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Abstract
Purpose: The purpose of the study is to identify differences between axisymmet-
ric diffusion kurtosis imaging (DKI) and standard DKI, their consequences for
biophysical parameter estimates, and the protocol choice influence on parame-
ter estimation.
Methods: Noise-free and noisy, synthetic diffusion MRI human brain data is
simulated using standard DKI for a standard and the fast “199” acquisition pro-
tocol. First the noise-free “baseline” difference between both DKI models is
estimated and the influence of fiber complexity is investigated. Noisy data is used
to establish the signal-to-noise ratio at which the baseline difference exceeds
noise variability. The influence of protocol choices and denoising is investigated.
The five axisymmetric DKI tensor metrics (AxTM), the parallel and perpendicu-
lar diffusivity and kurtosis and mean of the kurtosis tensor are used to compare
both DKI models. Additionally, the baseline difference is also estimated for the
five parameters of the WMTI-Watson model.
Results: The parallel and perpendicular kurtosis and all of the WMTI–Watson
parameters had large baseline differences. Using a Westin or FA mask reduced
the number of voxels with large baseline difference, that is, by selecting voxels
with less complex fibers. For the noisy data, precision was worsened by the fast
“199” protocol but adaptive denoising can help counteract these effects.
Conclusion: For the diffusivities and mean of the kurtosis tensor, axisymmetric
DKI with a standard protocol delivers similar results as standard DKI. Fiber com-
plexity is one main driver of the baseline differences. Using the “199” protocol
worsens precision in noisy data but adaptive denoising mitigates these effects.
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1 INTRODUCTION

Diffusion kurtosis imaging (DKI) has increasingly been
used to study the neuronal tissue microstructure and
derive biophysical parameters relevant for understanding
brain function and impact of disease1–3 during the past ten
years. DKI is a more complex extension of the diffusion
tensor imaging (DTI) framework and provides diffusion
kurtosis metrics that can provide complementary informa-
tion4–6 to DTI. However, the increased complexity comes
with an increase in acquisition time. Since time is a limited
resource in scientific and especially clinical settings, need-
ing more time poses a major hurdle for a more extensive
implementation and application of DKI.

Axisymmetric DKI was recently introduced as a more
acquisition time efficient DKI model.7–9 Axisymmetric
DKI reduces the parameter space by imposing additional
symmetry assumptions, that is, axisymmetrically orga-
nized fibers in the imaged tissue structure and axisym-
metric DKI (eight parameters) can be fitted with less data
than is required by standard DKI (22 parameters). One
time-efficient acquisition scheme that leverages axisym-
metric DKI’s data demand advantages is the fast “199”
scheme7,10 that relies on a total of 19 images (18 diffusion
weighted images and one nondiffusion weighted image),
only. However, parameter estimation from fewer diffusion
weighted images is more susceptible to noise and it can
be expected that the signal-to-noise ratio (SNR) require-
ments for accurate parameter estimates are higher when
fitting data acquired with the fast “199” protocol com-
pared to a standard diffusion MRI (dMRI) protocol. To
mitigate the influence of noise, denoising algorithms can
be used.11,12

An important parameter subset existing in both
axisymmetric DKI and standard DKI are the five axisym-
metric DKI tensor metrics (AxTM), the parallel and per-
pendicular diffusivity (D|| and D⊥) and kurtosis (W|| and
W⊥) and mean of the kurtosis tensor (W). Since the
AxTM are attainable with both DKI models, they are per-
fectly suited to be used for a model comparison. The five
AxTM are also directly related to the five parameters of
the biophysical standard model,13 the axon water frac-
tion AWF, axon dispersion 𝜅, parallel and perpendicular
extra-axonal diffusivities De,|| and De,⊥ and intra axonal
diffusivity Da, here estimated with the WMTI–Watson
model.14,15

It has been suggested that the symmetry assumptions
made in axisymmetric DKI are likely a reasonable approx-
imation to diffusion in major white matter fiber bundles,
for example, occurring in white matter.7 Violation of these
additional symmetry assumptions, for example, in white
matter voxels containing crossing fibers, might lead to a

deviation of axisymmetric DKI fit results from their stan-
dard DKI reference counterpart.

In this work, we simulate synthetic white matter
data using standard DKI as forward model to explic-
itly include complex, non-axisymmetric fiber configura-
tions. We hypothesize that any observed deviation between
both DKI model variants is due to an error in axisym-
metric DKI rooted in an underlying complex and thus
non-axisymmetric fiber configuration. To test this hypoth-
esis, voxel selection masks are used to filter out voxels
with high fiber complexity that likely break axisymmet-
ric DKI’s symmetry assumptions. Furthermore, we estab-
lish the “baseline difference” between axisymmetric DKI
and standard DKI AxTM estimates from noise-free data.
The baseline differences are inherent to axisymmetric DKI
and will always be there with respect to standard DKI.
Another topic is the influence of noise on the standard
deviation (SD) of axisymmetric DKI fit results. Here the
question at which SNR the baseline difference between
both DKI models becomes bigger than axisymmetric DKI’s
SD is investigated. This will establish an SNR regime
where the standard deviation caused by noise dominates
parameter estimation and at what SNR the baseline dif-
ference between both DKI models becomes visible which
is here referred to as the “tipping point”. To investigate
this, first a noise simulation study is performed where
the SNR space is densely sampled to precisely establish
the tipping point without using denoising methods. Then,
we use Multi-shell Position-Orientation Adaptive Smooth-
ing (msPOAS), an adaptive denoising algorithm that is
preserving tissue boundaries without introducing blur-
ring11,16,17 to establish if the tipping point can be reached
for realistic SNRs in voxels where the axisymmetric con-
ditions were best fulfilled. In both noise studies, the influ-
ence of the acquisition protocol (fast “199” protocol vs. a
standard dMRI protocol) is investigated as an additional
variable. Finally, the median bias based on the two acqui-
sition protocols is quantified in five well known fiber tracts
for a typical SNR found in dMRI datasets.18 Through-
out the work, the noise-free estimates of the five AxTM
or the biophysical parameters based on standard DKI are
used as a ground truth reference and axisymmetric DKI
fit results are compared to them on a voxel-wise basis,
hence the baseline difference between axisymmetric DKI
and standard DKI is also referred to as “bias”.

2 METHODS

A detailed description of the standard DKI model and the
axisymmetric DKI model is provided in the Sections S1.1
and S1.2 but can also be found in References 7 and 19.
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OESCHGER et al. 3

2.1 Dataset

2.1.1 Acquisition

Multishell, in vivo dMRI data with 153 diffusion gradi-
ent directions and b-values of 0 s/mm2 (18 images), 550
s/mm2 (30 directions), 1100 s/mm2 (45 directions), and
2500 s/mm2 (60 directions) s

mm2 was acquired from a
healthy volunteer at 3T with: FOV of 200 × 203 × 170 mm3

at 1.7 mm isotropic resolution, TE = 75 ms, TR= 5800 ms,
gradient separation Δ = 38.8 ms and gradient pulse dura-
tion 𝛿 = 13.3 ms. Image reconstruction at the scanner
from the multichannel information was done using a
sum of squares algorithm where all channels had the
same weights. The following pre-processing was applied to
the dMRI data using the ACID toolbox20 (in that order):
eddy current and motion artifact correction using the
ACID “ECMOCO” module, susceptibility artifact correc-
tion using the ACID “HySCO” module and Rician bias
correction using the ACID “Rician bias correction” mod-
ule that uses a second moment approach and acts on
the signals of the individual diffusion weighted images
as described in Reference 21. The noise level 𝜎 was cal-
culated using the ACID “Noise estimation” module with
the “repeated measures” method where 𝜎 is estimated as
the averaged SD over the diffusion measurements of the
highest diffusion shell in the ventricles, see Reference 20.
Additionally, we acquired multiparameter mapping data22

on the same subject and calculated the R1 map using the
hMRI toolbox,23 for anatomical visualization.

The in vivo dMRI data used for this study was
acquired with the help of a human research partici-
pant. The participant provided written informed consent.
The local ethics committees at University Medical Center
Hamburg-Eppendorf approved the study (PV5141).

2.1.2 Generation of synthetic data

The acquired multishell, in vivo dMRI data was fitted with
standard DKI to obtain the 22 standard DKI tensor met-
rics per voxel which were then used for generation of
noise-free, synthetic dMRI data using standard DKI as a
forward model with the same diffusion shells and gradient
directions that were used to acquire the data.

2.2 Biophysical parameters

The framework presented in Reference 13, here
referred to as “WMTI-Watson,” was used to estab-
lish an analytical connection between the five AxTM
Ω = {W ,W||,W⊥,D||,D⊥} and the biophysical parameters
𝛽 = {AWF, 𝜅,De,⊥,De,||,Da}. A detailed description of the
framework can be found in Section S1.3.

We neglected a potential model error of the
WMTI–Watson model with respect to the biological tissue
ground truth and assumed the biophysical parameters
based on AxTM estimates from standard DKI to be the
ground truth. In this study, we focused on quantifying the
propagation of the error in the AxTM estimates into the
respective WMTI–Watson parameter estimates introduced
by axisymmetric DKI.

2.3 Computation of difference between
both DKI models and substantially
differing voxels

The estimated parameters, either the set of AxTMΩ or the
set of biophysical parameters 𝛽 were estimated based on
standard DKI and axisymmetric DKI and compared using
the voxel-wise absolute percentage error (A-PE):

A-PE = 100 ⋅
|𝜃standardDKI − 𝜃axisymmetricDKI|

𝜃standardDKI
(1)

Here 𝜃 is an element of either Ω or 𝛽 and the subscript
indicates whether the parameter was estimated based on
standard DKI or axisymmetric DKI. If A-PE > 5%, the
corresponding voxel was classified as a “substantially dif-
fering voxel” (SDV). The study focused on white matter
only, to obtain the white matter mask, we segmented the
R1 map into tissue probability maps (TPM) and thresh-
olded the white matter TPM (TPM > 0.9), see green con-
tour in Figure 2. To summarize the results we estimated a)
the number of SDV in white matter in percent and b) the
median A-PE in the population of SDV. We implemented
the condition 𝜃 ∈ Ω ≥ 0 and 𝜃 ∈ 𝛽 ≥ 0 because negative
diffusivities are non-physical and AWF and 𝜅 are ≥ 0 by
definition. Furthermore, kurtosis estimates in the healthy
brain have been found24 well above 0.

2.3.1 Influence of voxel selection masks
on number of substantially differing voxels

To identify voxels in white matter that likely brake the
axisymmetric tissue symmetry assumption,25,26 two differ-
ent masks were used: a fractional anisotropy (FA) mask
and a so-called “Westin mask.” To generate the FA mask,
white matter voxels with FA≥ 0.55 were selected based on
the FA of an unidirectional phantom, see Reference 27.
This voxel selection is referred to as “FA mask.” To gen-
erate the Westin mask, white matter voxels that fulfill the
conditions imposed by a threshold for the Westin indices
computed via the diffusion tensor eigenvalues 𝜆, CL =
𝜆1−𝜆2
𝜆1
≥ 0.4, CP =

𝜆2−𝜆3

𝜆1
≤ 0.2 and CS =

𝜆3

𝜆1
≤ 0.3526 were
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4 OESCHGER et al.

investigated, this voxel selection is referred to as “Westin
mask.” For comparison, a third mask containing the entire
white matter was used.

2.4 Noise simulations

2.4.1 Simulation of noisy dMRI data
and fast “199” protocol

The noise-free, in vivo human brain data S̃noise−free were
noise contaminated according to Scont = |S̃noise−free + 𝛼 +
𝛽i|, where 𝛼, 𝛽 ∈ (0, 𝜎) were drawn from a zero mean
Gaussian with SD 𝜎. A special property of axisymmetric
DKI is that due to it’s reduced parameter space, it needs
fewer measurements and—at a minimum—all five AxTM
can be estimated from a fast two shell setup with nine dis-
tinct gradient directions n(i+∕−)7,10 and one additional b = 0
measurement. Here, the fast protocol was simulated for
bvalues of b= 1100 s

mm
and b= 2500 s

mm
.

2.4.2 Single voxel analysis

Here we asked: at what SNR is the baseline difference
between standard DKI and axisymmetric DKI bigger than
the SD of axisymmetric DKI? The SNR at which this hap-
pens is referred to as “tipping point.” To investigate this,
we simulated 12 single voxels (see Section S1.7) selected
from the white matter of the in vivo human brain data set
for densely sampled SNRs= [1, 2, 3, ...140] according to the
procedure reported above for 2500 noise samples for the
standard MRI protocol described in Section 2.1 and addi-
tionally for the fast “199” protocol.7,10 Then, axisymmetric
DKI was fitted to the simulated data. To evaluate the sim-
ulation and make it comparable to the noise-free study
regarding the SDV, the differences between standard DKI
and axisymmetric DKI were normalized to the correspond-
ing average AxTM values in white matter and expressed as
a percentage thereof.

2.4.3 White matter Westin mask analysis
with adaptive denoising

To investigate whether the tipping point can be reached
for typical SNRs of published DKI protocols, we per-
formed another noise simulation study that used the
adaptive denoising “msPOAS” module of the ACID tool-
box with two set-ups for the adaptation parameter 𝜆,
𝜆 = 10 and 𝜆 = 100 on noisy, whole brain simulation
data. The adaptation bandwidth 𝜆 controls the adaptivity
of msPOAS,11 ranging from 𝜆 = 0 (complete adaptation)

where the original image is unchanged, to 𝜆 = ∞
(non-adaptive denoising) similar to, for example, Gaus-
sian smoothing. Smoothing was performed in the white
matter mask because msPOAS needs coherent regions to
work properly, while parameter estimation was done in
the Westin mask. For the simulated SNRs, values of pub-
lished protocols were chosen: SNR= [5, 15, 30, 52] (SNR:
52, see Reference 28, SNRs: 30, 15, 5, see Reference 29)
and SNR 100. That data was then fitted with axisymmetric
DKI in the Westin mask (see Section 2.3), since the Westin
mask turned out to be most effective in reducing the num-
ber of SDV (see Section 3.2). To evaluate this analysis, n
= 100 noise samples were simulated, the SD per voxel
was calculated and the median was computed. Second,
the percentage of voxels reaching the tipping point was
calculated.

2.4.4 Quantification of bias in fiber tracts

To quantify the difference between both DKI models based
on the two acquisition protocols under realistic conditions,
the whole brain human dMRI data was simulated and fit-
ted with the fast "199" and the standard acquisition proto-
col for SNR= 39, which was the SNR reported in one of the
original fast “199” protocol studies.18 Data were smoothed
using msPOAS and 𝜆 = 100. “Bias” in this context refers
to the difference of the noisy, voxel-wise fit results to the
ground truth (noise-free, standard DKI fit results), again
computed as the A-PE, see Equation (1). Results were eval-
uated with a specific focus on five well-known fiber tracts:
corpus callosum (cc), superior corona radiata (scr), exter-
nal capsule (exc), superior longitudinal fasciculus (slf),
and posterior corona radiata (pcr). The fiber tracts were
identified with the JHU-ICBM-DTI-81 white matter atlas30

for which it was nonlinearly registered to the subject space
of the in vivo dMRI data using the spatial normalization
tool in SPM12, see Figure 1.

3 RESULTS

3.1 Summary measures: Number of
SDV highly parameter dependent and
biophysical parameters affected the most.
Median A-PE similar across all parameters

3.1.1 Differences between AxTM across
the white matter using the two DKI models

Figure 2 shows the spatial distribution of SDV
(see Section 2.3) as red dotted voxels in a slice of the AxTM
and biophysical parameters, Figure 3 summarizes the
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OESCHGER et al. 5

F I G U R E 1 The five regions of interest corpus
callosum (cc), superior corona radiata (scr), external capsule
(exc), superior longitudinal fasciculus (slf) and posterior
corona radiata (pcr) identified with the JHU-ICBM-DTI-81
white matter atlas indicated in the coregistered R1 image of
the human brain in vivo dataset used in this study.

F I G U R E 2 Examples of the axisymmetric DKI tensor metrics (top) and biophysical parameters (bottom) in a slice of the human brain
data used in this study. The green contour outlines the white matter, the red dots indicate voxels where the A-PE≥ 5% (“substantially differing
voxels”). The red barplots of the top row in Figure 3 quantify the percentage of substantially differing voxels in the whole white matter.

number of SDV and the median A-PE in that population
using barplots.

The number of SDV in the white matter mask is highly
parameter dependent (Figure 3A.1), for example, only 1%
of D||,D⊥ and 2% of the mean of the kurtosis tensor W .
The W|| (22%) and W⊥ (51%) were affected much more, see
also spatial distribution of SDV. However, the median dif-
ference in the SDV across the AxTM was more similar and
ranged between 7% (W) and 11% (W⊥).

3.1.2 Differences between biophysical
parameters across the white matter based on the
two DKI models

Both the number of SDV and the median A-PE in the
SDV population (11%–18%) was higher for the biophysical

parameters than the AxTM. Again, the percentage of SDV
was parameter dependent and spanned from 28% (Da) to
54% (De,||), see Figure 3B.1. De,||, De,⊥ and AWF had most
SDV while Da and 𝜅 had the least. Figure S1 in Section S1.4
documents the underlying A-PE histogram distributions.

For neither the AxTM nor the biophysical parameters
Figure 2 revealed a spatial distribution pattern of the SDV
in the depicted white matter slice.

3.2 Influence of voxel selection mask
on number of SDV and median bias

Confining the analysis to white matter voxels in the Westin
mask reduces the number of SDV more than confining the
analysis to white matter voxels in the FA mask. For the
AxTM, the median bias remained approximately the same
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6 OESCHGER et al.

F I G U R E 3 Barplots summarizing the number of substantially differing voxels (SDV) of the axisymmetric DKI tensor metrics (AxTM)
(top) and biophysical parameters (bottom). Shown is the rounded number of SDV (red barplots) and the median absolute percentage error
(A-PE) or “bias” in those voxels (blue barplots). The subplot’s titles indicate the subset of voxels that were analyzed, that is, (A.1, B.1) “WM
mask” = white matter voxels were analyzed, (A.2, B.2) “WM mask & FA mask” = white matter voxels in the FA mask were analyzed and
(A.3, B.3) “WM mask & Westin mask” = white matter voxels in the Westin mask were analyzed. Number of voxels in the white matter mask:
101 521, number of voxels in the WM mask & FA mask analysis: 28 741, number of voxels in the WM mask & Westin mask analysis: 20 527.

for all three voxel masks, except for D|| in the Westin mask
analysis that was heavily affected by very few outliers with
high median bias (64%), while in the case of the biophysi-
cal parameters the Westin mask and FA mask could reduce
the median bias.

3.2.1 AxTM

Both, the FA mask and the Westin mask, reduced the num-
ber of SDV for all AxTM, compare Figure 3A.2 and A.3.
They were most effective for W|| and least effective for W⊥.
For example, for W⊥ the number of SDV could be reduced
from 51% in the whole white matter to 46% in the Westin
mask while for W|| the number of SDV could be reduced
from 22% to 3%. In general, the Westin mask was more
effective in reducing the SDV than the FA mask. Inter-
estingly, the spread of the median A-PE remained similar
between ≈7% to ≈11% when applying both masks, see
Figure 3A.2, 3A.3, except for D|| in the Westin mask that
was affected by outliers.

3.2.2 Biophysical parameters

The same trend as for the AxTM was also observed
for the biophysical parameters with regards to the
number of SDV: both masks reduced the number of
SDV in all parameters significantly and the Westin
mask was more effective than the FA mask. But, as
opposed to the AxTM, the spread of the median A-PE
was also reduced from (11%–18%) to (8%–10%) for
the Westin mask and (8%–11%) for the FA mask, see
Figure 3B.2,B.3.

3.3 Noise simulations

3.3.1 Single voxel analysis

Figure 4 shows the SNR of the tipping point for each of
the 12 simulated voxels.The term “bias” here refers to the
normalized difference between standard DKI and axisym-
metric DKI in %.
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OESCHGER et al. 7

F I G U R E 4 Signal-to-noise ratio (SNR) at which the tipping point (bias > std) is reached, computed for n = 2500 noise realizations for
the 12 simulated voxels. Top shows the results for the standard diffusion kurtosis imaging (DKI) protocol, the bottom shows the results for
the fast “199” protocol. The connecting gray line’s purpose is to indicate the trend that for higher biases the SNR required to reach the tipping
point tends to be lower.

3.3.2 Standard protocol

The likelihood of finding an SNR threshold≤140 increases
for increasing axisymmetric DKI biases, that is, from left
to right on the x-axis. W⊥ and W had the highest number
of voxels for which a tipping point below the simulation
limit (SNR 140) could be found, where the lowest tipping
point was found at SNR = 13 for the W⊥ voxel with the
highest bias (voxel 12). For the diffusion parameters D⊥

and D||, most voxels did not reach the tipping point up to
SNRs = 140.

3.3.3 Fast “199” protocol

For the fast “199” protocol, too, the likelihood of finding
an SNR tipping point ≤140 increases for increasing biases.
However, much fewer voxels reached the tipping point
below the simulation limit compared to the standard pro-
tocol. Again the lowest tipping point was found for the W⊥

voxel with the highest bias (voxel 12).

3.3.4 White matter Westin mask analysis
with adaptive denoising

Figure 5 shows the median SD in the Westin mask
(blue and cyan markers), the median difference between

standard DKI and axisymmetric DKI in the Westin mask
(dashed black line) and the percentage of voxels crossing
the voxel-wise tipping point (red and magenta markers,
right y-axis).

3.3.5 Standard protocol

The voxel-wise tipping point was reached for realistic,
higher SNRs up to 52 predominantly for the kurtosis
parameters but the percentage depended on the adapta-
tion parameter 𝜆. For example, for W at SNR = 52, ≈ 37%
of voxels reached the tipping point for 𝜆 = 100 while it was
only ≈ 14% for 𝜆 = 10. A similar pattern was observed for
W⊥ where for SNR = 52, ≈ 28% of voxels reached the tip-
ping point for 𝜆 = 100 and only ≈ 19% in case of 𝜆 = 10.
For W|| at SNR = 52 the number of voxels reaching the tip-
ping point was ≈ 7% for 𝜆 = 100 and below 5% for 𝜆 = 10.
For the diffusion parameters the number of voxels was
close to zero for all realistic SNRs up to 52.

3.3.6 Fast “199” protocol

The number of voxels reaching the tipping point was lower
when the fast protocol was used compared to the standard
protocol. For SNR= 52 and 𝜆 = 100 the tipping point was
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8 OESCHGER et al.

F I G U R E 5 Median SD in subset of white matter voxels in Westin mask, computed for n= 100 noise samples (blue and cyan datapoints,
left y-axis), median difference between standard diffusion kurtosis imaging (DKI) and axisymmetric DKI in that subsample of voxels (dashed
black line) and percentage of voxels crossing the voxel-wise tipping point (red and magenta data, right y-axis). Shown are the results when
fitting the standard MRI protocol (top) and the fast “199” protocol (bottom) data, see Sections 2.1 and 2.4.

reached by ≈ 13% of voxels in case of W and ≈ 14% in case
of W⊥. For SNRs up to 52 and in case of 𝜆 = 10 the num-
ber of voxels reaching the tipping point was always close
to zero for all parameters.

3.3.7 Median SD

Independent of the protocol, the median SD always
became smaller for increasing SNRs and was also smaller
for a higher adaptation parameter 𝜆.

3.3.8 Quantification of bias in fiber tracts

Figure 6 shows the median bias computed in the five
fiber tracts corpus callosum (cc), superior corona radi-
ata (scr), external capsule (exc), superior longitudinal
fasciculus (slf), and posterior corona radiata (pcr). The
median bias of standard DKI and axisymmetric DKI is
always very similar when a standard MRI protocol is
used. For W the combination of the fast protocol and
axisymmetric DKI performs very similarly to when a stan-
dard protocol is used while for the other parameters it
performs worse.

4 DISCUSSION

In this work, we found that depending on the parameter,
there is a significant number of voxels where axisymmet-
ric DKI and standard DKI inherently differ more than
5%. For D||,D⊥ and W we found little differences between
the two DKI models, while W⊥ and W|| showed larger
differences. All five axisymmetric DKI based biophysical
parameters were strongly different from their standard
DKI based counterparts. Introduction of two voxel selec-
tion masks that reduced the number of voxels containing
more complex fiber configurations mitigated the observed
differences between both DKI models (especially for W||

and the biophysical parameters) suggesting that fiber com-
plexity is one cause of the observed baseline differences
between both DKI models. The noise simulations revealed
the challenges of the fast “199” protocol. For a higher but
still realistic SNR of 52, the single voxel noise simulation
without denoising showed that the baseline differences
between axisymmetric DKI and standard DKI are often
invisible when a standard MRI acquisition protocol is used
(the most tipping points were reached for W : 5/12 vox-
els, that is, ≈ 42% and W⊥: 2/12 voxels, that is, ≈ 17%)
and that they are almost always invisible when the fast
“199” protocol is used (only 1/12 voxels for W⊥ reached the
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OESCHGER et al. 9

F I G U R E 6 Median bias for noisy human brain data at a signal-to-noise ratio (SNR) = 39, smoothed with multi-shell
position-orientation adaptive Smoothing (msPOAS) using 𝜆 = 100 in the five white matter fiber tracts corpus callosum (cc), superior corona
radiata (scr), external capsule (exc), superior longitudinal fasciculus (slf) and posterior corona radiata (pcr). The median bias was computed
for a simulation of the standard protocol that was fitted with standard diffusion kurtosis imaging (DKI) (blue data points) and axisymmetric
DKI (red data points) and for a simulation of the fast “199” protocol that was fitted with axisymmetric DKI (pink data points).

tipping point, that is, ≈ 8%). We also found that the SNR
of the tipping point depended on the absolute value of
the bias. However, in another noise simulation, adaptive
denoising improved axisymmetric DKI parameter estima-
tion from the fast protocol to a point where ≈ 13% of W
voxels and ≈ 14% W⊥ voxels reached the tipping point
for realistic SNRs while it did not substantially improve
estimation from the standard protocol. Furthermore, our
fiber tract analysis revealed that under realistic experi-
mental conditions (realistic SNR and one repeated mea-
surement only), the combination of the fast protocol with
adaptive denoising performed similar to standard protocol
estimates for W .

4.1 Noise-free simulation: baseline
differences between AxTM across
the white matter using the two DKI models

The AxTM capture different properties of diffusion in tis-
sue and it is not surprising that the observed differences
between both DKI models is AxTM dependent. We used
the number of SDV to quantify the baseline differences
between axisymmetric DKI and standard DKI. We found
that the diffusion parameters D|| and D⊥ and the mean of
the kurtosis tensor W have very few SDV compared to W||

and W⊥.
With a median A-PE of 7%–11% in white matter, the

error made in axisymmetric DKI might be acceptable
depending on the application. Purely judging from the
number of SDV, the diffusion parameters were “safest”
where only 1% of white matter voxels were SDV, followed
by the mean of the kurtosis tensor W with 2%. It can
generally be expected that the kurtosis parameters are
more sensitive to a model error since they are quadratic
in the b-value b compared to the linear diffusion param-
eter counterparts. The propagation of error when fitting
the axisymmetric DKI model to dMRI data therefore will

be more severe for the kurtosis parameters. Interestingly,
the number of SDV increases tenfold from W to W|| and
roughly doubles from W|| to W⊥. The reason for this trend
still needs to be explored.

4.2 Noise-free simulation: differences
between biophysical parameters across
the white matter based on the two DKI
models

The number of SDV were significantly enhanced in the
biophysical parameters (in case of the whole white matter
mask up to 54%, see Figure 3) compared to the AxTM from
which they were computed. A reason for the enhancement
might be that all five AxTM are required to estimate the
biophysical parameters, see Section S1.3, and that the con-
nection is complex and nonlinear. The observed AxTM
differences could therefore be amplified due to nonlinear
effects but also synergistically enhance the number of SDV
in the biophysical parameters. However, the found median
A-PE of 11%–18% might be acceptable depending on the
study.

Also, similar to Reference 31, here the “−” branch
tended to yield physically unfeasible, constant high (50)
𝜅 values where the objective function did not have a well
defined minimum for 𝜅. Furthermore, for this branch
De,|| > Da which in healthy white matter was found to
be the biologically invalid solution by most studies.32 We
therefore did not report the results of the − branch.

4.3 Noise-free simulation: influence
of voxel selection mask on number of SDV

The difference between standard DKI and axisymmetric
DKI is likely linked to fiber complexity that brakes the sym-
metry assumptions of axisymmetric DKI. Reducing the
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10 OESCHGER et al.

number of voxels with complex fiber structures using voxel
selection masks reduced the number of SDV.

The Westin mask reduced the number of SDV in both
the AxTM and the biophysical parameters, supporting the
hypothesis that differences between both DKI models are
linked to the underlying fiber complexity. However, the
Westin mask effectiveness was parameter dependent and,
for example, worked particularly well for W|| where it more
than quartered the number of SDV while it had much
smaller effects on W⊥. The FA mask performed very sim-
ilarly but reduced the number of SDV slightly less than
the Westin mask. In particular, both masks struggled with
reducing the number of SDV of W⊥.

These findings indicate that next to fiber complexity
other factors may play a role in determining the difference
between axisymmetric DKI and standard DKI estimates.
Other factors that could play a role are differences in
glia-cell density,33 the axonal diameters distribution or the
fiber dispersion. With regards to the FA, for example, in
vivo tissue FA could also be influenced by factors like the
degree of myelination or axon density. This means that
the conclusion “if FA ≥ 0.55 then the voxel has a uni-
directional fiber configuration” is not necessarily strictly
true and voxels in the FA mask might still have a com-
plex fiber structure. The smaller effectiveness of both the
FA mask and the Westin mask on W⊥ could originate from
axisymmetric DKI generally oversimplifying estimation of
W⊥ since it is directly estimated as one model parameter
instead of calculated from three separate tensor metrics as
in standard DKI, see, for example, Reference 34.

4.4 Inter-dependence of A-PE
and difference in main fiber orientation

It was shown that axisymmetric DKI produces the same
results as standard DKI if two requirements35 are met, see
Section S1.6. Fulfillment of condition b) was not explic-
itly checked in Reference 35 where differences between
axisymmetric DKI and standard DKI were reported. The
degree to which the main fiber orientations, estimated
with both DKI models, differ can be quantified with the
angle 𝜙 between them. The majority of angles 𝜙 were
between ≈ 1 and 5 degrees in white matter (Figure S3)
demonstrating that condition b) is not fulfilled in most
cases. Investigating the dependency of the A-PE on angle
𝜙 using density scatter plots showed an inter-dependency
predominantly for W⊥ and W||, Figure S3. For these param-
eters these findings indicate that at least to some extent,
there is a causal relationship between 𝜙 and the A-PE.

It could be ruled out that the observed differences
between both DKI models in this study is only due to
violating condition a) of Reference 35 by implementing a

log-of-signals fit demonstrating that this fit implementa-
tion still produced different fit results for both DKI models,
see Section S1.5.

4.5 Noise simulations

4.5.1 Single voxel analysis

Simulating 12 single voxels for n = 2500 noise realizations
revealed that the tipping point at which the axisymmetric
DKI inherent bias is larger than the SD of the axisymmet-
ric DKI parameter estimates was only reached for high,
unrealistic SNRs ≥ 52 in most cases. Therefore, the differ-
ences between both DKI models will likely not be visible
under realistic experimental conditions if techniques like
denoising are not used. We found that the tipping point
depended on the axisymmetric DKI bias with the strong
tendency that the higher the bias, the earlier the tipping
point is reached. Furthermore and in line with the main
findings that were dealing with the number of SDV per
AxTM, it was harder to find the tipping point for the diffu-
sion parameters than the kurtosis parameters, most likely
because the diffusion parameters were less biased than the
kurtosis parameters and therefore the requirements for the
SD to reach the tipping point were too high.

4.5.2 White matter Westin mask analysis
with adaptive denoising

Intuitively one would expect axisymmetric DKI to have
better precision than standard DKI because of it’s reduced
parameter space compared to standard DKI. However,
in an earlier study performed on simulations of noisy
dMRI data19 we have found that axisymmetric DKI does
not improve precision compared to standard DKI. Fur-
thermore, in the “Single voxel analysis” we have found
that without denoising, the tipping point at which the
difference between axisymmetric DKI and standard DKI
becomes visible typically requires very high SNRs, often
above 140. We therefore were interested to see if the tipping
point could be reached for realistic SNRs (up to 52) in com-
bination with additional adaptive denoising (msPOAS)
with two settings of adaptation parameter 𝜆.11 The influ-
ence of 𝜆 was significant for low SNRs while its effect
was decreasing the higher the SNR was. We found that
for a realistic but high SNR 52, the tipping point was only
reached for W and W⊥ in roughly 1∕3 of voxels in the
Westin mask if a standard MRI protocol is used and for a
high adaptation parameter 𝜆 = 100. In all other cases the
number of voxels reaching the tipping point was signifi-
cantly lower and especially for the diffusion parameters
it was close to 0 for realistic SNRs. This indicates that
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OESCHGER et al. 11

the bias introduced by the symmetry assumption made in
axisymmetric DKI is not going to be visible under realistic,
experimental conditions in most of the voxels.

4.5.3 Quantification of bias in fiber tracts

The noise simulations are more realistic than the
noise-free simulation but introduce additional factors
that could cause a difference between standard DKI and
axisymmetric DKI, for example, model dependent noise
susceptibility and the Rician bias. Noisy data was simu-
lated at SNR = 39 and in an earlier study19 this SNR was
found to be sufficient to reduce the difference between
both DKI models below 5% in in vivo white matter, see
Fig. 6 in Reference 19.

If the noise induced Rician noise bias can be consid-
ered negligible if it is below 5% at SNR = 39, the observed
difference between axisymmetric DKI and standard DKI
estimated for the standard protocol is most likely the
axisymmetric DKI inherent bias. Consistent with the find-
ings concerned with the median bias found in Figure 3, the
fiber tract analysis, Figure 6, showed that the median bias
of the kurtosis AxTM per fiber tract was highest for W⊥,
followed by W|| and lowest for W . Also, both DKI models
based on the standard protocol performed very similarly
(except for W⊥) which again demonstrates that the tipping
point is not reached in most cases under realistic condi-
tions, that is, noise is dominating the bias and not the
model differences.

However, some of the findings in the fiber tract anal-
ysis were counter-intuitive. In an other study, the corpus
callosum was found to predominantly have voxels with a
single fiber orientation36 and could therefore be consid-
ered to have less of a complex structure than other tracts
making it more likely to fulfill the assumptions made in
axisymmetric DKI. However, the corpus callosum had the
highest median bias for 2 of 5 AxTM. Furthermore, in Ref-
erence 36 the slf tract was reported to host many voxels
with two fiber orientations, that is, fiber crossings which
would make it prone to failing the assumption of axisym-
metric DKI but the slf was one of the tracts with the lowest
differences between both DKI models. This finding, again,
points to other factors than fiber complexity, here in the
form of fiber crossings, playing a role in determining the
difference between standard DKI and axisymmetric DKI,
as already discussed in Section 4.3.

4.5.4 Fast “199” protocol versus standard
protocol

Axisymmetric DKI’s major advantage is its reduced data
demand which can save acquisition time if it is used with

a fast acquisition protocol. Combination with additional,
well known image acceleration techniques like multislice
and GRAPPA could speed up acquisition even more. More-
over, the shorter sampling scheme was reported to have
better contrast-to-noise ratio compared to standard DKI
in rat brains with induced stroke37 and it is less suscep-
tible to motion artifacts which is even more important in
clinical settings than for basic research where the sub-
jects are more used to scanning and thus less probable
to move during the acquisition. We set out to investigate
potential problems going along with axisymmetric DKI
and its assumptions and the fast “199” image acquisition
scheme.

For the single voxel analysis, investigating the influ-
ence of the MRI protocol on the tipping point revealed that
the fast “199” protocol had even higher SNR requirements
to reach the tipping point than the standard protocol. This
is plausible since reducing the number of diffusion gra-
dients in the MRI protocol makes parameter estimation
more prone to the influence of noise because fitting is done
with fewer data points. Furthermore, the effective SNR,
SNReff = SNR ⋅

√
number of b = 0 images is higher for the

standard acquisition protocol, since here more and opti-
mally distributed b = 0 images are acquired compared
to the fast “199” protocol where only one b= 0 image is
acquired. In the “white matter Westin mask analysis with
adaptive denoising” analysis we found that when switch-
ing to the fast “199” measurement protocol, the number
of individual voxels that reached the tipping point in total
was smaller compared to the standard protocol which is
plausible as described above. It is also important to con-
sider that fewer acquired diffusion gradients can go along
with disadvantages, for example, FSL’s eddy current cor-
rection (“eddy”) as a preprocessing step will be challeng-
ing since it ideally requires to densely sample the whole
sphere with the diffusion gradients and a minimum of
approximately 10–15 directions for a b = 1500 shell with
increasing demands for higher shells, see https://fsl.fmrib
.ox.ac.uk/fsl/fslwiki/eddy. Note that these requirements
do not apply to the eddy current and motion correction
algorithm implemented in the ACID toolbox that was
used to pre-process the measured dMRI data used for syn-
thetic data generation since here the eddy-current field
is estimated independent of the diffusion gradient direc-
tions.38 Furthermore, Rician bias correction depends on
an accurate estimate of the noise level 𝜎 and the chosen
“repeated measures” method (see Section 2.1) works bet-
ter with more acquired diffusion gradients since it 𝜎 is
estimated as the SD over the highest diffusion shell. All
in all, parameter estimation with the fast “199” protocol
is challenged by a higher bias and the baseline difference
between both DKI models is likely not visible for realistic
SNRs.
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5 CONCLUSION

Axisymmetric DKI offers advantages like a reduced data
demand that is relevant in scientific and clinical practice.
We asked the question whether these advantages are coun-
teracted by an error related to the intrinsic simplification
of the model. We found that in the noise-free case and
when using a standard MRI acquisition protocol D⊥, D||,
and W could be estimated with few SDV with respect to
their standard DKI counterpart. For all other parameters,
that is, W⊥, W|| and the biophysical parameters, the num-
ber of SDV was high. However, the number of SDV can
be reduced if a Westin mask is used, suggesting that fiber
complexity is one main driver for the differences between
both DKI models. Under realistic conditions with noise
in the acquired data, the model inherent baseline differ-
ence between both DKI variants requires very high SNRs
to become visible since it is hidden in the SD otherwise.
Furthermore, our results showed that the fast “199” pro-
tocol is particularly vulnerable to the effects of noise in
the dMRI data but also that adaptive denosing can help
counteract these effects. Here, we only contrasted two
extreme acquisition protocols, one suited for standard DKI
and one optimized for fast axisymmetric DKI. To find
the “sweet spot” between noise susceptibility and time
reduction in the acquisition protocol a follow-up study is
required.
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