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SUPPLEMENTARY MATERIAL 

Supplementary Methods 

EEG processing and feature engineering 

We anonymized the monitoring EEG and converted it into the BIDS format1 using the MNE-BIDS 
package2. We epoched the signal of each patient using 60-second sliding windows (10 seconds 
shift) using the MNE-Python software3 and the MNE-BIDS pipeline1 For every epoch we 
computed two different types of power-spectral features using the coffeine package2. We 
estimated the power-spectral density (PSD) using Welch’s method and Hamming windows of 8 
seconds (4 seconds shift), which can reveal EEG signatures commonly used in anaesthetic 
monitoring and clinical research. PSDs were estimated in 244 frequency bins between 0 and 30 
Hz, and Hamming windows were averaged using a trimmed mean (cut = 25%) to increase 
robustness to artefacts. To explore the importance of spatio-spectral patterns, we computed the 
covariance between all 4 electrodes in 5 frequency bands adapted from reference publications 
on brain-age prediction4, 5.  

Construction of prediction models, model comparisons and statistical inference 

The spatial-patterns model concatenated the band-specific EEG covariances after vectorization 
with Riemannian embeddings that accounted for non-linearities caused by EEG-volume 
conduction6. 
As in previous reference models4, 7, 8, ridge regression9 was used as the prediction algorithm. Its 
regularisation parameter was tuned by generalised cross validation10 on a logarithmic grid of 100 
values between [10-10, 10100] on each training set. For fair comparisons between models based 
on different numbers of features, the stacking method11 was used as in previous brain-age 
publications4, 12. As the sample size was limited, instead of the non-linear random forest 
algorithm, we also used ridge regression in the stacking layer. 
To estimate the expected generalisation performance, Monte Carlo cross validation (CV) with 
100 splits and 20% testing data was applied with fixed random seeds supporting pairwise model 
comparisons. 

Detection of burst suppression 

To detect iso-electrical suppression (first part of the burst suppression pattern) from 
intraoperative EEG we adapted the method of a recent publication13. For each EEG, a trained 
clinician identified intra-operative periods based on the alpha-band. From this intraoperative EEG 
signal, we discarded flat artefacts searching for segments below 0.1 μV and high-amplitude 
epochs above 80 μV lasting at least 1 second. After the smoothing using a 30-seconds rolling 
average, we collected regions below 2.5	𝜇𝑉 amplitude, then we sequentially applied a 0.2 second 
erosion, a 1 second dilation and an 0.8 second erosion. From this output we estimated the 
fraction of time spent in burst suppression during induction (the first 25 min) and maintenance 
periods (after 25 min). We focused on the maintenance period for the better statistical properties 
of the signal (more samples due to a longer period, less artefacts) and potentially lower false 
positive rate (drug-induced burst suppression can arise at induction more often). Burst 
suppression events were automatically excluded from analysis of EEG via artefact rejection. 
Annotations were not provided for 6 recordings (ds3 - ds5 in Table 2). 
 

 
1 https://mne.tools/mne-bids-pipeline/ 
2 https://github.com/coffeine-labs/coffeine 
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Statistical analysis  

To investigate correlations between age and the power spectrum, we computed linear mixed 
effect models using the lm4 package in R14. Statistical inference was obtained using confidence 
intervals and p-values approximated from the t-statistic as implemented by the sjPlot package 
(https://cran.r-project.org/web/packages/sjPlot/index.html). To investigate the associations 
between age, brain age and burst suppression across clinical groups, ordinary least squares 
regression was used on logit-transformed burst-suppression proportions as outcome. This 
approach allowed us to gauge complementarity of brain age and age in one modelling step7, 15. 
Next, to obtain parameter estimates and p-values, we reported confidence intervals based on 
the parametric bootstrap implemented in the arm package16 as in a previous publication15. 
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Supplementary Figures 
 
 
 

 

Fig. S1: Model comparisons using variance explained (R2) as error metric. Same 
model and visual conventions as in Fig 3B.  
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Table S1. Linear Mixed Effect model of EEG log power as a function  
of frequency and age. 
 

  psd 

Predictors Estimates CI p 

(Intercept) -30.51 -31.80 – -29.22 <0.001 

freqs [log] -8.62 -8.77 – -8.48 <0.001 

age -0.10 -0.13 – -0.08 <0.001 

freqs [log] * age 0.00 -0.00 – 0.00 0.286 

Random Effects 

σ2 25.73 

τ00 participant_id 8.03 

N participant_id 166 

Observations 42496 
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Table S2. Generalised linear model of logit proportion of burst suppression  
as a function of age and brain age and risk status captured by the ASA  
score (sc = scaled). 

  qlogis(y) 

Predictors Estimates CI p 

(Intercept) -4.31 -4.59 – -4.04 <0.001 

age sc 0.07 -0.30 – 0.44 0.718 

brain age sc 0.86 0.47 – 1.25 <0.001 

risk [high risk] 0.33 -0.35 – 1.01 0.340 

age sc * brain age sc 0.13 -0.10 – 0.35 0.265 

age sc * risk 
[high risk] 

0.58 -0.31 – 1.47 0.200 

brain age sc * risk 
[high risk] 

-0.99 -1.85 – -0.13 0.025 

(age sc * brain age sc) * 
risk [high risk] 

0.34 -0.25 – 0.93 0.254 

Observations 204 

R2 / R2 adjusted 0.349 / 0.326 
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Table S3. Linear Mixed Effect model of EEG log power as a function of  
frequency, age and drug type. 

  psd 

Predictors Estimates CI p 

(Intercept) -30.51 -31.87 – -29.16 <0.001 

freqs [log] -8.62 -8.77 – -8.48 <0.001 

age -0.10 -0.13 – -0.08 <0.001 

drug type [sevoflurane] 3.65 1.21 – 6.10 0.003 

freqs [log] * age 0.00 -0.00 – 0.00 0.286 

freqs [log] * drug type 
[sevoflurane] 

-1.02 -1.27 – -0.76 <0.001 

age * drug type 
[sevoflurane] 

-0.01 -0.06 – 0.03 0.591 

(freqs [log] * age) * 
drug type [sevoflurane] 

0.01 0.00 – 0.01 0.002 

Random Effects 

σ2 25.69 

τ00 participant_id 8.96 

N participant_id 244 

Observations 62464 
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