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Abstract
The spread of a contagious disease clearly depends on when infected individuals come into contact
with susceptible ones. Such effects, however, have remained largely unexplored in the study of
epidemic outbreaks. In particular, it remains unclear how the timing of contacts interacts with
the latent and infectious stages of the disease. Here, we use real-world physical proximity data
to study this interaction and find that the temporal statistics of actual human contact patterns (i)
destabilize epidemic outbreaks and (ii) modulate the basic reproduction number R0. We explain
both observations by distinct aspects of the observed contact patterns. On the one hand, we find
the destabilization of outbreaks to be caused by the temporal clustering of contacts leading to
over-dispersed offspring distributions and increased probabilities of otherwise rare events (zero-
and super-spreading). Notably, our analysis enables us to disentangle previously elusive sources of
over-dispersion in empirical offspring distributions. On the other hand, we find the modulation of
R0 to be caused by a periodically varying contact rate. Both mechanisms are a direct consequence
of the memory in contact behavior, and we showcase a generative process that reproduces these
non-Markovian statistics. Our results point to the importance of including non-Markovian contact
timings into studies of epidemic outbreaks.

1. Introduction

As contagious diseases are passed on through contacts, the number of secondary infections depends crucially
on the contact patterns of infectious individuals. These contact patterns encode relevant information such as
the number of interaction partners and contact timing. However, the majority of prevailing models for
disease spread prioritize simpler descriptions that neglect these aspects—despite evidence from studies that
show the effects of contact patterns to be crucial for disease spread: structurally, when interaction partners
are modeled by a static complex network [1], the network structure affects disease spread through the
occurrence of hubs [2, 3], multiscale link communities [4] and influential spreaders [5]. Dynamically,
real-world interaction times generally follow a non-Markovian process (in contrast to commonly assumed
memoryless processes), which influences epidemics through the occurrence of bursts [6, 7] and daily and
weekly variations in human interaction [8, 9].

Thus, for a better understanding of disease spread through human contacts, a complete description of
time-varying interactions in the form of so-called temporal networks [10, 11] seems necessary. However,
constructing detailed temporal networks from real-world contacts requires extensive amounts of recorded
data, which in principle can be collected in field studies [12–14] but such data are notoriously limited in
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Figure 1. Real-world contacts represented as encounter trains. (a) A contact between two individuals is defined as ongoing
co-location during consecutive time steps. Focusing on contagious disease transmission, we only consider contacts closer than
2m and longer than 15min. (b) The start times of the remaining contacts per individual form their encounter train. A raster plot
of such encounter trains shows a clear temporal structure of human contact patterns. (c) and (d) Randomization preserves the
number of encounters per train but destroys temporal structure.

duration and system size. Although such limitations of real-world data can be partly remedied by generating
surrogate data [15, 16], it is often unclear to which extent they represent the real system. An unsolved task is
thus to generate surrogate data that mimics temporal statistics and individual variations of actual human
contact data.

Here, we address this gap by identifying and isolating features of contact behavior that affect epidemic
outbreaks using a novel analysis of real-world contact data. Instead of characterizing full epidemic outbreaks
on a large (likely under-determined) temporal network, we develop an effective description through
potentially infectious encounters that propagates statistics of contacts to statistics of disease spread. This
approach avoids treating microscopic (non-linear) network effects [17–19] and allows us to focus on how
contact patterns statistically affect epidemic outbreaks. Our analysis reveals two main mechanisms: (i)
contact clustering destabilizes outbreaks by increasing the dispersion of offspring distributions and the
probability of zero-spreading events, and (ii) temporal variation of the contact rate modulates the mean
basic reproduction number, R0, due to an interference between contact patterns and disease progression.
Finally, we showcase a non-Markovian process that faithfully reproduces the temporal statistics and their
effect on disease spread as a proof of principle for a new class of generative models for surrogate data that
mimic human contact patterns.

2. Results

To shed light on the interplay of contact patterns and epidemic outbreaks, we analyse proximity data from
the Copenhagen Networks Study [20] and, in the supplementary material, from SocioPatterns [13, 21]. We
filter each individual’s contacts by distance and duration, and define encounters as their starting times (see
methods). The resulting encounter trains are a point-process-like representation that captures the
non-Markovian statistics of the underlying contact patterns (figure 1). The importance of these
non-Markovian statistics can be seen when comparing to randomized encounter trains. In these surrogate
data, encounter times are uniformly reassigned within the duration of the experiment—which preserves the
number of encounters per train, i.e. the inter-individual variability (figure 1(c)), but destroys any temporal
structure (figure 1(d)).

In order to quantify the effect of contact patterns on epidemic outbreaks, we focus on potential
secondary infections and assume a contagious disease that can be transmitted only during infectious
encounters. Further, if τ is the time elapsed since infection, infected individuals undergo a (non-infectious)
latent period τ ∈ [0,Tlat) and an infectious period τ ∈ [Tlat,Tlat +Tinf) during which all ninf encounters are
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Figure 2. Real-world contact patterns increase the probability of rare spreading events, which increase the extinction probability
of an epidemic outbreak. (a) Sketch of estimating ninf from encounter trains for a disease model with Tlat and Tinf. (b) P(ninf)
depends on Tlat for human encounter trains (red, blue) but not for randomized controls (gray, yellow), which underestimate both
zero-spreading as well as super-spreading events. (c) Data-driven branching model where ninf are drawn from P(ninf) and infected
independently with probability pinf. (d) The resulting offspring distribution P(x) can be fitted by a negative binomial, yielding an
estimate for the dispersion parameter α. (e) Dispersion as a function of Tlat, Tinf and R0. (f) The extinction probability of an
epidemic outbreak depends on R0 (left, fixed Tinf = 3days) and on α (right, all combinations of Tlat and Tinf for given R0), and is
larger for human contact patterns compared to randomized controls.

potentially infectious. We estimate ninf by considering every encounter in the data set as a potential start for an
infection (figure 2(a), see methods). As we show in figure 2(b), empirical contact patterns increase both the
probability of very few ninf (related to zero-spreading events) as well as very many ninf (related to
super-spreading events) when compared to randomized controls. This increase in variability influences
whether a single infection results in an epidemic outbreak or not.

2.1. Human contact patterns destabilize epidemic outbreaks
To demonstrate the effect of empirical contact patterns on epidemic outbreaks, we map the probability
distribution of ninf to an offspring distribution using a two-step, data-driven branching process (figure 2(c)):
Each infected individual first generates encounters according to the empirical distribution P(ninf), and then
infects each of them independently with probability pinf resulting in binomial-distributed secondary
infections. Taking the expectation value yields the offspring distribution

P(x) =
∞∑

ninf=x

P(ninf)

(
ninf
x

)
pxinf(1− pinf)

ninf−x. (1)

Similar to empirical distributions from contact tracing [22], P(x) can be well described by a negative
binomial distribution (figure 2(d)) with mean x= R0 = pinf ninf and variance (x−R0)2 = R0 +αR2

0, where α
is the dispersion parameter that characterizes the increase in variance relative to a Poisson distribution.

Our data analysis provides a systematic approach to identifying sources of the dispersion observed in
empirical offspring distributions [23–25]. We analyze step by step the dispersion occurring because of
human contact patterns, and how it depends on Tlat, Tinf and R0 (figure 2(e), left to right). For a completely
randomized control, where encounters are uniformly distributed across trains and time, we consistently find
Poissonian offspring distributions (figure 2(d), gray) with vanishing dispersion (α= 0), independent of the
three disease parameters (figure 2(e), gray triangles). When including variability of contact rates into the
control, while still randomizing within trains, the dispersion of the offspring distribution increases (α≈ 0.3)
but remains mostly independent of disease parameters (yellow circles). Lastly, when also including the
precise timing of human contact patterns, offspring distributions show a large dispersion that depends on
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Tlat and Tinf (blue symbols). In particular, dispersion is strongest for short Tinf but decays as Tinf increases.
Hence, part of the empirical dispersion can be attributed to variability of contact rates between individuals,
but the non-Markovian timing of human contact patterns causes a further increase—for realistic parameters
roughly by a factor of two.

From P(x) we derive the extinction probability pext, defined as the fraction of outbreaks that
asymptotically end up in the absorbing state of zero infections (figure 2(f)). It can be calculated using the
probability generating function, π(θ) =

∑∞
x=0P(x)θ

x, as the smallest θ∗ that solves θ∗ = π(θ∗) [26]. In
addition to the anticipated monotonic decrease of pext = θ∗ with increasing R0, we find that extinction is
more likely for actual human contact patterns (red, blue) than for randomized controls (gray, yellow).
Moreover, for fixed R0, we find that an increased dispersion α due to human contact patterns non-linearly
increases pext (figure 2(f), right).

Summarizing, we find that the non-Markovian timing of human contact patterns can be a strong source
of variability, relevant to explaining the over-dispersion of empirical offspring distributions. In particular,
increasing the dispersion for a fixed R0 increases the probability of zero-spreading events (figure 2(d), blue vs
gray), and results in a higher extinction probability (figure 2(f)) — in other words, the non-Markovian
temporal structure of human contact patterns destabilizes epidemic outbreaks.

2.2. Interplay between contact pattern and disease progressionmodulates basic reproduction number
As highlighted in figure 2(b), ninf depends on Tlat for human encounter trains. This might be at first glance
surprising, because for memory-less processes, ninf is proportional to Tinf but independent of Tlat. Hence, in
the following, we systematically vary Tlat and Tinf to study how the interplay between human contact patterns
and disease progression affects ninf (figure 3).

Considering a fixed Tinf = 3days (figure 3(a)) and scanning Tlat leads to a periodic modulation of ninf
from human encounter trains (black, dashed) around the constant estimate from randomized trains
(yellow). Thus, we consider ninf relative to randomized (figure 3(b)), which accounts for the trivial increase
of ninf with increasing Tinf. For small Tinf < 1day, we find daily modulations as a function of Tlat, with
regions below-randomized (blue) and above-randomized (red). This effect diminishes for larger Tinf, where
we find extended, triangular regions with interfaces located at Tlat +Tinf = 7days and Tlat = 7days. We thus
find periodic modulations of ninf on the scale of days (small Tlat) and weeks (large Tlat).

In the following, we uncover the origin of these periodic modulations using what we call conditional
encounter rateΨ(τ), see methods. In short,Ψ(τ) describes the average rate of encounters conditioned on an
initial encounter (figure 3(c)). Considering the initial encounter as an infection,Ψ(τ)measures the rate of
potentially infectious encounters but neglects variability and dispersion. We find thatΨ(τ) features a peak at
0 (which implies strong clustering [6]) and the anticipated periodic modulations between high and low
encounter rates (which cause a time-dependent secondary attack rate). Both, the initial peak and
modulations are again lost for randomized controls (yellow line).

Note that we can directly obtain an estimate of ninf for a particular disease progression (Tlat, Tinf) by
integratingΨ(τ) over the infectious period (figure 3(c), shaded areas). Reconsidering the previous examples,
this explains the lower ninf for Tlat = 2days (blue area covering the valley) and the larger ninf for Tlat = 6days
(red area covering the 7 day peak). The examples showcase that ninf is determined by the alignment of the
infectious period with regions of low or highΨ(τ).

Consequently, since ninf is related to R0, the interplay between contact patterns and disease progression
modulates the pace of epidemic spread. To illustrate this, we construct a continuous-time branching process,
where each exposed individual generates encounters according toΨ(τ). During the infectious period,
encounters again have a probability pinf to become infected (figure 3(d)). Assuming an outbreak that
survived the initial generations, we prepare the system with 100 random initial infections in the interval
[−Tlat −Tinf,0). The resulting time evolution of daily new cases shows clear exponential growth, where the
growth rate λ trivially decreases with the generation time and, thus, Tlat (figure 3(e)). However, this expected
decrease of λ for memoryless encounter timings (yellow) is modulated in the model due to variations in
Ψ(τ), which results in slower-than-random (blue) or faster-than-random (red) growth.

Summarizing, human contact patterns cause a dependence of ninf on Tlat that modulates R0 and thereby
the growth rate of an epidemic outbreak.

2.3. Destabilization andmodulation of epidemic spread can be attributed to specific temporal statistics of
contact patterns
After illustrating that non-Markovian statistics can destabilize and modulate epidemic outbreaks, it seems
natural to ask how they can be included in models of disease spread. In such models it is common to
approximate encounter times between individuals as memoryless (Poisson) processes [1]. Assuming
independence, these processes can be merged to result in encounter trains with Poisson statistics—the same
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Figure 3. Real-world contact patterns modulate the pace of epidemic spread as a function of the latent period. (a) Absolute ninf
are periodically modulated with Tlat for human encounter trains but not for randomized (yellow). (b) ninf relative to randomized
reveals periodic modulations on both daily and weekly scale in the full (Tlat,Tinf)-plane. (c)Ψ(τ) features daily and weekly
modulations for non-Markovian human encounter trains but is constant for randomized encounter trains (yellow). Assuming the
initial encounter to be an infection, this explains the modulations of ninf by combinations of Tlat and Tinf for which the integral
(shaded areas) is dominated by valleys (blue) or peaks (red). (d) Continuous-time branching model, where encounter times are
generated fromΨ(τ) and infected with constant probability pinf. (e) Choosing an initial I0 = 100 random infections in
[−Tlat −Tinf,0) and pinf = 0.12, we demonstrate that the (average) number of infections grows exponentially. The growth rate λ
for time-independent encounter times in a fixed Tinf is expected to decrease trivially with Tlat. If not constant,Ψ(τ)modulates λ
and causes regimes of slower-than-random (blue) or faster-than-random (red) growth of infections.

statistics as our randomized encounter trains. In the following, we construct encounter trains with
non-Markovian statistics and identify three specific features of contact patterns that are necessary to
reproduce the relevant statistics of encounters. As a proof of principle, we showcase a novel tailored renewal
process that is constrained by data and reproduces all salient features (figure 4, top row):

i) Focusing on temporal statistics, the encounter rate ρ(t) averaged across individuals and weeks is
time-dependent but cyclostationary; ρ(t) repeats in a weekly cycle with differences between day and
night, and between weekdays and weekends (figure 4, first column). This can be captured by an
inhomogeneous Poisson process (figure 4, middle row), which reproduces the periodic modulation of
ninf (fourth column) andΨ(τ) (see supplemental figure S3).

ii) The distribution of inter-encounter intervals P(δt) has high probability for small δt and a heavy tail of
non-vanishing probability for large δt (second column). Because this tail corresponds to long periods
without any encounter, it causes the high probability of ninf ≈ 0 (last column) that strongly contributes
to the destabilization of epidemic outbreaks. P(δt) is dominantly shaped by the clustering of human
contacts and can be well approximated by a Weibull distribution [7, 27]. Accordingly, a Weibull-renewal
processes (last row) reproduces P(δt) and P(ninf) well, but it does not have a time-varying ρ(t) and
cannot reproduce the period modulations ofΨ(τ) and ninf.

iii) Encounter rates vary between individuals (third column). This variability can be attributed to intrinsic
differences in contact behavior (cf figure 2, gray vs yellow) and is partly captured by the degree
distribution of the contact network [28]. Recall that such across-individual variability is crucial to
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Figure 4. Specific temporal statistics of surrogate point processes can be related to specific characteristics of disease spread.
Top: Tailored renewal process that captures time-dependent ρ(t) (first column), heavy-tailed P(δt) (second column), and
heterogeneous P(ntrain) (third column), reproduces core characteristics such as the modulation of ninf (fourth column, cf figure 3)
and the increased probability of zero-spreading in P(ninf) (fifth column, cf figure 2). Center: An inhomogeneous Poisson process
with only time-varying, cyclostationary ρ(t) and heterogeneous P(ntrain) reproduces the modulations in ninf, but underestimates
the probability of low ninf due to a lack of clustering. Bottom: A Weibull-renewal process with contact clustering from P(δt) and
heterogeneous P(ntrain) reproduces the high probability of rare outcomes in P(ninf), but cannot reproduce the modulations in ninf
due to a lack of cyclic temporal structure. If, additionally, one relaxes the constraint of heterogeneous P(ntrain) and considers
statistically identical trains, then both surrogate processes underestimate the probability of large ninf related to super-spreading
(see supplementary material).

reproduce the heavy tails of P(ninf) and offspring distributions (see also supplemental figure S3 for
generative processes where individuals share a common rate).

Clearly, models of disease spread can benefit from a generative process that reproduces those relevant
features of human contact patterns, such as the tailored Weibull-renewal process showcased here. However,
although our process reproduces all discussed features, it is built heuristically, and future work is needed to
construct microscopic models that give rise to cyclostationary rates with clustering in a principled way, while
remaining mathematically tractable.

3. Discussion

We analyzed real-world human contact patterns and found that their non-Markovian timings shape
epidemic spread in two important ways. Firstly, they increase the over-dispersion of offspring distributions,
compared to random (Poisson) contact patterns, which (a) leads to more zero- and super-spreading events,
and (b) decreases the probability of an epidemic outbreak from an initial infection. While clustering is
typically associated with super-spreading events, it inevitably causes periods of low contact rate that increase
the probability of zero-spreading events. The resulting increase in extinction probability (despite
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super-spreading) is consistent with previous results, where individual variation of R0 captured the
over-dispersion of empirical offspring distributions [23]. Still, the sources of this variation remained poorly
understood, with candidates ranging from environmental factors (behavior, seasonality) to intrinsic ones
(viral load, susceptibility) [29]. Here, we disentangled two sources based on contact patterns and identified
heterogeneous contact rates and the non-Markovian timing of contacts as relevant factors for
over-dispersion in disease transmissibility.

Secondly, human contact patterns non-trivially modulate the pace of epidemic spread depending on the
latent period, which we attribute to time-dependent but cyclostationary encounter rates. A cyclostationary
rate leads to periods of statistically high and low encounter rates conditioned on a potential infection. How
these periods typically align with the infectious period is affected by the latent period and determines
whether the number of potential secondary infections, and in turn R0, increases or decreases. This
modulation of R0 can thus be understood as a resonance following either a constructive or destructive
interference between a periodically changing contact rate and the disease progression. This resonance is a
new mechanism to explain the previously observed slow-down or speed-up of diffusion processes on
temporal networks due to non-Markovian characteristics [30].

In the main manuscript we focus on deterministic disease progression with fixed periods (Tlat, Tinf), but
we also considered non-deterministic disease progression with gamma-distributed periods [31–33]; the
results are summarized in the supplementary material (figure S1). We find our main conclusion verified for
non-deterministic disease progression: the probability of zero-spreading events is reliably higher for human
contact patterns compared to randomized; however, the modulation of ninf with Tlat is smeared out with
increasing variability in the period durations. Thus, in the unrealistic (but commonly adopted) limit of
exponentially distributed periods, human contact patterns still reduce the robustness of outbreaks but no
longer modulate the pace of epidemic spread.

To reproduce the relevant temporal features of human contact patterns, we introduced non-Markovian
contact dynamics in the form of Weibull-distributed inter-encounter intervals (clustering) or
inhomogeneous encounter rates (cyclostationarity). Previous studies of non-Markovian disease spread [7]
found that clustering drastically affects the epidemic threshold for Tlat = 0, which is caused by the high
frequency of small inter-encounter intervals [34] that, in our context, manifests as a near-zero peak in the
conditional encounter rate (figure 3). Although it was shown that some non-Markovian models can be
mapped onto effective Markov models [35, 36], our results suggest that the non-Markovian and
cyclostationary features of human contact patterns make a similar general mapping elusive. This highlights
the necessity for generative models that are non-Markovian, yet well understood and simple enough to find
broad use in epidemic modeling and beyond.

Our work is a first step towards providing such models. We identified temporal statistics of real-world
contact data that affect disease spread, and faithfully reproduced them with our tailored Weibull-renewal
process. Thereby, our work provides an accessible pathway towards including non-Markovian statistics into
spreading processes, in general, and paves the way to systematically study their non-equilibrium physics.

4. Methods

Extracting contacts from real-world physical proximity data: Consider data composed of a list of
co-locations (physical proximity) described by the tuple (timestamp, user id A, user id B). We first sort the
co-location times into unique lists for all id pairs (A, B) and (B, A). For each valid A, we then iterate over its
list of (A, B) and merge co-location times that span consecutive time steps to construct pairwise contacts
with starting time s and duration D. Combining these contacts yields a list of contacts {(si,Di)}A for each
participant A.

From the lists of contacts, we construct a point-process-like representation for each participant that we
call encounter train (see figure 1). Throughout the manuscript, an encounter refers to the starting time of a
contact. The encounter train of participant A is the time-sorted list of all contact starting times si and can
formally be written as

T(t) =
∑
i

δ(t− si). (2)

The main data set from the Copenhagen Networks Study [12, 20] is based on Bluetooth signals between
phones of individuals that participated in the study. The published data is a list of interactions described by
the tuple (timestamp, A, B, RSSI), where user id B can be negative if the interaction is with a device outside
of the study or an empty scan, and RSSI is the received (Bluetooth) signal strength indicator. The RSSI can be
considered as a proxy for interaction distance, especially since all participants used the same device [37], with
an RSSI≈−80dBm corresponding to a distance of about 2m± 0.5m. Since the data provides a maximal
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RSSI per time window, we consider RSSI<−80dBm to indicate interactions to be further apart than 2m
throughout the full time window [37], and exclude them. Consequently, we filter the raw data to only include
those interactions that are within the study (user id B⩾ 0) and have RSSI⩾−80dBm. See supplementary
material for various controls. The data set covers a duration of tmax = 28days, with a time step of 5min, for
675 encounter trains.
Average time-dependent encounter rate ρ(t): Because encounter trains are a point-process-like

representation, we can define an encounter rate as the number of encounters in a window of size∆t.
Assuming statistical independence between weeks and between participants, we determine the average
time-dependent encounter rate ρ(t) by averaging the number of encounters in a time windows of size
∆t= 1h throughout the week (i.e. first hour of a Sunday until last hour of a Saturday) across weeks of the
experiment and across participants. Statistical errors are calculated on the level of participants using delete-m
jackknife error analysis.
Inter-encounter interval δt: To study temporal clustering and contact bursts, we measure the interval δt

between consecutive encounter times. Since we are interested in the encounter statistics, each encounter has
the same statistical weight independent of its encounter train origin. Consequently, the distribution P(δt) is
simply the distribution over all observed intervals. To estimate statistical errors, we take into account that the
number of encounters nj differs between individual trains (hence also the number of inter-encounter
intervals nj − 1), and evaluate statistical errors on the level of observed intervals using delete-mj jackknife
error analysis withmj = nj − 1.
Conditional encounter rateΨ(τ ): To investigate how contact patterns interact with disease spread, we

measure the encounter rateΨ(τ) upon a hypothetical infection from an encounter at τ = 0. To construct
Ψ(τ), we iterate over all encounters to measure the time-dependent encounter rate with temporal resolution
of the experiment, starting from the encounter time, i.e, τ = t− si = 0, until τ = τmax (we typically chose
τmax = 10 days) or, if tmax − si < τmax, until τ = tmax − si. We then average over all these time-dependent
encounter rates taking into account their different lengths. To estimate statistical errors, we take into account
that the number of encounters nj differs between individual trains by using delete-mj jackknife error analysis
withmj = nj.
Disease model:We consider a disease that progresses in three discrete states upon infection:

exposed-infectious-recovered. The duration Tlat within the exposed state is called latent period and the
duration Tinf within the infectious state is called infectious period. For our main results, we consider the
simple and intuitive case of a deterministic disease progression, where these periods are always the same. This
corresponds to drawing the periods from delta distributions, which is quite different to commonly employed
approximations that draw periods from exponential distributions (as expected for Poisson processes that
describe many state transitions, from radioactive decay to chemical reactions). To confirm that our results
also apply to non-deterministic disease progression, we repeated our analysis for the more realistic case of
gamma-distributed periods [31–33] and obtained consistent results (supplemental material).
Potentially infectious encounters ninf: To avoid assumptions on the probability of infection upon

encounter, we introduce potentially infectious encounters as the number of encounters that occur during the
infectious period of a hypothetical disease. For the deterministic disease progression, we can enumerate the
statistics by iterating over all encounters of the data set. For each encounter si, we check whether the disease
progression still fits into the experimental duration (si +Tlat +Tinf ⩽ tmax), and if true, estimate ninf as the
number of subsequent encounter sj for which Tlat < sj − si < Tlat +Tinf. For the non-deterministic disease
progression, we need to sample disease realizations (see supplemental material). Statistical errors are
calculated again on the level of encounters using the delete-mj jackknife analysis withmj = nj.
Branching process with empirical distribution: To estimate the survival probability from the empirical

distribution of potentially infectious encounters, P(ninf), we construct a discrete-time data-driven branching
process (figure 2(c)). In a first step, each infection causes X∼ P(ninf) potentially infectious encounters. In a
second step, each of these encounters can cause a secondary infection with probability pinf, such that the
number of secondary infections is binomial, Y∼ B(X,pinf). From Zt infections in generation t, we thus
obtain Zt+1 =

∑Zt
i=1Yi infections in the next generation.

Continuous-time branching process with inhomogeneous contacts: To study the pace of epidemic
spread, we construct a continuous-time branching process that captures the conditional encounter rates but
neglects interactions between infected individuals. Here, each infected individual generates an independent
encounter train starting from their initial infection time as an inhomogeneous Poisson process with a
time-dependent rate given byΨ(τ)(figure 3(d)). Only those encounters that occur during the infectious
period cause secondary infections with a chosen probability pinf. Every secondary infection then generates a
new encounter train and so on. For simplicity, we restrict our example to deterministic diseases with fixed
latent and infectious periods.
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Point process models to approximate human contact patterns: To disentangle the effect of distinct
features of human contact patterns on the statistics of encounters, we constructed point-process models that
captured (i) the distribution of rates across individuals, (ii), a time-dependent average encounter rate, and
(iii), the distribution of inter-encounter intervals, or a combination thereof (see supplementary material for
comparison of combinations).

To reproduce the inter-individual variability, we consider the same number of encounter trains as present
in the data and weight each train i with their relative rates, i.e, wi = ntrain,i/⟨ntrain⟩, where ⟨·⟩ is the average
across trains.

To reproduce a time-dependent encounter rate ρ(t), we employ thinning [38]: From a hidden process
with rate maxt[ρ(t)] we accept events at time t with probability p(t) = ρ(t)/maxt[ρ(t)]. This procedure can
formally only be applied for memory-less hidden processes, i.e. Poisson processes, in which case it results in
an inhomogeneous Poisson process. To further reproduce heterogeneous rates in the inhomogeneous
Poisson process, we rescale the rates of the hidden processes, ρi(t) = wi ρ(t), which keeps p(t) fixed.

To reproduce the empirical distribution of inter-encounter intervals, we construct a Weibull-renewal
process: inter-encounter intervals are drawn from a Weibull distribution with scale parameter λ and shape
parameter k. The Weibull distribution was parameterized by a fit to the data yielding (k,λ) = (0.3690,3030).
To further reproduce heterogeneous rates in the Weibull-renewal process, we notice that the mean rate of a
Weibull-renewal process is given by ρi = [λiΓ(1+ 1/ki)]

−1, such that we can simply choose ki = k and
λi = λ/wi.

To combine all features in a single model, we construct a tailored renewal process: A Weibull-renewal
process with heterogeneous rates and additional (heuristic) thinning. We start with a set of hidden
Weibull-renewal processes with ki = k, λi = λ/wi, and time-dependent acceptance probability p(t) with
time-average p(t). The mean rate of each process is ρi = p(t)wi/λΓ(1+ 1/k). Since we cannot fit (k,λ) of the
hidden process, we further constrain the parameters with the mean rate from data, i.e.
ρ(t) = ⟨ρi⟩= p(t)/λΓ(1+ 1/k), with ⟨wi⟩= 1 by construction. Since ρ(t)/p(t) =maxt[ρ(t)], we thus find
λ= [maxt[ρ(t)]Γ(1+ 1/k)]−1, such that k remains the only free parameter. We obtained our best estimate of
k by minimizing the Kullback–Leibler divergence [39] between the distribution tails (δt≳ 0.5days) of model
and empirical P(δt), finding k≈ 0.24.
Jackknife error estimation: To estimate statistical errors of our results, we use jackknife error estimation

while carefully taking into account the size of the left-out data set. The basic idea of the jackknife method is
to estimate from some data X= {x1, . . . ,xg} the variance of an observable Ô= f(X) using a resampling
approach [40]. Jackknife samples Oj are generated by systematically leaving out data, e.g. Ôj = f(Xȷ̄) with
Xȷ̄ = {x1, . . .,xj−1,xj+1, . . .,xg}. Importantly, here each xj can be a block of (differently many) data points.
While typically theses blocks have the same sizem (delete-m jackknife), they could have different sizesmj

(delete-mj jackknife), which is relevant for some of our cases. From the jackknife samples, one can show that
bias-reduced estimators of the mean and variance are given by [41]

ÔJ =

g∑
j=1

1

hj

(
hjÔ− (hj − 1)Ôj

)
,

σ̂2
J =

1

g

g∑
j=1

1

hj − 1

(
hjÔ− (hj − 1)Ôj − ÔJ

)2
, (3)

where hj = (
∑g

i=1mi)/mj, and Ô= f(X) is the naive estimate. For blocks of equal size,mj =m, we have
hj = g and this simplifies to

ÔJ = gÔ− g− 1

g

g∑
j=1

Ôj,

σ̂2
J =

g− 1

g

g∑
j=1

Ôj −
1

g

g∑
j=1

Ôj

2

. (4)

In our case, the data X is the set of all encounter trains and in the resampling step we leave out individual
encounter trains. Since trains include differently many encounters, this can result in removing blocks of
different sizes. In particular, all observables that derive from the number of encounters, e.g. ninf or P(ninf),
require the delete-mj analysis, equation (3), to estimate the statistical error. On the other hand, for
observables that depend on time-binned data, e.g. the time-dependent rate, each encounter train has the
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same size given by the number of time bins during the recording such that the delete-m analysis,
equation (4), is sufficient to estimate the statistical error.

Data availability statements

The data that support the findings of this study are openly available [13, 20] and our code is available at the
following URL: https://github.com/Priesemann-Group/contact_pattern_outbreak [42].

Acknowledgments

We would like to thank Peter Sollich and Sune Lehmann for helpful discussions. J Z received financial
support from the Joachim Herz Stiftung. F P S and V P acknowledge funding from the SFB 1528 Cognition of
Interaction. V P received support from the Federal Ministry of Education and Research (BMBF) via the
RESPINOW (031L0298) and infoXpand (031L0300A) projects. J Z, F P S, J D, V P, and MWi acknowledge
funding by the Max Planck Society.

ORCID iDs

Johannes Zierenberg https://orcid.org/0000-0001-5840-3791
F Paul Spitzner https://orcid.org/0000-0001-9774-4572
Jonas Dehning https://orcid.org/0000-0002-1728-2505
Viola Priesemann https://orcid.org/0000-0001-8905-5873
Martin Weigel https://orcid.org/0000-0002-0914-1147
Michael Wilczek https://orcid.org/0000-0002-1423-8285

References

[1] Pastor-Satorras R, Castellano C, Van Mieghem P and Vespignani A 2015 Epidemic processes in complex networks Rev. Mod. Phys.
87 925–79

[2] Newman M E J and Park J 2003 Why social networks are different from other types of networks Phys. Rev. E 68 036122
[3] Goltsev A V, Dorogovtsev S N, Oliveira J G and Mendes J F F 2012 Localization and spreading of diseases in complex networks

Phys. Rev. Lett. 109 128702
[4] Ahn Y-Y, Bagrow J P and Lehmann S 2010 Link communities reveal multiscale complexity in networks Nature 466 761–4
[5] Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E and Makse H A 2010 Identification of influential spreaders in

complex networks Nat. Phys. 6 888–93
[6] Barabási A-L 2005 The origin of bursts and heavy tails in human dynamics Nature 435 207–11
[7] Van Mieghem P and van de Bovenkamp R 2013 Non-Markovian infection spread dramatically alters the

susceptible-infected-susceptible epidemic threshold in networks Phys. Rev. Lett. 110 108701
[8] Du Z, Fox S J, Holme P, Liu J, Galvani A P and Ancel Meyers L 2018 Periodicity in movement patterns shapes epidemic risk in

urban environments (arXiv:1809.05203)
[9] Towers S and Chowell G 2012 Impact of weekday social contact patterns on the modeling of influenza transmission and

determination of the influenza latent period J. Theor. Biol. 312 87–95
[10] Masuda N and Holme P 2013 Predicting and controlling infectious disease epidemics using temporal networks F1000Prime Rep 5 6
[11] Holme P 2015 Modern temporal network theory: a colloquium Eur. Phys. J. B 88 234
[12] Sekara V, Stopczynski A and Lehmann S 2016 Fundamental structures of dynamic social networks Proc. Natl. Acad. Sci.

113 9977–82
[13] Génois M and Barrat A 2018 Can co-location be used as a proxy for face-to-face contacts? EPJ Data Sci. 7 1–18
[14] Schlosser F, Maier B F, Jack O, Hinrichs D, Zachariae A and Brockmann D 2020 COVID-19 lockdown induces disease-mitigating

structural changes in mobility networks Proc. Natl Acad. Sci. 117 32883–90
[15] Leitch J, Alexander K A and Sengupta S 2019 Toward epidemic thresholds on temporal networks: a review and open questions

Appl. Netw. Sci. 4 105
[16] Presigny C, Holme P and Barrat A 2021 Building surrogate temporal network data from observed backbones Phys. Rev. E

103 052304
[17] Kiss Ian Z, Miller J C and Simon Peter L 2017Mathematics of Epidemics on Networks: From Exact to Approximate Models

(Interdisciplinary Applied Mathematics) vol 46 (Cham: Springer)
[18] Zierenberg J, Wilting J, Priesemann V and Levina A 2020 Description of spreading dynamics by microscopic network models and

macroscopic branching processes can differ due to coalescence Phys. Rev. E 101 022301
[19] Nie Y, Zhong X, Tao W, Liu Y, Lin T and Wang W 2022 Effects of network temporality on coevolution spread epidemics in

higher-order network J. King Saud Univ. - Comput. Inf. Sci. 34 2871–82
[20] Sapiezynski P, Stopczynski A, Dreyer Lassen D and Lehmann S 2019 Interaction data from the Copenhagen networks study Sci.

Data 6 1–10
[21] SocioPatterns (available at: http://www.sociopatterns.org)
[22] Lloyd-Smith J O and Rees M 2007 Maximum likelihood estimation of the negative binomial dispersion parameter for highly

overdispersed data, with applications to infectious diseases PLoS One 2 e180
[23] Lloyd-Smith J O, Schreiber S J, Kopp P E and Getz WM 2005 Superspreading and the effect of individual variation on disease

emergence Nature 438 355–9
[24] Peak C M, Childs L M, Grad Y H and Buckee C O 2017 Comparing nonpharmaceutical interventions for containing emerging

epidemics Proc. Natl Acad. Sci. 114 4023–8

10

https://github.com/Priesemann-Group/contact_pattern_outbreak
https://orcid.org/0000-0001-5840-3791
https://orcid.org/0000-0001-5840-3791
https://orcid.org/0000-0001-9774-4572
https://orcid.org/0000-0001-9774-4572
https://orcid.org/0000-0002-1728-2505
https://orcid.org/0000-0002-1728-2505
https://orcid.org/0000-0001-8905-5873
https://orcid.org/0000-0001-8905-5873
https://orcid.org/0000-0002-0914-1147
https://orcid.org/0000-0002-0914-1147
https://orcid.org/0000-0002-1423-8285
https://orcid.org/0000-0002-1423-8285
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1103/PhysRevE.68.036122
https://doi.org/10.1103/PhysRevE.68.036122
https://doi.org/10.1103/PhysRevLett.109.128702
https://doi.org/10.1103/PhysRevLett.109.128702
https://doi.org/10.1038/nature09182
https://doi.org/10.1038/nature09182
https://doi.org/10.1038/nphys1746
https://doi.org/10.1038/nphys1746
https://doi.org/10.1038/nature03459
https://doi.org/10.1038/nature03459
https://doi.org/10.1103/PhysRevLett.110.108701
https://doi.org/10.1103/PhysRevLett.110.108701
https://arxiv.org/abs/1809.05203
https://doi.org/10.1016/j.jtbi.2012.07.023
https://doi.org/10.1016/j.jtbi.2012.07.023
https://doi.org/10.12703/P5-6
https://doi.org/10.12703/P5-6
https://doi.org/10.1140/epjb/e2015-60657-4
https://doi.org/10.1140/epjb/e2015-60657-4
https://doi.org/10.1073/pnas.1602803113
https://doi.org/10.1073/pnas.1602803113
https://doi.org/10.1140/epjds/s13688-018-0140-1
https://doi.org/10.1140/epjds/s13688-018-0140-1
https://doi.org/10.1073/pnas.2012326117
https://doi.org/10.1073/pnas.2012326117
https://doi.org/10.1007/s41109-019-0230-4
https://doi.org/10.1007/s41109-019-0230-4
https://doi.org/10.1103/PhysRevE.103.052304
https://doi.org/10.1103/PhysRevE.103.052304
https://doi.org/10.1103/PhysRevE.101.022301
https://doi.org/10.1103/PhysRevE.101.022301
https://doi.org/10.1016/j.jksuci.2022.04.004
https://doi.org/10.1016/j.jksuci.2022.04.004
https://doi.org/10.1038/s41597-019-0325-x
https://doi.org/10.1038/s41597-019-0325-x
http://www.sociopatterns.org
https://doi.org/10.1371/journal.pone.0000180
https://doi.org/10.1371/journal.pone.0000180
https://doi.org/10.1038/nature04153
https://doi.org/10.1038/nature04153
https://doi.org/10.1073/pnas.1616438114
https://doi.org/10.1073/pnas.1616438114


New J. Phys. 25 (2023) 053033 J Zierenberg et al

[25] Hellewell J et al 2020 Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts Lancet Glob. Health
8 e488–96

[26] Harris T E 1963 The Theory of Branching Processes (Berlin: Springer)
[27] Jiang Z-Q, Xie W-J, Li M-X, Podobnik B, Zhou W-X and Eugene Stanley H 2013 Calling patterns in human communication

dynamics Proc. Natl Acad. Sci. 110 1600–5
[28] Newman M E J 2010 Networks: An Introduction (Oxford: Oxford University Press)
[29] Chen P Z, Koopmans M, Fisman D N and Gu F X 2021 Understanding why superspreading drives the COVID-19 pandemic but

not the H1N1 pandemic Lancet Infect. Dis. 21 1203–4
[30] Scholtes I, Wider N, Pfitzner Re, Garas A, Tessone C J and Schweitzer F 2014 Causality-driven slow-down and speed-up of

diffusion in non-Markovian temporal networks Nat. Commun. 5 5024
[31] Bailey N T J 1964 Some stochastic models for small epidemics in large populations Appl. Stat. 13 9
[32] Anderson D and Watson R 1980 On the spread of a disease with gamma distributed latent and infectious periods Biometrika

67 191–8
[33] Lloyd A L 2001 Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods Proc. R. Soc. B

268 985–93
[34] Masuda N and Holme P 2020 Small inter-event times govern epidemic spreading on networks Phys. Rev. Res. 2 023163
[35] Starnini M, Gleeson J P and Boguña Man 2017 Equivalence between Non-Markovian and Markovian dynamics in epidemic

spreading processes Phys. Rev. Lett. 118 128301
[36] Feng Mi, Cai S-M, Tang M and Lai Y-C 2019 Equivalence and its invalidation between non-Markovian and Markovian spreading

dynamics on complex networks Nat. Commun. 10 3748
[37] Sekara V and Lehmann S 2014 The strength of friendship ties in proximity sensor data PLoS One 9 e100915
[38] Lewis P A W and Shedler G S 1979 Simulation of nonhomogeneous Poisson processes by thinning Nav. Res. Logist. Q. 26 403–13
[39] Kullback S and Leibler R A 1951 On information and sufficiency Ann. Math. Stat. 22 79–86
[40] Efron B 1982 The Jackknife, the Bootstrap and Other Resampling Plans (Philadelphia: Society of Industrial and Applied

Mathematics)
[41] Busing F M T A, Meijer E and Van Der Leeden R 1999 Delete-m jackknife for unequal m Stat. Comput. 9 3–8
[42] Analysis code (available at: https://github.com/Priesemann-Group/contact_pattern_outbreak)

11

https://doi.org/10.1016/S2214-109X(20)30074-7
https://doi.org/10.1016/S2214-109X(20)30074-7
https://doi.org/10.1073/pnas.1220433110
https://doi.org/10.1073/pnas.1220433110
https://doi.org/10.1016/S1473-3099(21)00406-0
https://doi.org/10.1016/S1473-3099(21)00406-0
https://doi.org/10.1038/ncomms6024
https://doi.org/10.1038/ncomms6024
https://doi.org/10.2307/2985218
https://doi.org/10.2307/2985218
https://doi.org/10.1093/biomet/67.1.191
https://doi.org/10.1093/biomet/67.1.191
https://doi.org/10.1098/rspb.2001.1599
https://doi.org/10.1098/rspb.2001.1599
https://doi.org/10.1103/PhysRevResearch.2.023163
https://doi.org/10.1103/PhysRevResearch.2.023163
https://doi.org/10.1103/PhysRevLett.118.128301
https://doi.org/10.1103/PhysRevLett.118.128301
https://doi.org/10.1038/s41467-019-11763-z
https://doi.org/10.1038/s41467-019-11763-z
https://doi.org/10.1371/journal.pone.0100915
https://doi.org/10.1371/journal.pone.0100915
https://doi.org/10.1002/nav.3800260304
https://doi.org/10.1002/nav.3800260304
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1023/A:1008800423698
https://doi.org/10.1023/A:1008800423698
https://github.com/Priesemann-Group/contact_pattern_outbreak

	How contact patterns destabilize and modulate epidemic outbreaks
	1. Introduction
	2. Results
	2.1. Human contact patterns destabilize epidemic outbreaks
	2.2. Interplay between contact pattern and disease progression modulates basic reproduction number
	2.3. Destabilization and modulation of epidemic spread can be attributed to specific temporal statistics of contact patterns

	3. Discussion
	4. Methods
	References


