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Abstract 

 

Magnetoencephalography and electroencephalography (M/EEG) seed-based 

connectivity analysis requires the extraction of measures from regions of interest 

(ROI). M/EEG ROI-derived source activity can be treated in different ways. It is 

possible, for instance, to average each ROI’s time series prior to calculating 

connectivity measures. Alternatively, one can compute connectivity maps for each 

element of the ROI prior to dimensionality reduction to obtain a single map. The impact 

of these different strategies on connectivity results is still unclear.  

Here, we address this question within a large MEG resting state cohort (N=113) and 

within simulated data. We consider 68 ROIs (Desikan-Kiliany atlas), two measures of 

connectivity (phase locking value-PLV, and its imaginary counterpart- ciPLV), three 

frequency bands (theta 4-8 Hz, alpha 9-12 Hz, beta 15-30 Hz). We compare four 

extraction methods: (i) mean, or (ii) PCA of the activity within the seed or ROI before 

computing connectivity, map of the (iii) average, or (iv) maximum connectivity after 

computing connectivity for each element of the seed. Hierarchical clustering in then 

applied to compare connectivity outputs across multiple strategies, followed by direct 

contrasts across extraction methods. Finally, the results are validated by using a set 

of realistic simulations.  

We show that ROI-based connectivity maps vary remarkably across strategies in 

terms of connectivity magnitude and spatial distribution. Dimensionality reduction 

procedures conducted after computing connectivity are more similar to each-other, 

while PCA before approach is the most dissimilar to other approaches. Although 

differences across methods are consistent across frequency bands, they are 

influenced by the connectivity metric and ROI size. Greater differences were observed 

for ciPLV than PLV, and in larger ROIs. Realistic simulations confirmed that after 

aggregation procedures are generally more accurate but have lower specificity (higher 

rate of false positive connections). Though computationally demanding, after 

dimensionality reduction strategies should be preferred when higher sensitivity is 

desired. Given the remarkable differences across aggregation procedures, caution is 

warranted in comparing results across studies applying different methods.  
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Introduction 

Technological advances in neuroimaging over the past three decades have allowed 

the study of brain connectivity, which has helped to understand the neural basis of 

healthy cognition and clinical disorders (Schnitzler & Gross, 2005). Today it is well-

established that task-based or resting state functional connectivity patterns are 

markers of efficiency in cognitive processes, while disrupted connectivity patterns may 

suggest impaired functional brain circuits (Aydin et al., 2020; Baldassarre et al., 2016; 

Carter et al., 2009; Englot et al., 2015; Hawkins et al., 2020; Pellegrino et al., 2012, 

2019; Pellegrino, Mecarelli, et al., 2018; Schuler et al., 2018, 2019; Schuler & 

Pellegrino, 2021). Among many neuroimaging modalities used to estimate brain 

connectivity, magnetoencephalography and electroencephalography (M/EEG) are 

particularly effective because they provide sub-millisecond temporal-resolution, direct 

monitoring of neural activity oscillating across multiple frequencies (Baillet, 2017), 

acquisitions in a noise-free environment, either seated, laying down, or walking 

(Colenbier et al., 2022; Pellegrino et al., 2022; Schuler & Pellegrino, 2021).  

While brain functions are spatially distributed, in order to measure connectivity the 

cerebral cortex is typically divided into parcels, regions of interest (ROI), or seeds, 

often standardized using atlases (Desikan et al., 2006; Eickhoff et al., 2018; Schaefer 

et al., 2018). Here, connectivity can be computed considering these regions in a seed-

based connectivity fashion. Within this approach measures of functional relationship 

are typically estimated between one seed and other seeds, or between one seed and 

the rest of the brain, (Betti et al., 2013; Brookes et al., 2011; Siems et al., 2016). When 

computing seed-based connectivity, the seed can be a single voxel (for volumes) or a 

vertex (for analyses restricted to cortical surfaces), (Brookes et al., 2011; Hipp et al., 

2012; Siems et al., 2016). More often seeds include larger regions consisting of 
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multiple elements (voxels or vertices), containing rich and spatially varying information 

(Kriegeskorte & Bandettini, 2007; Meier et al., 2008). As each element has different 

connectivity, aggregation procedures are necessary in order to estimate the 

connectivity of a given region. One of the simplest  dimensionality reduction strategies 

is to consider the average time-course of all elements of the ROI, which is standard 

procedure in fMRI seed-based connectivity (Basti et al., 2020; Brookes et al., 2011). 

This is reasonable given the spatial properties of the BOLD signal: large brain regions 

show some degree of homogeneity in signal and connectivity, allowing thus to extract 

brain parcellations (Fan et al., 2016; Schaefer et al., 2018; Thirion et al., 2014; Thomas 

Yeo et al., 2011). 

In M/EEG the process of extracting seed-based connectivity is more challenging (Basti 

et al., 2019, 2020; Capilla et al., 2022; Farahibozorg et al., 2018; Hillebrand et al., 

2012; Tait et al., 2021). M/EEG brain signals are not measured directly as the sensors 

are placed on the scalp (EEG) or several centimeters above (MEG). M/EEG brain 

activity is then reconstructed via source imaging, which requires resolving forward and 

inverse problems (Baillet, 2017; He et al., 2018; Pellegrino et al., 2020; Pellegrino, 

Hedrich, et al., 2016, 2018). M/EEG connectivity is then typically measured in this 

computed source space, as this reduces the bias due to volume conduction and signal 

leakage, and provides an accurate inference of the topology of brain connectivity 

(Brunner et al., 2016; Haufe et al., 2013; Hincapié et al., 2017; Lai et al., 2018; Palva 

et al., 2018; Schaworonkow & Nikulin, 2022; Van de Steen et al., 2019). When the 

source space is restricted to the cortical surface and the inverse solution is a 

distributed technique, source space time-courses are vectors of magnitude and 

direction for each vertex, that take into account cortical folding (Dale & Sereno, 1993; 

Hedrich et al., 2017). In other words, time-courses of neighboring vertices have 
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different directions due to the curvature of the cortical folds. In these cases, time-

course averaging within the parcel leads to a certain degree of signal cancellation 

(Ahlfors, Han, Belliveau, et al., 2010; Ahlfors, Han, Lin, et al., 2010; Chowdhury et al., 

2018; Hillebrand et al., 2012; Irimia et al., 2012). Alternative approaches exist for 

extracting a single connectivity pattern from an extended seed, but the effects of these 

multiple strategies on connectivity patterns remain to be explored (Colclough et al., 

2015, 2016; Hillebrand et al., 2012). For instance, one approach considers the time-

course of the first PCA component rather than the average, as a representative of the 

ROI’s time course (Basti et al., 2020; Bruña & Pereda, 2021; Colclough et al., 2015, 

2016; Dimitriadis et al., 2018). Another approach involves computing connectivity 

using the time-courses of all seed’s elements (voxel or vertex) and then average, PCA, 

or multivariate methods are performed (Aydin et al., 2020; Bruña et al., 2023, 2023; 

Colclough et al., 2016; Hillebrand et al., 2012; Palva et al., 2010). A ‘multivariate’ 

strategy acknowledges that all elements of the source space and their time-courses 

carry some useful information, while the aggregation approach such as mean or PCA 

is the easiest computational choice. Beyond these, a number of more complex 

procedures (identification of the center of mass, time-series with maximal power, 

weighted average, etc.) have been proposed, (Basti et al., 2019, 2020; Bruña et al., 

2023; Chalas et al., 2022; Garcés et al., 2016; Korhonen et al., 2014; Luckhoo et al., 

2012).  

In short, the purpose of this study is to systematically compare the most common 

dimensionality reduction strategies to estimate connectivity patterns. Our analyses 

were performed using: (i) a large resting state MEG dataset (N=113) where we applied 

four extraction methods and two connectivity measures, across three frequency 

bands, using one canonical cortical atlas (Desikan et al., 2006). Furthermore we used 
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realistic simulations in order to compare real data connectivity results with ground truth 

(simulated data).  

Therefore, this work addresses the following questions: (i) How does the choice of ROI 

extraction method affect the estimation of resting state functional connectivity? (ii) Are 

differences between extraction strategies consistent across different connectivity 

measures (ciPLV, PLV) and frequency bands (theta, alpha, beta)? (iii) Does the 

reliability of extraction methods vary depending on the size of the ROI? (iv) What are 

the recommendations for future studies?  

1. Methods 

2.1 Participants and MEG acquisition 

The study was approved by the local Ethics Committee, the Research Ethics Board of 

the Province of Venice (Italy), and complied with the 1964 Declaration of Helsinki and 

its later amendments. Every participant provided written and informed consent. All 

participants were healthy (self-reported) adults, with normal or corrected-to-normal 

vision, had no history of neuropsychiatric disorders, or brain injuries. Demographic 

details of the sample of participants included in this analysis are illustrated in Table S1 

of the supplementary material. Overall, 84 subjects were included (66 Female, age 

range 21-58, mean 29 years old). Of these, 23 had two or more resting state sessions, 

in separate instances, that were treated as independent acquisitions. We analyzed 

113 five-minute resting state recordings, acquired using a whole head 275-channel 

CTF system (VSM MedTech Systems Inc., Coquitlam, BC, Canada). Participants sat 

with their eyes closed in a magnetically shielded room. Eye movements (EOG) and 

cardiac rhythm (ECG) were recorded with bipolar electrodes. The sampling rate was 

set to 1200 Hz. Prior to the MEG data acquisition, the position of scalp points and 
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anatomical landmarks (nasion, left and right pre-auricular points) were digitized with a 

3D Fastrack Digitizer (Polhemus, Colchester, Vermont, USA). The head position within 

the dewar was tracked using the Continuous Head Localization system.  

2.2 MRI data acquisition and analysis 

All participants obtained MR images of the head after the MEG session. T1-weighted 

anatomical images were acquired at 1.5 T with the Achieva Philips scanner (Philips 

Medical Systems Best, The Netherlands) using the following parameters: TR = 8.3 ms, 

echo time TE = 4.1 ms, flip angle = 8°, isotropic spatial resolution = 0.87 mm.  

2.3 MEG preprocessing and source imaging 

All MEG data was analyzed with the Brainstorm MATLAB-based toolbox (Tadel et al., 

2011) (Figure 1). First, MRIs were imported and processed with CAT12 (Gaser et al., 

2022) for tissue segmentation, cortical reconstruction and cortical labelling. Source 

space was defined as the cortical mesh extracted with CAT12, and downsampled to 

4032 vertices. The ROIs were the 68 cortical regions of the Desikan-Killiany (DK) 

surface-based atlas (Desikan et al., 2006). MRI-MEG co-registration was performed 

by fitting a surface between the T1 head shape and the digitized head and fiducial 

points (acquired prior to the MEG recording, as described in our previous studies 

(Pellegrino, Machado, et al., 2016). MEG data was preprocessed using: spatial 

gradient noise cancellation of third order; band-pass filtering [0.3 – 256 Hz] and notch 

filtering (50, 100, 150 Hz); Signal Space Projection (SSP) to remove cardiac and eye 

movement artefacts (Taulu & Simola, 2006; Tesche et al., 1995); downsampling to 

128 Hz; data segmentation into 2.5-second epochs; inspection and rejection of epochs 

affected by residual artefacts or head movement. The forward model was computed 

using overlapping spheres (Pellegrino, Hedrich, et al., 2018). Noise covariance was 
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estimated from a 3-minute empty room MEG recording acquired prior to the 

experiment. The inverse problem was solved with the weighted minimum norm 

estimate (wMNE) approach, with dipoles at the source space constrained to be 

perpendicular to the cortical surface mesh (Brancaccio et al., 2020; Cona et al., 2020; 

Hämäläinen & Ilmoniemi, 1994; Hincapié et al., 2017; Pellegrino, Maran, et al., 2018).  

[Insert Figure 1 about here] 

 

 

Figure 1. Data analysis pipeline. Panel A A volumetric T1w MRI was acquired for 
each participant and processed (segmentation, cortical reconstruction, cortical 
labeling) with CAT12.The source space corresponded to the cortical surface tasseled 
into 4000 vertices/nodes. Panel B MEG data was acquired with a 275 CTF system. 
Data underwent standard preprocessing. Panel C. MRI-MEG co-registration was 
performed with a surface fitting procedure taking into account fiducial points acquired 
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with a Polhemus system Panel D. Source imaging was based on an overlapping 
sphere head model and wMNE inverse solution. This allowed reconstruction of time-
series for each of the 4000 nodes of the source space. Panel E1. The dimensionality 
reduction procedure was applied to the time-courses of the vertices/nodes belonging 
to the ROI (cyan box). Two procedures were considered: (i) the average of the time 
courses and (ii) the PCA of the time-courses explaining the largest variance. 
Thereafter, the resulting time-course was considered as the seed and pairwise 
connectivity was estimated with each node/vertex of the source space (purple box). 
The result of this procedure was a single map representing the connectivity between 
the ROI and all nodes of the cortex. Panel E2. The dimensionality reduction procedure 
was applied to the connectivity maps computed for each vertex/node of the ROI and 
the source space (cyan box). The number of connectivity maps corresponds to the 
number of nodes/vertices of the ROI (purple box). The final output is a single map 
obtained as an average or maximum of all the maps previously computed.  

2.4 Connectivity measures 

Connectivity was computed with two measures of phase consistency: the Phase 

Locking Value (PLV; (Lachaux et al., 1999)) and its corrected imaginary counterpart, 

called corrected imaginary Phase Locking Value (ciPLV; (Bruña & Pereda, 2021)). 

PLV is a measure of phase consistency between two oscillating time series, where 

higher values represent higher connectivity. More specifically, PLV measures the 

instantaneous phase difference between two signals based on the assumption that 

the phase of connected signals are aligned and evolve together (Lachaux et al., 1999; 

Nolte et al., 2020; Varela et al., 2001). It has been shown how the application of the 

imaginary part of the complex definition of PLV, ciPLV, is less sensitive than PLV to 

volume conduction and signal leakage, since it does not consider zero-lag phase 

alignment (Bruña et al., 2018; Colclough et al., 2016; Palva et al., 2018; Schuler et al., 

2022; Tabarelli et al., 2022). The mathematical explanation of differences between 

PLV and ciPLV are discussed in detail in (Nolte et al., 2020). We applied PLV and 

ciPLV in three canonical frequency bands of interest: theta (5-7Hz), alpha (8-12Hz), 

and beta (15-29Hz), (Bruña et al., 2018; Nolte et al., 2020). Connectivity was 

estimated for each frequency band, each of PLV and ciPLV, and between each ROI 

(68 ROIs of the Desikan-Kiliani atlas) and each element of the source space, resulting 
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in a connectivity map. Each of these maps was represented by an array of 4032 

elements, where the value of each element is the connectivity between the ROI and 

each element (vertex) of the source space. In order to perform group analyses, 

individual connectivity maps were projected onto a common template (MRI-ICBM152) 

(Mazziotta et al., 2001) and smoothed with a full width at half maximum of 5mm 

(Bernal-Rusiel et al., 2010; Brodoehl et al., 2020; Coalson et al., 2018; Hagler et al., 

2006; Worsley et al., 2002).  

 

2.5 Dimensionality reduction methods or ROI extraction function 

We compared four methods of ROI extraction, illustrated in Figure 1:  

a) Mean before: mean of the signal within ROI. This function averages all time-

courses within the ROI before computing connectivity between the resulting 

average time-course and the time-course of each element of the source space. 

This approach is very simple and computationally efficient. As the time-course 

of adjacent elements of the source space may display a different sign due to 

the folding of the cortical surface, a flip-sign function is applied before averaging 

in order to reduce cancellation. 

b) PCA before: PCA of the signal within the ROI. This method takes the time 

course of the first component of the PCA decomposition of all the signals within 

a ROI, before computing the connectivity between the time course of that 

component and the time course of all elements of the source space.  

c) Mean after: mean of the connectivity maps computed from all elements of a 

ROI. Here, dimensionality reduction is applied after the computation of 

connectivity. A connectivity map is computed for each element of the ROI taking 

into account the time course of that element and the time-course of all elements 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2023. ; https://doi.org/10.1101/2023.06.20.545792doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.20.545792
http://creativecommons.org/licenses/by-nd/4.0/


 

of the source space. The final connectivity map corresponds to the average of 

all the maps belonging to the same ROI.   

d) Max after: maximum estimate of the connectivity computed for all elements of 

the ROI. It is similar to the mean after, but in the Max after function only the 

maximum value is retained for each element of the resulting connectivity 

map/vector.  

2.6 Clustering analysis 

We applied hierarchical clustering analysis to examine the similarities between the 

aforementioned extraction methods, and two connectivity measures, PLV and ciPLV, 

across three frequency bands (theta, alpha, and beta). Specifically, for each frequency 

band we first computed the Pearson’s correlation coefficient between connectivity 

maps resulting from the combination of connectivity measure and scout function. This 

resulted in an 8 x 8 similarity matrix R for each dataset. Subsequently, a distance 

matrix was calculated as 1 - <R>, where <R> denotes the data-averaged similarity 

matrix. Finally, a hierarchical clustering was applied to this distance matrix using the 

MATLAB linkage function and selecting the average linkage criterion. Importantly, we 

performed this clustering analysis at two different brain granularity levels: entire 

cortical surface and for each ROI separately. For the former, connectivity maps were 

concatenated across all seed regions (68 ROI of the DK atlas). For the latter, we 

considered ROI-specific maps. Lastly, to explore whether the patterns observed were 

frequency-specific, we looked at the average distribution across three frequency 

bands of interest, theta (4-8Hz), alpha (8-12Hz), and beta (12-25Hz). This entire 

clustering analysis pipeline is openly available on Github, (jrasero, 2022/2023). 
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2.7 Pairwise comparison between scout functions 

While the clustering analysis provided an estimate on similarity/dissimilarities across 

different strategies, and how connectivity maps cluster together, it did not quantify 

differences across options and their spatial distribution. Therefore, in order to address 

the extent to which the use of the four scout functions differed, we performed 

parametric testing. Specifically, we applied paired t-testing to compare across all 

possible combinations of scout functions, for each ROI, frequency bands and 

connectivity measures (PLV and ciPLV). This analysis was carried out as a post-hoc 

exploration of the magnitude and spatial distribution of differences across the 

dimension reduction approaches. We found that the differences across procedures 

were strong and widespread. Therefore, in order to make sure that these differences 

were specific and not caused by a simple offset (i.e. a constant difference), we 

repeated the same analysis after normalizing the connectivity maps. To this end, the 

maximal connectivity value of each map was set as 100% and all other values were 

expressed as percentages of the maximum. For these analyses we only report some 

examples, whereas all comparisons are available as GIfTI at www.hsancamillo.it. 

2.8 Simulation of MEG data with known connectivity structure 

Applying different ROI-extraction methods to realistic simulations allowed us to depict 

the properties of each approach in comparison with the ‘ground truth’. The MEG 

forward model was based on individual anatomical data of one of the participants. 

Consistently with the analysis of real data, the source space was confined to the 

cortical surface, and the lead field matrix was computed by applying the overlapping 

sphere model. We simulated neural activity by mimicking five interacting patches (for 

a schematic representation of the implemented pipeline, refer to Figure 2). For each 

ROI we randomly drew a point, v1, within the ROI and four other vertices, v2, v3, v4, 
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v5, outside the selected ROI, with the only constraint being that the distance between 

each pair of points was at least 5 cm. Around each point vi, i=1,…,5, we defined a 

patch Pi by considering vi’s neighbouring source-space elements that were less than 

2.5 cm apart. Additionally, as for P1, we restricted it to entirely belong to the ROI 

containing v1 and we set three possible sizes of the patch, namely (i) all points with a 

distance from v1 lower than 2.5 cm, (ii) 50% of those points by selecting the closest to 

v1, and (iii) only v1 (Figure 2, Panel A). For each group of patch configurations, we 

then simulated three time-courses, s1(t), s2(t), s3(t), t=1, …., T, where T=10000 

mimicking about 78 s of neural activity sampled at 128 Hz. To this end, and similar to 

previous work (Haufe & Ewald, 2019; Sommariva et al., 2019; Vallarino et al., 2021), 

only alpha band was considered for simulation using three signals following a 

multivariate autoregressive (MVAR) model of order 5, so that s1(t) leads the activity of 

s2(t), while s3(t) is uncorrelated. We only retained stable MVAR models such that (i) 

for each of the resulting signals the average power spectrum in the alpha band 

represented at least 40% of the overall average power spectrum, and (ii) the average 

coherence in the alpha band between s1(t) and s2(t) was greater than 0.5. Following 

this, s1(t) was assigned to v1, s2(t) to v2 and v4, and s3(t) to v3 and v5. For each 

patch Pi the activity of the remaining points was defined by randomly perturbing the 

Fourier transform of the time series of the corresponding centre vi so as to reach a 

certain amount of intra-patch coherence (Hincapié et al., 2017). Additionally, a 

Gaussian window was used to modulate the resulting time-series so that source 

intensity decreased for increasing distance from vi (Figure 2, Panel B). Finally, for each 

set of patch activities, we computed the magnetic field at sensors and added simulated 

additive noise according to the random dipole brain noise model PoMAM (Calvetti et 

al., 2019; de Munck et al., 1992) (Figure 2, Panel C). Hence a total of N=68x3=204 
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MEG data points were simulated, 68 being the number of ROIs within the Desikan-

Kiliany atlas and 3 being the considered sizes for P1. 

[Insert Figure 2 about here] 

 

Figure 2. Simulation Pipeline. Panel A. For each ROI we randomly drew a point, v1, 
within the ROI and four other vertices, v2, v3, v4, v5, outside the selected ROI, with 
the only constraint that the distance between each pair of points was at least 5 cm. 
Around each point vi, i=1,…,5, we defined a patch Pi by considering vi’s neighbouring 
source-space elements that were less than 2.5 cm apart. We set three possible sizes 
of the patch, namely (i) all points with a distance from v1 lower than 2.5cm, (ii) 50% of 
those points by selecting the closest to v1, and (iii) only v1. Panel B. For each group 
of patch configurations, we simulated three time-courses, s1(t), s2(t), s3(t) so that s1(t) 
leads the activity of s2(t), while s3(t) is uncorrelated. s1(t) was assigned to v1, s2(t) to 
v2 and v4, and s3(t) to v3 and v5. For each patch Pi the activity of the remaining points 
was defined by randomly perturbing the Fourier transform of the time series of the 
corresponding centre vi so as to reach a certain amount of intra-patch coherence. 
Panel C. for each set of patch activities, we computed the magnetic field at sensors 
and added simulated additive noise according to the random dipole brain noise model 
PoMAM Panel D. A total of N=204 MEG data points were simulated. Source space 
signals were reconstructed using a similar procedure as was used for real data. 
 

2.9 Connectivity estimate and evaluation criteria 

As with the experimental MEG data, neural activity was estimated from the simulated 

MEG data by using the wMNE inverse solution, while connectivity was quantified from 

the source space estimated time-courses through PLV and ciPLV. Specifically, for 

each of the 204 simulated signals and for the two connectivity measures, we estimated 

cortical connectivity maps by considering as seed the ROI containing v1. The four ROI 

extraction methods, i.e.  Mean before, PCA before, mean after, and Max after, were 
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used to quantify the connectivity between this ROI and all 4002 other elements of the 

source space (Figure 2, Panel D).  

To evaluate the results, we exploited the fact that, when P1 only includes v1, a ground 

truth can be defined by computing the values of PLV and ciPLV between s1 and the 

activity in all the other points of the source space. Hence for these simulated MEG 

data, connectivity metrics, and scout function, we computed the Pearson correlation 

coefficient between the estimated cortical connectivity maps and the corresponding 

ground truth. On the other hand, when P1 includes more than one element, defining a 

ground truth is not straightforward. For this reason, we also evaluated the accuracy of 

the estimated connectivity maps by computing true and false positive rates (TPR and 

FPR, respectively).  To this end, we fixed one hundred thresholds uniformly distributed 

between 0 and 1 (alpha). Then for each of the simulated MEG data points, for each of 

the four scout functions and for both connectivity measures, we applied a 

normalization procedure by rescaling each map with its maximum value. Thereafter, 

for each map, for every alpha value of the threshold, we defined 

𝑇𝑃𝑅 (𝑎𝑙𝑝ℎ𝑎) =  
𝑇𝑃(𝑎𝑙𝑝ℎ𝑎)

𝑃
   and  𝐹𝑃𝑅 (𝑎𝑙𝑝ℎ𝑎) =  

𝐹𝑃(𝑎𝑙𝑝ℎ𝑎)

𝑁
 

where: 

- P and N are the number of positive and negative, respectively. P counts the 

source-space points truly connected with v1, i.e. the nodes within P2 and P4 in 

our simulations, while N is the number of the remaining source-space points 

without considering the nodes of the patch P1 centered in v1. 

- TP(alpha) is the number of true positives, i.e. points of the source space truly 

connected to v1 where the normalized reconstructed connectivity value (either 

PLV or ciPLV) exceeded the threshold alpha. 
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- FP(alpha) is the number of false positives, which are points not truly correlated 

with v1 but where the normalized reconstructed connectivity still exceeded 

alpha. 

Finally, results in terms of True/False positive rate were summarized by computing the 

corresponding Receiver Operating Characteristic (ROC) curve and the associated 

Area Under the Curve (AUC). 

2. Results 

3.1 Hierarchical Clustering 

The results of the hierarchical clustering are summarized in Figure 3. This analysis 

showed similar patterns of similarity-dissimilarity across frequency bands (Figure 3, 

rows) and the two connectivity measures of interest (PLV and ciPLV).  

Similarity map was overall higher and distances overall lower for PLV than ciPLV 

(Figure 3, Left and right columns). PLV and ciPLV maps clustered together within 

connectivity measures (PLV and ciPLV), for all frequency bands (Figure 3, middle 

column). The relative distances across extraction methods also clustered consistently 

together within connectivity measure (Figure 3, middle column). We observed that Max 

after and Mean after were the two most similar extraction procedures, and as such 

clustered together under all circumstances (for all frequency bands and connectivity 

measures, Figure 3, middle column). Max after and Mean after were relatively close 

to Before, and clustered together, whereas PCA before had higher distance from all 

other approaches (Figure3, middle and right columns).  

The right column demonstrates that Mean after and Max after had the lowest distance, 

followed by Before-Mean after. 

[Insert Figure 3 about here] 
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Figure 3. Hierarchical Clustering. The figure shows the clustering results by 
frequency band (rows). Left column: similarity matrices. The color scale indicates the 
similarity of connectivity maps across connectivity measures (PLV and ciPLV) and 
extraction methods (Max after, PCA before, Mean after, Before). Middle column: 
Dendrograms with distances across aggregation procedures. Right column: Distances 
across extraction procedures by connectivity measure (PLV and ciPLV). Map similarity 
was overall higher and distances overall lower for PLV than ciPLV (Left and right 
columns). PLV and ciPLV maps cluster together within connectivity measures for all 
frequency bands (middle column). The relative distances across extraction methods 
also clustered consistently together within connectivity measure (PLV and ciPLV, 
middle column). The most similar extraction procedures were Max after and Mean 
after, which were closely clustered, followed by Before, which clustered with both Max 
after and Mean after. PCA before was most distant from all other approaches, as seen 
in both middle and right columns. The right column shows that Mean after and Max 
after had the lowest distance, followed by Before-Mean after.  
 

 

The topographical distribution of the distances across extraction methods is 

highlighted in Figure 4, left panel. The lowest distances were found in the deep regions 
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especially of the midline, for all frequency bands. The higher distances were found 

especially in the convexity, over the fronto-central regions, and parietal regions. Figure 

4. 

There was a significant and positive relationship between the size of the region and 

the average distance across extraction methods (Figure 4, Right Panel) (Pearson’s 

correlation coefficient; r>0.7 and p<0.001 consistently across frequency bands and 

connectivity measures). 

[Insert Figure 4 about here] 
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Figure 4. Topographical distribution of average distances by frequency band (rows) 
and relationship between the size of the parcel and average distances. Left Panel The 
lowest distances were found in deep regions, especially of the midline, across 
connectivity measures and frequency bands. The higher distances were found 
especially in the convexity, over the fronto-central regions, and parietal regions. Right 
panel There was a significant positive relationship between the size of the region and 
the average distance across extraction methods. 
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3.2 Paired comparisons 

The cluster analysis provides a pattern of similarities but does not provide an 

immediate estimation of the magnitude and spatial distribution of differences across 

strategies. Therefore, we followed up on previous analysis by estimating how 

connectivity changed by paired comparisons between the four strategies under 

investigation. Specifically, for each connectivity measure, and within each frequency 

band, we compared: i) Mean before vs PCA before; ii) Mean before vs Mean after; iii) 

Mean before vs Max after; iv) PCA Before vs Mean after; v) PCA Before vs Max after; 

vi) and Mean after vs Max after. For each of these comparisons, we computed t-maps 

as a representation of normalized differences between the two strategies (Figure 5). 

ciPLV connectivity maps computed showed differences as high as 40 t-values, with 

magnitude and direction (positive/negative) were consistent across frequency bands 

(alpha, beta, theta). Similar patterns were observed for PLV ( supplementary material).  
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[Insert figure 5 about here] 

Figure 5. ciPLV t-maps of pairwise comparisons between connectivity maps of the left 
superior temporal gyrus, across aggregation procedures, for theta, alpha and beta 
bands. Color scale is adjusted for each comparison and ranges between [-max to 
+max] t-value. Histograms show t-value distribution across the entire cortical surface.  
 

3.3 Simulations results 

3.3.1 Correlation between true (simulated) and estimated maps 

The results of the correlation between connectivity estimated and true (simulated) 

when the patch P1 contains only its center v1 are summarized in Figure 6. For both 

PLV and ciPLV and for all aggregation procedures the correlation coefficients are 

rather low (< 0.15, Figure 6, upper row). This result is expected, as the simulated map 

does not contain any activity for a large portion of the cortical surface, whereas the 
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estimated map may contain some activity over the entire surface as a result of signal 

leakage associated with the inverse solution. Similarly, it is expected that PLV provides 

lower values for this correlation, since it is more sensitive to source leakage than 

ciPLV. Finally, negative values of the correlation coefficient correspond to data where 

the value of connectivity estimated in the patches that were uncorrelated with v1, 

namely P3 and P5, was on average higher than the value of connectivity estimated in 

the correlated patches, namely P2 and P4. In this scenario, the aggregation 

approaches applied after computing connectivity generally perform better. When 

applying PLV, the correlation between estimated and simulated connectivity is 

significantly higher (better) for Mean after as compared to Mean before and PCA 

before (Wilcoxon signed-rank, p<0.05 consistently), whereas when applying ciPLV 

Max after performs slightly but significantly better than all other approaches (Max after 

vs PCA before W=1761, p=0.003;  Max after vs Mean before W=1897, p=0.0001; Max 

after vs Mean after W=1690, p=0.02) and Mean after performs slightly better than 

Mean before (W =1793, p=0.002). 

We repeated the correlation analysis by restricting true and estimated connectivity 

maps to the points pertaining to the four active patches, namely P2-P5 (Figure 6, 

bottom row). In this scenario, correlation coefficients are remarkably higher, especially 

for ciPLV. The aggregation approaches applied after computing connectivity remained 

slightly better, especially for ciPLV. The correlation coefficient of both ciPLV Mean 

after and ciPLV Max after were significantly higher than ciPLV Mean before and ciPLV 

PCA before (Mean after vs Mean before W=1944, p=3*10^-5; Mean after vs PCA 

before W=2023, p=2.5*10^-6; Max after vs Mean before W=2043, p=1.3*10^-6; Max 

after vs PCA before W=2018, p=2.9*10^-6). Note that no statistically significant 

difference was observed comparing ciPLV Max after and Mean after. Interestingly, in 
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this scenario the correlation coefficient was less stable for PLV, with high levels of 

variance depending on the aggregation procedure. Here the only significant difference 

was in the comparison between Mean after which was higher than Max after (W=1835 

p=6*10^-4). 

[Insert Figure 6 about here] 

 

 

Figure 6. Pearson correlation coefficient between true (simulated) and estimated 
connectivity maps across 68 simulated neural activity sources such that P1 contains 
only the center v1. Upper row, left panel. PLV correlation coefficients of maps defined 
in the entire source-space. Mean after performed better than Mean before and PCA 
before. Upper row, right panel ciPLV map correlation coefficients defined for the entire 
source-space. Max after performed significantly better than all other aggregation 
approaches. Mean after performed significantly better than Mean before. Lower row, 
left Panel PLV correlation coefficients of maps containing only P2-P5. The distribution 
of correlation coefficients was remarkably variable across aggregation procedures. 
Mean after performed significantly better than Max after. Lower row, Right Panel ciPLV 
correlation coefficients of maps containing only P2-P5. Both Mean after and Max after 
performed significantly better than Mean before and PCA before. Note, in the violin 
plots, white dots depict median values. Darker colors correspond to the interquartile 
range.  ∗ p < 0.05, ∗∗ p < 0.005, ∗∗∗ p < 0.0005. 
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3.3.2 Accuracy of estimated maps (true and false positive rates) 

The analysis of False/True Positive rates provides more insight in interpreting results 

from the clustering analysis performed on the experimental resting-state data. 

FPR(alpha) and TPR(alpha) are reported in Figure 7. This analysis is focused on the 

case of P1 only containing the center v1, which is a scenario analogous to that applied 

in section 3.3.1. 

For both PLV and ciPLV the two before procedures (Mean before and PCA before) 

show higher specificity, while the two after procedures (Mean after and Max after) 

show higher sensitivity. Indeed, PCA before and Mean before show a lower false 

positive with the tradeoff of identifying fewer true connections. In other words, these 

aggregation procedures seem to be more conservative, in the sense that the 

reconstructed connections most likely identify truly connected sources, at the expense 

of weak connections which may be lost when these aggregation procedures are used. 

Vice versa, Mean after and Max after show a higher value of both true and false 

positive rates. This seems to suggest that weak connections may be retrieved at the 

expense of retaining spurious connectivity. Note also that for both ciPLV and PLV the 

FPR and TPR curves are very similar and overlap for most of the alpha range. 

 

[Insert Figure 7 about here] 
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Figure 7. False Positive Rates (upper row) and True Positive Rates (lower row) 
models of the two connectivity measures (PLV -left- and ciPLV -right-) extracted via 
the four different aggregation procedures. Plots show mean and standard error of the 
mean across 68 simulated neural activity so that P1 only contains the centre v1. 
Results concerning different sizes of P1 can be found in the Supplementary Materials. 
 
 

Similar results are obtained when varying the size of PI (supplementary material). 

Although the differences across aggregation procedures can vary, Max after and Mean 

after typically show a higher rate of FPR and TPR.  

The comparison of the AUC for all conditions under investigation (Figure 8) shows a 

significantly higher value for Max after and Mean after for ciPLV when only the centre 

of P1 is considered (Mean after vs Mean before W=1792, p=0.002; Mean after vs PCA 

before W=1830, p=7*10^-4; Max after vs Mean before W=1914, p=7.15*10^5; Max 

after vs PCA before W=1907, p=8.75*10^-5).  The distribution of the AUC values is 

similar for the four ROI-extraction methods when all points of the patch P1 are 
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considered. With respect to the PLV metric, the distribution of AUC values is 

significantly higher for Mean after regardless of the dimension of the P1 patch (Mean 

after vs PCA before W=1656, p=0.037 when P1 containing only v1; Mean after vs Max 

after W=2068, p=5.4*10^-7 when P1 contains half points; Mean after vs Max after 

W=1957, p=2*10^-5 when P1 contains all voxels).  

[Insert Figure 8 about here] 

 

 

 

Figure 8. Distribution of the AUC values across the simulated MEG data when the 
patch P1 contains all the points that are less than 2.5cm apart from v1 (third row), half 
of such points (second row), only its centre v1 (first row). Left column shows results 
concerning PLV while right column refers to ciPLV. 
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3. Discussion 

The findings of this study indicate that the choice of dimensionality reduction method 

has a significant impact on the resulting connectivity outcomes. These results were 

observed across both resting state data and realistic simulations. Interestingly, the 

choice of extraction method resulted in considerable differences in both the magnitude 

and distribution of connectivity. More specifically through the use of cluster analysis, 

we observed that the aggregation procedures applied after computing connectivity 

yielded more consistent results. This was observed for both in-vivo and simulated 

data. 

The after approaches are computationally demanding, but allow for the integration of 

information from all elements of a given parcel, thus providing a more comprehensive 

connectivity estimation (Aydin et al., 2020; Bruña et al., 2023, 2023; Colclough et al., 

2016; Hillebrand et al., 2012; Palva et al., 2010).  

The results of the clustering analysis also revealed that the Mean before method 

produced connectivity maps that were similar to those generated by the after 

strategies. On the other hand,  PCA before method yielded results that were markedly 

dissimilar from all other approaches. While cluster analysis alone may suggest that 

the Max after, Mean after, Mean before and Mean after methods produce similar 

results, it is important to note that the cluster approach is based on correlations across 

maps and does not provide enough information about the actual topographical 

distances. Therefore to gain a better understanding, we conducted pairwise analysis 

of connectivity maps generated by different extraction strategies. Our results revealed 

that the most similar maps differed by a magnitude of 40+ t-values, indicating that even 

minor variations in method choice lead to significant differences in connectivity 

outcomes (Figure 5). We also ruled out the possibility that these differences were due 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2023. ; https://doi.org/10.1101/2023.06.20.545792doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.20.545792
http://creativecommons.org/licenses/by-nd/4.0/


 

to an offset of connectivity values by directly contrasting normalized maps, where each 

connectivity value was rescaled against the maximum. Here we observed important 

and widespread differences in connectivity outcomes. Hence, caution is warranted 

when comparing connectivity patterns between studies that employ different extraction 

strategies, as even small variations in method can lead to significant discrepancies. 

Our analysis also shed light on some of the factors that may influence the effect of 

extraction method on connectivity outcomes. Specifically, we observed that similarity 

across extraction methods was higher for PLV as compared to ciPLV (Figure 3). Both 

connectivity measures utilized in this study are based on phase synchrony across time 

series. However, ciPLV is insensitive to Lag=0 connectivity and as such, is less 

susceptible to volume conduction and spatial leakage (Bruña et al., 2018; Bruña & 

Pereda, 2021; Colclough et al., 2016; Lachaux et al., 1999; Nolte et al., 2020; Palva 

et al., 2018; Schuler et al., 2022; Tabarelli et al., 2022; Varela et al., 2001). Therefore, 

the resulting connectivity maps are typically less smooth, possibly explaining why 

similarities across extraction methods is lower than for PLV (Figure 3). On the other 

hand, our results also highlight that other connectivity measures may exhibit varying 

levels of robustness to the extraction methods. We observed no relevant differences 

across frequency bands, although the spatial distribution of the distances shows a 

trend towards greater differences for lower frequencies (Figure 3 and 4). Low 

frequency activity recorded from the scalp typically originates from large populations 

of neurons or from large distribution of high frequency activity (Pellegrino et al., 2017; 

Tao et al., 2007). Therefore, it is possible that differences in aggregation methods are 

more pronounced when the underlying generators span widespread brain areas. This 

idea is supported by the significant positive linear relationship we observed between 
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the size of the parcel (expressed in number of vertices) and the average difference 

across extraction methods and frequency bands (Figure 3). 

Figure 4 provides some insight into the topographical distribution of the differences. 

Smaller differences are more often observed in deep regions especially of the midline. 

MEG spatial sampling is not homogeneous across the cortical surface, and the 

reconstruction of source signal in deep, basal, and midline regions is not always 

accurate in MEG (Ahlfors, Han, Belliveau, et al., 2010; Gavaret et al., 2014; Huiskamp 

et al., 2010). It is therefore possible that the estimation of cortical connectivity was less 

refined in those areas, and the differences across methods were smaller. 

Alternatively, the distribution of rhythms across the cortical surface with more alpha 

activity in the posterior quadrant, more theta activity in the temporal lobes, and faster 

activity in the range of beta band in the central regions may also play a role in 

determining this spatial distribution. Overall, these findings suggest that the choice of 

extraction method may have a greater impact on connectivity measures in lower 

frequency bands and in regions that are more challenging to measure using MEG. 

While MEG resting-state data allowed us to identify relative differences across 

extraction methods, it was challenging to determine which method was more accurate. 

This prompted us to conduct realistic simulations to gain a more comprehensive 

understanding of the performance of different extraction methods (Grova et al., 2016; 

Hincapié et al., 2017; Machado et al., 2018; Sommariva et al., 2019). 

Our simulations confirmed that aggregation procedures performed after the 

computation of connectivity may provide more accurate results. The correlation 

coefficient between simulated and estimated maps of connectivity was significantly 

higher for Mean after for PLV, and for Mean after and Max after for ciPLV. To gain a 

better understanding of the performance of different methods, we estimated the true 
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positive and false positive connections captured by applying different aggregation 

methods. This analysis revealed that Mean after and Max after captured a larger 

number of true connections, but also a larger number of false positives. In other words, 

Mean after and Max after showed higher sensitivity for connectivity but lower 

specificity. 

As for the AUC values, we found that there were differences between PLV and ciPLV. 

For ciPLV, Mean after and Max after performed better (with higher AUC) when only 

the center of the patch was considered, while for PLV, Mean after had the highest 

AUC regardless of the parcel size. While different strategies may be more or less 

appropriate depending on the specific scenario, and it may be difficult to determine 

which aggregation method performs best in real-world situations, our results suggest 

that Mean after and Max after may be preferable, however with the expense of longer 

computation time and higher rates of false positives. In addition, while PCA provided 

maps that were very different from all other extraction methods in real data, simulated 

data showed similar behaviour to Mean before. Overall, we believe it would be 

reasonable to choose Mean before when higher specificity and shorter computation 

time are desired or Mean after when greater sensitivity is desired. 

The effects of extraction methods on connectivity analysis have been extensively 

studied in the field of fMRI. Previous research has shown that dimensionality reduction 

at the level of an ROI can result in the loss of important information (Basti et al., 2019). 

As a result, it has been suggested that multi-dimensional connectivity methods, also 

known as multivariate connectivity, may provide more accurate results [Geerligs et al., 

(2016); for a recent review see Basti et al., (2020)]. Applying dimensionality reduction 

strategies at the seed level to obtain a single time-course is recommended only in the 

case of homogeneous ROIs, which is rare in M/EEG due to cortical folding that often 
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results in opposite directions for reconstructed source space time-courses. Several 

advanced multivariate approaches that integrate the computation of connectivity and 

the extraction of unique patterns of relationship among brain regions have been 

developed (Basti et al., 2018; Ewald et al., 2012). A recent MEG simulation study 

compared standard procedures based on the identification of a representative time-

course or ROI (average, centroid, largest power, first PCA component, and first 

Kosambi-Hilbert torsion component) against a multivariate approach and concluded 

that the latter is remarkably better (Bruña & Pereda, 2021). Another study compared 

three approaches to extract the time-course of the ROI (centroid, first PCA component, 

average) and two multivariate approaches, namely the average of the pairwise 

connectivities across all elements of the ROIs (corresponding to the Mean after of our 

study) and the root-mean-square (RMS) of all pairwise connectivity in an EEG-MEG 

study (Bruña et al., 2023). The results showed that multivariate procedures (Mean 

after and RMS post) performed better based on the concordance between EEG and 

MEG source-based connectivity. However since no ground truth was available in that 

study, it cannot be ruled out that some of the results are driven by the inherent 

differences of EEG and MEG. Despite the development of new multivariate 

approaches, many M/EEG researchers continue to rely on default approaches built in 

among most commonly used toolboxes for connectivity analyses (i.e., Brainstorm, 

Fieldtrip, MNE python) (Gramfort et al., 2014; Oostenveld et al., 2011; Tadel et al., 

2011). Within these toolboxes, the most used extraction strategy is the average time 

course of the ROI. The use of PCA for dimensionality reduction has received 

conflicting evaluations. Some studies suggest that PCA may work better than 

averaging the seed signal in cases when a process might be captured better by some 

voxels than others (Basti et al., 2020). Other studies suggest that PCA may be biased 
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towards weighting more low frequencies at the expense of high frequencies (Chalas 

et al., 2022). A recent simulation study demonstrated that PCA appears to be the best 

technique, particularly when a fixed number of components is chosen across areas. 

However, this is only true when PCA is coupled with other optimal pieces of the 

pipeline, including specific inverse solutions and connectivity measures (Pellegrini et 

al., 2022). Additionally, another MEG study in clinical and control populations revealed 

that PCA is outperformed by the centroid of the ROI and that the choice of the 

aggregation procedure matters in healthy subjects as well as in patient populations 

(Dimitriadis et al., 2018). 

Limitations 

This study has some limitations that should be acknowledged. First, the 

generalizability of the results may be limited as it was not feasible to compare all 

possible strategies available. Instead the study focused on a set of common and 

practical scenarios. Additionally, the effect of flip sign was not investigated for the 

procedures of aggregation prior to computing connectivity, even though this is a 

popular approach to limit the cancellation effect (Ahlfors, Han, Belliveau, et al., 2010; 

Lai et al., 2018). The influence of flip sign on the estimation of connectivity remains 

unclear and requires further systematic investigation. 

Another limitation is that the study only focused on resting-state data. While many 

studies have shown that some patterns of connectivity remain consistent between rest 

and tasks, recent literature suggests that individual variations should be considered 

(Colenbier et al., 2023). Therefore, the generalizability of the results to task-based 

data may be limited. Finally, while the use of realistic simulations allowed for the 

assessment of different procedures, ideal analysis would be performed on invasive 
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EEG data. This is planned future direction, in order to provide a more comprehensive 

evaluation of the different aggregation procedures. 

Conclusions 

The current study highlights the critical importance of the aggregation procedures in 

determining accurate connectivity estimations, in both real and simulated data. The 

choice of the extraction method has a great impact on the connectivity output. 

Differences are higher for ciPLV than PLV, with a similar pattern across frequency 

bands. Further, larger is the ROI the higher is the difference across connectivity 

outputs obtained with different strategies. Overall to obtain higher accuracy (higher 

sensitivity at the expense of lower specificity), after aggregation procedures (Mean 

after) are recommended in connectivity analyses, even though they are 

computationally demanding. Given the significant differences across aggregation 

methods, it is essential to exercise caution when comparing studies that employ 

different methods. 

 

Open access resources 

Code to replicate and use clustering analysis is available here: 

https://github.com/jrasero/connectivity-measures-clustering 

MEG resting state data will be openly accessible on San Camillo Open access portal. 

The zipped file contains all the t-maps of the contrasts across extraction methods, 

ROIs, frequency bands. Maps relative to different connectivity measurements are 

grouped in folders. Each folder also contains the .gii file for the reference cortex 

surface. You may use different software to visualize these maps.  

If you wish to visualize the maps with Brainstorm: 

1) Go to Default Anatomy. Right Click -> Import surface. Select 

Group_analysis_cortex.gii. 

2) Go to the Group_analysis data folder (you should create one if not present). Go to 

Common Files. Right Click -> File -> Import Source Maps. Select the t-maps to be 

visualized. 

 

For any additional info, please get in touch with the corresponding author.  
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