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Highlights 

• Describes how the choice of ROI extraction method affects the estimation of MEG 

resting state functional connectivity.  

• Measures  how ROI-based extraction strategies vary across two connectivity measures 

(ciPLV, PLV) and frequency bands (theta, alpha, beta) in real and simulated data.  

• Defines the reliability of extraction methods and how it varies according to the size of 

the ROI.  

• Finally, it provides practical recommendations for future studies and applications. 
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Abstract 

 
Magnetoencephalography and electroencephalography (M/EEG) seed-based 

connectivity analysis requires the extraction of measures from regions of interest 

(ROI). M/EEG ROI-derived source activity can be treated in different ways. It is 

possible, for instance, to average each ROI’s time series prior to calculating 

connectivity measures. Alternatively, one can compute connectivity maps for each 

element of the ROI prior to dimensionality reduction to obtain a single map. The 

impact of these different strategies on connectivity results is still unclear.  

Here, we address this question within a large MEG resting state cohort (N=113) and 

within simulated data. We consider 68 ROIs (Desikan-Kiliany atlas), two measures of 

connectivity (phase locking value-PLV, and its imaginary counterpart- ciPLV), and 

three frequency bands (theta 4-8 Hz, alpha 9-12 Hz, beta 15-30 Hz). We compare 

four extraction methods: (i) mean, or (ii) PCA of the activity within the seed or ROI 

before computing connectivity, map of the (iii) average, or (iv) maximum connectivity 

after computing connectivity for each element of the seed. Hierarchical clustering is 

then applied to compare connectivity outputs across multiple strategies, followed by 

direct contrasts across extraction methods. Finally, the results are validated by using 

a set of realistic simulations.  

We show that ROI-based connectivity maps vary remarkably across strategies in 

terms of connectivity magnitude and spatial distribution. Dimensionality reduction 

procedures conducted after computing connectivity are more similar to each-other, 

while PCA before approach is the most dissimilar to other approaches. Although 

differences across methods are consistent across frequency bands, they are 

influenced by the connectivity metric and ROI size. Greater differences were 

observed for ciPLV than PLV, and in larger ROIs. Realistic simulations confirmed 

that after aggregation procedures are generally more accurate but have lower 

specificity (higher rate of false positive connections). Though computationally 

demanding, after dimensionality reduction strategies should be preferred when 

higher sensitivity is desired. Given the remarkable differences across aggregation 

procedures, caution is warranted in comparing results across studies applying 

different methods.  

                  



 

 

 

 

Introduction 

Technological advances in neuroimaging over the past three decades have allowed 

the study of brain connectivity, which has helped to understand the neural basis of 

healthy cognition and clinical disorders (Schnitzler & Gross, 2005). Today it is well-

established that task-based or resting state functional connectivity patterns are 

markers of efficiency in cognitive processes, while disrupted connectivity patterns 

may suggest impaired functional brain circuits (Aydin et al., 2020; Baldassarre et al., 

2016; Carter et al., 2009; Englot et al., 2015; Hawkins et al., 2020; Pellegrino et al., 

2012, 2019; Pellegrino, Mecarelli, et al., 2018; Schuler et al., 2018, 2019; Schuler & 

Pellegrino, 2021). Among many neuroimaging modalities used to estimate brain 

connectivity, magnetoencephalography and electroencephalography (M/EEG) are 

particularly effective because they provide sub-millisecond temporal resolution, direct 

monitoring of neural activity oscillating across multiple frequencies (Baillet, 2017), 

acquisitions in a noise-free environment, either while seated, laying down, or walking 

(Colenbier et al., 2022; Pellegrino et al., 2022; Schuler & Pellegrino, 2021).  

While brain functions are spatially distributed, in order to measure connectivity the 

cerebral cortex is typically divided into parcels, regions of interest (ROI), or seeds, 

often standardized using atlases (Desikan et al., 2006; Eickhoff et al., 2018; 

Schaefer et al., 2018). Here, connectivity can be computed considering these 

regions in a seed-based connectivity fashion. Within this approach measures of 

functional relationship are typically estimated between one seed and other seeds, or 

between one seed and the rest of the brain (Betti et al., 2013; Brookes et al., 2011; 

Siems et al., 2016). When computing seed-based connectivity, the seed can be a 

                  



 

single voxel for volumes, or a vertex for analyses restricted to cortical surfaces, 

(Brookes et al., 2011; Hipp et al., 2012; Siems et al., 2016). More often seeds 

include larger regions consisting of multiple elements (voxels or vertices), containing 

rich and spatially varying information (Kriegeskorte & Bandettini, 2007; Meier et al., 

2008). As each element has different connectivity, aggregation procedures are 

necessary in order to estimate the connectivity of a given region. One of the simplest  

dimensionality reduction strategies is to consider the average time-course of all 

elements of the ROI, which is standard procedure in fMRI seed-based connectivity 

(Basti et al., 2020; Brookes et al., 2011). This is reasonable given the spatial 

properties of the BOLD signal: large brain regions show some degree of 

homogeneity in signal and connectivity, allowing thus to extract brain parcellations 

(Fan et al., 2016; Schaefer et al., 2018; Thirion et al., 2014; Thomas Yeo et al., 

2011). 

In M/EEG the process of extracting seed-based connectivity is more challenging 

(Basti et al., 2019, 2020; Capilla et al., 2022; Farahibozorg et al., 2018; Hillebrand et 

al., 2012; Tait et al., 2021). M/EEG brain signals are not measured directly as the 

sensors are placed on the scalp (EEG) or several centimeters above (MEG). M/EEG 

activity is then reconstructed via source imaging, which requires resolving forward 

and inverse problems (Baillet, 2017; He et al., 2018; Pellegrino, Hedrich, et al., 2016, 

2018, 2020). Brain connectivity is then typically measured in the computed source 

space, as this reduces the bias due to volume conduction and signal leakage, and 

provides an accurate inference of the topology of brain connectivity (Brunner et al., 

2016; Haufe et al., 2013; Hincapié et al., 2017; Lai et al., 2018; Palva et al., 2018; 

Schaworonkow & Nikulin, 2022; Van de Steen et al., 2019). When the source space 

is restricted to the cortical surface and the inverse solution is a distributed technique, 

                  



 

source space time-courses are vectors of magnitude and direction for each vertex, 

that take into account cortical folding (Dale & Sereno, 1993; Hedrich et al., 2017). In 

other words, time-courses of neighboring vertices have different directions due to the 

curvature of the cortical folds. In these cases, time-course averaging within the 

parcel leads to a certain degree of signal cancellation (Ahlfors, Han, Belliveau, et al., 

2010; Ahlfors, Han, Lin, et al., 2010; Chowdhury et al., 2018; Hillebrand et al., 2012; 

Irimia et al., 2012). Alternative approaches exist for extracting a single connectivity 

pattern from an extended seed, but the effects of these multiple strategies on 

connectivity patterns remain to be explored (Colclough et al., 2015, 2016; Hillebrand 

et al., 2012). For instance, it is possible to consider time-course of the first PCA 

component rather than the average, as a representative of the ROI’s time course 

(Basti et al., 2020; Bruña & Pereda, 2021; Colclough et al., 2015, 2016; Dimitriadis et 

al., 2018). Another approach involves computing connectivity using  time-courses of 

all seed’s elements (voxel or vertex), and then extract the average, PCA, or use 

multivariate methods (Aydin et al., 2020; Bruña et al., 2023, 2023; Colclough et al., 

2016; Dimitriadis et al., 2018; Hillebrand et al., 2012; Palva et al., 2010). A 

‘multivariate’ strategy acknowledges that all elements of the source space and their 

time-courses carry some useful information, while the aggregation approach such as 

mean or PCA is the easiest computational choice. Beyond these, a number of more 

complex procedures (identification of the center of mass, time-series with maximal 

power, weighted average, etc.) have been proposed (Basti et al., 2019, 2020; Bruña 

et al., 2023; Chalas et al., 2022; Garcés et al., 2016; Korhonen et al., 2014; Luckhoo 

et al., 2012).  

The purpose of this study is to systematically compare the most common 

dimensionality reduction strategies to estimate connectivity patterns. Our analyses 

                  



 

were performed using: (i) a large resting state MEG cohort (N=113) where we 

applied four extraction methods and two connectivity measures, across three 

frequency bands, using one canonical cortical atlas (Desikan et al., 2006). 

Furthermore we used realistic simulations in order to compare real data connectivity 

results with ground truth (simulated data).  

In short, this work addresses the following questions: (i) How does the choice of ROI 

extraction method affect the estimation of resting state functional connectivity? (ii) 

Are differences between extraction strategies consistent across different connectivity 

measures (ciPLV, PLV) and frequency bands (theta, alpha, beta)? (iii) Does the 

reliability of extraction methods vary depending on the size of the ROI? (iv) What are 

the recommendations for future studies?  

1. Methods 

2.1 Participants and MEG acquisition 

The study was approved by the local Ethics Committee, the Research Ethics Board 

of the Province of Venice (Italy), and complied with the 1964 Declaration of Helsinki 

and its later amendments. Every participant provided written and informed consent. 

All participants were healthy (self-reported) adults, with normal or corrected-to-

normal vision, had no history of neuropsychiatric disorders, or brain injuries. 

Demographic details of the sample of participants included in this analysis are 

illustrated in Table S1 of the supplementary material. Overall, 84 subjects were 

included (66 Female, age range 21-58, mean 29 years old). Of these, 23 had two or 

more resting state sessions, in separate instances, that were treated as independent 

acquisitions. We analyzed 113 five-minute resting state recordings, acquired using a 

whole head 275-channel CTF system (VSM MedTech Systems Inc., Coquitlam, BC, 

                  



 

Canada). Participants sat with their eyes closed in a magnetically shielded room. 

Eye movements (EOG) and cardiac rhythm (ECG) were recorded with bipolar 

electrodes. The sampling rate was set to 1200 Hz. Prior to the MEG data acquisition, 

the position of scalp points and anatomical landmarks (nasion, left and right pre-

auricular points) were digitized with a 3D Fastrack Digitizer (Polhemus, Colchester, 

Vermont, USA). The head position within the dewar was tracked using the 

Continuous Head Localization system.  

2.2 MRI data acquisition and analysis 

All participants obtained MR images of the head after the MEG session. T1-weighted 

anatomical images were acquired at 1.5 T with the Achieva Philips scanner (Philips 

Medical Systems Best, The Netherlands) using the following parameters: TR = 8.3 

ms, echo time TE = 4.1 ms, flip angle = 8°, isotropic spatial resolution = 0.87 mm.  

2.3 MEG preprocessing and source imaging 

All MEG data was analyzed with the Brainstorm MATLAB-based toolbox (Tadel et 

al., 2011) (Figure 1). First, MRIs were imported and processed with CAT12 (Gaser et 

al., 2022) for tissue segmentation, cortical reconstruction and cortical labelling. 

Source space was defined as the cortical mesh extracted with CAT12, and 

downsampled to 4032 vertices. The ROIs were the 68 cortical regions of the 

Desikan-Killiany (DK) surface-based atlas (Desikan et al., 2006). MRI-MEG co-

registration was performed by fitting a surface between the T1 head shape and the 

digitized head and fiducial points, acquired prior to the MEG recording, as described 

in our previous studies (Pellegrino, Machado, et al., 2016). MEG data was 

preprocessed using: spatial gradient noise cancellation of third order; band-pass 

filtering [0.3 – 256 Hz] and notch filtering (50, 100, 150 Hz); Signal Space Projection 

                  



 

(SSP) to remove cardiac and eye movement artefacts (Taulu & Simola, 2006; 

Tesche et al., 1995); downsampling to 128 Hz; data segmentation into 2.5-second 

epochs; inspection and rejection of epochs affected by residual artefacts or head 

movement. SSP was chosen for data preprocessing as it is more operator 

independent, computationally efficient and, based on our experience,  leads to better 

results (Pellegrino, Xu, et al., 2020). Similarly, we chose 2.5 the epoch length 

according to previous applications by Basti et al. (2020), acknowledging that this 

could be too short according to other authors (Fraschini et al., 2016). Nevertheless, 

paired comparisons were applied across aggregation procedures, reducing therefore 

the impact of this parameter on the outcome of the study. The forward model was 

computed using overlapping spheres (Pellegrino, Hedrich, et al., 2018). Noise 

covariance was estimated from a 3-minute empty room MEG recording acquired 

prior to the experiment. The inverse problem was solved with the weighted minimum 

norm estimate (wMNE) approach, with dipoles at the source space constrained to be 

perpendicular to the cortical surface mesh (Brancaccio et al., 2020; Cona et al., 

2020; Hämäläinen & Ilmoniemi, 1994; Hincapié et al., 2017; Pellegrino, Maran, et al., 

2018).  

 

                  



 

 

Figure 1. Analysis pipeline. A) Volumetric T1w MRI was acquired for each 
participant and processed (segmentation, cortical reconstruction, cortical labeling) 
with CAT12.The source space corresponded to the cortical surface tasseled into 
4000 vertices/nodes. B) MEG data was acquired with a 275 CTF system. Data 
underwent standard preprocessing. C) MRI-MEG co-registration was performed with 
a surface fitting procedure taking into account fiducial points acquired with a 
Polhemus system D) Source imaging was based on an overlapping sphere head 
model and wMNE inverse solution. This allowed reconstruction of time-series for 
each of the 4000 nodes of the source space. E1) The dimensionality reduction 
procedure was applied to the time-courses of the vertices/nodes belonging to the 
ROI (cyan box). Two procedures were considered: (i) the average of the time 
courses and (ii) the PCA of the time-courses explaining the largest variance. Then 
the resulting time-course was considered as the seed and pairwise connectivity was 
estimated with each node/vertex of the source space (purple box). This resulted in a 
single map representing the connectivity between the ROI and all nodes of the 
cortex. E2) The dimensionality reduction procedure was applied to the connectivity 
maps computed for each vertex/node of the ROI and the source space (cyan box). 
The resulting connectivity maps correspond to the number of nodes/vertices of the 
ROI (purple box). The final output is a single map obtained as an average or 
maximum of all the maps previously computed.  

                  



 

2.4 Connectivity measures 

Connectivity was computed with two measures of phase consistency: the Phase 

Locking Value (PLV), (Lachaux et al., 1999). and its corrected imaginary counterpart, 

called corrected imaginary Phase Locking Value (ciPLV), (Bruña & Pereda, 2021). 

PLV is a measure of phase consistency between two oscillating time series, where 

higher values represent higher connectivity. More specifically, PLV measures the 

instantaneous phase difference between two signals based on the assumption that 

the phase of connected signals are aligned and evolve together (Lachaux et al., 

1999; Nolte et al., 2020; Varela et al., 2001). It has been shown how the application 

of the imaginary part of the complex definition of PLV, ciPLV, is less sensitive than 

PLV to volume conduction and signal leakage, since it does not consider zero-lag 

phase alignment (Bruña et al., 2018; Colclough et al., 2016; Palva et al., 2018; 

Schuler et al., 2022; Tabarelli et al., 2022). The mathematical explanation of 

differences between PLV and ciPLV are discussed in detail in Nolte et al. (2020). We 

applied PLV and ciPLV in three canonical frequency bands of interest: theta (5-7Hz), 

alpha (8-12Hz), and beta (15-29Hz), (Bruña et al., 2018; Nolte et al., 2020). 

Connectivity was estimated for each frequency band, each of PLV and ciPLV, and 

between each ROI (68 ROIs of the Desikan-Kiliani atlas) and each element of the 

source space, resulting in a connectivity map. Each of these maps was represented 

by an array of 4032 elements, where the value of each element is the connectivity 

between the ROI and each element (vertex) of the source space. In order to perform 

group analyses, individual connectivity maps were projected onto a common 

template (MRI-ICBM152) (Mazziotta et al., 2001) and smoothed with a full width at 

half maximum of 5mm (Bernal-Rusiel et al., 2010; Brodoehl et al., 2020; Coalson et 

al., 2018; Hagler et al., 2006; Worsley et al., 2002). Furthermore we considered 

                  



 

coherence as an additional connectivity measure. The results are consistent with 

ciPLV and PLV outcome, and are described in the supplementary material.  

 

2.5 Dimensionality reduction methods or ROI extraction function 

We compared four methods of ROI extraction, illustrated in Figure 1:  

a) Mean before: mean of the signal within ROI. This function averages all time-

courses within the ROI before computing connectivity between the resulting 

average time-course and the time-course of each element of the source 

space. This approach is very simple and computationally efficient. As the 

time-course of adjacent elements of the source space may display a different 

sign due to the folding of the cortical surface, a flip-sign function is applied 

before averaging in order to reduce cancellation. 

b) PCA before: PCA of the signal within the ROI. This method takes the time 

course of the first component of the PCA decomposition of all the signals 

within a ROI, before computing the connectivity between the time course of 

that component and the time course of all elements of the source space.  

c) Mean after: mean of the connectivity maps computed from all elements of a 

ROI. Here, dimensionality reduction is applied after the computation of 

connectivity. A connectivity map is computed for each element of the ROI 

taking into account the time course of that element and the time-course of all 

elements of the source space. The final connectivity map corresponds to the 

average of all the maps belonging to the same ROI.   

d) Max after: maximum estimate of the connectivity computed for all elements of 

the ROI. Similar to mean after, but in the Max after function only the maximum 

value is retained for each element of the resulting connectivity map/vector.  

                  



 

2.6 Clustering analysis 

As outlined before, in this study we considered four dimensionality reduction 

methods and three connectivity measures (ciPLV, PLV, and coherence described in 

the supplementary material). To assess the similarity across reduction strategies, we 

conducted a hierarchical clustering analysis based on seed-based connectivity 

patterns. This analysis was performed separately for the three bands of interest: 

theta (5-7Hz), alpha (8-12Hz), and beta (15-29Hz). Specifically, for each MEG 

dataset we initially computed the 8 x 8 similarity matrix (R), where each element 

resulted from Pearson correlation coefficient computed between connectivity 

patterns of each joint combination of dimensionality reduction method and 

connectivity measure. Subsequently, we derived a distance matrix as 1 - <R>, where 

<R> is the similarity matrix averaged across all MEG datasets. Finally, we applied 

hierarchical clustering to this distance matrix using the MATLAB linkage function, 

utilizing the average linkage criterion. We adopted two approaches to this clustering 

analysis. In the first one, patterns were obtained by concatenating the connectivity 

maps across all 68 seed regions according to the DK atlas. In the second approach, 

we simply considered each ROI-specific connectivity map separately. The code for 

the entire clustering analysis pipeline is openly accessible on Github, (jrasero, 

2022/2023) 

2.7 Pairwise comparison between scout functions 

While the clustering analysis provided an estimate on (dis)similarities across different 

strategies, and how connectivity maps cluster together, it did not quantify differences 

across options and their spatial distribution. Therefore, to address the extent to 

which the use of the four scout functions differed, we performed parametric testing. 

                  



 

Specifically, we applied paired t-testing to compare across all possible combinations 

of scout functions, for each ROI, frequency band, and connectivity measures (PLV 

and ciPLV). This analysis was carried out as a post-hoc exploration of the magnitude 

and spatial distribution of differences across the dimension reduction approaches. 

We found that the differences across procedures were strong and widespread. In 

order to make sure that these differences were specific and not caused by a simple 

offset (i.e. a constant difference), we then repeated the same analysis after 

normalizing all connectivity maps. Here the maximal connectivity value of each map 

was set as 100% and all other values were expressed as percentages of the 

maximum. For these analyses we only report some examples, whereas all 

comparisons are available as GIfTI at www.hsancamillo.it. 

2.8 Simulation of MEG data with known connectivity structure 

Applying different ROI-extraction methods to realistic simulations allowed us to 

depict the properties of each approach in comparison with the ‘ground truth’. The 

MEG forward model was based on individual anatomical data of one of the 

participants. In line with the real data analysis, the source space was confined to the 

cortical surface, and the lead field matrix was computed by applying the overlapping 

sphere model. We simulated neural activity by mimicking five interacting patches (for 

a schematic representation of the implemented pipeline, refer to Figure 2). For each 

ROI we randomly drew a point, v1, within the ROI and four other vertices, v2, v3, v4, 

v5, outside the selected ROI, with the only constraint being that the distance 

between each pair of points was at least 5 cm. Around each point vi, i=1,…,5, we 

defined a patch Pi by considering vi’s neighboring source-space elements that were 

less than 2.5 cm apart. Additionally, as for P1, we restricted it to entirely belong to 

the ROI containing v1 and we set three possible sizes of the patch, namely (i) all 

                  



 

points with a distance from v1 lower than 2.5 cm, (ii) 50% of those points by 

selecting the closest to v1, and (iii) only v1 (Figure 2, Panel A). For each group of 

patch configurations, we then simulated three time-courses, s1(t), s2(t), s3(t), t=1, 

…., T, where T=10000 mimicking about 78 s of neural activity sampled at 128 Hz. To 

this end, and similar to previous work (Haufe & Ewald, 2019; Sommariva et al., 2019; 

Vallarino et al., 2021), only alpha band was considered for simulation using three 

signals following a multivariate autoregressive (MVAR) model of order 5, so that s1(t) 

leads the activity of s2(t), while s3(t) is uncorrelated. We only retained stable MVAR 

models such that (i) for each of the resulting signals the average power spectrum in 

the alpha band represented at least 40% of the overall average power spectrum, and 

(ii) the average coherence in the alpha band between s1(t) and s2(t) was greater 

than 0.5. Following this, s1(t) was assigned to v1, s2(t) to v2 and v4, and s3(t) to v3 

and v5. For each patch Pi the activity of the remaining points was defined by 

randomly perturbing the Fourier transform of the time series of the corresponding 

centre vi so as to reach a certain amount of intra-patch coherence (Hincapié et al., 

2017). Additionally, a Gaussian window was used to modulate the resulting time-

series so that source intensity decreased for increasing distance from vi (Figure 2, 

Panel B). Finally, for each set of patch activities, we computed the magnetic field at 

sensors and added simulated additive noise according to the random dipole brain 

noise model PoMAM (Calvetti et al., 2019; de Munck et al., 1992) (Figure 2, Panel 

C). Hence a total of N=68x3=204 MEG data points were simulated, 68 being the 

number of ROIs within the DK atlas and 3 being the considered sizes for P1. 

                  



 

 

Figure 2. Simulation Pipeline A) For each ROI we randomly drew a point, v1, within 
the ROI and four other vertices, v2, v3, v4, v5, outside the selected ROI, with the 
only constraint that the distance between each pair of points was at least 5 cm. 
Around each point vi, i=1,…,5, we defined a patch Pi by considering vi’s 
neighbouring source-space elements that were less than 2.5 cm apart. We set three 
possible sizes of the patch, namely (i) all points with a distance from v1 lower than 
2.5cm, (ii) 50% of those points by selecting the closest to v1, and (iii) only v1. B) For 
each group of patch configurations, we simulated three time-courses, s1(t), s2(t), 
s3(t) so that s1(t) leads the activity of s2(t), while s3(t) is uncorrelated. s1(t) was 
assigned to v1, s2(t) to v2 and v4, and s3(t) to v3 and v5. For each patch Pi the 
activity of the remaining points was defined by randomly perturbing the Fourier 
transform of the time series of the corresponding centre vi so as to reach a certain 
amount of intra-patch coherence. C)  for each set of patch activities, we computed 
the magnetic field at sensors and added simulated additive noise according to the 
random dipole brain noise model PoMAM. D) A total of N=204 MEG data points were 
simulated. Source space signals were reconstructed using a similar procedure as 
was used for real data. 
 

2.9 Connectivity estimate and evaluation criteria 

As with the experimental MEG data, neural activity was estimated from the simulated 

MEG data by using the wMNE inverse solution, while connectivity was quantified 

from the source space estimated time-courses through PLV and ciPLV. Specifically, 

for each of the 204 simulated signals and for the two connectivity measures, we 

estimated cortical connectivity maps by considering as seed the ROI containing v1. 

The four ROI extraction methods, i.e. Mean before, PCA before, Mean after, and 

Max after, were used to quantify the connectivity between this ROI and all 4002 

other elements of the source space (Figure 2, Panel D).  

                  



 

To evaluate the results, we exploited the fact that, when P1 only includes v1, a 

ground truth can be defined by computing the values of PLV and ciPLV between s1 

and the activity in all the other points of the source space. Hence for these simulated 

MEG data, connectivity metrics, and scout function, we computed Pearson 

correlation coefficient between the estimated cortical connectivity maps and the 

corresponding ground truth. On the other hand, when P1 includes more than one 

element, defining a ground truth is not straightforward. For this reason, we also 

evaluated the accuracy of the estimated connectivity maps by computing true and 

false positive rates (TPR and FPR, respectively).  To this end, we fixed one hundred 

thresholds uniformly distributed between 0 and 1 (alpha). Then for each of the 

simulated MEG data points, for each of the four scout functions and for both 

connectivity measures, we applied a normalization procedure by rescaling each map 

with its maximum value. Thereafter, for each map, for every alpha value of the 

threshold, we defined: 

   and   

where: 

- P and N are the number of positive and negative, respectively. P counts the 

source-space points truly connected with v1, i.e. the nodes within P2 and P4 

in our simulations, while N is the number of the remaining source-space 

points without considering the nodes of the patch P1 centered in v1. 

- TP(alpha) is the number of true positives, i.e. points of the source space truly 

connected to v1 where the normalized reconstructed connectivity value (either 

PLV or ciPLV) exceeded the threshold alpha. 

                  



 

- FP(alpha) is the number of false positives, which are points not truly 

correlated with v1 but where the normalized reconstructed connectivity still 

exceeded alpha. 

Finally, results in terms of True/False positive rate were summarized by computing 

the corresponding Receiver Operating Characteristic (ROC) curve and the 

associated Area Under the Curve (AUC). 

2. Results 

This section describes results that focus on PLV and ciPLV, as connectivity 

measures. The results for coherence can be found in the supplementary material.  

3.1 Hierarchical Clustering 

The results of the hierarchical clustering are summarized in Figure 3. This analysis 

showed similar patterns of similarity-dissimilarity across frequency bands (Figure 3, 

rows) and the two connectivity measures of interest (PLV and ciPLV).  

Similarity map was overall higher and distances overall lower for PLV than ciPLV 

(Figure 3, Left and right columns). Across all frequency bands, PLV and ciPLV maps 

clustered together within connectivity measures (Figure 3, middle column). The 

relative distances across extraction methods also clustered consistently together 

within connectivity measure (Figure 3, middle column). We observed that Max after 

and Mean after were the two most similar extraction procedures, and as such 

clustered together under all circumstances, all frequency bands and  both 

connectivity measures (Figure 3, middle column). Max after and Mean after were 

relatively close to Mean before, and clustered together, whereas PCA before had 

higher distance from all other approaches (Figure3, middle and right columns).  

                  



 

The right column in Figure 3 illustrates that Mean after and Max after had the lowest 

distance, followed by Before-Mean after. 

 

 

 

 

Figure 3. Hierarchical Clustering. The figure shows the clustering results by 
frequency band (rows). Left: similarity matrices. The color scale indicates the 
similarity of connectivity maps across connectivity measures (PLV and ciPLV) and 
extraction methods (Max after, PCA before, Mean after, Before). Middle: 
Dendrograms with distances across aggregation procedures. Right: Distances 
across extraction procedures by connectivity measure (PLV and ciPLV). Map 
similarity was overall higher and distances overall lower for PLV than ciPLV (Left and 
right columns). PLV and ciPLV maps cluster together within connectivity measures 
for all frequency bands (middle column). The relative distances across extraction 
methods also clustered consistently together within connectivity measure (PLV and 
ciPLV, middle column). The most similar extraction procedures were Max after and 
Mean after, which were closely clustered, followed by Before, which clustered with 
both Max after and Mean after. PCA before was most distant from all other 
approaches, as seen in both middle and right columns. The right column shows that 
Mean after and Max after had the lowest distance, followed by Before-Mean after.  
 

 

                  



 

The topographical distribution of the distances across extraction methods is 

highlighted in Figure 4, left panel. The lowest distances were found in the deep 

regions especially of the midline, for all frequency bands. The higher distances were 

found especially in the convexity, over the fronto-central regions, and parietal regions 

(Figure 4). 

There was a significant and positive relationship between the size of the region and 

the average distance across extraction methods (Figure 4, right), with Pearson 

correlation coefficient ranging between r>0.7 and p<0.001, across frequency bands 

and connectivity measures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  



 

 

 

 

 

Figure 4. Topographical distribution of average distances by frequency band (rows) 
and relationship between the size of the parcel and average distances. Left: The 
lowest distances were found in deep regions, especially of the midline, across 
connectivity measures and frequency bands. The higher distances were found 
especially in the convexity, over the fronto-central regions, and parietal regions. 
Right: There was a significant positive relationship between the size of the region 
and the average distance across extraction methods. 
 

 

3.2 Paired comparisons 

The cluster analysis provides a pattern of similarities but does not provide an 

immediate estimation of the magnitude and spatial distribution of differences across 

strategies. Therefore, we followed up on clustering analysis by estimating how 

connectivity changed by paired comparisons between the four strategies under 

investigation. Specifically, for each connectivity measure and within each frequency 

band, we compared: i) Mean before vs PCA before; ii) Mean before vs Mean after; 

iii) Mean before vs Max after; iv) PCA before vs Mean after; v) PCA Before vs Max 

after; vi) and Mean after vs Max after. For each of these comparisons, we computed 

                  



 

t-maps as a representation of normalized differences between each pair of  

strategies (illustrated in Supplementary Figure S3). ciPLV connectivity maps 

computed showed differences as high as 40 t-values, with magnitude and direction 

(positive/negative) were consistent across frequency bands (alpha, beta, theta). 

Similar patterns were observed for PLV.  

 

3.3 Simulations results 

3.3.1 Correlation between true (simulated) and estimated maps 

The results of the correlation between connectivity estimated and true (simulated) 

when the patch P1 contains only its center v1 are summarized in Figure 5. For both 

PLV and ciPLV and for all aggregation procedures the correlation coefficients are 

rather low (< 0.15, Figure 5, upper row). This result is expected, as the simulated 

map does not contain any activity for a large portion of the cortical surface, whereas 

the estimated map may contain some activity over the entire surface as a result of 

signal leakage associated with the inverse solution. Similarly PLV did provide lower 

values for this correlation, being more sensitive to source leakage than ciPLV. 

Finally, negative values of the correlation coefficient correspond to data where the 

value of connectivity estimated in the patches that were uncorrelated with v1, namely 

P3 and P5, was on average higher than the value of connectivity estimated in the 

correlated patches, namely P2 and P4. In this scenario, the aggregation approaches 

applied after computing connectivity generally perform better. When applying PLV, 

the correlation between estimated and simulated connectivity is significantly higher 

(better) for Mean after as compared to Mean before and PCA before (Wilcoxon 

signed-rank, p<0.05 consistently). When applying ciPLV Max after performs slightly 

                  



 

but significantly better than all other approaches (Max after vs PCA before W=1761, 

p=0.003;  Max after vs Mean before W=1897, p=0.0001; Max after vs Mean after 

W=1690, p=0.02) and Mean after performs slightly better than Mean before (W 

=1793, p=0.002). 

We repeated the correlation analysis by restricting true and estimated connectivity 

maps to the points pertaining to the four active patches, namely P2-P5 (Figure 5, 

bottom row). In this scenario, correlation coefficients are remarkably higher, 

especially for ciPLV. The aggregation approaches applied after computing 

connectivity remained slightly better, especially for ciPLV. The correlation coefficient 

of both ciPLV Mean after and ciPLV Max after, were significantly higher than ciPLV 

Mean before and ciPLV PCA before (Mean after vs Mean before W=1944, p=3*10^-

5; Mean after vs PCA before W=2023, p=2.5*10^-6; Max after vs Mean before 

W=2043, p=1.3*10^-6; Max after vs PCA before W=2018, p=2.9*10^-6). Note that no 

significant difference was observed comparing ciPLV Max after and Mean after. 

Interestingly, in this scenario the correlation coefficient was less stable for PLV, with 

high levels of variance depending on the aggregation procedure. Here the only 

significant difference was in the comparison between Mean after which was higher 

than Max after (W=1835 p=6*10^-4). 

 

                  



 

 

Figure 5. Pearson correlation coefficient between true (simulated) and estimated 
connectivity maps across 68 simulated neural activity sources such that P1 contains 
only the center v1. Upper row, left. PLV correlation coefficients of maps defined in 
the entire source-space. Mean after performed better than Mean before and PCA 
before. Upper row, right ciPLV map correlation coefficients defined for the entire 
source-space. Max after performed significantly better than all other aggregation 
approaches. Mean after performed significantly better than Mean before. Lower 
row, left PLV correlation coefficients of maps containing only P2-P5. The distribution 
of correlation coefficients was remarkably variable across aggregation procedures. 
Mean after performed significantly better than Max after. Lower row, right ciPLV 
correlation coefficients of maps containing only P2-P5. Both Mean after and Max 
after performed significantly better than Mean before and PCA before. Note, in the 
violin plots, white dots depict median values. Darker colors correspond to the 
interquartile range.  ∗ p < 0.05, ∗∗ p < 0.005, ∗∗∗ p < 0.0005. 
 

3.3.2 Accuracy of estimated maps (true and false positive rates) 

The analysis of False (FPR) and True (TPR) Positive rates provides more insight in 

interpreting results from the clustering analysis performed on the experimental 

resting-state data. FPR(alpha) and TPR(alpha) are reported in Figure 6. This 

analysis is focused on the case of P1 only containing the center v1, which is a 

scenario analogous to the one described in the previous paragraph . 

                  



 

For both PLV and ciPLV the two before procedures (Mean before and PCA before) 

show higher specificity, while the two after procedures (Mean after and Max after) 

show higher sensitivity. Indeed, PCA before and Mean before show a lower false 

positive with the tradeoff of identifying fewer true connections. In other words, these 

aggregation procedures seem to be more conservative. This means that the 

reconstructed connections most likely identify truly connected sources, at the 

expense of weak connections which may be lost when these aggregation procedures 

are used. Vice versa, Mean after and Max after show a higher value of both true and 

false positive rates. This seems to suggest that weak connections may be retrieved 

at the expense of retaining spurious connectivity. Also note that for both ciPLV and 

PLV the FPR and TPR curves are very similar and overlap for most of the alpha 

range. 

 

 

 

 

 

 

 

 

Figure 6. False Positive Rates (upper row) and True Positive Rates (lower row) 
models of the two connectivity measures (PLV -left- and ciPLV -right-) extracted via 
the four different aggregation procedures. Plots show mean and standard error of the 
mean across 68 simulated neural activity so that P1 only contains the centre v1. 
Results concerning different sizes of P1 can be found in the supplementary material. 
 
 

                  



 

Similar results are obtained when varying the size of PI (supplementary material). 

Although the differences across aggregation procedures can vary, Max after and 

Mean after typically show a higher rate of FPR and TPR.  

The comparison of the AUC for all conditions under investigation (Figure 7) shows a 

significantly higher value for Max after and Mean after for ciPLV when only the 

centre of P1 is considered (Mean after vs Mean before W=1792, p=0.002; Mean 

after vs PCA before W=1830, p=7*10^-4; Max after vs Mean before W=1914, 

p=7.15*10^5; Max after vs PCA before W=1907, p=8.75*10^-5).  The distribution of 

the AUC values is similar for the four ROI-extraction methods when all points of the 

patch P1 are considered. With respect to the PLV metric, the distribution of AUC 

values is significantly higher for Mean after regardless of the dimension of the P1 

patch (Mean after vs PCA before W=1656, p=0.037 when P1 containing only v1; 

Mean after vs Max after W=2068, p=5.4*10^-7 when P1 contains half points; Mean 

after vs Max after W=1957, p=2*10^-5 when P1 contains all voxels).  

 

                  



 

 

 

Figure 7. Distribution of the AUC values across the simulated MEG data when the 
patch P1 contains all the points that are less than 2.5cm apart from v1 (third row), 
half of such points (second row), only its centre v1 (first row). Left column shows 
results concerning PLV while right column refers to ciPLV. 

3. Discussion 

The findings of this study indicate that the choice of dimensionality reduction method 

has a significant impact on the resulting connectivity outcomes. These results were 

observed in both resting state data and realistic simulations. Interestingly, the choice 

of extraction method resulted in considerable differences in both the magnitude and 

distribution of connectivity. More specifically via cluster analysis, we observed that 

the aggregation procedures applied after computing connectivity yielded more 

consistent results. This was observed for both in-vivo and simulated data. 

                  



 

The after approaches are computationally demanding, but allow for the integration of 

information from all elements of a given parcel, thus providing a more 

comprehensive connectivity estimation (Aydin et al., 2020; Bruña et al., 2023, 2023; 

Colclough et al., 2016; Hillebrand et al., 2012; Palva et al., 2010).  

The results of the clustering analysis also revealed that the Mean before method 

produced connectivity maps that were similar to those generated by the after 

strategies. On the other hand, PCA before method showed results that were 

markedly dissimilar from all other approaches. While cluster analysis alone may 

suggest that the Max after, Mean after, Mean before and Mean after methods 

produce similar results, it is important to note that this approach is based on 

correlations across maps and does not provide enough information about the actual 

topographical distances. Therefore to gain a better understanding, we conducted 

pairwise analysis of connectivity maps generated by different extraction strategies. 

Our results revealed that the most similar maps differed by a magnitude of 40+ t-

values, indicating that even minor variations in method choice lead to significant 

differences in connectivity outcomes (Supplementary Figure S3). We also ruled out 

the possibility that these differences were due to an offset of connectivity values by 

directly contrasting normalized maps, where each connectivity value was rescaled 

against the maximum. Here we observed important and widespread differences in 

connectivity outcomes. Hence, caution is warranted when comparing connectivity 

patterns between studies that employ different extraction strategies, as even small 

variations in method can lead to significant discrepancies. 

Our analysis also shed light on some of the factors that may influence the effect of 

extraction method on connectivity outcomes. Specifically, we observed that similarity 

across extraction methods was higher for PLV as compared to ciPLV (Figure 3). 

                  



 

Both connectivity measures employed in this study are based on phase synchrony 

across time series. However, ciPLV is insensitive to Lag=0 connectivity and as such, 

is less susceptible to volume conduction and spatial leakage (Bruña et al., 2018; 

Bruña & Pereda, 2021; Colclough et al., 2016; Lachaux et al., 1999; Nolte et al., 

2020; Palva et al., 2018; Schuler et al., 2022; Tabarelli et al., 2022; Varela et al., 

2001). Therefore, the resulting connectivity maps are typically less smooth, possibly 

explaining why similarities across extraction methods is lower than for PLV (Figure 

3). On the other hand, our results also highlight that other connectivity measures 

may exhibit varying levels of robustness to the extraction methods. We observed no 

relevant differences across frequency bands, although the spatial distribution of the 

distances shows a trend towards greater differences for lower frequencies (Figure 3 

and 4). Low frequency activity recorded from the scalp typically originates from large 

populations of neurons or from large distribution of high frequency activity (Pellegrino 

et al., 2017; Tao et al., 2007). It is then possible that differences in aggregation 

methods are more pronounced when the underlying generators span widespread 

brain areas. This idea is supported by the significant positive linear relationship we 

observed between the size of the parcel (expressed in number of vertices) and the 

average difference across extraction methods and frequency bands (Figure 3). 

Given the effect of the parcel size, one could opt for cortical parcellations with 

smaller parcels than the ones used here, and of similar size if the objective is to 

minimize the bias of aggregation procedures across parcels. Figure 4 provides some 

insight into the topographical distribution of the differences. Smaller differences are 

more often observed in deep regions especially of the midline. MEG spatial sampling 

is not homogeneous across the cortical surface, and the reconstruction of source 

signal in deep, basal, and midline regions is not always accurate in MEG (Ahlfors, 

                  



 

Han, Belliveau, et al., 2010; Gavaret et al., 2014; Huiskamp et al., 2010). It is 

plausible that the estimation of cortical connectivity was less refined in those areas, 

and the differences across methods were smaller. 

Alternatively, the distribution of rhythms across the cortical surface with more alpha 

activity in the posterior quadrant, more theta activity in the temporal lobes, and faster 

activity in the range of beta band in the central regions may have played a role in 

determining this spatial distribution. Overall, these findings suggest that the choice of 

extraction method may have a greater impact on connectivity measures in lower 

frequency bands and in regions that are more challenging to capture with MEG. 

Furthermore group comparisons were defined based on the aggregation procedure. 

The magnitude of the differences between aggregation procedures is large enough    

that  effects could be appreciated at single subject level. Although the contribution of 

individual differences was not systematically assessed in this instance, we have 

provided open access to individual connectivity maps, for future studies to explore. 

While MEG resting-state data allowed us to identify relative differences across 

extraction methods, it was challenging to determine which method was more 

accurate. This prompted us to conduct realistic simulations to gain a more 

comprehensive understanding of the performance of different methods (Grova et al., 

2016; Hincapié et al., 2017; Machado et al., 2018; Sommariva et al., 2019). 

Our simulations confirmed that aggregation procedures performed after the 

computation of connectivity may provide more accurate results. The correlation 

coefficient between simulated and estimated maps of connectivity was significantly 

higher for Mean after for PLV, and for Mean after and Max after for ciPLV. To better 

understand the performance of different methods, we estimated true and false 

positive connections captured by applying different aggregation methods. This 

                  



 

analysis revealed that Mean after and Max after captured a larger number of true 

connections, but also a larger number of false positives. In other words, Mean after 

and Max after showed higher sensitivity for connectivity, but lower specificity. 

As for the AUC values, we found that there were differences between PLV and 

ciPLV. For ciPLV, Mean after and Max after performed better (with higher AUC) 

when only the center of the patch was considered, while for PLV, Mean after had the 

highest AUC regardless of the parcel size. While different strategies may be more or 

less appropriate depending on the specific scenario, and it may be difficult to 

determine which aggregation method performs best in real-world situations. Our 

results suggest that Mean after and Max after may be preferable, however at the 

expense of longer computation time and higher rates of false positives. In addition, 

while PCA provided maps that were very different from all other extraction methods 

in real data, simulated data showed similar behaviour to Mean before. Overall, we 

believe it is reasonable to choose Mean before when higher specificity and shorter 

computation time are desired, and Mean after when greater sensitivity is prioritised. 

The effects of extraction methods on connectivity analysis have been extensively 

studied in the fMRI field. Previous research has shown that dimensionality reduction 

at the ROI level can result in the loss of important information (Basti et al., 2019). As 

an alternative it has been proposed that multi-dimensional connectivity methods 

could provide more accurate results [Geerligs et al., (2016); for a recent review see 

Basti et al., (2020)]. The application of dimensionality reduction strategies at the 

seed level, to obtain a single time-course, is recommended only in the case of 

homogeneous ROIs. This is rare in M/EEG signal due to cortical folding that often 

results in opposite directions for reconstructed source space time-courses. Many 

advanced multivariate approaches that integrate the computation of connectivity and 

                  



 

the extraction of unique patterns of relationship among brain regions have been 

developed (Basti et al., 2018; Ewald et al., 2012). A recent MEG simulation study 

compared standard procedures based on the identification of a representative time-

course or ROI (average, centroid, largest power, first PCA component, and first 

Kosambi-Hilbert torsion component) versus the multivariate approach, and 

concluded that the latter is remarkably better (Bruña & Pereda, 2021). Another study 

compared three approaches to extract ROI-based time courses (centroid, first PCA 

component, average), and two multivariate approaches, namely the average of the 

pairwise connectivities across all elements of the ROIs (corresponding to the Mean 

after of our study) and the root-mean-square (RMS) of all pairwise connectivity in an 

EEG-MEG study (Bruña et al., 2023). The results showed that multivariate 

procedures (Mean after and RMS post) performed better based on the concordance 

between EEG and MEG connectivity. Given that no ground truth was available in this 

study, it cannot be ruled out that some of the results are driven by inherent 

differences of EEG and MEG. Despite the development of new multivariate 

approaches, the majority of M/EEG researchers continue to rely on default 

approaches built in among most commonly used toolboxes for connectivity analyses 

(i.e., Brainstorm, Fieldtrip, MNE python), (Gramfort et al., 2014; Oostenveld et al., 

2011; Tadel et al., 2011). Within these toolboxes, the most used extraction strategy 

is the average time course of the ROI. The use of PCA for dimensionality reduction 

has received conflicting evaluations. Some studies suggest that PCA may perform 

better than averaging the seed signal in cases where the signal is better captured by 

some voxels than others (Basti et al., 2020). Other studies suggest that PCA may be 

biased towards weighting more low frequencies at the expense of high frequencies 

(Chalas et al., 2022). A recent simulation study demonstrated that PCA appears to 

                  



 

be the best technique, particularly when a fixed number of components is chosen 

across areas. However, this is only true when PCA is coupled with other optimal 

pieces of the pipeline, including specific inverse solutions and connectivity measures 

(Pellegrini et al., 2022). Furthermore a MEG study in clinical and control populations 

revealed that PCA is outperformed by the centroid of the ROI (Dimitriadis et al., 

2018) . This means that the choice of the aggregation procedure matters in healthy 

subjects as well as in patient populations. Lastly, it is important to underlie that  the 

application of PCA entails (arbitrary) choices for several parameters. For instance, 

several rules regarding the number and properties of the components to retain can 

be applied. Or whether to apply PCA to individual/single segments of data or to all 

data at once. The investigation of all possible combinations was beyond the scope of 

this study. Here we used the implementation available in Brainstorm in 2022 and 

warn the reader that, albeit computationally efficient, this approach has its own 

limitations. 

 

Limitations 

There are several limitations to the current study. First, the results might not be 

generalizable to all possible strategies, which was beyond the scope of this study. 

The  focus of the current study was on a set of common and practical scenarios. As 

such, the effect of flip sign was not investigated for the procedures of aggregation 

prior to computing connectivity, even though this is a popular approach to limit 

cancellation effects (Ahlfors, Han, Belliveau, et al., 2010; Lai et al., 2018). The 

influence of flip sign on the estimation of connectivity remains unclear and requires 

further systematic investigation. 

                  



 

Furthermore in the analysis of both experimental and simulated data, for each ROI 

we generated a connectivity map of size 1 x N representing connection strength 

between that ROI and all the points of the source space. This representation was 

chosen because it allowed a more intuitive visualization and interpretation of the 

results. It also made possible to investigate the impact of ROI features such as size. 

Moreover, in the simulations this representation allowed a straightforward definition 

of the ground truth connectivity pattern without involving aggregation procedures that 

could have biased the final results. Additional care is required in studies where 

additional reduction strategies are  performed. For instance when applying the 

aggregation procedures at both  seed and  target levels,  to obtain connectivity 

matrices of size NxN (being N the number of ROIs). 

Another limitation is that the study only focused on resting-state data. While many 

studies have shown that some patterns of connectivity remain consistent between 

rest and tasks, recent literature suggests that individual variations should be 

considered (Colenbier et al., 2023). Therefore, the generalizability of the results to 

task-based data may be limited.  

Here we obtained consistent results across different connectivity measures (ciPLV, 

PLV, and Coherence).  We believe that this study is a strong proof of principle 

showing the relevance of the aggregation procedures in studying resting state 

connectivity. Nevertheless, the scope of this study was limited to three connectivity 

measures. It remains  to be determined the extent to which these results depend on 

the choice of connectivity measures, that go beyond phase or amplitude based 

metrics. Some of the most popular estimation methods, such as Temporal Granger, 

Frequency Granger (Cekic et al., 2018), Transfer Entropy (Vicente et al., 2011), 

                  



 

Partial Directed Coherence (Astolfi et al., 2006), etc. are not considered here, and 

should be investigated in future studies.  

Lastly the simulation presented in this work rely on MVAR model, a linear model 

often used to simulate neural signals with realistic and possibly time-varying spectra 

(Chella et al., 2019; Haufe et al., 2013; Haufe & Ewald, 2019; Pagnotta & Plomp, 

2018; Sommariva et al., 2019; Vallarino et al., 2021; West et al., 2020). Future work 

will be devoted to extending our results to more sophisticated models, such as 

spiking neurons or neural masses (Garofalo et al., 2009; Orlandi et al., 2014; Ricci et 

al., 2021; Ursino et al., 2020; Wang et al., 2014; Wendling et al., 2002, 2009), where 

excitatory and inhibitory populations produce oscillations in feedback with different 

synaptic dynamics, and the corresponding connectivity involves delays and 

glutamatergic/GABAergic dynamics. Ideally future analyses will include intracranial 

EEG data too. This is planned future direction, in order to provide a more 

comprehensive evaluation of the different aggregation procedures. 

Conclusions 

The current study highlights the critical importance of the aggregation procedures in 

determining accurate connectivity estimations, in both real and simulated data. The 

choice of the extraction method has a great impact on the connectivity output. 

Differences are higher for ciPLV than PLV, with a similar pattern across frequency 

bands. Further, larger is the ROI the higher is the difference across connectivity 

outputs obtained with different strategies. Overall to obtain higher accuracy (higher 

sensitivity at the expense of lower specificity), after aggregation procedures (Mean 

after) are recommended in connectivity analyses, even though they are 

computationally demanding. Given the significant differences across aggregation 

                  



 

methods, it is essential to exercise caution when comparing studies that employ 

different methods. 

Lastly, as this study focused on resting-state data, further research is required to 

determine similar comparisons for task-based, clinical populations and any other 

groupwise comparisons. 
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Open access resources 

Code to replicate and use clustering analysis is available here: 

https://github.com/jrasero/connectivity-measures-clustering 

MEG resting state data will be openly accessible on San Camillo Open access 

portal:  

https://www.openaccessrepository.it/record/77043  

The zipped file contains all the t-maps of the contrasts across extraction methods, 

ROIs, frequency bands. Maps relative to different connectivity measurements are 

grouped in folders. Each folder also contains the .gii file for the reference cortex 

surface. You may use different software to visualize these maps.  

If you wish to visualize the maps with Brainstorm: 

1) Go to Default Anatomy. Right Click -> Import surface. Select 

Group_analysis_cortex.gii. 

2) Go to the Group_analysis data folder (you should create one if not present). Go to 

Common Files. Right Click -> File -> Import Source Maps. Select the t-maps to be 

visualized. 

 

For any additional info, please get in touch with the corresponding authors.  
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