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We present a generalisation of the all-Mach solver of Fuster and Popinet (2018) [1] to 
account for heat diffusion between two different compressible phases. By solving a two-
way coupled system of equations for pressure and temperature, the current code is shown 
to increase the robustness and accuracy of the solver with respect to classical explicit 
discretization schemes. Different test cases are proposed to validate the implementation of 
the thermal effects: an Epstein-Plesset like problem for temperature is shown to compare 
well with a spectral method solution. The code also reproduces free small amplitude 
oscillations of a spherical bubble where analytical solutions capturing the transition 
between isothermal and adiabatic regimes are available. We show results of a single 
sonoluminescent bubble (SBSL) in standing waves, where the result of the DNS is compared 
with that of other methods in the literature. Moreover, the Rayleigh collapse problem 
is studied in order to evaluate the importance of thermal effects on the peak pressures 
reached during the collapse of spherical bubbles. Finally, the collapse of a bubble near a 
rigid boundary is studied reporting the change of heat flux as a function of the stand-off 
distance.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Bubble cavitation is relevant in many engineering processes. The inception of a bubble and its interaction with nearby 
boundaries is sometimes intended, sometimes not. Examples of the former scenario are: laser-induced forward transfer 
(LIFT) [2–5], lithotripsy [6], needle-free injection technologies [7,8], sonochemistry [9] etc. An example of the latter scenario 
is when bubbles nucleate in the low pressure regions behind rotating ship turbines upon which they collapse, thus inflicting 
damage and causing erosion [10]. Understanding the complex bubble dynamics is therefore crucial for tuning and controlling 
these processes. Further examples are given in the review by Lohse (2018) [11]. Experiments are usually a great tool of 
unravelling the intricate physics of bubble motion; however, there are many technical limitations that render the access to 
all the fluid properties quite impossible. The need thus emerges for decent numerical tools that correctly model two-phase 
compressible flows.
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Baer & Nunziato (1986) [12] proposed a seven equations model where they solve for the conservation of mass, mo-
mentum and total energy in each of the two phases, as well as an equation for the volume fraction. Several authors later 
adapted this “parent model” and used it to solve interface problems as well as fluid mixtures with several velocities [13–16]. 
Using an asymptotic analysis in the limit of stiff velocity relaxation only, or in the limit of both stiff velocity and pressure 
relaxation, one obtains a six [17–19] or five [17,20] equations model, respectively. Heat and mass transfer are taken into 
account through empirical relations depending on the type of process that is studied. In such methods, due to the treatment 
of the convective terms, pressure oscillations as well as temperature spikes occurred at discontinuities or interfaces where 
a jump in material properties usually exists. Johnsen & Ham (2012) [21] proposed approaches to overcome these spurious 
errors; however, temperature undershoots could still happen, thus affecting the solution when heat diffusion between the 
phases is taken into account. Beig & Johnsen (2015) [22] later developed an efficient treatment of the temperature, yielding 
better solutions in the cases of coupling via heat diffusion. Such solvers have been used to study the temperatures produced 
by inertially collapsing bubbles near rigid surfaces [23].

Another family of numerical methods, capable of capturing the compressibility effects, stem from the generalisation of 
numerical schemes developed for incompressible flows [24–28]. In particular, the all-Mach method is appealing for the 
simulation of different kinds of flows ranging from subsonic to supersonic conditions. The main advantage of this method is 
its capability to retrieve the incompressible limit without the classical time step restriction of compressible solvers, where 
one needs to compute an acoustic CFL condition based on the speed of sound in the least compressible fluid. Fuster & 
Popinet (2018) [1] recently proposed an all-Mach solver using the Volume-of-Fluid (VoF) method for the tracking of the 
interface, taking into account viscous and capillary forces. The solver, implemented in the free software program Basilisk 
[29], previously assumed adiabatic processes only. In the present work, we extend it by taking into account heat diffusion 
between the phases. For this end we derive a two-way coupled system of equations for pressure and temperature which we 
implicitly solve using a multigrid solver. A plethora of additional phenomena where temperature is important could then be 
investigated.

The manuscript is organised as follows: in section 2, we present the governing equations embedded in the all-Mach 
solver, including the newly derived two-way coupled systems of equations for pressure and temperature. In section 3, we 
describe the employed numerical scheme, as well as the multigrid solver used for the solution of the aforementioned 
system of equations. In section 4, we propose new test cases to validate the correct implementation of the thermal effects, 
ranging from the linear to the strongly non-linear regimes. In section 5, we present numerical examples of the spherical 
and axisymmetric Rayleigh collapse of a bubble. Finally, we draw our conclusion and provide an outlook for future work.

2. Governing equations

The equations, governing the compressible two-phase flows considered in the present work, are presented in this section. 
The mass and momentum conservation equations, written in their conservative form, read,

∂ρi

∂t
+ ∇ · (ρi ui) = 0, (1)

∂ (ρi ui)

∂t
+ ∇ · (ρi ui ui) = ∇ ·τ i, (2)

where the subscript i denotes either phases, set throughout this paper to 1 or 2 for the liquid and gas phases, respectively. 
In equations (1) and (2), ρ is the density, u is the velocity field, τ is Cauchy’s stress tensor defined as,

τ i = −pi I + μi

(
∇ui + ∇uT

i

)
, (3)

p is the pressure field, μ is the dynamic viscosity, and I is the identity tensor. Note that, following Stokes’ hypothesis 
[30], the bulk viscosity is neglected. This assumption, commonly used in the analysis of compressible flows, states that an 
isotropic expansion of a liquid element does not induce viscous stresses [31].

In the absence of mass transfer, the velocity field is continuous across the interface u1 · n = u2 · n, where n is the unit 
vector normal to this interface. It is therefore convenient to work in a one-fluid formulation, similarly to classical incom-
pressible formulations, with a single continuous averaged velocity field u. Here and in the following, the bar characterizes 
an averaging process. The Laplace equation gives the pressure jump at the interface,

p1 − p2 = σκ + μ1n ·τ 1 ·n − μ2n ·τ 2 ·n, (4)

where σ is the surface tension coefficient and κ is the local curvature. Applying this jump condition, we obtain the averaged 
momentum equation which we actually solve in the one-fluid formulation,

∂ρu

∂t
+ ∇ · (ρu u

) = ∇ ·τ + σκδsn, (5)

where δs is a characteristic function only defined at the interface.
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Table 1
NASG EoS parameters and thermody-
namic properties for liquid water in 
the temperature range [300 : 500] K.

�1 1.19
�1 (Pa) 7028 × 105

b1 (m3/kg) 6.61 × 10−4

q1 (J/kg) −1177788
cp,1 (J/kg/K) 4285
cv,1 (J/kg/K) 3610

In the absence of mass transfer effects, the conservation of total energy is written as,

∂

∂t

[
ρi

(
ei + 1

2
u2

i

)]
+ ∇ ·

[
ρi

(
ei + 1

2
u2

i

)
ui

]
= ∇ · (τ i · ui) − ∇ ·qi, (6)

where e is the specific internal energy, and q is the heat flux given by Fourier’s law,

qi = −ki∇Ti, (7)

where k is the thermal conductivity, and T is the temperature field. The present work takes into account heat diffusion, 
whereas the previous version of the all-Mach solver only considered adiabatic processes [1]. The all-Mach solver is a density 
based solver with the density, momentum and total energy as its primitive variables. However, in order to compute fluxes, 
the solver makes use of an evolution equation for pressure, similar to the Poisson equation in incompressible solvers, when 
projecting the velocity field to make it divergence free [32]. To obtain such an equation in the current formulation, we first 
write the enthalpy equation,

ρicp,i
DTi

Dt
= βi T i

Dpi

Dt
− ∇ ·qi, (8)

where cp is the specific heat capacity, β is the thermal dilation coefficient, and D/Dt is the total derivative. We then express 
the density differential as the sum of both isothermal and isobaric processes,

dρ =
(

∂ρ

∂ p

)
T

dp +
(

∂ρ

∂T

)
p

dT = γ

c2
dp − ρβdT , (9)

using the definitions of the speed of sound c, the ratio of specific heats γ , and the thermal dilation β . If we then combine 
equations (1), (8), and (9), we obtain an equation for pressure that reads(

γi

ρic2
i

− β2
i T i

ρicp,i

)
Dpi

Dt
= − βi

ρicp,i
∇ ·qi − ∇ · ui . (10)

We thus have a two-way coupled system of equations (8) and (10), for both the temperature and the pressure fields. This is 
to be contrasted with the previous version of the all-Mach solver [1], where only equation (10) is solved while neglecting 
heat transfer (q = 0). To close the system of equations, an equation of state (EoS), relating the thermodynamic quantities 
{p, ρ, T }, is needed. We employ the Noble-Abel Stiffened-Gas (NASG) EoS which shows a better agreement with experiments 
than the Stiffened-Gas (SG) EoS, regarding the relation between the liquid’s specific volume v1 and its temperature [33], 
and thus a better relation between ρ1 and T1. The NASG EoS reads

ρiei = pi + �i�i

�i − 1
(1 − ρibi) + ρiqi, (11)

where �, �, b, and q are fitting parameters, different for each fluid. The values of these parameters, and other thermody-
namic properties, are presented in Table 1 for liquid water. Throughout this paper, gases are considered to be ideal, thus 
obeying the perfect gas EoS. The latter is retrieved from the NASG EoS by setting �2 = γ2, and �2 = b2 = q2 = 0. The 
expression of the thermal dilation coefficient, derived in the framework of NASG, is written as,

βi = 1

vi

(
∂vi

∂Ti

)
p

= − 1

ρi

(
∂ρi

∂Ti

)
p

= (�i − 1)cv,i

(�i − 1)cv,i T i + bi(pi + �i)
. (12)

In this EoS, the speed of sound c is expressed as follows,

c2
i = �i(pi + �i)

. (13)

ρi(1 − ρibi)

3
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Finally, let the interface be represented by a Heaviside function H equal to 1 in the reference phase. The position of the 
interface is then tracked by solving an advection equation for H,

∂H
∂t

+ u ·∇H = 0. (14)

3. Numerical scheme

In this section we present an overview of the numerical method, detailed in [1], with the added steps regarding the im-
plementation of the heat diffusion effects, and a description of the employed multigrid solver. This solver uses the volume 
fraction of a reference phase, the individual component of both density and total energy, as well as the averaged momen-
tum as primitive variables. The discretization in time of the mass, averaged momentum, total energy, and volume fraction 
evolution equations gives a system of equations of the form,

Y n+1 − Y n

�t
+ ∇ · F (adv) = ∇ · F (non−adv) + S, (15)

with

Y =

⎛
⎜⎜⎜⎜⎜⎝

C1
C1ρ1
C2ρ2
ρu

C1ρ1eT ,1
C2ρ2eT ,2

⎞
⎟⎟⎟⎟⎟⎠ , F (adv) =

⎛
⎜⎜⎜⎜⎜⎝

C1u
C1ρ1u
C2ρ2u
ρu u

C1ρ1eT ,1u
C2ρ2eT ,2u

⎞
⎟⎟⎟⎟⎟⎠ , F (non−adv) =

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
τ

C1(τ 1 · u − q1)

C2(τ 2 · u − q2)

⎞
⎟⎟⎟⎟⎟⎠ , S =

⎛
⎜⎜⎜⎜⎜⎝

C1∇ · u
0
0

σκ∇C
0
0

⎞
⎟⎟⎟⎟⎟⎠ ,

where eT ,i = ei + 1
2 |u|2 is the total energy per unit mass and the colour function C1 is equal to the volume fraction of the 

reference phase in a control volume represented by the grid cell, and C2 = 1 − C1. Note that in the absence of mass transfer, 
the interface is advected with the flow at a velocity us = u1 · n = u2 · n. It is therefore convenient to work in a one-fluid 
formulation, similarly to classical incompressible formulations, given the continuity of the velocity field across the interface. 
The average of a quantity φ is defined as φ = Cφ1 + (1 − C)φ2. We would then have averaged properties, such as density ρ
and viscosity μ, and an averaged momentum field ρu, out of which the flow velocity u can be derived and used for the 
advection of the colour function and the conserved quantities.

An important property of the all-Mach solver is that, similar to a Riemann solver, it is based on the computation of 
fluxes and therefore exactly conserves mass, momentum and energy in the absence of surface tension forces. In particular, 
the advection fluxes F (adv) are obtained by using a consistent scheme for the advection of the conserved quantities (density, 
momentum, and total energy) and the volume fraction C , as described in [1,34]. This avoids any numerical diffusion of the 
conserved quantities when computing the advection fluxes, especially for high density ratios [34]. In other words, the 
discontinuity in these quantities is advected exactly at the same velocity as that of the moving interface. The employed VoF 
method is geometric, in which the interface has a sharp representation [35]. The numerical scheme used for the advection, 
proposed by Weymouth & Yue (2010) [36], conserves mass to machine accuracy in the incompressible limit. It is preceded 
by a PLIC reconstruction of the sharp interface, where the normal n to each interfacial segment is computed using the 
Mixed Youngs-Centered (MYC) method described in [37]. The advection fluxes are computed in a directionally split manner 
as detailed in [36]. Without lack of generality, after this step we compute the advected values of the primitive variables,

Y (adv) ≡ Y n − �t∇ · F (adv) (16)

as well as the updated values of the volume fraction. A predicted value of the velocity field at the end of the time-
step (un+1

pred), which already accounts for viscous and surface tension effects is obtained by implicitly solving the averaged 
momentum equation,

ρun+1
pred − ρu(adv)

�t
= −∇pn + ∇ ·

[
μ

(
∇upred + ∇uT

pred

)]n+1 + σκ∇Cn+1, (17)

where the pressure gradient is evaluated at the previous time step.
The resulting estimation of the velocity field is finally corrected using

un+1 = u∗ − �t

ρn+1 ∇pn+1, (18)

where u∗ is defined as

u∗ ≡ un+1
pred + �t

n+1 ∇pn. (19)

ρ

4
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To compute the pressure gradient, we take the divergence of equation (18)

∇ · un+1 = ∇ · u∗ − ∇ ·
(

�t

ρn+1 ∇pn+1
)

. (20)

For incompressible flows ∇ · un+1 = 0 and equation (20) becomes a Poisson equation that is sufficient to compute the 
pressure field pn+1 and the divergence-free velocity field un+1 from equation (18). Naturally, this is not the case in a 
compressible framework, where ∇ · un+1 is not necessarily zero, therefore leaving us with two unknowns: un+1 and pn+1, 
and with the need of an additional equation to close the system. In the previous version of the all-Mach solver [1], equation 
(10) served this purpose, neglecting, however, heat diffusion. The novelty in the present work is the implementation of the 
thermal effects by solving the two-way coupled system of equations (8) and (10),

ρcp
T n+1 − T (adv)

�t
= βT (adv) pn+1 − p(adv)

�t
+ ∇ · (k∇T n+1) , (21)(

γ

ρc2
− β2T (adv)

ρcp

)
pn+1 − p(adv)

�t
= β

ρcp
∇ · (k∇T n+1) − ∇ · u∗ + ∇ ·

(
�t

ρ
∇pn+1

)
, (22)

where equation (22) is obtained by combining (10) and (20). More information on the discretization of the conductive term 
is presented in Appendix A. Note that T (adv) and p(adv) are provisional values obtained after the advection step although 
not advected per se. These fields are therefore not cloned as tracers and associated with the colour function C , as is the case 
for the conserved quantities. Rather, p(adv) is computed from the advected total energy via the equation of state, similarly 
to what has been done in [25] and [38],

p(adv) =
ρeT

(adv) − 1
2ρ|u|2 − ��

� − 1 (1 − ρb) + ρq

1 − ρb
� − 1

, (23)

where ρeT
(adv) is the averaged total energy after the advection step (equation (16)). The provisional temperature T (adv) is 

then obtained from p(adv) also by means of the EOS,

T (adv) = (1 − ρb)p(adv) + �(1 − ρb)

ρ(cp − cv)
. (24)

Equations (21) and (22) are then rearranged in the form of a Poisson-Helmholtz system of mutually coupled equations,

∇ · (k∇T n+1) + λ1T n+1 + λ2 pn+1 = λT , (25)

∇ ·
(

1

ρ
∇pn+1

)
+ λ3 pn+1 + λ4∇ · (k∇T n+1) = λp, (26)

where,

λ1 = −ρcp

�t
, (27)

λ2 = βT (adv)

�t
, (28)

λ3 = − 1

�t2

(
γ

ρc2
− β2T (adv)

ρcp

)
, (29)

λ4 = β

ρcp
, (30)

λT = λ1T (adv) + λ2 p(adv), (31)

λp = λ3 p(adv) + 1

�t
∇ · u∗. (32)

This system is of the form,

L(a) = b, (33)

where, L(·) is a linear operator, and a = [T n+1 pn+1]T and b = [λT λp]T are both vectors. This system of mutually 
coupled equations can therefore be solved efficiently using a multigrid implicit solver, described for the SGN equations by 
5
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Algorithm 1: Summary of the algorithm (Comments in red).

Initialisation of C1ρ1, C2ρ2, p, T (Eq. (24)), ρu, C1ρ1eT ,1, C2ρ2eT ,2; /* C1=C, C2=1-C */
while t < tend do

Set �t; /* e.g. using an acoustic CFL */

Obtain qi = Ciρi
ρu

C1ρ1+C2ρ2
;

Clone ρi , qi and Ei as tracers to be advected with C ;

Perform directional-split advection to evaluate F (adv) [1];

Compute ρu(adv) = q1 + q2;

Solve the mixture momentum equation for un+1
pred (Eq. (17));

Define a provisional velocity field u∗ (Eq. (19));
Obtain face velocities; /* Average of centre velocities of neighbouring cells */

Obtain provisional pressure p(adv) (Eq. (23)); /* EOS */

Obtain provisional temperature T (adv) (Eq. (24)); /* EOS */
Evaluate β (Eq. (12));
Evaluate ρc2 (Eq. (13));
Evaluate λ coefficients (Eqs. (27)–(31)); /* Previously computed face velocities are used to evaluate the 
divergence term in Eq. (32) */

Solve the Poisson-Helmholtz system of mutually coupled equations (25)–(26) for pn+1 and T n+1;
Update face velocities (Eq. (20)); /* Cell centre velocities, which are used to evaluate the momentum, are 
computed from face velocities by the same averaging method */

Update C1ρ1eT ,1 (Eq. (37)) using pn+1
1 (Eq. (35));

Update C2ρ2eT ,2 (Eq. (37)) using pn+1
2 (Eq. (36));

end

Popinet [29]. When solving time-dependent problems, a good initial guess ã = a − δa, is available, where δa is an unknown 
correction. Therefore, it is usually more efficient to solve for the equivalent problem,

L(δa) = b −L(ã) = res, (34)

where res is the residual. Owing to the linearity of the operator L(·), δa can be added to the initial guess ã, and the process 
is then repeated until the residual falls below a given tolerance. The procedure can be summarised by the following steps:

1. Compute the residual res = b −L(ã).
2. If ‖res‖ < ε , ã is good enough, stop.
3. Else, solve L(δa) � res.
4. Add δa to ã and go back to step 1.

For all the computations reported in this manuscript, the tolerance ε is set to 10−6. The multigrid solver therefore yields es-
timated values of T n+1 and pn+1 that can be readily use to compute the fluxes required to update the averaged momentum 
and the total energy. The velocity field un+1, and by extension the momentum, is then computed using Eq. (18).

To update the total energy of each component, we account for the fact that the resultant pressure at the cell centres 
corresponds to the one-fluid averaged field pn+1 = Cpn+1

1 + (1 − C)pn+1
2 , out of which the pressure in each phase is derived 

using Laplace’s law,

pn+1
1 = pn+1 + (1 − C)σκn+1, (35)

pn+1
2 = pn+1 − Cσκn+1. (36)

These pressures are then used to update the total energy in each phase at the end of the time step,

(CiρieT ,i)
n+1 = (CiρieT ,i)

(adv) + �t

[
−Ci∇ · (pi u

)n+1 + Ci∇ ·
(
μi

(
∇u + ∇uT

)
· u

)n+1 − Ci∇ ·qn+1
i

]
. (37)

Once all primitive variables are updated, it is possible to compute the final values of the derived variables such as the 
pressure and temperature fields via the EoS, which will then be consistent with the values of the conservative variables 
obtained at the end of the time-step. The numerical scheme is summarised in the commented Algorithm 1.

4. Test cases

In this section, we propose test cases used to validate the correct implementation of the thermal effects in compressible 
solvers in both linear and strongly non-linear regimes. The results are compared either to classical numerical methods and 
models already available in the literature, and to analytical solutions when available.
6
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Fig. 1. (a) A gas bubble, initially hotter than the surrounding liquid �T = Tb − T∞ = 350 K, shrinks and reaches a new radius while approaching the thermal 
equilibrium with the liquid. (b) A gas bubble, initially cooler than the surrounding liquid �T = Tb − T∞ = −175 K, expands and reaches a new radius while 
approaching the thermal equilibrium with the liquid. The colour code depicts the temperature field, and τ = R2

0/κth,g is the diffusive time scale of the gas. 
(For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

4.1. Epstein-Plesset like problem for temperature

The first test case is inspired by Epstein and Plesset (1950) [39] who came up with analytical solutions for the shrinkage 
and growth of gas bubbles in undersaturated and supersaturated liquid-gas solutions, respectively. The change in bubble 
radius is driven by the diffusion of gas across the interface, given an initial difference between the gas concentration at 
the interface and in the liquid bulk. An analytical solution is reached provided one neglects the advective terms in the 
diffusion equation. This assumption is physically justified when the diffusive process is slow, which is typically the case for 
gas diffusion in liquids for small gas concentrations, thus avoiding convective effects by density gradients [40].

In this paper we test the shrinkage and growth of a spherical gas bubble in a liquid due to the diffusion of temperature 
between the two phases. From a quick look at the equation of state for an ideal gas, one can notice that the gas expands 
if heated, with its pressure kept the same, and shrinks if cooled. Even before any formal statement of an equation of state 
was put forth, this behaviour had been observed. Charles performed the first experiments in 1787, credited later on by 
Gay-Lussac in 1802 who published the linear relationship between volume and temperature at constant pressure [41]. This 
was later called Charles’s law,

V 1

T1
= V 2

T2
. (38)

We perform axisymmetric simulations of an air bubble inside liquid water, subject to an initial temperature difference 
between the gas and the liquid. The parameters of this problem, as well as the properties of the fluids are rendered dimen-
sionless by the liquid density ρl = 975.91 kg/m3, pressure p∞ = 5 × 106 Pa, temperature T∞ = 350 K and initial bubble 
radius R0 = 10−4 m. The domain size is set to L = 8R0. The grid spacing is uniform and set to 128 cells per initial bubble 
radius (� = R0/128). The boundaries of the domain, except for the axis of symmetry, have outflow boundary conditions 
where we impose a Dirichlet condition for pressure (p = p∞), and a Neumann condition for both normal and tangential 
velocity components (∂u/∂n = 0, where n is the normal direction to the boundary). A key point is to set an initially uni-
form pressure p∞ across the whole domain. For the sake of simplicity, we neglect surface tension so as to avoid dealing 
with the Laplace pressure jump, which induces pressure changes inside the bubble as it shrinks or expands. This will also 
simplify the theory to which we will compare our numerical results. However, viscosity is taken into account for it damps 
any interfacial corrugation that might arise from the absence of capillary forces. Fig. 1a presents a sequence of events for 
a case where the bubble is initially hotter than the liquid, with �T = Tb − T∞ = 350 K. The time is shown in multiples of 
the diffusive time scale of the gas τ = R2

0/κth,g , with κth,g = kg/ρgcp,g the thermal diffusivity of the gas. One clearly sees 
that as the heat diffuses into the liquid, the bubble shrinks until it reaches a new equilibrium state. Owing to the much 
higher liquid thermal conductivity, one hardly sees any increase in the liquid temperature, even at the bubble wall. Heat is 
rapidly diffused and the assumption of a constant temperature at the bubble interface is usually a decent approximation in 
theoretical models. This is mainly the case for non-condensible gas bubbles in sufficiently cold liquids [42]. Fig. 1b shows 
the case where the bubble is initially cooler than the liquid, with �T = Tb − T∞ = −175 K. Heat thus diffuses into the 
bubble interior which keeps expanding until thermal equilibrium with the liquid is established.

The equilibrium radii for both cases are given by equation (38). The temporal evolution of the bubble radius is of interest 
as well and should be validated. As previously mentioned, Epstein and Plesset (1950) analytically derived R(t) by neglecting 
7
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Fig. 2. A comparison between our code, implemented in Basilisk , and the spectral method’s solution for the cases (a) �T = Tb − T∞ = 350 K and (b) �T =
Tb − T∞ = −175 K.

the advective terms; however, making the same approximation in this case proved to be a simplistic solution. The reason 
is that this process is relatively fast, especially at early times where Ṙ is of large magnitude. Therefore, the advective terms 
could not be simply neglected. To make sure that our code also captures the correct temporal evolution of R(t), we recur to 
a spectral method solution of the enthalpy equation inside the gas, coupled to an equation for the bubble radius [43–46]. 
In the absence of viscous dissipation, the enthalpy equation inside the bubble, with temperature as the primitive variable, 
is written as [47]

γ

γ − 1

p

T

[
∂T

∂t
+ 1

γ p

(
(γ − 1)kg

∂T

∂r
− 1

3
r ṗ

)
∂T

∂r

]
− ṗ = kg∇2T , (39)

with

ṗ = 3

R

[
(γ − 1)kg

∂T

∂r

∣∣∣∣
R

− γ pṘ

]
, (40)

the equation of pressure, assumed to be spatially uniform inside the bubble, which is typically the case for low densities of 
the gas [48]. In our case, ṗ = 0 since the motion is driven by a temperature rather than by a pressure gradient. Equation (40)
is thus simplified to a description of the temporal evolution of the bubble radius as a function of the temperature gradient 
at the interface. As can be seen, at t = 0, Ṙ → ∞. The assumption of a constant temperature at the bubble interface is 
employed, enabling us to solve the coupled system of equations (39)–(40) only, completely disregarding what happens in 
the liquid. The details of the spectral method [45] used for the solution are described in Appendix B.

Fig. 2 shows a pretty good agreement between our current implementation of the thermal effects and the spectral 
method’s solution. Our code well predicts the equilibrium radii as well as the temporal evolution in both cases. There is a 
slight discrepancy in R(t), most probably due to the fact that viscosity is taken into account in our code. In the spectral 
method, an inviscid liquid was assumed. Viscosity dampens the motion and this is why we see a very small offset between 
the two solutions, with ours being slightly slower. Were viscosity to be included in the spectral solution, an additional 
equation, of the Rayleigh-Plesset type, would have been needed for R(t). But this approximation is perfectly sufficient for 
our current purposes.

Fig. 3a shows that as the grid is refined, R(t) converges. 128 cells per initial bubble radius seems to be a sufficient 
resolution for decent results, since one barely discerns any changes with respect to a finer mesh. The results in Fig. 2 are 
thus produced with this resolution. Fig. 3b shows the L2 norm of error with respect to the grid size, both in a log scale. 
Although our implementation of the thermal effects is done implicitly, meaning it being unconditionally stable, a constant 
“diffusive” CFL is set for the grid convergence study,

C = κth,g
�t

�2
= 1

2
. (41)

The L2 norm of error is then computed from R(t) as follows,

‖ε‖2 =
[

100∑(
R�(iτ/100) − R�∗(iτ/100)

)2

]1/2

, (42)

i=0
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Fig. 3. (a) A grid convergence study for the cast �T = Tb − T∞ = 350 K. The inset is a zoom on R/R0 for t � τ . The different curves are for different 
numbers of cells per initial bubble radius. (b) A log-log plot of the L2 norm of the error as a function of the mesh size. The black line, with a slope equal 
to 2, depicts a numerical scheme that is exactly second order convergent in space.

where �∗ = 1/256 is the most refined mesh size. As expected, the smaller the �, the smaller the error. Compared to the 
solid black line in Fig. 3b, our method converges at second order in space.

4.2. Free linear oscillations of a gas bubble

Except in idealised analytical setups, every oscillating bubble experiences damping of its motion via several mechanisms: 
acoustic radiation in the liquid, viscous dissipation at the bubble wall, and thermal effects. These mechanisms alter the 
natural frequency of a bubble [49]. Chapman and Plesset (1971) [50] made available a theory for the free oscillations of a 
gas bubble in the linear regime. They quantify the contribution of each of the above mechanisms to the overall damping of 
the motion. In addition they show that as the equilibrium radius of the bubble decreases, the oscillation transitions from an 
adiabatic to an isothermal regime, in the framework of polytropic processes. Later, Prosperetti and co-workers studied the 
thermal effects in forced radial oscillations [42,51,52]. More recently, the theory was generalised, taking into account the 
effect of mass transfer on the attenuation of the bubble motion [53,54]. In the present work, we will focus on the thermal 
conduction contribution to the damping of free linear oscillations of a gas bubble, and check that our code well captures 
the predicted transition. For that end, both viscosity and surface tension are neglected.

We briefly describe the theory used for the comparison. For the details, the reader is referred to the relevant publication 
[50]. The temporal evolution of the bubble radius is described as

R(t) = R0 + ξ exp �t = R0 + ξ exp [(ζ + iω) t], (43)

where R0 is the equilibrium radius, ξ 	 R0 is the amplitude of the perturbation, ζ a damping factor and ω the angular 
frequency of the oscillation.

By linearising the equations, i.e. conservation of mass, momentum and energy, as well as the equation of state, and by 
applying the linearised boundary conditions, Chapman and Plesset (1971) [50] were able to find an equation for � which, 
in the absence of capillary and viscous effects, reads

�2 = −
(

1 + �R0

cl

)
G

ρl R2
0

, (44)

where

G = p0κth,g R2
0 (λ2 − λ1)(

�
λ1

− κth,g

)(
R0λ

1/2
1 coth R0λ

1/2
1

)
−

(
�
λ2

− κth,g

)(
R0λ

1/2
2 coth R0λ

1/2
2

) , (45)

and where the constants λ1 and λ2 are the roots of the quadratic equation

�2 −
(
γ

p0 + �κth,g

)
λ + p0 κth,g

λ2 = 0. (46)

ρ0 ρ0 �
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Equation (44) can then be solved in the complex plane by any root finding algorithm. Once � is computed, the logarithmic 
decrement �, an indicator of the motion’s attenuation, can be readily obtained as

� = ζ

f
= 2π

ζ

ω
, (47)

where f is the frequency of the oscillation. Minnaert (1933) [49] derived the natural frequency of a bubble in an adiabatic 
regime. In such cases, the polytropic coefficient is equal to the ratio of specific heats in the gas γp = γ , and the natural 
frequency, again in the absence of viscous, capillary and acoustic effects, reads

ω0 =
(

3γ p0

ρl R2
0

)1/2

, (48)

where p0 is the equilibrium pressure. Since heat transfer between the phases is taken into account, equation (48) no longer 
holds. Instead, an “effective” polytropic coefficient γp is computed as a correction to Minnaert’s frequency, in order to 
include thermal effects,

ω =
(

3γp p0

ρl R2
0

)1/2

. (49)

We perform spherically symmetric simulations of an air bubble in liquid water at T∞ = 350 K and p∞ = 1 atm. The 
equilibrium density of air is computed using the ideal gas equation of state ρ0 = p0/ 

[
T0

(
cp,g − cv,g

)]
, where p0 = p∞

in the absence of surface tension and T0 = T∞ . The bubble is slightly put out of equilibrium with the initial radius Ri =
1.001R0. Since mass is conserved, the initial density is given by ρi = ρ0 (R0/Ri)

3. The initial pressure is computed assuming 
a polytropic process, with its coefficient given by equation (49),

pi = p0

(
R0

Ri

)3γp

. (50)

The initial temperature Ti is then computed using the equation of state. The thermodynamic properties of both fluids are 
constants taken at the equilibrium pressure and temperature. The resolution is uniform and set to 2048 cells per equilibrium 
bubble radius (� = R0/211). Neumann boundary conditions are imposed for both the pressure (∂ p/∂r = 0) and the radial 
velocity component (∂ur/∂r = 0) in this spherically symmetric simulation. The domain size is set to L = 256R0, large enough 
for a bubble to complete an oscillation cycle before being affected by spurious pressure reflections at the boundary from 
previous acoustic emissions, 2L > 2πcl/ω. Therefore, a Dirichlet boundary condition for pressure p = p∞ could have been 
used also instead of the Neumann condition with virtually no change in the results, since the domain length is much bigger 
than the relevant scales of this problem. For a correct prediction of the acoustic emissions, the pressure waves should be 
accurately resolved. Therefore, an acoustic CFL condition is employed, based on the speed of sound in the liquid,

Cac = cl
�t

�
= 1

2
. (51)

Simulations were carried out for R0 ∈ {5 × 10−6, 10−5, 10−4, 10−3, 10−2} m. Fig. 4a shows the theoretical logarithmic 
decrement (equation (47)). Basilisk ’s results computed at the end of one free oscillation cycle are in good agreement with 
the theory. This means that the code correctly captures the thermal damping. Fig. 4b shows a perfect agreement between 
the theoretically and numerically computed effective polytropic coefficients. The code correctly captures the transition from 
an adiabatic to an isothermal oscillation as the equilibrium radius decreases. Air as a diatomic gas has γ = 1.4, so the 
effective γp decreases from 1.4 to 1.

Fig. 5a shows the temporal evolution of the radius for the case R0 = 10−2 m, compared with equation (43). This is an 
adiabatic regime as can be seen from Fig. 4b. The damping merely consists of acoustic radiation. Very good agreement is 
achieved with the analytical solution, both in terms of the attenuation and the oscillation frequency. The figure also shows 
how the logarithmic decrement � is extracted from the numerical simulations. Fig. 5b shows the comparison for the case 
R0 = 10−5 m. This is a nearly isothermal case, and one can see that the motion is damped further. Thermal conduction now 
has an important contribution as compared to Fig. 5a. The agreement is also good.

4.3. Single bubble sonoluminescence (SBSL)

Single bubble sonoluminescence is the periodic light emission from an acoustically strongly driven gas bubble at a 
specific set of parameters, i.e. forcing amplitude, frequency, concentration of dissolved gas etc. [55]. The bubble strongly and 
rapidly collapses so that the internal energy is highly focused in a very small volume, leading to strong heating of the gas, 
partial ionisation, and a recombination of ions and electrons (thermal bremsstrahlung [56]). This process of light emission 
is surprisingly stable and periodic, and also visible to the naked eye in the dark [55]. It is a challenging problem from the 
10
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Fig. 4. (a) Logarithmic decrement at the end of one cycle of free bubble oscillation for different values of the equilibrium radius. (b) Effective polytropic 
coefficient γp computed using equation (49) for different values of the equilibrium radius.

Fig. 5. (a) Normalised radius as a function of time for (a) R0 = 10−2 m and (b) R0 = 10−5 m. Times are normalised with the respective oscillation period 
for each case T = 1/ f = 2π/ω. The solid lines are obtained using equation (43).

numerical point of view for it is strongly non-linear, and an interplay between many physical aspects, i.e. heat and mass 
transfer, acoustic radiation etc. Since our numerical method does not allow mass transfer at the moment, this aspect will 
be neglected, despite being important experimentally and having a direct effect on the temperatures generated inside the 
bubble. We will assume that the bubble exists at the centre of a spherical flask of radius R∞ = 0.01 m, surrounded by 
liquid water at atmospheric pressure.

After having verified that our code is capable of producing a standing wave in pure liquid [57] (Appendix C), we per-
formed the simulation of a single sonoluminescent bubble in liquid water. The test case is inspired by Brenner, Hilgenfeldt 
& Lohse (2002) [55] and is that of an Argon bubble with an initial radius of R0 = 4.5 μm, in a spherical flask of radius 
R∞ = 0.01 m, driven with a pressure signal of amplitude Pa = 1.2 atm and of frequency f = 26.5 kHz. Spherical symmetry 
is assumed, and the simulation is performed in the r-coordinate only. To achieve a standing wave of amplitude Pa = 1.2 atm
at r = 0, the amplitude �p∞ of the sinusoidal driving is computed using equation (C.7), and plugged in the Dirichlet bound-
ary condition (C.4). A Neumann condition for the radial velocity is employed (∂ur/∂r = 0). The grid spacing is uniform and 
set to approximately 128 cells per initial bubble radius (� � R0/128). Argon is a monoatomic noble gas, so its ratio of spe-
cific heats is γ = 5/3. Both viscous and capillary effects are taken into account in this simulation. Fig. 6 shows the bubble 
radius as a function of time for one oscillation cycle. Our results are compared to those of Brenner, Hilgenfeldt & Lohse 
(2002) [55] and Zhou & Prosperetti (2020) [58] for the same case. The former authors employed a Rayleigh type equation to 
obtain their result (blue dots in Fig. 6), while the latter authors performed DNS of the bubble interior, including an equation 
11
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Fig. 6. A single bubble of initial radius R0 = 4.5 μm at p∞ = 1 atm is subject to a pressure signal of amplitude Pa = 1.2 atm at r = 0 and of frequency 
f = 26.5 kHz. The figure shows the bubble radius with respect to time, for different numerical methods.

Fig. 7. (a) Pressure field p(r, t) inside the spherical flask with respect to time. (b) Zoom in on the radial range [0–50] μm, occupied by the oscillating bubble, 
the radius of which is denoted by the red line.

for temperature, coupled with a Keller-Miksis equation for a description of the bubble radius (red dots in Fig. 6). The bubble 
first expands isothermally, then violently collapses. Light is emitted at the end of this rapid adiabatic collapse. Afterbounces 
also occur until a new oscillation cycle begins. The results show reasonable agreement, particularly between the current 
and Zhou & Prosperetti’s (2020) [58] because both take into account thermal dissipation. Therefore, the results of both show 
further damping (especially for the afterbounces) than Brenner, Hilgenfeldt & Lohse’s (2002) [55] who treated the thermal 
damping only approximately. The current method is a full DNS, both inside and outside the bubble. This is why we also see 
further damping in the present results than in Zhou & Prosperetti’s (2020) [58]. The model they use considers the liquid to 
be only weakly compressible, so the amount of the bubble’s internal energy lost to acoustic radiation is underestimated [48].

Fig. 7a shows the pressure field p(r, t) inside the spherical flask with respect to time. On the large scale, one clearly 
recognizes the sinusoidal driving in the colour change from dark to light. At different times, one sees the propagation of 
high pressure waves as white straight lines, the slope of which is the speed of sound in the liquid, as indicated in the fig-
ure. A disadvantage of the present code in simulating acoustically driven bubbles is the reflection of emitted pressure/shock 
waves at the boundary which spuriously contaminate the physical process. This is why only one oscillation cycle is simu-
lated, with a numerical domain larger than 2000 times the initial radius of the bubble. With a careful inspection, one sees 
that around t = 25 μs, the first emitted shock wave is reflected at r = R∞ , and is carried back as a rarefaction wave. How-
ever, since the numerical domain is large enough, the physical process remains intact, which would not be the case had the 
simulation been continued for an additional oscillation cycle. Fig. 7b is a zoom in on the region of interest, occupied by the 
oscillating bubble. The bubble radius is depicted by the red line, and one clearly sees that the pressure/shock waves that we 
12
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Fig. 8. Bubble centre temperature T (r = 0, t) as a function of time. The temperature is represented in a log scale.

just discussed are emitted at the moment of the main collapse, as well as at subsequent collapses from the afterbounces. 
The capturing of this acoustic dissipation is one of the advantages of this method over others [55,58].

Fig. 8 shows the temperature, in log scale, at the bubble centre r = 0 as function of time. At the moment of the main 
bubble collapse, the temperature peaks and reaches T ∼ 27500 K. This is somewhat higher than the 15000 K often re-
ported [59], but consistent order of magnitude wise. The reason for the lower temperature in experiment lies in the water 
molecules which enter the bubble and reduce the effective polytropic exponents, and partial ionisation, which does the 
same [60]. T (r = 0) also increases at each of the subsequent collapses, with the peaks gradually decreasing in value since 
the rebounds and collapses become weaker and weaker over time due to viscous, acoustic and thermal damping.

5. Numerical examples

5.1. Spherical Rayleigh collapse

In this section, we perform spherically symmetric simulations of the Rayleigh collapse problem [61]. But rather, the 
content of our bubble is gaseous instead of being void. Due to an initially lower pressure p0 inside the bubble, the latter 
collapses and performs many oscillation cycles before reaching an equilibrium state, provided damping mechanisms exist 
of course. Otherwise, the bubble keeps oscillating indefinitely. In the current framework, the aim is to check the effect of 
heat transfer on the collapse, as compared to a purely adiabatic case. Therefore, viscous and capillary forces are neglected. 
In particular, we compare the maximum pressure reached by the bubble at the end of the first collapse phase. Concurrently, 
the bubble reaches its minimum volume which we also compare.

We start by theoretically predicting the behaviour of the bubble in the two limiting cases: the adiabatic and isothermal 
bubble response of a bubble in an inviscid incompressible liquid in the absence of surface tension. For this end, we write 
the conservation of the mechanical energy in the liquid,

∂

∂t

[
ρl

1

2
u2

l

]
+ ∇ ·

[
ρl

1

2
u2

l ul

]
= −∇ · (pl · ul) , (52)

and we integrate over the whole liquid volume using Gauss’s theorem,

dEk

dt
= −

ˆ
∇ · (pl · ul)dVl = −

ˆ
pl(ul ·n)dS, (53)

where Ek = ´ 1
2 ρlu2

l dVl . The liquid volume is enclosed between two surfaces where the pressure is uniform: the interface, 
where in absence of surface and viscous effects the pressure is equal to that of the bubble pb , and the far away boundary 
where the pressure is assumed to be constant and equal to p∞ . Thus, eq. (53) can be readily integrated in time between 
t = 0 and any arbitrary instant,

Ek(t) =
Vb(t)ˆ

(p∞ − pb)dVb, (54)
V 0
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Fig. 9. (a) Normalised maximum pressure achieved by the bubble at the end of its first collapse as a function of the maximum Mach number in the 
simulation. The adiabatic and isothermal theories are given by equations (56) and (57), respectively. (b) Normalised minimum volume reached by the 
bubble as a function of the maximum Mach number in the simulation.

where we have imposed that the initial kinetic energy in the liquid is zero. We have also used the mass conservation 
relation 

´
(ul ·n)dS = dVb

dt . If we evaluate this expression for the particular time at which the bubble reaches its minimum 
volume and the liquid velocity becomes zero, then,

p∞ (Vmin − V 0) −
Vminˆ

V 0

pbdVb = 0, (55)

which can be integrated for a known relation between the bubble pressure and volume. For instance, if we assume a 
polytropic processes then pb V γ

b = p0 V γ
0 (adiabatic case), then

p∞ (Vmin − V 0) + p0 V γ
0

γ − 1

(
V 1−γ

min − V 1−γ
0

)
= 0, (56)

which is a non-linear equation where Vmin can thus be computed using any root finding algorithm. The maximum pressure 
pmax achieved by the bubble at this instant is immediately found using the relation between pressure and volume imposed 
by a polytropic process. Analogously, in the isothermal limit pb Vb = p0 V 0 and the resulting equation is

p∞ (Vmin − V 0) − p0 V 0 ln

(
Vmin

V 0

)
= 0. (57)

For the simulations, an air bubble, with an initial radius R0 = 10−4 m, is initialised with a pressure p0 = 0.1 bar. The 
surrounding liquid is assumed to be water at T∞ = 293.15 K, with a density ρl = 998.21 kg/m3. Simulations are done for 
a wide range of liquid far field pressures p∞/p0 ∈ [2, 100]. In all cases, the bubble is initially supposed to be in thermal 
equilibrium with the surroundings T0 = T∞ . The domain size is set to 64 times the initial radius of the bubble, and the 
employed resolution is � = R0/1024. Neumann boundary conditions are imposed for both the pressure (∂ p/∂r = 0) and the 
radial velocity component (∂ur/∂r = 0) in this spherically symmetric simulation.

Fig. 9a shows the normalised maximum pressure reached inside the bubble at the end of the first collapse phase, as a 
function of the maximum Mach number Mamax = Umax/cl , where pad

max = p0 (V 0/Vmin)γ is the maximum pressure computed 
after obtaining Vmin using the adiabatic theory eq. (56), and Umax = (

pad
max/ρl

)1/2
given by the incompressible theory. As 

the initial pressure ratio p∞/p0 increases, the collapse of the bubble becomes more violent and compressibility effects 
will become much more important. Therefore, a more descriptive dimensionless number is the aforementioned maximum 
Mach number. The result of the adiabatic simulations, where the thermal conductivities of both fluids are set to zero, is in
agreement with the adiabatic theory for small Mamax . As the latter number increases, the maximum pressure achieved in 
the simulations becomes less than that predicted by the incompressible adiabatic theory eq. (56). A more important fraction 
of the bubble’s internal energy is then radiated via pressure/shock waves to the surrounding liquid. Therefore, the bubble 
achieves less compression, and reaches minimum volumes that are larger than those predicted by the theory, as can be seen 
in Fig. 9b. When heat diffusion between the phases is taken into account, the bubble is compressed further. As expected, 
the results of the thermal all-Mach code in Figs. 9a–b lie in the envelope delimited by both theories, until compressibility 
effects become prominent. At much larger pressure ratios, the Rayleigh collapses become much more violent, with a much
14
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higher collapse velocity (p∞/ρl)
1/2. Therefore the Peclet number, defined as Pe = R0(p∞/ρl)

1/2/κth,g where κth,g is the 
thermal diffusivity of the gas, becomes much larger. This means that thermal diffusion happens at a much longer time as 
compared to advection. Therefore, thermal all-Mach should converge towards its adiabatic counterpart, which seems to be 
the trend in our simulations as well (solid black lines in Fig. 9a). It must be stated that although the peak pressures reached 
during an isothermal compression are higher than those of an adiabatic one (Fig. 9a), the internal energy e = pV / (γ − 1) is 
smaller since the bubble volume reached at the end of the compression is smaller in the isothermal case (Fig. 9b). Indeed, 
one would expect the internal energy to be smaller in the isothermal limit since heat is evacuated from the bubble.

5.2. Bubble collapse near a rigid boundary

Studies of a collapsing bubble near a rigid boundary abounds in the literature [1,23,62,63]. In the present work, we also 
tackle it, with a special focus on the temperature field and the heat flux across the bubble. Axisymmetric simulations of 
a collapsing air bubble in the vicinity of a rigid boundary are performed. The surrounding liquid is assumed to be water 
at p∞ = 1 atm and T∞ = 293.15 K, with a density ρl = 998.21 kg/m3. The bubble’s radius is initially set to R0 = 10−4 m, 
and its pressure to pb,0 = p∞/20. The parameters and properties of the problem are then rendered dimensionless by 
R0, ρl , �p0 = p∞ − pb,0 and T∞ . Times will therefore be represented as multiples of the Rayleigh collapse time tR =
0.915R0 (ρl/�p0)

1/2 [61]. Water is supposed to be inviscid, with a hypothetical surface tension defined by a Weber number 
of W e = �p0 R0/σ = 1000. The bubble is initially supposed to be in thermal equilibrium with the surroundings Tb,0 = T∞ , 
and with a density of ρg = ρl/1000. The domain size is set to 64 times the initial radius of the bubble, and the employed 
resolution is � = R0/256, gradually coarsened far from the bubble (Appendix A of [5]). The bottom boundary has the 
conditions of a rigid wall, i.e. u = 0, and a zero pressure gradient in the normal direction (∂ p/∂z = 0). The top and right 
boundaries have outflow conditions where we impose the pressure as p = p∞ , zero normal velocity gradients and vanishing 
shear stresses (top: ∂vr/∂z = 0, ∂vz/∂z = 0, right: ∂vz/∂r = 0, ∂vr/∂r = 0). Three cases are simulated, where the difference 
only lies in the initial distance H between the bubble centre and the rigid wall (z = 0). Let δ = H/R0 be the stand-off ratio, 
it spans the following set δ ∈ {2, 3, 4}. All other parameters are kept the same.

The collapse of the bubble is driven by the initial pressure difference �p0. As the bubble is compressed, its internal 
pressure increases. Lord Rayleigh (1917) [61] was the first to quantify the huge increase of the liquid pressure at the bubble 
wall. The existence of a boundary breaks the spherical symmetry of the pressure field, which can be seen in Figs. 10a, 10d 
and 10g where an imbalance in pressure exists between the top and bottom walls of the bubble. The closer the bubble 
is to the boundary, the more important this imbalance is. The effect of this can also be seen in the shape of the inner 
jet that pierces the bubble, directed towards the rigid boundary, and which becomes thicker for smaller δ. The bubble 
reaches its minimum volume, associated with the highest internal pressure and temperature. The inner jet finally impacts 
the bottom wall of the bubble and breaks it into a toroidal structure (Figs. 10c, 10f and 10i). The main difference between 
the pressure and the temperature field is that the former is fairly uniform inside the bubble, while the latter is a function 
of space. The temperature field is continuous across the bubble interface; therefore, a thin thermal boundary layer insures a 
smooth transition between the inside and the outside of the bubble wall. This boundary layer can be better discerned as Ṙ
decreases (Figs. 10f and 10i) so that the bubble wall motion is isothermal and not adiabatic. The temperature of the liquid 
hardly increases, even at the close vicinity of the interface owing to the much higher thermal conductivity of the liquid.

It is of interest to check the heat flux across the bubble interface, for the different stand-off ratios, and check whether 
the difference in the bubble shape, and thus surface area, affects it or not. Let the bubble be our control volume. In the 
absence of mass transfer effects, it is considered as a closed thermodynamic system. The first law of thermodynamics is 
therefore written as,

dU = δQ − δW , (58)

where U = ρe is the internal energy of the bubble, Q the heat supplied to the system and W the mechanical work done 
by the system due to pressure differences. Derived with respect to time, each of the above terms is expressed as follows,

dU

dt
= d

dt

˚
ρedV , (59)

∂ Q

∂t
= −

‹
q · ndS, (60)

∂W

∂t
= p

dV

dt
. (61)

For a perfect gas, ρe = p/ (γ − 1), and since the pressure inside the bubble is uniform, equation (58), derived with respect 
to time, yields an expression for the heat flux across the bubble interface,

−
‹

q · ndS = 1

γ − 1
V

dp

dt
+ γ

γ − 1
p

dV

dt
. (62)

Fig. 11a shows the heat flux across the bubble surface for the different stand-off ratios δ. As previously mentioned, δ is 
the only parameter that changes between the simulations, therefore the heat flux appears to be a function of it. Namely, 
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Fig. 10. Snapshots of a collapsing bubble near a rigid boundary for (a–c) δ = 2, (d–f) δ = 3, (g–i) δ = 4. The left hand panel of each snapshot shows the 
temperature field with the velocity vectors in the liquid. It must be stated that the scale of the vectors is not common amongst all the snapshots in order 
to show the motion in each case. The right hand panel shows the pressure field. The respective instants in time are indicated on top of each snapshot.

the heat flux seems to increase with decreasing δ. Fig. 11b shows the normalised surface area of the bubble with respect 
to time. As the bubble collapses, it deviates from the spherical shape due to the previously discussed mechanisms. This 
deformation is more prominent for smaller δ, translated by a bigger bubble surface area as can be seen from the inset 
(Fig. 10c). This leads to further contact between both phases, and therefore to a larger heat flux.

6. Conclusions and outlook

In this paper, we presented a generalisation of the all-Mach solver [1], previously adiabatic, so that it takes into account 
heat diffusion between the different phases. Therefore, we derived a two-way coupled system of equations for pressure and 
temperature, which was then solved implicitly using a multigrid solver. Different test cases were proposed to validate the 
16
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Fig. 11. (a) Dimensionless heat flux across the bubble surface with respect to time, calculated using equation (62), for the different stand-off ratios. (b) 
Normalised surface area of the bubble with respect to time, for the different values of the stand-off ratio. (c) Zoom around the moment of bubble collapse, 
showing the minimum surface area achieved for different stand-off ratios.

correct implementation of the thermal effects. An Epstein-Plesset like problem is studied, where a temperature gradient 
exists across the bubble wall and drives the flow. The temporal evolution of the bubble radius is shown to compare well 
with a spectral method solution. The code also reproduces free small amplitude oscillations of a spherical bubble. As the 
equilibrium radius decreases, the Peclet number associated with the bubble oscillations also decreases. Analytical solutions 
therefore predict a transition from adiabatic to isothermal oscillations. A good agreement between the simulations and the 
theory is achieved. In addition, we show results of a single sonoluminescent bubble (SBSL) in standing waves, where the 
result of the DNS is compared with that of other methods in the literature. Besides capturing the thermal effects, our code 
exhibits the strongest damping as compared to the other tested methods because it solves for the compressible effects in 
the liquid, and thus accurately predicts the emission of shock waves. Using the solver, the spherical Rayleigh collapse was 
studied for a wide range of pressure ratios showing a comparison between thermal and adiabatic simulations. For high 
pressure ratios, the collapses became much more violent and tended to the adiabatic limit, even when thermal diffusion 
was taken into account. Finally, the axisymmetric collapse of a bubble near a rigid boundary was studied, giving the change 
of heat flux as a function of the stand-off distance.

The present work extends the applicability of the all-Mach solver to the simulation of compressible multiphase flows 
where thermal effects are relevant. Applications could be the study of thermal ablation by means of bubble inception and 
collapse close to boundaries. Also, the current implementation is one step further towards the simulation of boiling flows 
for example. Future work could be the extension of the all-Mach solver to include mass transfer and phase change, which 
would allow the simulation of a plethora of physical flows involving all the previous effects.
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Fig. A.12. This figure depicts a 3 × 3 stencil, and can be analogously extruded to account for the third dimension. The temperature field T and the volume 
fraction C are cell-centred and shown in black, whereas the thermal conductivity and the gradient of temperature are defined as face vectors shown in red.
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Appendix A. Discretization of the conductive term

In this appendix, we provide the discretization method of the conductive term in equations (6), (8), and (10). The term 
in question is −∇ · q = ∇ · (k∇T ). The thermal conductivity k is defined as a face vector shown in red in Fig. A.12. It is 
computed using an arithmetic average k̄ = C f k1 + (

1 − C f
)

k2, where C f is the face volume fraction interpolated from the 
neighbouring cells, and k1 and k2 are the thermal conductivities of the liquid and gas phase, respectively.

kx
i, j =

(
Ci−1, j + Ci, j

2

)
k1 +

(
1 − Ci−1, j + Ci, j

2

)
k2,

kx
i+1, j =

(
Ci, j + Ci+1, j

2

)
k1 +

(
1 − Ci, j + Ci+1, j

2

)
k2,

ky
i, j =

(
Ci, j−1 + Ci, j

2

)
k1 +

(
1 − Ci, j−1 + Ci, j

2

)
k2,

ky
i, j+1 =

(
Ci, j + Ci, j+1

2

)
k1 +

(
1 − Ci, j + Ci, j+1

2

)
k2.

The presence of the interface is thus taken into account as such, and the heat flux across the faces in this one-fluid formu-
lation is then given by,

qx
i, j = −kx

i, j∇T x
i, j = −kx

i, j

(
Ti, j − Ti−1, j

�

)
,

qx
i+1, j = −kx

i+1, j∇T x
i+1, j = −kx

i+1, j

(
Ti+1, j − Ti, j

�

)
,

qy
i, j = −ky

i, j∇T y
i, j = −ky

i, j

(
Ti, j − Ti, j−1

)
,

�
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Fig. A.13. This figure depicts the same test case as the one in Fig. 2a. The blue curve is the Spectral method solution, the orange markers represent the 
numerical solution employing an arithmetic mean for the thermal conductivity k, and the yellow markers represent the numerical solution employing a 
harmonic mean for k. The inset is a zoomed view over the region delimited by the black dashed box.

qy
i, j+1 = −ky

i, j+1∇T y
i, j+1 = −ky

i, j+1

(
Ti, j+1 − Ti, j

�

)
.

Therefore, we will have the heat transfer term evaluated at the cell centre {i, j} as

−∇ ·q = −
(

qx
i+1, j − qx

i, j

�
+ qy

i, j+1 − qy
i, j

�

)
. (A.1)

Alternatively, one could employ a harmonic average, k̄ = (
C f /k1 + (1 − C f )/k2

)−1
, for the thermal conductivity. Fig. A.13

shows both averaging methods for the test case in section 4.1. The results show a pretty good agreement with merely a 
small discrepancy between the two averaging methods, as shown by the zoomed view over the region delimited by the 
black dashed box. In this case, the arithmetic mean seems to fit better with the Spectral solution. However, we do not make 
further comments on this matter, leaving the reader the choice between the two averaging methods, since one might be 
better than the other in specific cases, and a systematic study would then be needed to settle the choice, which is beyond 
the scope of our current work.

Appendix B. Spectral method

With the assumptions we made in section 4.1, equations (39)–(40) are reduced to the following, assuming spherical 
symmetry,

γ

γ − 1

p

T

[
∂T

∂t
+ γ − 1

γ p
kg

(
∂T

∂r

)2
]

= kg

r2

∂

∂r

(
r2 ∂T

∂r

)
, (B.1)

Ṙ = γ − 1

γ p
κg

∂T

∂r

∣∣∣∣
R
. (B.2)

It is numerically convenient to treat the problem as that of a fixed boundary, so we use the following coordinate mapping,

y = r

R(t)
. (B.3)

The equations are then transformed to,

γ

γ − 1

p

T

[
∂T

∂t
+ γ − 1

γ p

κg

R2

(
∂T

∂ y

)2

− Ṙ

R
y
∂T

∂ y

]
= κg

R2 y2

∂

∂ y

(
y2 ∂T

∂ y

)
, (B.4)

Ṙ = γ − 1

γ p

κg

R

∂T

∂ y

∣∣∣∣ . (B.5)

y=1
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Fig. C.14. The amplitude of the standing pressure wave �pl,0 at r = 0, normalised by the amplitude of the driving signal �p∞ , as a function of the 
dimensionless parameter 2 f R∞/cl . The solid line is computed using equation (C.7).

We now attempt to solve the advection-diffusion problem, taking into account the change of boundary via a spectral 
method. To that end, we expand the temperature into Chebyshev polynomials,

T (t, y) =
N∑

n=0

an(t)T2n(y), (B.6)

where T2n are the Chebyshev polynomials. Notice that only even polynomials are used so as to enforce the symmetry 
boundary condition at y = 0. We substitute expansion (B.6) into equation (B.4) and the result is evaluated at the Gauss-
Lobatto collocation points yn ,

yn = cos
(nπ

2N

)
, n = 1,2..., N. (B.7)

This yields N coupled ODEs of the type ȧn = f (an), for the N + 1 coefficients. The last equation is constructed from the 
constant temperature boundary condition at y = 1, which we derive with respect to time,

N∑
n=0

ȧn T2n(1) = 0. (B.8)

With the added ODE for the bubble radius, equation (B.5), we have a system of N+2 coupled first order ODEs, which is 
linearised and then implicitly integrated in time.

Appendix C. Standing wave in pure liquid

The inviscid Euler equations, in a spherically symmetric framework, are written as

1

ρlc2
l

∂ pl

∂t
= − 1

r2

(
ulr2

)
∂r

, (C.1)

ρl
∂ul

∂t
= −∂ pl

∂r
. (C.2)

The boundary conditions are

ul(r = 0, t) = 0, (C.3)

pl(r = R∞, t) = pl,∞ + �p∞ sin (ωt) , (C.4)

where p∞ is the atmospheric pressure, �p∞ the driving amplitude and ω the frequency of the acoustic signal. The standing 
wave solution is [57,65],
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ul(r, t) = �p∞
ρlcl

1

sin (kR∞)

R∞
r

[
cos (kr) − sin (kr)

kr

]
× cos (ωt) , (C.5)

pl(r, t) = pl,∞ + �p∞
1

sin (kR∞)

R∞
r

sin (kr) × sin (ωt) , (C.6)

where k = ω/cl is the wavenumber. The amplitude of the standing pressure wave at the centre of the flask thus is

pl(r = 0) − pl,∞
�p∞

= Pa

�p∞
= kR∞

sin (kR∞)
. (C.7)

We test the capability of our code to produce the correct amplitude of a standing pressure wave at r = 0. The frequency of 
the driving signal is set to f = 10000 Hz, and its amplitude to �p∞ = 1 atm. Equation (C.4) is set as a Dirichlet boundary 
condition at r = R∞ . Simulations are performed for multiple values of R∞ . Fig. C.14 shows a perfect agreement between 
equation (C.7) and our code. The theory predicts resonance for 2 f R∞/cl = 1 which is also observed in our simulations.
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