abstract, recall the example from Section 2: the procedure s1

plays the role of K and generates strings from its language in {a, b}∗. The procedures a

and b take turns to ensure there is an equal number of them; the states 0 and 1 are values
of turn.

Vol. 18:4 DECIDABILITY FOR ASYNCHRONOUS SHARED-MEMORY PROGRAMS 2:15

Theorem 4.4 is useful in the contrapositive to show undecidability. For example, one can
show undecidability of Z-intersection for languages of lossy channel systems (see Section 4.1):
One expresses reachability in a non-lossy FIFO system by making sure that the numbers
of enqueue- and dequeue-operations match. Thus, for asynchronous programs over lossy
channel systems, the problems of Theorem 4.4 are undecidable. We also use Theorem 4.4 in
Section 5 to conclude undecidability for higher-order asynchronous programs, already at
order 2.

5. Higher-Order Asynchronous Programs

We apply our general decidability results to asynchronous programs over (deterministic)
higher-order recursion schemes (HORS). Kobayashi [Kob09] has shown how higher-order
functional programs can be modeled using HORS. In his setting, a program contains
instructions that access certain resources. The path language of the HORS produced by
Kobayashi is the set of possible sequences of instructions. For us, the input program contains
post instructions (which post handlers i.e. add tasks to the task buffer) and we translate
higher-order programs with post instructions into a HORS whose path language is used as
the language of handlers.

We recall some definitions from [Kob09]. The set of types is defined by the grammar
A := o | A → A. The order ord(A) of a type A is inductively defined as ord(o) = 0
and ord(A → B) := max(ord(A) + 1, ord(B)). The arity of a type is inductively defined
by arity(o) = 0 and arity(A → B) = arity(B) + 1. We assume a countably infinite set

Var of typed variables x : A. For a set Θ of typed symbols, the set Θ̃ of terms generated
from Θ is the least set which contains Θ such that whenever s : A → B and t : A belong
to Θ̃, then also s t : B belongs to Θ̃. By convention the type o → . . . (o → (o → o)) is
written o→ . . .→ o→ o and the term ((t1t2)t3 · · ·)tn is written t1t2 · · · tn. We write x̄ for
a sequence (x1, x2, . . . , xn) of variables.

A higher-order recursion scheme (HORS) is a tuple S = (Σ,N ,R, S) where Σ is a set
of typed terminal symbols of types of order 0 or 1, N is a set of typed non-terminal symbols
(disjoint from terminal symbols), S : o is the start non-terminal symbol and R is a set of
rewrite rules Fx1x2 · · ·xn � t where F : A1 → · · · → An → o is a non-terminal in N , xi : Ai
for all i are variables and t : o is a term generated from Σ ∪N ∪ {x1, x2, . . . , xn}. The order
of a HORS is the maximum order of a non-terminal symbol. We define a rewrite relation �
on terms over Σ ∪ N as follows: F ā � t[x̄/ā] if Fx̄ � t ∈ R, and if t � t′ then ts � t′s
and st� st′. The reflexive, transitive closure of � is denoted �∗. A sentential form t of
S is a term over Σ ∪N such that S �∗ t.

If N is the maximum arity of a symbol in Σ, then a (possibly infinite) tree over Σ
is a partial function tr from {0, 1, . . . , N − 1}∗ to Σ that fulfills the following conditions:
ε ∈ dom(tr), dom(tr) is closed under prefixes, and if tr(w) = a and arity(a) = k then
{j | wj ∈ dom(tr)} = {0, 1, . . . , k − 1}.

A deterministic HORS is one where there is exactly one rule of the form Fx1x2 · · ·xn → t
for every non-terminal F . Following [Kob09], we show how a deterministic HORS can be
used to represent a higher-order pushdown language arising from a higher-order functional
program. Sentential forms can be seen as trees over Σ∪N . A sequence Π over {0, 1, . . . , N−1}
is a path of tr if every finite prefix of Π ∈ dom(tr) and Π is maximal. The set of finite paths
in a tree tr will be denoted Paths(tr). Unless otherwise specified, a path is finite in our

2:16 R. Majumdar, R. S. Thinniyam, and G. Zetzsche Vol. 18:4

context. Associated with any path Π = n1, n2, . . . , nk is the word

wΠ = tr(n1)tr(n1n2) · · · tr(n1n2 · · ·nk).

We will also write wΠ(m̄) to denote the letter tr(m̄) where m̄ = n1n2 . . . nl for some l ≤ k.
We associate a value tree TS associated with a deterministic HORS S in the following way.
For a sentential form t define the finite tree t⊥ by case analysis: t⊥ = f if f is a terminal
symbol and t⊥ = t⊥1 t

⊥
2 if t = t1t2 and t⊥1 6= ⊥, and t⊥ = ⊥ otherwise.

Intuitively, the tree t⊥ is obtained by replacing any subterm whose root is a non-terminal
by the nullary symbol ⊥. We define the partial order ≤t on dom(Σ) ∪ {⊥} by ⊥ ≤t a for all
a ∈ dom(Σ), which is extended to trees by

t ≤t s ⇐⇒ ∀n̄ ∈ dom(t) : n̄ ∈ dom(s) ∧ t(n̄) ≤t s(n̄)

The value tree generated by a HORS S is denoted TS and is obtained by repeated
application of the rewrite rules to the start symbol S. To make this formal, we write lub(T)
for the least upper bound of a collection T of trees with respect to the order ≤t. Then we
set TS := lub({t⊥ | S →∗ t}). Any HORS for which the value tree TS does not contain
any ⊥ symbol is called productive. All HORS dealt with in this paper are assumed to be
productive. Checking if a given HORS is productive is decidable, see, e.g., [Gre16].

Let Σ1 := {a ∈ Σ | arity(a) = 1}. The path language Lp(S) of a deterministic HORS
S is defined as {ProjΣ1

(wΠ) | Π ∈ Paths(TS)}. The tree language Lt(S) associated with a
(nondeterministic) HORS is the set of sentential forms of S which contain only labels from
Σ.

The deterministic HORS corresponding to the higher-order function s4 from Figure 1 is
given by S = (Σ,N ,R, S), where

Σ ={br : o→ o→ o, c, d, f : o→ o, e : o}
N ={S : o, F : (o→ o)→ o→ o, H : (o→ o)→ o→ o, I : o→ o}
R ={S � F I e, I x� x, F G x� br(F (H G) (fx)) (G x), H G x� c(G(dx))}

The path language Lp(S) = {cndnfn | n ≥ 0}. To see this, apply the reduction rules to get
the value tree TS shown on the right:

S � F I e� br (F (HI) (fe)) (Ie)

� br (F (HI) (fe)) e

� br (br (F (H(HI)) (f(fe))) (HI(fe))) e

� br (br (F (H(HI)) (f(fe))) (c(I(d(fe))))) e

� br (br (F (H(HI)) (f(fe))) (c(d(fe)))) e

� · · ·

br

e br

c br

d

f

e

.. ..

A HORS S is called a word scheme if it has exactly one nullary terminal symbol e and
all other terminal symbols Σ̃ are of arity one. The word language Lw(S) ⊆ Σ̃∗ defined by
S is Lw(S) = {a1a2 · · · an | (a1(a2 · · · (an(e)) · · ·)) ∈ Lt(S)}. We denote by H the class
of languages Lw(S) that occur as the word language of a higher-order recursion scheme
S . Note that path languages and languages of word schemes are both word languages

Vol. 18:4 DECIDABILITY FOR ASYNCHRONOUS SHARED-MEMORY PROGRAMS 2:17

over the set Σ̃ of unary symbols considered as letters. They are connected by the following
proposition, a proof of which is given in Appendix C.2

Proposition 5.1. For every order-n HORS S = (Σ,N , S,R) there exists an order-n word
scheme S ′ = (Σ′,N ′, S′,R′) such that Lp(S) = Lw(S ′).

A consequence of [Kob09] and Prop. 5.1 is that the “post” language of higher-order
functional programs (i.e. the language corresponding to sequences of newly spawned tasks)
can be modeled as the language of a word scheme. Hence, we define an asynchronous
program over HORS as an asynchronous program over the language class H and we can use
the following results on word schemes.

Theorem 5.2. HORS and word schemes form effective full trios [CPSW16]. Empti-
ness [KO11] and finiteness [Par17] of order-n word schemes are (n− 1)-EXPTIME-complete.

Now Theorems 4.2 and 4.3, together with Theorem 5.1 imply the decidability results
in Corollary 5.3. The undecidability result is a consequence of Theorem 4.4 and the
undecidability of the Z-intersection problem for indexed languages or equivalently, order-2
pushdown automata as shown in [Zet15]. Order-2 pushdown automata can be effectively
turned into order-2 OI grammars [DG86], which in turn can be translated into order-2 word
schemes [Dam82]. A direct (and independent) proof of undecidability of the Z-intersection
problem for order-2 word schemes has appeared in [Kob19, Theorem 4].

Corollary 5.3. For asynchronous programs over HORS: (1) Safety, termination, and bound-
edness are decidable. (2) Configuration reachability, fair termination, and fair starvation
are undecidable already at order-2.

6. A Direct Algorithm and Complexity Analysis

We say that downclosures are computable for a language class C if for a given description
of a language L in C, one can compute an automaton for the regular language ↓L. A
consequence of Proposition 3.3 and Theorem 4.1 is that if one can compute downclosures
for some language class, then one can avoid the enumerative approaches of Section 4 and
get a “direct algorithm.” The direct algorithm replaces each handler by its downclosure and
then invokes the decision procedure summarized in Theorem 4.1.

6.1. Higher-Order Recursion Schemes. The direct algorithm for asynchronous pro-
grams over HORS relies on the recent breakthrough results on computing downclosures.

Theorem 6.1 [Zet15, HKO16, CPSW16]. Downclosures are effectively computable for H.

Unfortunately, current techniques do not yet provide a complexity upper bound based
on the above theorem. To understand why, we describe the current algorithm for computing
downclosures. In [Zet15], it was shown that in a full trio C, downclosures are computable if
and only if the diagonal problem for C is decidable. The latter asks, given a language L ⊆ Σ∗,
whether for every k ∈ N, there is a word w ∈ L with |w|σ ≥ k for every σ ∈ Σ. The diagonal
problem was then shown to be decidable for higher-order pushdown automata [HKO16] and

2The models of HORS (used in model checking higher-order programs [Kob09]) and word schemes (used
in language-theoretic exploration of downclosures [HKO16, CPSW16]) are somewhat different. Thus, we
show an explicit reduction between the two formalisms.

2:18 R. Majumdar, R. S. Thinniyam, and G. Zetzsche Vol. 18:4

then for word schemes [CPSW16]. However, the algorithm from [Zet15] to compute downclo-
sures using an oracle for the diagonal problem employs enumeration to compute a downclosure
automaton. Thus, the enumeration is hidden inside the downclosure computation.

We conjecture that downclosures can in fact be computed in elementary time (for word
schemes of fixed order). This would imply an elementary time procedure for asynchronous
programs over HORS as well.

6.2. Context Free Languages. For handlers over context-free languages, given e.g., as
pushdown automata, Ganty and Majumdar show an EXPSPACE upper bound. Precisely,
the algorithm of [GM12] constructs for each handler a polynomial-size Petri net with certain
guarantees (forming a so-called adequate family of Petri nets) that accepts a Parikh equivalent
language. These Petri nets are then used to construct a larger Petri net, polynomial in
the size of the asynchronous program and the adequate family of Petri nets, in which the
respective property (safety, boundedness, or termination) can be phrased as a query decidable
in EXPSPACE. A natural question is whether there is a downclosure-based algorithm with
the same asymptotic complexity.

Our goal is to replace the Parikh-equivalent Petri nets with Petri nets recognizing
the downclosure of a language. It is an easy consequence of Proposition 3.3 that the
resulting Petri nets can be used in place of the adequate families of Petri nets in the
procedures for safety, termination, and boundedness of [GM12]. Thus, if we can ensure these
Petri nets are polynomial in the size of the handler, we get an EXPSPACE upper bound.
Unfortunately, a finite automaton for ↓L may require exponentially many states in the
pushdown automaton [BLS15]. Thus a naive approach gives a 2EXPSPACE upper bound.

We show here that for each context-free language L, one can construct in polynomial
time a 1-bounded Petri net accepting ↓L. (Recall that a Petri net is 1-bounded if every
reachable marking has at most one token in each place.) This is a language theoretic result of
independent interest. When used in the construction of [GM12], this matches the EXPSPACE
upper bound.

As a byproduct, our translation yields a simple direct construction of a finite automaton
for ↓L when L is given as a pushdown automaton. This is of independent interest because
earlier constructions of ↓L always start from a context-free grammar and produce (of
necessity!) exponentially large NFAs [vL78, Cou91, BLS15].

We begin with some preliminary definitions.

Pushdown automata. If Γ is an alphabet, we write Γ̄ = {γ̄ | γ ∈ Γ}. Moreover, if x = γ̄,
then we define x̄ = γ. For a word v ∈ (Γ ∪ Γ̄)∗, v = v1 · · · vn, v1, . . . , vn ∈ Γ ∪ Γ̄, we set
v̄ = v̄n · · · v̄1. A pushdown automaton is a tuple A = (Q,Σ,Γ, E, q0, qf), where Q is a finite
set of states, Σ is its input alphabet, Γ is its stack alphabet, E is a finite set of edges, q0 ∈ Q
is its initial state, and F ⊆ Q is its set of final states. An edge is a four-tuple (p,R, v, q),
where p, q ∈ Q, R ⊆ Σ∗ is a regular language, and v ∈ Γ ∪ Γ̄ ∪ {ε}. We also write

p
R|v−−→ q

to denote an edge (p,R, v, q) ∈ E. Intuitively, it tells us that from state q, we can read any
word in R as input and modify the stack as specified by v. Here, v ∈ Γ means we push v onto
the stack. Moreover, v ∈ Γ, v = γ̄, means we pop γ from the stack. Finally, v = ε means we
do not change the stack. Let us make this formal. A configuration of A is a pair (q, w) with

q ∈ Q and w ∈ Γ∗. For configurations (q, w) and (q′, w′), we write (q, w)
u−→ (q′, w′) if there

Vol. 18:4 DECIDABILITY FOR ASYNCHRONOUS SHARED-MEMORY PROGRAMS 2:19

is an edge (q,R, v, q′) in A such that u ∈ R and (i) if v = ε, then w′ = w, (ii) if v ∈ Γ, then
w′ = wv and (iii) if v = γ̄ for γ ∈ Γ, then w = w′γ.

A run in A is a sequence (q0, w0), . . . , (qn, wn) of configurations and words u1, . . . , un ∈
Σ∗ such that (qi−1, wi−1)

ui−→ (qi, wi) for 1 ≤ i ≤ n. Its length is n and its initial and
final configuration are (q0, w0) and (qn, wn), respectively. The run is said to read the word
u1 · · ·un. The stack height of the run is defined as max{|wi| | 0 ≤ i ≤ n}. We call the run
positive (resp. dually positive) if |wi| ≥ |w0| (resp. |wi| ≥ |wn|) for every 1 ≤ i ≤ n, i.e. if
the stack never drops below its initial height (resp. is always above its final height).

We write (q, w)
u
=⇒ (q′, w′) for configurations (q, w), (q′, w′) if there is a run with initial

configuration (q, w) and final configuration (q′, w′) that reads u. If there is such a run with

stack height ≤ h, then we write (q, w)
u
=⇒

h
(q′, w′). The language accepted by A is

L(A) = {u ∈ Σ∗ | (q0, ε)
u
=⇒ (qf , ε)}.

There is also a language accepted with bounded stack height. For h ∈ N, we define

Lh(A) = {u ∈ Σ∗ | (q0, ε)
u
=⇒

h
(qf , ε)}.

Thus, Lh(A) is the set of words accepted by A using runs of stack height at most h.
In order to exploit the symmetry between forward and backward computations in

pushdown automata, we will consider dual pushdown automata. The dual automaton of

A, denoted Ā, is obtained from A by changing each edge p
R|v−−→ q into q

Rrev|v̄−−−→ p. Then
L(Ā) = L(A)rev. We will sometimes argue by duality, which is the principle that every
statement that is true for any A is also true for any Ā.

Petri nets. A (labeled) Petri net is a tuple N = (Σ, S, T, ∂0, ∂1, λ,m0,mf) where Σ is its
input alphabet, S is a finite set of places, T is a finite set of transitions, ∂0, ∂1 : T →M[S] are
maps that specify an input marking ∂0(t) and an output marking ∂1(t) for each transition
t ∈ T , λ : T → Σ ∪ {ε} assigns labels to transitions, and m0,mf are its initial and final
marking. More generally, multisets m ∈M[S] are called markings of N .

For markings m1,m2 ∈M[S] and a ∈ Σ∪{ε}, we write m1
a−→m2 if there is a transition

t ∈ T with λ(t) = a, m1 ≥ ∂0(t), and m2 = m1	∂0(t)⊕∂1(t). Moreover, we write m1
w
=⇒m2

if there are n ∈ N, a1, . . . , an ∈ Σ ∪ {ε}, and markings m′0, . . . ,m
′
n such that w = a1 · · · an

and m1 = m′0
a1−→m′1

a2−→ · · · an−→m′n = m2. Furthermore, we write m1 =⇒m2 if there exists

a w ∈ Σ∗ with m1
w
=⇒m2. The language accepted by N is L(N) = {w ∈ Σ∗ |m0

w
=⇒mf}.

For k ∈ N, a Petri net N is k-bounded if for every marking m ∈ M[S] with m0 =⇒ m,

we have |m| ≤ k.
Our main results are as follows.

Theorem 6.2 (Succinct Downclosures for PDAs). Given a pushdown automaton A, one can

construct in polynomial time a pushdown automaton Â so that ↓L(Â) = ↓L(A). Moreover,

we have L(Â) = Lh(Â) for some bound h that is polynomial in the size of A.

As a pushdown automaton with bounded stack can be simulated by a 1-bounded Petri
net (essentially, by keeping places for each position in the stack), we get the following
corollary and also the promised EXPSPACE upper bound.

2:20 R. Majumdar, R. S. Thinniyam, and G. Zetzsche Vol. 18:4

Corollary 6.3. Given a pushdown automaton A, one can construct in polynomial time a
1-bounded Petri net N with L(N) = ↓L(A).

We now prove Theorem 6.2. The augmented automaton Â = (Q,Σ, Γ̂, Ê, q0, qf) is
defined as follows. We first compute for any p, q ∈ Q the subalphabet ∆p,q(A) ⊆ Σ with

∆p,q(A) = {a ∈ Σ | ∃u ∈Mp,q(A), |u|a ≥ 1},

where Mp,q(A) = {u ∈ Σ∗ | ∃v ∈ Γ∗ : (p, ε)
u
=⇒ (p, v), (q, v) =⇒ (q, ε)}. Note that it is easy to

construct in polynomial time a pushdown automaton Ap,q for the language Mp,q(A):
Ap,q has a set Qp ∪ Qq of states consisting of two disjoint copies of the states of A. The
transitions between two states in Qp are inherited from A while for two states in Qq we
replace the input on any transition by ε but retain the stack operations from A. The start
state is p ∈ Qp and the final state is q ∈ Qq. There is an ε-transition from p ∈ Qp to q ∈ Qq.
This concludes the construction of Ap,q.

Since a ∈ ∆p,q(A) iff Mp,q(A) ∩ Σ∗aΣ∗ 6= ∅, we can decide in polynomial time whether
a given a ∈ Σ belongs to ∆p,q(A) by checking the PDA for Mp,q(A) ∩ Σ∗aΣ∗ 6= ∅ obtained
by product construction for emptiness. Thus, we can compute ∆p,q(A) in polynomial time.

We construct Â as follows. For any p, q ∈ Q, we introduce a fresh stack symbol [p, q] and
then we add edges

p
∆p,q(A)∗|[p,q]−−−−−−−−→ p, q

∆q,p(Ā)∗|[p,q]−−−−−−−−→ q. (6.1)

The following lemma tells us that L(Â) has the same downward closure as A.

Lemma 6.4. L(A) ⊆ L(Â) ⊆ ↓L(A).

Proof. Since the inclusion L(A) ⊆ L(Â) is obvious, we prove L(Â) ⊆ ↓L(A). We proceed by
induction on the number m of executions of new edges (i.e. those from Eq. (6.1)). More

specifically, we show that if u ∈ L(Â) is accepted using m executions of new edges, then

there is a u′ ∈ L(Â) such that u v u′ and u′ is accepted using < m executions of new edges.
Suppose u is accepted using a run ρ with m > 0 executions of new edges. Then ρ

must apply one edge p
∆p,q(A)|[p,q]−−−−−−−−→ p and thus also the edge q

∆q,p(Ā)|[p,q]−−−−−−−−→ q to remove the
letter [p, q] from the stack. Thus, ρ decomposes as ρ = ρ1ρ2ρ3ρ4ρ5, where ρ2 and ρ4 are the
executions of the new edges. Let u = u1u2u3u4u5 be the corresponding decomposition of u.

The run ρ1 must end in state p and with some stack content w ∈ Γ∗. Then, ρ3 is a run
from (p, w[p, q]) to (q, w[p, q]) and ρ5 is a run from (q, w) to (qf , ε) with qf ∈ F .

Since u2 and u4 are read while executing the new edges, we have u2 ∈ ∆p,q(A)∗ and
u4 ∈ ∆q,p(Ā)∗. We can therefore write u2 = r1 · · · rk and u4 = s1 · · · s` with r1, . . . , rk ∈
∆p,q(A) and s1, . . . , s` ∈ ∆q,p(Ā). By definition, this means for each 1 ≤ i ≤ k, there is
a word r̃i ∈ Mp,q(A) that contains the letter ri. Likewise, for every 1 ≤ i ≤ `, there is a
s̃i ∈Mq,p(Ā) that contains si.

Since r̃i ∈ Mp,q(A) and s̃j ∈ Mq,p(Ā) for 1 ≤ i ≤ k and 1 ≤ j ≤ `, there are words xi
and yj in Γ∗ so that

(p, ε)
r̃i=⇒ (p, xi) and (q, xi) =⇒ (q, ε)

(p, ε) =⇒ (p, yj) and (q, yi)
s̃j
=⇒ (q, ε)

Vol. 18:4 DECIDABILITY FOR ASYNCHRONOUS SHARED-MEMORY PROGRAMS 2:21

We can therefore construct a new run ρ′ = ρ1ρ
′
2ρ
′
3ρ
′
4ρ5, where

ρ′2 : (p, w)
r̃1=⇒ · · · r̃k=⇒ (p, wx1 · · ·xk) =⇒ · · · =⇒ (p, wx1 · · ·xky` · · · y1)

ρ′4 : (q, wx1 · · ·xky` · · · y1)
s̃1=⇒ · · · s̃`=⇒ (q, wx1 · · ·xk) =⇒ · · · =⇒ (q, w).

Moreover, since ρ3 is a positive run from (p, w) to (q, w), we obtain ρ′3 from ρ3 by replacing
the prefix w of every stack by wx1 · · ·xky1 · · · y`.

Then ρ′ reads some word u1r̃1 · · · r̃kfu3s̃1 · · · s̃`gu5 for f, g ∈ Σ∗. Note that since ri
occurs in r̃i and si occurs in s̃j , we have u = u1u2u3u4u5 v u1r̃1 · · · r̃kfu3s̃1 · · · s̃`gu5.

We now show that every word in Â is accepted by a run with bounded stack height.

Lemma 6.5. L(Â) = Lh(Â), where h = 2|Q|2.

Before we prove Lemma 6.5, we need another observation. Just like Lemma 6.4, one
can show that for any p, q ∈ Q, we have Mp,q(A) ⊆Mp,q(Â) ⊆ ↓Mp,q(A) and in particular

∆p,q(A) = ∆p,q(Â) ∆q,p(Ā) = ∆q,p(
¯̂A), (6.2)

where the second identity follows from the first: Duality yields ∆q,p(Ā) = ∆q,p(
ˆ̄A) and since

ˆ̄A and
¯̂A are isomorphic (i.e. they are the same up to a renaming of stack symbols), we have

∆q,p(
ˆ̄A) = ∆q,p(

¯̂A).

We now prove Lemma 6.5. Let u ∈ L(Â). We show that any minimal length accepting

run ρ reading u must have stack height ≤ h and hence u ∈ Lh(Â).
Suppose the stack height of ρ is larger than h = 2|Q|2.

Claim: ρ decomposes into runs ρ1, ρ2, ρ3, ρ4, ρ5 reading u1, u2, u3, u4, u5, respectively, so
that there are p, q ∈ Q and w ∈ Γ∗ with

• ρ2 is a positive run from (p, w) to (p, wv) of length ≥ 2
• ρ3 is a positive run from (p, wv) to (q, wv)
• ρ4 is a dually positive run from (q, wv) to (q, w)

Let ch be a configuration along ρ with stack height at least 2|Q|2 + 1. Then there exist
|Q|2 configurations c2 =⇒ c4 =⇒ · · · =⇒ c2|Q|2 =⇒ ch along ρ such that c2i is the last time that

the stack height is 2i before visiting ch. Symmetrically, we have ch =⇒ c′2|Q|2 =⇒ · · · c′4 =⇒ c′2

where c′2i is the first occurrence of stack height 2i after visiting ch. Clearly by definition
the run between consecutive c2i (resp. c′2i) configurations is positive (resp. dually positive).
Additionally, the length of the run between them must be at least two, because the stack
heights differ by two. Considering the pair of states at each c2i, c

′
2i, there are |Q|2 possibilities.

Hence there must exist indices 2i < 2j such that the c2i and c2j have the same state p and
c′2i and c′2j have the same state q. It is now clear that ρ2 : c2i =⇒ c2j , ρ3 : c2j =⇒ c′2j and

ρ4 : c′2j =⇒ c′2i satisfy the conditions of the claim.

These conditions imply that u2 ∈ Mp,q(Â) and u4 ∈ Mq,p(
¯̂A). Therefore, we have

u2 ∈ ∆p,q(Â)∗ = ∆p,q(A)∗ and u4 ∈ ∆q,p(
¯̂A)∗ = ∆q,p(Ā)∗ by Eq. (6.2).

We obtain the run ρ′ from ρ as follows. We replace ρ2 by a single execution of the

edge p
∆p,q(A)∗|[p,q]−−−−−−−−→ p reading u2. Moreover, we replace ρ4 by a single execution of the edge

q
∆q,p(Ā)∗|[p,q]−−−−−−−−→ q. Then ρ′ is clearly a run reading u = u1u2u3u4u5. Furthermore, since ρ2

2:22 R. Majumdar, R. S. Thinniyam, and G. Zetzsche Vol. 18:4

has length ≥ 2, but the single edge used instead in ρ′ only incurs length 1, ρ′ is strictly
shorter than ρ. This is in contradiction to the minimal length of ρ. This completes the proof
of Lemma 6.5 and thus also Theorem 6.2.

Remark. The augmented automaton Â yields a very simple construction of a finite au-
tomaton (of exponential size) for ↓L(A). First, it is easy to construct a finite automaton

for Lh(Â). Then, by introducing ε-edges, we get a finite automaton for ↓Lh(Â), which, by
Lemmas 6.4 and 6.5, equals ↓L(A).

It is now straightforward to construct a polynomial size 1-bounded Petri net N =
(Σ, S, T, ∂0, ∂0,m0,mf) with L(N) = Lh(Â), thus proving Corollary 6.3. First, by adding

states, we turn Â into a pushdown automaton A′ = (Q′,Σ, Γ̂, E′, q0, qf), where every edge

reads at most one letter, i.e. every edge p
R|v−−→ q in A′ has R = {x} for some x ∈ Σ ∪ {ε}

(this is done by ‘pasting’ the automaton for R in place of the edge). Moreover, we add

ε-edges, so that for every edge p
{x}|v−−−→ q, we also have an edge p

{ε}|v−−−→ q. Then clearly
Lh(A′) = ↓Lh(Â) = ↓L(A).

The net N has a place p for each state p of A′ and for each i ∈ {1, . . . , h} and γ ∈ Γ̂,
it has a place (i, γ). Moreover, for each i ∈ {0, . . . , h}, it has a place si. Here, the idea is

that a configuration c = (p, γ1 · · · γn) of A′ with γ1, . . . , γn ∈ Γ̂ is represented as a marking
mc = Jp, (1, γ1), . . . , (n, γn), snK. We call a marking of this form a stack marking and will
argue that every reachable marking in N is a stack marking. The transitions in N correspond

to edges in A′. For each edge p
{x}|v−−−→ q in Â, we add the following transitions:

• if v = γ̄ for some γ ∈ Γ̂, then we have for every 1 ≤ n ≤ h a transition t with
∂0(t) = Jp, (n, γ), snK, ∂1(t) = Jq, sn−1K, and λ(t) = x.

• if v ∈ Γ̂, then for every 0 ≤ n < h, we add a transition t with ∂0(t) = Jp, snK, ∂1(t) =
Jq, (n+ 1, v), sn+1K, and λ(t) = x.
• if v = ε, then we add a transition t with ∂0(t) = JpK, ∂1(t) = JqK, and λ(t) = x.

Then clearly every reachable marking is a stack marking and we have c
x−→ c′ for configurations

c, c′ of A′ of stack height ≤ h if and only if mc
x−→ mc′ . Therefore, if we set m0 = Jq0, s0K

and mf = Jqf , s0K as initial and final marking, we have L(N) = Lh(A′) = ↓L(A). This
completes the proof of Corollary 6.3.

References

[ABJ98] Parosh Aziz Abdulla, Ahmed Bouajjani, and Bengt Jonsson. On-the-fly analysis of systems
with unbounded, lossy FIFO channels. In Proceedings of the 10th International Conference on
Computer Aided Verification (CAV 1998), pages 305–318, 1998. doi:10.1007/BFb0028754.

[ABQ09] Mohamed Faouzi Atig, Ahmed Bouajjani, and Shaz Qadeer. Context-bounded analysis for con-
current programs with dynamic creation of threads. In Tools and Algorithms for the Construction
and Analysis of Systems, 15th International Conference, TACAS 2009, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29,
2009. Proceedings, volume 5505 of Lecture Notes in Computer Science, pages 107–123. Springer,
2009. doi:10.1007/978-3-642-00768-2_11.

[Aho68] Alfred V. Aho. Indexed grammars - an extension of context-free grammars. J. ACM, 15(4):647–671,
1968. doi:10.1145/321479.321488.

[Ber79] Jean Berstel. Transductions and context-free languages. Teubner-Verlag, 1979.
[BLS15] Georg Bachmeier, Michael Luttenberger, and Maximilian Schlund. Finite automata for the sub-

and superword closure of cfls: Descriptional and computational complexity. In Language and

https://doi.org/10.1007/BFb0028754
https://doi.org/10.1007/978-3-642-00768-2_11
https://doi.org/10.1145/321479.321488

Vol. 18:4 DECIDABILITY FOR ASYNCHRONOUS SHARED-MEMORY PROGRAMS 2:23

Automata Theory and Applications - 9th International Conference, LATA 2015, Nice, France,
March 2-6, 2015, Proceedings, volume 8977 of Lecture Notes in Computer Science, pages 473–485.
Springer, 2015. doi:10.1007/978-3-319-15579-1_37.

[Cou91] Bruno Courcelle. On constructing obstruction sets of words. Bulletin of the EATCS, 44:178–186,
1991.

[CPSW16] Lorenzo Clemente, Pawe l Parys, Sylvain Salvati, and Igor Walukiewicz. The diagonal problem
for higher-order recursion schemes is decidable. In Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages
96–105. ACM, 2016. doi:10.1145/2933575.2934527.

[CV07] Rohit Chadha and Mahesh Viswanathan. Decidability results for well-structured transition systems
with auxiliary storage. In CONCUR 2007 - Concurrency Theory, 18th International Conference,
CONCUR 2007, Lisbon, Portugal, September 3-8, 2007, Proceedings, volume 4703 of Lecture Notes
in Computer Science, pages 136–150. Springer, 2007. doi:10.1007/978-3-540-74407-8_10.

[Dam82] Werner Damm. The IO-and OI-hierarchies. Theoretical Computer Science, 20(2):95–207, 1982.
[DFS98] Catherine Dufourd, Alain Finkel, and Philippe Schnoebelen. Reset nets between decidability

and undecidability. In Automata, Languages and Programming, 25th International Colloquium,
ICALP’98, Aalborg, Denmark, July 13-17, 1998, Proceedings, volume 1443 of Lecture Notes in
Computer Science, pages 103–115. Springer, 1998. doi:10.1007/BFb0055044.

[DG86] Werner Damm and Andreas Goerdt. An automata-theoretical characterization of the OI-hierarchy.
Information and Control, 71(1):1–32, 1986.

[GM12] Pierre Ganty and Rupak Majumdar. Algorithmic verification of asynchronous programs. ACM
Transactions on Programming Languages and Systems (TOPLAS), 34(1):6, 2012. doi:10.1145/
2160910.2160915.

[GRB07] Gilles Geeraerts, Jean-François Raskin, and Laurent Van Begin. Well-structured languages. Acta
Informatica, 44(3-4):249–288, 2007. doi:10.1007/s00236-007-0050-3.

[Gre78] Sheila A. Greibach. Remarks on blind and partially blind one-way multicounter machines.
Theoretical Computer Science, 7(3):311 – 324, 1978. doi:10.1016/0304-3975(78)90020-8.

[Gre16] Charles Grellois. Semantics of linear logic and higher-order model-checking. PhD thesis, Univeristé
Denis Diderot Paris 7, 2016.

[Hai69] Leonard H Haines. On free monoids partially ordered by embedding. Journal of Combinatorial
Theory, 6(1):94–98, 1969.

[HKO16] Matthew Hague, Jonathan Kochems, and C.-H. Luke Ong. Unboundedness and downward closures
of higher-order pushdown automata. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016, pages 151–163. ACM, 2016. doi:10.1145/2837614.2837627.

[HMOS08] Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong, and Olivier Serre. Collapsible pushdown
automata and recursion schemes. In Proceedings of the Twenty-Third Annual IEEE Symposium
on Logic in Computer Science, LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA, pages 452–461,
2008. doi:10.1109/LICS.2008.34.

[HMU07] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata theory,
languages, and computation, 3rd Edition. Pearson international edition. Addison-Wesley, 2007.

[Jan79] Matthias Jantzen. On the hierarchy of Petri net languages. RAIRO - Theoretical Informatics
and Applications - Informatique Théorique et Applications, 13(1):19–30, 1979. URL: http://www.
numdam.org/item?id=ITA_1979__13_1_19_0.

[JM07] Ranjit Jhala and Rupak Majumdar. Interprocedural analysis of asynchronous programs. In
Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2007, Nice, France, January 17-19, 2007, pages 339–350. ACM, 2007. doi:
10.1145/1190216.1190266.

[KO11] Naoki Kobayashi and C.-H. Luke Ong. Complexity of model checking recursion schemes for
fragments of the modal mu-calculus. Logical Methods in Computer Science, 7(4), 2011.

[Kob09] Naoki Kobayashi. Types and higher-order recursion schemes for verification of higher-order
programs. In Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2009, Savannah, GA, USA, January 21-23, 2009, pages 416–428,
2009. doi:10.1145/1480881.1480933.

https://doi.org/10.1007/978-3-319-15579-1_37
https://doi.org/10.1145/2933575.2934527
https://doi.org/10.1007/978-3-540-74407-8_10
https://doi.org/10.1007/BFb0055044
https://doi.org/10.1145/2160910.2160915
https://doi.org/10.1145/2160910.2160915
https://doi.org/10.1007/s00236-007-0050-3
https://doi.org/10.1016/0304-3975(78)90020-8
https://doi.org/10.1145/2837614.2837627
https://doi.org/10.1109/LICS.2008.34
http://www.numdam.org/item?id=ITA_1979__13_1_19_0
http://www.numdam.org/item?id=ITA_1979__13_1_19_0
https://doi.org/10.1145/1190216.1190266
https://doi.org/10.1145/1190216.1190266
https://doi.org/10.1145/1480881.1480933

2:24 R. Majumdar, R. S. Thinniyam, and G. Zetzsche Vol. 18:4

[Kob19] Naoki Kobayashi. Inclusion between the frontier language of a non-deterministic recursive program
scheme and the Dyck language is undecidable. Theoretical Computer Science, 777:409–416, 2019.

[Mas74] AN Maslov. The hierarchy of indexed languages of an arbitrary level. Doklady Akademii Nauk,
217(5):1013–1016, 1974.

[May03] Richard Mayr. Undecidable problems in unreliable computations. Theoretical Computer Science,
297(1-3):337–354, 2003.

[Ong15] Luke Ong. Higher-order model checking: An overview. In 30th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 1–15, 2015.
doi:10.1109/LICS.2015.9.

[Par17] Pawe l Parys. The complexity of the diagonal problem for recursion schemes. In 37th IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS 2017, December 11-15, 2017, Kanpur, India, volume 93 of LIPIcs, pages 45:1–45:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.FSTTCS.2017.45.

[Sip97] Michael Sipser. Introduction to the theory of computation. PWS Publishing Company, 1997.
[SV06] Koushik Sen and Mahesh Viswanathan. Model checking multithreaded programs with asynchro-

nous atomic methods. In Computer Aided Verification, 18th International Conference, CAV 2006,
Seattle, WA, USA, August 17-20, 2006, Proceedings, volume 4144 of Lecture Notes in Computer
Science, pages 300–314. Springer, 2006. doi:10.1007/11817963_29.

[TZ19] Ramanathan S. Thinniyam and Georg Zetzsche. Regular separability and intersection emptiness
are independent problems. In Proceedings of FSTTCS 2019, volume 150 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 51:1–51:15, Dagstuhl, Germany, 2019. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.FSTTCS.2019.51.

[vL78] Jan van Leeuwen. Effective constructions in well-partially-ordered free monoids. Discrete Mathe-
matics, 21(3):237–252, 1978. doi:10.1016/0012-365X(78)90156-5.

[Zet15] Georg Zetzsche. An approach to computing downward closures. In ICALP 2015, volume 9135,
pages 440–451. Springer, 2015. The undecidability of Z intersection is shown in the full version:
http://arxiv.org/abs/1503.01068.

Appendix A. Compiling away internal actions

We have commented in the examples of Section 2 that internal actions and internal updates
of the global state are useful in modeling asynchronous programs from their programming
language syntax. Indeed, we note that the definition of asynchronous programs in [GM12]
additionally uses a separate alphabet of internal actions, in addition to the alphabet of
handler posts. We show how a model of asynchronous programs with internal actions can
be reduced to our, simpler, model.

Let C be a language class over an alphabet Σ of handler names. The definition of
asynchronous programs with internal actions, as used by [SV06, JM07, GM12], is as follows.3

An asynchronous program over C with internal actions (aka AP over C with internal actions)
is a tuple P = (D,Σ,Σi,L , R, d0,m0), where D, Σ, d0, m0 are as in Definition 2.2, Σi is
an alphabet of internal actions disjoint from Σ, the set L = (Lσ)σ∈Σ consists of languages
from C (one for each handler σ ∈ Σ), and R = (D,Σ ∪ Σi, δ) a deterministic finite state
automaton where D is the set of states, Σ ∪ Σi the alphabet and δ the transition relation

specifying the effect of each internal action on the global state D. We will write d
w
⇒
R

∗ d′ to

mean that there is a sequence of transitions with labels w1w2...wn = w in the automaton R
using which we can reach d′ from d.

For alphabets Σ,Σ′ with Σ ⊆ Σ′, the Parikh map Parikh : Σ′∗ → M[Σ] maps a word
w ∈ Σ′∗ to a multiset Parikh(w) such that Parikh(w)(a) is the number of occurrences of a in w

3The language class C in [GM12] is fixed to be the class of context free languages. Their definition
generalizes to any language class.

https://doi.org/10.1109/LICS.2015.9
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.45
https://doi.org/10.1007/11817963_29
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.51
https://doi.org/10.1016/0012-365X(78)90156-5
http://arxiv.org/abs/1503.01068

Vol. 18:4 DECIDABILITY FOR ASYNCHRONOUS SHARED-MEMORY PROGRAMS 2:25

for each a ∈ Σ. For example, Parikh(abbab)(a) = 2, Parikh(abbab)(b) = 3 and Parikh(ε) = JK.
For a language L, we define Parikh(L) = {Parikh(w) | w ∈ L}. If the alphabet Σ is not clear
from the context, we write ParikhΣ (usually Σ′ = Σ).

The semantics of a P is given as a labeled transition system over the set of configurations,
with a transition relation →⊆ (D×M[Σ])×Σ× (D×M[Σ]) defined as follows: let m,m′ ∈
M[Σ], d, d′ ∈ D and σ ∈ Σ

(d,m⊕ JσK) σ→
P

(d′,m⊕m′)

iff

∃w ∈ (Σ ∪ Σi)
∗ : d

w

⇒
R

∗ d′ ∧ w ∈ Lσ ∧m′ = ParikhΣ(w) .

We now show that internal actions can be compiled away. Thus, for the algorithms
presented in this paper, we use the more abstract, language-theoretic version of Definition 2.2,
while we use internal actions as syntactic sugar in examples.

Lemma A.1. Let C be a full trio. Given an AP Pi with internal actions over C, one can
construct an AP P over C such that both have identical sets of runs.

Proof. The proof is along similar lines to that of Lemmas 4.3, 4.5 in [GM12]. Given
Pi = (D,Σ,Σi,L , R, d0,m0) we construct P = (D,Σ, (Lc)c∈C, d0,m0) such that

(d,m⊕ JσK) σ→
P

(d′,m⊕m′) iff (d,m⊕ JσK) σ→
Pi

(d′,m⊕m′)

Let L(Rd,d′) be the language of the automaton R when d is the initial state and d′ is the
accepting state. We define Ldσd′ as:

Ldσd′ := ProjΣ(Lσ ∩ L(Rd,d′))

First observe that the projection operation is a homomorphism and L(Rd,d′)) is a regular
language; hence by virtue of C being a full trio Ldσd′ as defined above is in C. The conditions

∃w ∈ (Σ ∪ Σi)
∗ : d

w
⇒
R

∗ d′ ∧ w ∈ Lσ ∧m′ = ParikhΣ(w) and ∃w ∈ Ldσd′ : Parikh(w) = m′ are

seen to be equivalent from the definition of Ldσd′ , concluding the proof of the lemma.

Appendix B. Proof of Proposition 3.3

We prove the following proposition.
Let P = (D,Σ, (Lc)c∈C, d0,m0) be an asynchronous program. Then ↓Runs(↓P) =

↓Runs(P). In particular,

(1) For every d ∈ D, P can reach d if and only if ↓P can reach d.
(2) P is terminating if and only if ↓P is terminating.
(3) P is bounded if and only if ↓P is bounded.

Proof. A run of the asynchronous program P is defined as a sequence c0, σ1, c1, σ2, . . .
containing alternating elements of configurations ci and letters σi beginning with the
configuration c0 = (d0,m0). First we observe that

Runs(P) ⊆ Runs(↓P) (B.1)

because every transition enabled in P is also enabled in ↓P. Next, we claim:

∀ ρ ∈ Runs(↓P) ∃ ρ′ ∈ Runs(P) ρ E ρ′ (B.2)

2:26 R. Majumdar, R. S. Thinniyam, and G. Zetzsche Vol. 18:4

Let ρ|k = (d0,m0), σ1, (d1,m1), σ2, ..., σk, (dk,mk) be the 2k + 1−length prefix of ρ. We
show that for each ρ|k there exists ρ′k ∈ Runs(P) such that ρ|k E ρ′k and in addition,
∀k ∀i ≤ k ρ′k(i) = ρ′k+1(i). We can then define ρ′(i) := ρ′i(i) and clearly ρ E ρ′.

We prove by induction on k.
Base Case: ρ|0 = ρ′|0 = (d0,m0).
Induction Step: Let ρ|k = (d0,m0), σ1, (d1,m1), σ2, ..., (dk,mk) ∈ Runs(↓P). By induction

hypothesis there is ρ′k−1 = (d0,m0), σ1, (d1,m
′
1), σ2, ..., (dk−1,m

′
k−1) ∈ Runs(P) such that

ρk−1 E ρ′k−1.

(dk−1,mk−1)
σk→
↓P

(dk,mk)

⇒ ∃m′′k−1 : mk−1 = m′′k−1 ⊕ JσkK ∧ (dk−1,m
′′
k−1 ⊕ JσkK)

σk→
↓P

(dk,mk)

⇒ ∃w ∈ Σ∗ : w ∈ ↓Ldk−1σkdk ∧ Parikh(w)⊕m′′k−1 = mk

⇒ ∃w′ ∈ Σ∗ : w v w′ ∧ w′ ∈ Ldk−1σkdk

⇒ (dk−1,mk−1)
σk→
P

(dk,mk ⊕m∆)where m∆ ⊕ Parikh(w) = Parikh(w′)

⇒ (dk−1,m
′
k−1)

σk→
P

(dk,m
′
k) where m′k = mk ⊕m∆ ⊕ (m′k−1 	mk−1)

Defining ρ′k := ρ′k−1, σk, (dk,m
′
k) we see that ρ|k E ρ′k, completing the proof of Equation

B.2. We are now ready to show that ↓Runs(↓P) = ↓Runs(P). The direction ↓Runs(P) ⊆
↓Runs(↓P) follows immediately from Equation (B.1). Conversely, let

ρ = (s0,n0), σ1, (s1,n1), σ2, ... ∈ ↓Runs(↓P)

⇒∃ρ′ ∈ Runs(↓P) ρ E ρ′

⇒∃ρ′′ ∈ Runs(P) ρ′ E ρ′′ by Equation (B.2)

⇒ρ ∈ ↓Runs(P)

We have proved that ↓Runs(↓P) = ↓Runs(P). We now show that each of the three properties
i.e. safety, termination and boundedness only depend on the downclosure of the runs.
Safety:

d is reachable in P

iff ∃ρ = (d0,m0), σ1, (d1,m1), σ2, ..., σk, (dk,mk) ∈ Runs(P) : dk = d

By Equation B.1, we know ρ ∈ Runs(P) implies ρ ∈ ↓Runs(P). Conversely, if there is
ρ′ = (s0,n0), σ1, (s1,n1), σ2, ..., σk, (sk,nk) ∈ ↓Runs(P) with sk = d, then by Equation B.2,
there is ρ = (d0,m0), σ1, (d1,m1), σ1, ..., σk, (dk,mk) ∈ Runs(P) with ρ′ E ρ which implies
dk = d. Hence we have

d is reachable in P

iff ∃ρ = (s0,n0), σ1, (s1,n1), σ2, ..., σk, (sk,nk) ∈ ↓Runs(P) : sk = d

Vol. 18:4 DECIDABILITY FOR ASYNCHRONOUS SHARED-MEMORY PROGRAMS 2:27

By a similar argument as above we also have:
Termination:

P does not terminate

iff ∃ρ ∈ Runs(P) : ρ is infinite

iff ∃ρ ∈ ↓Runs(P) : ρ is infinite

Boundedness:

P is bounded

iff ∃N ∈ N ∀ρ ∈ Runs(P) ∀i |ρ(2i).m| < N

iff ∃N ∈ N ∀ρ ∈ ↓Runs(P) ∀i |ρ(2i).m| < N

In each of the three cases, the property only depends on the downclosure and hence one
may equivalently replace P by ↓P since ↓Runs(↓P) = ↓Runs(P).

Appendix C. Proof of Proposition 5.1

We begin with a simple observation. For every HORS S = (Σ,N , S,R), there exists another

HORS S ′ = (Σ′,N ′, S,R′) where Σ′ = {br, e} ∪ Σ̃ with br of arity 2, e of arity 0 and all

symbols in Σ̃ of arity 1; such that Lp(S) = Lp(S ′).
By rewriting every terminal symbol A of arity n ≥ 2 using the rule

Ax1x2 · · ·xn � br(x1br(x2br(· · · br(xn−1xn))

and by replacing the occurrence of every nullary symbol in S by e, we get S ′, which has
the same path language.
We assume due to the above observation that Σ = {br, e}∪ Σ̃ where br is binary, e is nullary

and all letters in Σ̃ are unary. Define S ′ = (Σ′,N ′, S′,R′) as Σ′ = Σ̃ ∪ {e},N ′ = N ∪ {B :
o→ (o→ o)},R′ = {r[br/B] | r ∈ R} ∪ {Bxy � x,Bxy � y}, where by r[br/B] we mean
the rule r with br uniformly replaced by B. Note that the only new non-terminal symbol
introduced is B, which is of order 1. Hence the obtained word scheme S ′ is of the same
order as S .
Lp(S) ⊆ Lw(S ′): Let w ∈ Lp(S). Therefore there exists a finite path Π in a sentential form

t such that ∀n̄ ∈ dom(Π) wΠ(n̄) ∈ Σ. We derive t′ := t[br/B] using the corresponding rules
in R′. Note that the corresponding path Π′ in t′ satisfies ∀n̄ ∈ dom(Π′)wΠ′(n̄) ∈ Σ ∪ {B}.
We then apply either Bxy � x or Bxy � y to each B in t′ according to the path Π′ to
obtain w in the word scheme.
Lw(S ′) ⊆ Lp(S): We define the order ≤pre on sequences of natural numbers n̄, m̄ as n̄ ≤pre m̄

if m̄ = n̄k̄ for some sequence k̄.
Suppose that for given a sentential form t′ of S ′ there exists a sentential form t of

S and a map α : dom(t′) → dom(t) (simply called embedding henceforth) satisfying the
following conditions:

• ∀n̄ ∈ dom(t′)

t′(n̄) =

{
B if t(α(n̄)) = br

t(α(n̄)) otherwise.
(C.1)

2:28 R. Majumdar, R. S. Thinniyam, and G. Zetzsche Vol. 18:4

• ∀n̄, m̄ ∈ dom(t′), n̄ ≤pre m̄ implies

α(n̄) ≤pre α(m̄), and (C.2)

(∀l̄ (n̄ <pre l̄ <pre m̄) implies t′(l̄) /∈ Σ̃) implies

(∀k̄ α(n̄) <pre k̄ <pre α(m̄) implies t(k̄) /∈ Σ̃)
(C.3)

Informally, Equations C.1, C.2 and C.3 state the following: α preserves labels, except for
the case of br where it maps to B, α preserves the order ≤pre and the images of any two

nodes with node labels from Σ̃ with no node label from Σ̃ in between are mapped to two
such nodes with the same property.

We will show by induction on the length of the derivation that such a pair (t, α) al-
ways exists given some t′. Let us see how the existence of such t and α gives us the
proposition. Consider a word w = w1w2...wn ∈ Lw(S ′). In other words, there is a term
t′ = w1(w2...(wn(e))...) such that S′ �

S ′
∗ t′. Corresponding to this, we have a sentential form

S �
S

∗ t and α satisfying the given conditions. In particular, there exists a path Π with

dom(Π) ⊆ dom(t) which is the path in t connecting the α(ε) to α(0n). It is immediate that
ProjΣ̃(Π) = w. It remains to show the existence of t and α by induction on the length of
derivations.

Base case: This is trivial since t = t′ = S.
Induction step: Suppose t′0 �

r∈R′
t′ where t′0 is a sentential form. By induction hypothesis,

there is a sentential form t0 of S and t′0 embeds into t0 via map α0. Assume that the rule r
is applied at position n̄ on t′0. We now have two cases to consider:
Case 1: The rule r is Bxy �

S ′
x (the case Bxy �

S ′
y being symmetric). By induction

hypothesis, we have t0 and and an embedding α0 of t′0 into t0. Refering to Figure 2, we see
that t can be taken to be t0 and α maps all nodes in the subtree u′0 into u0 as before, while
the subtree l′0 rooted at n̄ is mapped into l0. It is immediate that α preserves the order and
since by induction hypothesis α0(n̄) has label br, Equation C.3 is also satisfied by α since

no new Σ̃ labelled nodes have been added.
Case 2: We demonstrate for the case when a non-terminal of arity two is replaced for an
easier reading of the proof: the rule r is Nxy �

S ′
t1 for some nonterminal N 6= B. Refering

to Figure 3, the rule replaces the subtree rooted at n̄ in t′0 with t1[x/l′0, y/r
′
0] where l′0, r

′
0

are respectively the left and right subtrees of the subtree rooted at n̄ in u′0. For nodes in the
subtree u′0 of t′, α mimics α0. By induction we know that the subtrees l′0, r

′
0 of t′0 embed

respectively into l0, r0 of t0. Thus α maps every subtree l′0 (resp. r′0) rooted at m̄ (resp. k̄) in
t1[x/l′0, y/r

′
0] into the corresponding subtree l0 (resp. r0) rooted at α(m̄) (resp. α(k̄)). Note

that α(m̄) can be defined as the root of the i-th occurrence of l0 from left to right if m̄ is the
i-th occurrence of l′0 from left to right. Nodes in t1[x/l′0, y/r

′
0] which are not in any of the l′0

(or r′0) subtrees (i.e.) between n̄ and m̄ (or k̄)) have corresponding nodes in t1[x/l0, y/r0] to
which they can be mapped. Label preservation and order preservation immediately follow
by appeal to the induction hypothesis. In order to see that Equation C.3 holds, consider
consecutive Σ̃ nodes n̄′, m̄′ in t′ (i.e. n̄′ <pre m̄

′ and there are no Σ̃ labels in between). If
both n̄′ and m̄′ are in u′0 or in one of the l′0 (or r′0) then the induction hypothesis applies.

In the case where n̄′ ∈ u′0 and m̄′ ∈ l′0 (resp. r′0,) this means that no Σ̃ labels are present

Vol. 18:4 DECIDABILITY FOR ASYNCHRONOUS SHARED-MEMORY PROGRAMS 2:29

t′0

n̄

u′0

l′0 r′0

Bxy � x

S ′

t′

n̄

u′0

l′0

t0

α0(n̄)

u0

l0 r0

α0

t0

u0

α(n̄)

l0 r0

α

Figure 2: Construction of embedding α from α0 in the case of the rule Bxy � x

in the path from n̄ to m̄ (resp. k̄), n̄′ to n̄ nor m̄ (resp. k̄) to m̄′. The path from α(n̄) to
α(m̄) is identical to that from n̄ to m̄ (resp. k̄). The induction hypothesis also implies that

the first a label for some s ∈ Σ̃ in l′0 must be mapped to first a label in l0 (or u′0 does not

contain any Σ̃ labels). Hence there are no Σ̃ labels between α(m̄) (resp. α(k̄)) and α(m̄′)
and similarly between α(n̄′) and α(n̄). The final case is when either n̄′ or m̄′ lies between
α(n̄) and α(m̄) (resp. α(k̄)). There are subcases here to consider when the other point lies
in u′0, l0 or also between n̄ and m̄. In all of these subcases, it easily follows that there are no

extra Σ̃ labels introduced in between two consecutive nodes which are in the image of α.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

2:30 R. Majumdar, R. S. Thinniyam, and G. Zetzsche Vol. 18:4

t′0

n̄

u′0

l′0 r′0

Nxy � t1

S ′

t′

n̄

u′0

m̄ k̄

l′0 r′0
t1[x/l′0, y/r

′
0]

t0

α0(n̄)

u0

l0 r0

α0

Nxy � t1

S

t

α(n̄)

u0

α(m̄) α(k̄)

l0 r0
t1[x/l0, y/r0]

α

Figure 3: Construction of embedding α from α0 when the rule is Nxy � t1

	1. Introduction
	2. Preliminaries
	3. Decision Problems on Asynchronous Programs
	4. General Decidability Results
	4.1. Safety and termination
	4.2. Boundedness
	4.3. Configuration reachability and liveness properties

	5. Higher-Order Asynchronous Programs
	6. A Direct Algorithm and Complexity Analysis
	6.1. Higher-Order Recursion Schemes
	6.2. Context Free Languages

	References
	Appendix A. Compiling away internal actions
	Appendix B. Proof of Proposition 3.3
	Appendix C. Proof of Proposition 5.1

