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Evaluating the power of a recent 
method for comparing two circular 
distributions: an alternative 
to the Watson  U2 test
Graeme D. Ruxton 1*, E. Pascal Malkemper 2 & Lukas Landler 3*

Some data are collected on circular (rather than linear) scales. Often researchers are interested in 
comparing two samples of such circular data to test the hypothesis that they came from the same 
underlying population. Recently, we compared 18 statistical approaches to testing such a hypothesis, 
and recommended two as particularly effective. A very recent publication introduced a novel 
statistical approach that was claimed to outperform the methods that we had indicated were highest 
performing. However, the evidence base for this claim was limited. Here we perform simulation 
studies to offer a more detailed comparison of the new “Angular Randomisation Test” (ART) with 
existing tests. We expand previous evaluations in two ways: exploring small and medium sized 
samples, and exploring a range of different shapes for the underlying distribution(s). We find that 
the ART controls type I error rates at the nominal level. The ART had greater power than established 
methods in detecting a difference in underlying distribution caused by a shift around the circle. Its 
performance advantage in this case was strongest when samples where small and unbalanced in size. 
When the difference between underlying unimodal distributions was in shape rather than central 
tendency, then the ART was at least as good (and sometimes considerably more powerful) than the 
established methods, except when distributions samples were small and uneven in size, and the 
smaller sample came from a more concentrated underlying distribution. In such cases its power could 
be markedly inferior to established alternatives. The ART was also inferior to alternatives in dealing 
with axially distributed data. We conclude that under widely-encountered circumstances the ART 
test can be recommended for its simplicity of implementation, but researchers should be aware of 
situations where it cannot be recommended.

Some variables (often related to orientations or timings) are recorded on circular scales. Such data need dif-
ferent statistical treatment from variables recorded on linear scales (see overviews in, for example, Mardia and 
 Jupp1, Jammalamadaka and  Sengupta2, and Ley and  Verdebout3). A common question in circular statistics 
involves testing to see if two samples of circular data appear to come from different underlying distributions. 
For example, researchers interested in the effect of magnetic cues on the resting orientation of rodents might 
record the orientations of the long axis of some animals asleep under control conditions and some others under 
a manipulation of the prevailing magnetic field. Any substantial difference in these two samples might then be 
seen as evidence of magnetic sensitivity in rodents. Researchers have a wide choice of published methodologies 
for exploring this question statistically: recently we compared the performance of 18 such  tests4. We concluded 
that two of these (Watson’s  U2  test5 and a MANOVA  approach6) could be recommended as controlling type I 
error rate near the nominal level and offering good statistical power over a broader range of situations than the 
other tests. Soon after the publication of our study, Ali and  Abushilah7 published a novel angular randomisation 
test (ART) that they claimed was more powerful than the Watson’s  U2 test. This would suggest that this new test 
might become the most attractive published so far and (combined with the simplicity of the test) this would argue 
for supporting its widespread uptake. Our aim here is to provide further exploration of the power and control 
of type I error rate of the ART. The investigations of Ali and  Abushilah7 need to be expanded in two important 
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ways. Firstly, they only explored the performance of their test for large sample sizes. The smallest single sample 
size considered was 100, which is an unrealistically high sample sizes for many fields of biological research. For 
example, in a survey of published studies on animal behaviour,  Taborsky8 reported that the average sample sizes 
where 32 for field studies and 18 for studies based on captive animals. Secondly, they only considered a single 
shape of underlying distribution in their study, the von Mises distribution, which is a unimodal symmetrical 
bell-shaped distribution specified by two parameters (central location and dispersion, see e.g. Pewsey et al.9 for 
further discussion of its properties). However, a much broader range of distributions can occur, and the relative 
performance of tests can vary markedly with different underlying distributions (e.g., Landler et al.4,10). We will 
relax both these restrictions on the extent of investigations of the test here, as well as provide an easy-to-use R 
function for interested researchers to facilitate potential wider uptake of the ART.

Materials and methods
Defining the angular randomisation test (ART). We assume that we record data in radian measure on 
a scale [0, 2π). We further assume that we have two samples of data of sizes m and n: {φ1, φ2, …. , φm} and {ϕ1, ϕ2 
, … , ϕn}. Then the test statistic (G) is

where D(a, b) = π − |π − ⌈a− b⌉|.
D is the shortest angular (geodesic) distance between two points. Therefore, the test statistic is simply the 

sum of these distances from every point in one sample to every point in the other. The original  formulation7 
included a scalar multiplier, which we omit for brevity, since it would not influence our evaluation of the test.

To obtain the p-value associated with two samples we perform a permutation test. Firstly, we record the 
test statistic associated with the observed data (G*). We also attach a label to each data point associating it with 
either sample 1 or sample 2. We then produce a large number N of permutations of these m + n labels. For each 
permutation we can calculate a G value. If the number of permutations that produce a G value greater than G* is 
Q, then the p value is simply (Q + 1)/(N + 1). This is a standard way of carrying out a two-sample test by permuta-
tion—see  Manly11, for example, for further discussion.

Simulations. Our methods closely follow the approach we took in Landler et al.4. We compare the angular 
randomisation test with six other tests. Ali and  Abushilah7 compared this test with tests using the same randomi-
sation approach but the test statistics of Watson’s  U2 test and Watson-Wheeler test. For these tests we obtain the 
test statistic from the implementation of those tests in the circular package in R. These implementations also 
provide p-values calculated using the analytic asymptotic version of the test statistic. In addition, we applied the 
recently proposed Rao spacing frequency test using the R code provided in Jammalamadaka et al.12. We call the 
six tests considered ART, WU2, pWU2, WW, pWW and Rsf, with the p suffix denoting the permutation version. 
In all cases we used 10,000 permutations.

We use the rcircmix function in the NPcirc  package13 in R to produce either a unimodal von Mises, an axial 
von Mises (two modes on the opposite sides of the circle) or a wrapped skew-normal distribution (see  Pewsey14 
for a full description of the latter). We selected the wrapped skew-normal distribution because a previous inves-
tigation of tests of uniformity based on a single sample of circular  data10 suggested that the relative performance 
of tests under this distribution was a good representation of their performance against plausible alternative 
skewed distributions. To specify a von Mises distribution two parameters need be specified: the mean (μ) and 
concentration parameter (K). K takes the value zero for a circular uniform distribution, with the distribution 
becoming increasingly concentrated for higher positive values of K. Three parameters are needed to specify a 
wrapped skew-Normal distribution: a location parameter (ξ), a dispersion parameter (ρ) and a shape parameter 
(α). The location parameter describes the central tendency of the distribution; whereas increasing (positive) 
values of the dispersion parameter indicate greater variance in values. Negative values of the shape parameter 
indicate a right skew; and positive values a left skew. The larger the magnitude of this parameter the stronger the 
skew (α = 0 indicates a symmetric distribution).

Having defined the parameters of the two underlying distributions, we report statistical power to detect a 
difference (or type I error rate for identical distributions) on the basis of 10,000 samples from the distributions. 
With 10,000 replicates, binomial theory suggests our estimated rates should be accurate to within 0.005.

Results
The good control of type I error rate reported by Ali and  Abushilah7 for ART using large samples from a von 
Mises distribution, held for small samples sizes too—even when the sample sizes were as small as ten in each, and 
even if sample sizes were strongly unbalanced (Fig. 1). This was true for a broad range of common concentra-
tion parameters (K) and for the majority of tests investigated (only the Rsf had slightly elevated type I errors in 
specific situations). We observed the same low type I error rates for identical skewed, as well as axial von Mises 
distributions (Figs. 2 and 3).

We further explored the power to detect an underlying difference in dispersion (spread) of the data points 
when the mean values of two underlying von-Mises distributions were identical (Fig. 4). Here, the ART offered 
more power than the other tests when sample sizes were small and balanced, i.e., when sample sizes were com-
parable. In unbalanced cases power was low when the higher dispersed sample had the higher sample size. The 
performance was similar for skewed data. Here the ART offered superior performance for balanced samples sizes, 
but substantially less power for unbalanced sample sizes, if the smaller sample had lower dispersion (Fig. 5). This 
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drop in performance was most dramatic in the most uneven situation tested, with sample sizes of 10 (with low 
dispersion) and 50 (with high dispersion), where the ART offered close to zero power. The power for differences 
between samples drawn from axial von-Mises distributions (same mean values, different concentration), showed 
low power overall with superior power of the Rfs and no usable detection rate of the ART (Fig. 6).

We also explored the situation where both distributions had the same shape—but one was shifted around 
the circle relative to the other (Figs. 7, 8 and 9). Here we find the ART was overall the most powerful test for 
both unimodal symmetric and skewed distributions, with the most pronounced power advantage when sample 
sizes were small and balanced. However, for axial distributions the Rsf showed best power, with unusable power 
levels for ART (Fig. 9).

Figure 1.  Type I error rates (fraction of occasions when the test incorrectly encourages the inference that the 
two samples are drawn from different distributions) for each of the six tests being compared. Both samples were 
drawn from the same von Mises (VM) distribution with a mean value of zero and a concentration given by the 
K value on the x-axis. Rates were calculated on the basis of 10,000 replicates. Different panels refer to different 
combinations of sample sizes.
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Discussion
Here, we have evaluated the power of a recently proposed statistical test for the comparison of two circular 
samples, the ART 7. For the most part we were able to strengthen the foundation for arguing for greater uptake 
of the ART (at least when underlying distributions are expected to be unimodal). Specifically, we show that it 
offers good control of type I error rate even if sample sizes are small, and/or the underlying distribution is quite 
different from a von Mises one. We also show that it offers good power in unimodal situations, regardless of 
whether the difference between underlying distributions is in central location or dispersion. Most importantly, 

Figure 2.  Type I error rates (fraction of occasions when the test incorrectly encourages the inference that the 
two samples are drawn from different distributions) for each of the six tests being compared. Both samples were 
drawn from the same wrapped skew normal (WSN) distribution with a mean value of zero, a shape parameter 
α of 30, and a dispersion given by the value on the x-axis. Rates were calculated on the basis of 10,000 replicates. 
Different panels refer to different combinations of sample sizes.
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the new test offers generally better power than the asymptotic and randomisation versions of Watson’s  U2 test, 
the former of which was the joint winner in our comparison of 18 previously introduced  tests4.

However, we have also uncovered two situations where the ART offers very poor or no power relative to 
alternatives. If samples are small and uneven in size, and the more dispersed sample is the larger sample, and 
the suspected difference in distributions is in dispersion (rather than shift), then the ART offers low power and 
cannot be recommended. If researchers find themselves in such a situation, then Watson’s  U2 test can still be 
recommended. Also, for symmetrical bimodal (i.e., axial) distributions the ART offers almost no power and 
should not be used. Many commonly-used tests perform poorly in this  situation15. This problem likely extends 
to other symmetric multimodal situations. The power of the ART for asymmetric multimodal situations has not 
been explored. Pending further exploration, we would not recommend the ART when underlying distributions 

Figure 3.  Type I error rates (fraction of occasions when the test incorrectly encourages the inference that the 
two samples are drawn from different distributions) for each of the six tests being compared. Both samples were 
drawn from the same axial von Mises (VM) distribution with the mean values of 0°/180° and a concentration 
given by the K value on the x-axis. Rates were calculated on the basis of 10,000 replicates. Different panels refer 
to different combinations of sample sizes.
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are expected to be multimodal. In this case, the recently proposed Rao spacing frequency test described in 
Jammalamadaka et al.12 can be recommended. In other unimodal circumstances, our results and those of Ali 
and  Abushilah7 argue that the ART is worthy of consideration for widespread uptake for the comparison of two 
circular distributions. There is no practical barrier to its implementation—we demonstrate above that its for-
mulation is simple, and we offer an implementation in R here (Code can be downloaded at https:// github. com/ 
Malke mperl ab/ Geode sic- dista nce- test). The ART appears to offer more statistical power without any potential 
drawbacks in many standard situations, which should compel researchers to consider adding this novel test to 
their statistical repertoire.

Figure 4.  Statistical power (fraction of occasions when the test correctly encourages the inference that the two 
samples are drawn from different distributions) for each of the six tests being compared. Both samples were 
drawn from different unimodal von Mises (VM) distributions with a mean value of zero but different values 
of the concentration parameter (K). For the first sample kappa was always 0 (i.e., a uniform distribution), for 
the second the value ranged from 0 to 8 as given on the x-axis. Rates were calculated on the basis of 10,000 
replicates. Different panels refer to different combinations of sample sizes.

https://github.com/Malkemperlab/Geodesic-distance-test
https://github.com/Malkemperlab/Geodesic-distance-test
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Although we have developed the empirical support for the ART substantially over that offered by Ali and 
 Abushilah7, there are certain unimodal situations we did not investigate. We do not know, for example, how 
the test behaves when faced with data rounded to a finite number of possible values (often called group data). 
However, similar tests seem relatively insensitive to even high levels of  grouping16. Further, it may be possible 
to extend the methodology to compare more than two samples. Given the performance of the test in standard 
situations as reported here, such further explorations of its potential are warranted.

Figure 5.  Statistical power (fraction of occasions when the test correctly encourages the inference that the two 
samples are drawn from different distributions) for each of the six tests being compared. Both samples were 
drawn from different unimodal wrapped skew normal (WSN) distributions with a mean value of zero and a 
shape parameter α of 30, but different values of the dispersion parameter. For the first sample one distribution 
was kept at the dispersion parameter ρ = 1 and for the second it ranged from 1 to 4 as given on the x-axis. Rates 
were calculated on the basis of 10,000 replicates. Different panels refer to different combinations of sample sizes.
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Conclusions
We offer a considerably extended investigation of the properties of the recently introduced ART for comparing 
two samples of circular data. We conclude that under many circumstances the ART can be recommended for its 
simplicity of implementation combined with excellent control of type I error rate and power. Its power is generally 

Figure 6.  Statistical power (fraction of occasions when the test correctly encourages the inference that the 
two samples are drawn from different distributions) for each of the six tests being compared. Both samples 
were drawn from different axial von Mises (VM) distributions with mean values of 0°/180° but different values 
of the concentration parameter (K). For the first sample kappa was always 0 (i.e., a uniform distribution), for 
the second the value ranged from 0 to 8 as given on the x-axis. Rates were calculated on the basis of 10,000 
replicates. Different panels refer to different combinations of sample sizes.
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superior to any of the previously introduced tests for this common research question. We caution, however, that 
we have uncovered situations where the newly introduced test has markedly poorer power than many previous 
tests—when underlying distributions are axially symmetric (or more generally symmetrically multimodal); 
or when underlying unimodal distributions vary in degree of concentration rather than location, samples are 
small and uneven in size, and the smaller sample comes from a more concentrated underlying distribution. If 
experimenters avoid these situations then uptake of this new test can be recommended.

Figure 7.  Statistical power (fraction of occasions when the test correctly encourages the inference that the two 
samples are drawn from different distributions) for each of the six tests being compared. Both samples were 
drawn from different unimodal von Mises (VM) distributions with the same concentration (K = 2) but different 
mean directions. For the first sample the mean direction was fixed at 0°, for the second the value ranged from 
0° to 180° as given on the x-axis. Rates were calculated on the basis of 10,000 replicates. Different panels refer to 
different combinations of sample sizes.
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Figure 8.  Statistical power (fraction of occasions when the test correctly encourages the inference that the two 
samples are drawn from different distributions) for each of the six tests being compared. Both samples were 
drawn from different unimodal wrapped skew normal (WSN) distributions with the same dispersion (ρ = 2) 
and shape (α = 30) but different mean directions. For the first sample the mean direction was fixed at 0°, for 
the second the value ranged from 0° to 180° as given on the x-axis. Rates were calculated on the basis of 10,000 
replicates. Different panels refer to different combinations of sample sizes.
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Data availability
All code to rerun our analysis are available on https:// github. com/ Malke mperl ab/ Geode sic- dista nce- test.
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