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Summary

� Many pathogens evolved compartmentalized genomes with conserved core and variable

accessory regions (ARs) that carry effector genes mediating virulence. The fungal plant patho-

gen Fusarium oxysporum has such ARs, often spanning entire chromosomes. The presence of

specific ARs influences the host range, and horizontal transfer of ARs can modify the patho-

genicity of the receiving strain. However, how these ARs evolve in strains that infect the same

host remains largely unknown.
� We defined the pan-genome of 69 diverse F. oxysporum strains that cause Fusarium wilt of

banana, a significant constraint to global banana production, and analyzed the diversity and

evolution of the ARs.
� Accessory regions in F. oxysporum strains infecting the same banana cultivar are highly

diverse, and we could not identify any shared genomic regions and in planta-induced effec-

tors. We demonstrate that segmental duplications drive the evolution of ARs. Furthermore,

we show that recent segmental duplications specifically in accessory chromosomes cause the

expansion of ARs in F. oxysporum.
� Taken together, we conclude that extensive recent duplications drive the evolution of ARs

in F. oxysporum, which contribute to the evolution of virulence.

Introduction

The interaction between fungal plant pathogens and their hosts
drives rapid evolution (M€oller & Stukenbrock, 2017). Plant
hosts have evolved sophisticated immune systems to detect patho-
gens, while adapted pathogens, in turn, secrete effectors to dereg-
ulate immune responses and to support host colonization
(Rovenich et al., 2014; Cook et al., 2015). To facilitate this co-
evolutionary cycle, many filamentous plant pathogens evolved
compartmentalized genomes where effector genes are localized in
distinct genomic regions (Dong et al., 2015; Torres et al., 2020).

These effector-rich compartments show extensive genetic varia-
tion and are enriched for repetitive sequences such as transposa-
ble elements (Raffaele & Kamoun, 2012; Dong et al., 2015;
M€oller & Stukenbrock, 2017; Seidl & Thomma, 2017; Torres
et al., 2020). This spatial separation is often referred to as the
‘two-speed’ genome (Dong et al., 2015) and is thought to facili-
tate the rapid diversification of effector gene repertoires to enable
pathogens to evade host resistances or host jumps (S�anchez-Vallet
et al., 2018).

Fusarium oxysporum is a genetically diverse fungal species com-
plex that consists of three clades that can be further separated into
different lineages, some of which are recently reclassified as sepa-
rate species (Maryani et al., 2019). Members of this species*These authors contributed equally to this work.
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complex can collectively infect > 100 economically important
crops. By contrast, individual strains typically only infect a single
host plant (Edel-Hermann & Lecomte, 2019). Fusarium oxy-
sporum evolved a two-speed genome organization where specific
genomic regions are characterized by extensive presence-absence
polymorphisms between strains (Ma et al., 2010; van Dam
et al., 2017; Fokkens et al., 2018; Zhang et al., 2020). These vari-
able accessory regions (ARs) can be embedded in core chromo-
somes or can encompass entire accessory chromosomes (Ma
et al., 2010; Fokkens et al., 2018). Interestingly, shared ARs in
otherwise genetically diverse strains have been linked to the adap-
tation toward the same host (Fokkens et al., 2018; Henry
et al., 2021). Moreover, ARs can transfer the capacity to infect a
specific host between isolates (Ma et al., 2010; Ayukawa
et al., 2021). For example, the transfer of accessory chromosome
14 from a tomato-infecting F. oxysporum strain (Fol4287) to a
nonpathogenic strain converts the nonpathogenic isolate into a
tomato-infecting pathogen (Ma et al., 2010). This transfer of
pathogenicity is likely linked to effector genes that are localized
in ARs such as some of the 14 well-studied Secreted In Xylem
(SIX ) effectors (Rep et al., 2002). Consequently, the presence
and absence of effectors can group genetically diverse F. oxy-
sporum strains based on their host range (van Dam et al., 2016).
Whole-genome sequencing of diverse F. oxysporum can provide
novel insights into the origin of host specificity (Fokkens
et al., 2018; Henry et al., 2021). For example, a recent popula-
tion study of F. oxysporum isolates infecting chickpea suggests
that, contrary to expectations (Gordon & Martyn, 1997; Henry
et al., 2021), F. oxysporum might undergo sexual and clonal
reproduction (Fayyaz et al., 2023), which could impact the con-
stitution and the dynamics of ARs and, ultimately, influence
pathogenicity. However, despite the importance of ARs for host
adaption, little is known about the constitution of ARs in F. oxy-
sporum strains that cause disease in the same host, and the origin
and processes that shape the evolution of ARs.

Fusarium wilt of banana (FWB), which is caused by a suite of
F. oxysporum species (Maryani et al., 2019), is a major constraint
for banana production and threatens food security in tropical and
subtropical countries where > 400 million people depend on
banana cultivation (FAO, 2020). In F. oxysporum causing FWB,
three different races can be distinguished based on their patho-
genicity toward subsets of banana varieties; race 1 (R1) strains
cause FWB in Gros Michel, race 2 (R2) strains infect Bluggoe,
and tropical race 4 (TR4) strains infect Gros Michel,
Bluggoe, and Cavendish (Ploetz, 2015). In addition to TR4, sub-
tropical race 4 (STR4) strains can cause disease in Cavendish
banana under environmental stress conditions, for example caused
by lower temperatures in subtropical regions (Ploetz, 2006). All
races infect additional locally important banana varieties. TR4 has
developed into a pandemic over the last 60 yr (Su et al., 1986;
Ordonez et al., 2015; van Westerhoven et al., 2022b) and is of
particular concern as it causes FWB in Cavendish, the banana
variety that dominates global productions (> 50%) and export
trade (> 95%; FAO, 2020). Despite the impact of FWB on
banana production, we know little about the ARs in F. oxysporum
strains that infecting banana and their relation to pathogenicity.

Here, we analyze the dynamics of ARs in a suite of F. oxy-
sporum strains causing FWB. To gain insights into the genomic
structure, we generate seven chromosome-level reference genome
assemblies for R1, R2, and TR4 strains, and use a pan-genomic
framework together with a global panel of 69 strains to gain
insights into the evolution of ARs in genetically diverse F. oxy-
sporum strains.

Materials and Methods

Collection of Fusarium oxysporum strains infecting banana

We analyzed a diverse set of 69 Fusarium oxysporum strains
infecting banana (Supporting Information Table S1). Fusarium
oxysporum strains were isolated from different banana growing
regions world-wide directly from the pseudostem of symptomatic
banana plants. Here, 35 F. oxysporum strains were newly
sequenced and we included 34 publicly available whole-genome
sequencing datasets (based on short-read sequencing approaches;
Garc�ıa-Bastidas et al., 2014; Guo et al., 2014; Zheng et al., 2018;
Warmington et al., 2019; Garcia-Bastidas et al., 2020; Maymon
et al., 2020; van Westerhoven et al., 2022a). To obtain high-
quality reference assemblies, seven strains were sequenced with
Oxford Nanopore Technology (ONT).

Whole-genome sequencing

Fusarium oxysporum isolates were cultured on potato dextrose
agar (PDA), and conidia were transferred to liquid media for
incubation at 25°C. Fungal material was isolated from liquid
culture for genomic DNA extraction. The exact DNA isolation
protocol per strain can be found in Methods S1. To obtain long-
read, whole-genome sequencing data, seven F. oxysporum strains
(36102, II5, CR1.1, C058, C135, C081, and M1) were
sequenced using Oxford Nanopore Technologies (Oxford, UK).
An R9.4.1 flow cell was loaded and run for 24 h. Base calling was
performed using GUPPY (v.3.1.5; C058, C135, C081, and M1)
and MINIKNOW (v.3.4.6; II5, 36 102, and CR1.1). The other
F. oxysporum strains were sequenced by Beijing Genomic Insti-
tute using Illumina paired-end sequencing, 35 were sequenced
during this study, and 34 were obtained from other studies
(Guo et al., 2014; Ordonez et al., 2015; Zheng et al., 2018;
Warmington et al., 2019; Garcia-Bastidas et al., 2020; Maymon
et al., 2020; van Westerhoven et al., 2022a).

Gene expression analysis

Gene expression patterns were compared between in vitro growth
and 8 d post infection. Cavendish ‘Grand Naine’ banana plants
were grown in a glasshouse compartment (28� 2°C, 16 h light,
and c. 85% relativity humidity) and acclimatized under plastic
for 2 wk to maintain high humidity. The roots of c. 2.5-month-
old plants were dip inoculated with 106 spores ml�1. RNA was
isolated from the roots of inoculated plants at 8 d post inocula-
tion and from mycelium grown on PDA medium. Samples were
ground, and RNA extraction was performed using the Maxwell
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Plant RNA kit (Promega, Madison, WI, USA) following the
manufacturer’s instructions. The quality of the RNA samples was
tested by agarose electrophoresis and quantified by Nanodrop
(Thermo Fisher, Waltham, MA, USA), and subsequently sent to
KeyGene (Wageningen, the Netherlands) for sequencing. Quan-
tifications of gene transcripts from sequenced RNA-Seq reads
were performed using Kallisto (Bray et al., 2016).

Genome assembly and annotation

We obtained chromosome-level de novo genome assemblies for
seven F. oxysporum strains sequenced by ONT long-read technol-
ogy. Adapter sequences were removed with PORECHOP (v.0.2.4,
default settings; https://github.com/rrwick/Porechop/tree/master),
and reads were self-corrected, trimmed, and assembled using CANU

(v.1.8; Koren et al., 2017). Genome assemblies were polished using
ONT raw reads with RACON (v.1.5.0; Vaser et al., 2017) and with
high-quality Illumina short read using two rounds of PILON

(v.1.24; Walker et al., 2014). Contigs were scaffolded, if needed,
using LONGSTITCH (v.1.0.2; Coombe et al., 2021).

Fusarium oxysporum strains sequenced solely with short-read
sequencing technology were de novo assembled with SPADES

(v.3.13.0. with default settings; Bankevich et al., 2012). Contigs
shorter than 500 bp were subsequently removed. To assess the
assembly quality, the genome assemblies were analyzed with
QUAST (v.5.0.2; Gurevich et al., 2013), and genome completeness
was estimated based on the presence of conserved single-copy
genes using BUSCO (v.5.1.2; Sim~ao et al., 2015) with the hypo-
creales odb10 database.

We performed gene annotation of 69 F. oxysporum genome
assemblies using FUNANNOTATE (v.1.8.9; Palmer & Stajich, 2019)
with the F. oxysporum f. sp. lycopersici 4287 Uniprot proteins,
Uniport database, and previously predicted effectors (van Dam
et al., 2016) as external evidence. Genomes were masked using
REPEATMASKER (v.4.1.1) following repeat prediction with REPEAT-

MODELER (http://www.repeatmasker.org). For strains II5, CR1.1,
and 36 102, RNA-Seq data were used to guide gene model pre-
diction, and ab initio training parameters estimated using RNA-
Seq data of II5 (TR4, F. odoratissimumMaryani, Lombard, Kema
& Crous) were re-used to support the annotation in other gen-
ome assemblies. Effectors genes were predicted based on their
association with Miniature IMPala (MIMP) elements in F. oxy-
sporum (van Dam et al., 2016). Briefly, ORFs were predicted 5-
kb up- and downstream to MIMPs (‘AGT[GA][GA]G[GAT]
[TGC]GCAA[TAG]AA’) and these were refined using AUGUSTUS

(v.3.3.3; Stanke & Morgenstern, 2005). In the set of predicted
MIMP-genes, secreted proteins were predicted using SIGNALP
(v.5) and subsequently, effectors were predicted using EFFECTORP
(v.3.0). The predicted effectors were added to the Funannotate
annotation using AGAT (v.0.8.0).

To recover potentially missing genes in the gene annotations, we
used the comparative annotation toolkit (v.2; Fiddes et al., 2018).
CACTUS (v.2.0.1; Armstrong et al., 2020) was used to create whole-
genome alignments of all 69 genomes, using the Minigraph-Cactus
approach (Hickey et al., 2023). Consecutively, the CAT was used
to carry over gene annotations based on Funannotate gene

predictions with the RNA-Seq data (with Augustus settings pre
trained on II5, --global-near-best 1, --augustus-utr-off, --augustus-
cgp, --maf-chunksize 550 000 –maf-overlap 50 000), which added
c. 200 genes per genome assembly.

Core gene phylogeny

The phylogenetic relationship between F. oxysporum strains
infecting banana together with 55 publicly available nonbanana-
infecting F. oxysporum strains was inferred from 3811 conserved
single-copy BUSCO genes. Protein sequences were aligned
using MAFFT (v.7.453; Katoh et al., 2002), and a maximum-
likelihood phylogeny was determined using IQTREE (v.1.6; -m
MFP+MERGE, -B 1000 with 1000 ultra-fast bootstrap; Cherno-
mor et al., 2016); Fusarium verticillioides (ASM14955v1; Cuomo
et al., 2007) was included as an outgroup.

Pan-genome analysis

We detected conserved and ARs in the set of F. oxysporum isolates
by performing all-vs-all whole-genome alignments with NUCMER

(v.3.1; ��max-match; Kurtz et al., 2004). We removed small
alignments with delta-filter (-l 5000) and only retained the best
match per alignment (-1). Genomic regions present in all 69 F.
oxysporum isolates were considered core, regions covered by
< 80% were considered accessory, and regions between these
values were considered softcore. Pairwise similarity between ARs
was calculated using custom python scripts (https://github.
com/Anouk-vw/Fusarium_pg), and alignments were visualized
with PYGENOMEVIZ (https://github.com/moshi4/pyGenomeViz)
and CIRCLIZE (Gu et al., 2014).

To identify orthologous groups (OGs), we used BROCCOLI

(v.1.1; Derelle et al., 2020) on the predicted protein-coding genes
from the 69 F. oxysporum strains infecting banana; per gene, only
the longest transcript was included. Orthologous groups present
in all isolates were considered core, OGs found in > 55 genomes
(80%) were considered softcore, and genes found in < 55 of the
genomes were considered accessory.

We determined the number of nonsynonymous and synon-
ymous substitutions (dN/dS) per orthologous group. All genes in
an OG were aligned using MAFFT (v.7.490; Katoh et al., 2002)
and nonsynonymous and synonymous substitutions per gene pair
in the OG were inferred based on a codon-guided nucleotide
alignment, created by PAL2NAL (v.14; Suyama et al., 2006), with
CODEML (from PAML, v.4.9; Yang, 2007). Differences between
groups of genes were further analyzed using custom python
scripts and compared using a two-sided Mann–Whitney U-test
in SCIPY (v.1.10.1; Virtanen et al., 2020).

Estimation of gene age

ORTHOFINDER (v.2.5.4; Emms & Kelly, 2019) was used to detect
the presence of homologs in 308 phylogenetically distinct fungal
species from the joint genome institute; per fungal family, one
fungal genome assembly was randomly selected (Table S2).
Homologs that occur at least once outside the phylum
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Ascomycota are considered old homologs; homologs occurring
only within Ascomycota are further subdivided into Hypocreales
and Fusarium.

Detection of duplication events

We detected gene duplication events by self-comparisons of the
translated protein sequences (only the longest isoform) of the
chromosome-level genome assemblies of F. oxysporum infecting
banana, as well as Fusarium oxysporum f. sp. lycopersici (strain
Fol4287; Ma et al., 2010; GCF_000149955.1), Fusarium grami-
nearum (Cuomo et al., 2007; GCF_000240135.3), Fusarium verti-
cillioides (Cuomo et al., 2007; GCF_000149555.1), and Fusarium
solani (Mesny et al., 2021; GCF_020744495.1). Per Fusarium gen-
ome assembly, the predicted protein sequences were compared with
BLAST and the best five hits were retained after filtering for an e-
value 1e�10 and query coverage larger than 50%. Then, BLAST

alignments were used to detect collinear duplicated blocks with
MCscanX (Wang et al., 2012); blocks of five genes were considered
collinear, and matches were filtered with the parameters match-
score 50 and e-value 10�5. Subsequently, we classified duplicated
genes into dispersed, proximal, tandem, or segmental duplications
with MCscanX’s ‘duplicate_gene_classifier’ script.

Copy number variations were identified by mapping short-read,
whole-genome sequencing datasets against the chromosome-level
genome assembly of strain II5 using BWA-MEM (v.0.7.17;
Li, 2013). We determined the sequencing coverage over the refer-
ence genome with BEDTOOLS (v.2.30), which was visualized Wgsco-
verageplotter from JVARKIT (v.1.1.0; Lindenbaum, 2015), filtering
reads with a mapping quality of 0. Single nucleotide polymorph-
isms were called using GATK (v.4.0.2; �ploidy 1) and filtered
according to GATK best practices (Van der Auwera et al., 2013).

Results

Fusarium oxysporum strains infecting banana are
genetically diverse

To study the occurrence and evolution of ARs in Fusarium oxy-
sporum strains infecting banana, we sequenced and assembled 69
strains (Fig. 1a; Table S1) that were isolated from all major
banana growing regions and classified into R1 (39 strains), R2
(two strains), and TR4 (28 strains; Fig. 1a,b; Table S1). De novo
assembly of seven strains infecting different banana varieties
(three TR4, two R1, and two R2) sequenced with long-read
sequencing technology achieved chromosome-level contiguity
containing 12–15 contigs, most of which represent complete
chromosomes flanked by telomeric repeats (Tables S3, S4).
While genome assemblies obtained solely from short-read data
yielded more fragmented assemblies, all assemblies contained at
least 96.9% of the single-copy BUSCO genes. The assemblies
range from 43 to 51Mb in size (Fig. 1b) and encode between
15 664 and 17 865 predicted proteins, of which 551–671 are
effector candidates, and consist of 2.6–8.9% of repeats (Fig. 1e,
f), similar to previous F. oxysporum genome assemblies (van Dam
et al., 2016; Warmington et al., 2019; Zhang et al., 2020).

To assess the genetic diversity of F. oxysporum strains infecting
banana in relation to 55 publicly available F. oxysporum strains
infecting eight different host plants (van Dam et al., 2016;
Table S1), we conducted a phylogenetic analysis based on 3811
single-copy orthologous genes (2226 902 amino acid positions).
As expected, F. oxysporum strains infecting banana are polyphy-
letic and associated with F. oxysporum clades 1, 2, and 3 (Fig. 1a;
O’Donnell et al., 1998; Maryani et al., 2019). We observed low
nucleotide diversity between TR4 strains (pi-nucleotide diversity
0.0018) compared with a 1009 higher diversity between R1
strains (pi-nucleotide diversity 0.185), corroborating that most
TR4 strains evolved from a single recent clonal origin (Ordonez
et al., 2015; Maryani et al., 2019). Based on their genetic diver-
sity, F. oxysporum strains infecting banana have recently been
separated into different species, and the lineage that encompasses
TR4 strains (Fig. 1d) is now referred to as Fusarium odoratissi-
mum (Ordonez et al., 2015; Maryani et al., 2019).

Fusarium oxysporum strains causing Fusarium wilt of
banana have a compartmentalized genome

To identify ARs in F. oxysporum strains infecting banana, we per-
formed whole-genome alignments of the seven chromosome-level
genome assemblies to the reference genome assembly of the
tomato-infecting F. oxysporum strain 4287 (Fol4287; Ma et al.,
2010). We observed 11 homologous chromosomes between the
F. oxysporum strain II5 (TR4; F. odoratissimum) and Fol4287,
which are considered the core genomes (chromosomes 1–11;
Fig. 2a). In addition to the core chromosomes, we observed two
large ARs specific for strain II5. The first spans 1.8 Mb, occupy-
ing 27% of chromosome 1 in proximity to one telomere and the
second region is 1.1 Mb in size and constitutes the entire contig
12 (Fig. 2a). Contig 12 only contains one telomere (Fig. 2b), and
therefore, it remains currently unknown whether this AR repre-
sents an extra chromosome or is attached to one of the core chro-
mosomes. Importantly, however, we assembled a similar contig
in TR4 strain M1, and a similar contig is present in the indepen-
dently assembled TR4 strain UK0001/Eden (Warmington
et al., 2019), which strongly suggests that this contig represents
an independent AR.

Compared with the 11 core chromosomes, the two ARs have
an increased repeat content (28.30% vs 6.41%) and a decreased
gene density (32.15% vs 59.71%) and GC content (46.4% vs
47.5%; Fig. 2b). Importantly, the ARs in strain II5 encode 463
genes, nine are homologous to SIX genes (Fig. 2b) and 22 are
predicted effectors (out of 629 predicted effectors).

To further analyze the diversity of ARs, we identified ARs in
our global collection using a pan-genomic approach based on all-
vs-all whole genome alignments. ARs were defined as regions
longer than 5 kb that are absent in > 55 of 69 strains (80%). We
identified a varying amount of ARs in F. oxysporum strains infect-
ing banana (Fig. 1c), ranging from 6.7Mb (15% of the genome
size) in strain Indo110 (R1) to 15.5Mb (30%) in strain C135
(R2), in line with the 19Mb (29%) of ARs in the reference strain
Fol4287 (Ma et al., 2010). Next to the two ARs in chromosome
1 and contig 12, our pan-genomic approach identified an
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additional 8Mb of ARs in strain II5, typically localized at sub-
telomeric regions (defined as the first and last 10% of each chro-
mosome; Fig. 2b). These sub-telomeric regions contain 1287
genes, of which 80 are predicted effector genes (6.6%). We also

identified that chromosomes 9 (42.6% ARs, 87 single nucleotide
polymorphisms (SNPs) kb�1), 10 (27% ARs, 80 SNPs kb�1),
and 11 (36% ARs, 92 SNPs kb�1) are less conserved than the
other core chromosomes (on average 20% ARs, 59 SNPs kb�1;
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Fig. 1 Fusarium oxysporum strains infecting banana are
genetically diverse. (a) Fusarium oxysporum strains that
infect banana are polyphyletic (yellow labels). The
relationship between F. oxysporum infecting banana
and F. oxysporum strains that infect other plant hosts
(see label color) is estimated using maximum-likelihood
phylogenetic analysis based on 3811 concatenated
conserved single-copy BUSCO genes, dashed lines
indicate branches with a bootstrap value below 80. Black
outline indicates high-quality genome assemblies.
(b) Genome sizes of F. oxysporum strains range between
43 and 61Mb. (c) The sizes of accessory regions in F.

oxysporum strains range from 6.7 to 16.5Mb. (d) TR4
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genetically similar, as well as the two race 2 strains
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polyphyletic. (e) F. oxysporum strains that infect banana
encode between 15 664 and 17 865 genes and
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Fig. S1), which resembles the situation of the previously identi-
fied ‘fast-core’ chromosomes in Fol4287 (Fokkens et al., 2018).

We show that ARs can be defined based on sequence conserva-
tion and differ from the core genome in gene, repeat, and GC
content. Consequently, principal component analyses distin-
guished ARs from the core genome based on these four features
(Fig. 2c). Unanticipatedly, this analysis also separated the large
ARs on chromosome 1 and contig 12 from the smaller ARs loca-
lized at the sub-telomeres (Fig. 2c); this separation is driven by

the slightly lower GC content in sub-telomeric regions (44% vs
47%). A reduced GC content can be caused by repeat-induced
polymorphisms (RIP) and fungal defense mechanisms that intro-
duces C-to-T mutations in repetitive regions (Galagan &
Selker, 2004). In the sub-telomeric region, 25.4% of the repeti-
tive elements are likely subjected to RIP (i.e. composite RIP
index > 0), in contrast to only 7.7% in the other ARs, suggesting
that repetitive elements at the sub-telomeres are older, or alterna-
tively, that RIP has been more active.
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Fig. 2 Fusarium oxysporum strains infecting banana carry accessory regions (ARs). (a) The tropical race 4 (TR4) reference strain II5 (Fusarium
odoratissimum, TR4) contains 11 core chromosomes (chromosomes 1–11) as well as two ARs (1.8Mb on chromosome 1 and entire contig 12). Core
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chromosome). (c) Principal component analysis on gene-, repeat-, GC content, and coverage of 69 F. oxysporum strains separates the genomic regions of
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Highly variable accessory regions in Fusarium oxysporum
strains infecting banana

To characterize the similarity of ARs in F. oxysporum strains
infecting banana, we compared the ARs from the seven
chromosome-level genome assemblies. Notably, the ARs are
highly diverse with little sequence and structural similarity (Figs 3,
S2). In TR4, the ARs from strain II5 on chromosome 1 and con-
tig 12 show extensive similarity to the corresponding chromo-
somes in strain M1 (Figs 3a, S2). Instead, isolate 36102
(F. odoratissimum), causing milder symptoms in Cavendish than
TR4 strain II5, carries only the AR on chromosome 1 and does
not encode a region similar to contig 12 (Fig. S2). None of the
ARs from strain II5 are present in the strains representing race 1
and race 2. Similar to the TR4 strains, the accessory contigs of
two race 2 strains correspond to each other (Fig. S2), but no
shared ARs are found among R1 strains. Moreover, we observed
that no ARs are conserved among different races; for example,
only limited genetic material is shared between ARs of TR4 and
R2 (Fig. S2). The diversity of ARs was further corroborated by
pairwise analyses of all 69-strains, which revealed that, on aver-
age, TR4 shared 91% of the ARs, whereas R1 shared only 24%
(Fig. 3b). In line with the high number of shared ARs in TR4
(F. odoratissimum; Fig. 3b), the amount of shared ARs was the
highest among R1 strains belonging to the same Fusarium specie-
s/lineage (60% shared ARs; FigS 3b, S3); however, R1 strains
from different species/lineages share very few ARs (Fig. 3b).

To quantify to what extent F. oxysporum strains infecting
banana share ARs with F. oxysporum strains infecting different
plant hosts, we identified and compared ARs in a set of 55 addi-
tional F. oxysporum strains that are pathogenic to different plant

hosts (van Dam et al., 2016). We observed that genetically related
strains share most ARs (Fig. S4); however, we also noticed that F.
oxysporum strains infecting banana encode more diverse ARs than
for instance the tomato-infecting strains; on average, Fol strains
share 62% ARs, with a minimal 30% of the ARs shared between
any two Fol strains (Fig. S4). By contrast, banana-infecting
strains on average share 44% of the ARs and a pair of strains can
share as little as 12% (Fig. S4). Thus, we demonstrate that ARs
are highly variable among F. oxysporum strains infecting banana,
and importantly, strains do not share one host-associated chro-
mosome in contrast to previously reports for F. oxysporum infect-
ing tomato (Fokkens et al., 2018).

Evolutionary dynamics of the accessory genome

Fusarium oxysporum strains infecting banana do not share large
ARs (Fig. 3b), but we reasoned that ARs nevertheless might
share genes that contribute to the pathogenicity of banana. We
therefore grouped 1.1 million protein-coding genes predicted
in 69 strains into 22 612 OGs and subsequently analyzed the
gene-content diversity. The pan-genome consisted of 12 101
core groups (53%) that are present in all 69 strains, 2395 soft-
core groups present in at least 80% of the strains, 5595 (25%)
accessory groups present in < 80% of the strains, and 2521
unique genes (Fig. 4a). Importantly, the pan-genome based on
our collection captures the diversity of protein-coding genes in
F. oxysporum strains infecting banana as we did not observe an
increase in the pan-genome size after including > 40 strains
(Fig. 4a). The conserved core genes are, as expected, enriched
with housekeeping genes, while accessory genes are enriched
with genes encoding secondary metabolites (Fig. S5). No
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Fig. 3 Accessory regions (ARs) in Fusarium oxysporum strains infecting banana differ significantly. (a) Accessory contig 12 of the F. oxysporum tropical
race 4 (TR4) reference strain II5 (F. odoratissimum) is shared with TR4 strain M1; however, this contig shows little similarity to race 1 (R1) strain CR1.1.
Lines (red and blue) indicate aligned regions between strains based on nucleotide similarity. Small alignments are present between R1 and TR4 (blue lines);
however, these are rearranged and often involve repetitive sequences (yellow blocks). (b) R1 strains (39 strains, highlighted in blue) have a diverse
accessory content sharing on average only 20% of the ARs, whereas TR4 strains (28, highlighted in purple) share most of their ARs (91%).
Phylogenetically related F. oxysporum strains, here indicated by a recently proposed species name (Maryani et al., 2019), share more ARs than distantly
related strains.
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enrichment of effector genes is found in any of the three cate-
gories (core, accessory, or softcore); the pan-genome consists of
739 gene families encoding predicted effectors that are evenly
distributed over the different gene categories (3.7% of acces-
sory genes and 3.5% of the core genes). The role of accessory
genes in host infection is suggested by gene expression, as
accessory genes are upregulated 8 d after banana infection, with

a median log2fold change of 1.59 (compared with the in vitro
control; Fig. 4b), comparable to the upregulation of effector
genes (median log2fold change of 2.4). The core genes, how-
ever, show significantly less increase in gene expression upon
plant infection (median log2fold change = 0.25, P < 0.05, two-
sided Mann–Whitney U-test; Fig. 4b). Although this suggests
a role of accessory genes in host-pathogenicity, we observed a
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are present in all strains (grey). The pan-genome is saturated after adding 40 genomes. The order of genomes was randomly sampled 10 times, dots show
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infection, which contrasts the core (11 740 genes, log2-fold change = 0.252) and BUSCO genes (4364 genes, log2-fold change =�0.167). The median
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variation in dN/dS value (P < 0.05, Mann–Whitney U-test). Dotted lines indicate the median value. (d) Distribution of protein length separated by different
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469 amino acids per OG, 12101 OGs, grey). All gene categories differed significantly from each other (P < 0.05, Mann–Whitney U-test). Boxes indicate the
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Accessory regions (ARs) in II5 (orange, contig 12, and chromosome 1A) consist mostly of accessory genes (pink, 405 out of 463, 87%), and 28% of these
genes are part of expanded orthogroups (129 out of 463). Accessory genes can also be found in core chromosomes. (f) Gene content is variable between
race 1 strains, and only 20% of the genes are present in 80–90% of the race 1 strains. Most genes (60%) in tropical race 4 (TR4) are present in all TR4
strains (90–100%). (g) Gene families in strain II5 (Fusarium odoratissimum, TR4) differ to which extend they have homologs in 308 fungal phyla; most
genes are present in related F. oxysporum strains, but only a few gene families (853) are conserved among all considered fungi. (h) ARs contain most
recent genes, present in Fusarium (51) and Hypocreales (160). Genes in core regions are evolutionarily older with more genes that have homologs in ‘all
fungi’ (7764 out of 11 740 genes).
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highly diverse gene content in R1 strains with only 246 out of
7832 accessory genes (3%) being shared among all R1 strains
(Fig. 4f). TR4 strains, by contrast, have a more similar gene
profile and share 2493 of the 4406 accessory genes (57%).

In TR4 strain II5, ARs have a different gene composition than
the core regions, with ARs consisting mostly of accessory genes
(405 out of 463; 87%); however, four core and 38 soft-core
genes are also found in ARs (Fig. 4e), indicating that some shared
genes can be found between otherwise nonconserved regions.
ARs seem to contain recently evolved genes, as most AR genes
(71%) have homologs in closely related fungi (Fig. 4g,h) and
only 29% are considered ‘old’, that is with homologs in all fungi,
which contrasts to the 53% old genes in the core genome (7764,
out of 14 774 genes; Fig. 4g,h). Additionally, accessory genes are
significantly shorter (315 aa) and evolve under relaxed selective
pressure (dN/dS = 0.20), compared with the core genes (469 aa,
dN/dS = 0.089; P < 0.05, two-sided Mann–Whitney U-test;
Fig. 4b,c), both hallmarks of more recent genes (Wolf
et al., 2009). This suggests that most genes in the ARs evolved
recently and that these regions serve as cradles for the evolution
of novel genes. In addition, many genes on the ARs (177 out of
463) belong to expanded gene families based on the defined
orthogroups (Fig. 4e), suggesting that gene duplications play a
role in the evolution of ARs in F. oxysporum strains infecting
banana.

Variable effector repertoire in Fusarium oxysporum
genomes

Effector gene repertoires define host range (van Dam et al., 2016;
Brenes Guallar et al., 2022), and we anticipated that effector
presence-absence profiles would distinguish F. oxysporum strains
infecting banana from F. oxysporum strains infecting other hosts.
We predicted candidate effector genes in all 124 F. oxysporum iso-
lates based on their proximity to MIMP elements that are known
to co-localize with some effector genes in F. oxysporum (van Dam
et al., 2016; Brenes Guallar et al., 2022), which yielded 398
MIMP-associated effector gene families (160 of these were pre-
dicted in the complete set of 739 candidate effectors).
The predicted MIMP-associated effector repertoires clustered
F. oxysporum isolates in host range (van Dam et al., 2016; Brenes
Guallar et al., 2022; Fig. 5). While banana-infecting strains form
a clear cluster, only four MIMP-associated effectors were identi-
fied that occur in most (i.e. > 80%) of banana-infecting strains
but are consistently absent (i.e. present in < 20%) in other F. oxy-
sporum strains. Moreover, races within F. oxysporum strains
infecting banana are not clearly separated; TR4 strains have very
similar effector profiles, yet R1 strains differ considerably and do
not encode shared effectors. Interestingly, two STR4 strains carry
an effector profile remarkably similar to the effector profile of
TR4 strains (Fig. 5). This suggests that this effector profile
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F. oxysporum strains infecting tomato, from which they are originally identified, as well as in other F. oxysporum genomes.
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contributes to the pathogenicity of these STR4 strains to Cavend-
ish banana. However, this effector profile is not STR4 specific as
the other two STR4 strains encode effector profiles similar to R1
strains (Fig. 5). This difference can be the result of misclassifica-
tion of STR4 strains, because STR4 infects Cavendish only under
environmental stress conditions and this environmental compo-
nent makes it difficult to distinguish true STR4 isolates from race
1 isolates (Ploetz, 2006). To further investigate effectors shared
between TR4 and STR4, an accurate screening strategy to distin-
guish true STR4 needs to be conducted. We here reveal a diverse
effector repertoire in R1 strains, together with the variable ARs
and gene content, this suggests that the species encompassing R1
utilize varying molecular mechanisms to support banana infec-
tion.

Recent segmental duplications drive accessory genome
expansion in Fusarium oxysporum

We observed diverse ARs in F. oxysporum strains infecting
banana with a high abundance of evolutionary young genes and
genes that evolved via gene duplications (Fig. 4e). Duplications
have been previously reported in F. oxysporum, including F. oxy-
sporum strains infecting banana (Kistler et al., 1995; Ma
et al., 2010; Vlaardingerbroek et al., 2016; Armitage et al., 2018;
Li et al., 2020). To better understand the role of gene duplica-
tions in the origin and diversification of ARs, we characterized
gene duplications in F. oxysporum, using MCscanX (Wang
et al., 2012) and classified them into four categories (dispersed,
proximal, tandem, and segmental; Fig. 6a). Remarkably, most
genes in TR4 strain II5 (8831 genes) have been affected by gene
duplication during their evolution (Figs 6b, S6). This high num-
ber of duplications include old gene duplications, recognized as
distant homologs that acquired considerable number of muta-
tions over time. When we apply a more stringent percent iden-
tity filtering, the number of duplicated genes is reduced, yet the
number of segmental duplicated genes is least affected
(Table S5), indicating that the segmental duplicated genes
acquired less mutations and thus evolved more recently. We
observed similar results for other F. oxysporum strains as well as
for other Fusarium species; F. verticillioides, F. graminearum, and
F. solani (syn. Neocosmospora solani), suggesting that duplications
played a major role in Fusarium evolution (Fig. 6b). Interest-
ingly, we observed that segmental duplicated genes occur specifi-
cally in ARs (72 out of 124 in II5) and sub-telomeres (48 out of
124 in strain II5) in all chromosome-level F. oxysporum assem-
blies (Figs 6b, S6). In F. solani, which contains accessory chro-
mosomes analogous to those observed in F. oxysporum (Coleman
et al., 2009), 139 segmental duplicated genes were identified. By
contrast, in F. verticillioides and F. graminearum, for which no
accessory chromosomes have been described, no segmental dupli-
cated genes are found (Fig. 6c–e), underscoring the link between
accessory chromosomes and segmental duplications in the Fusar-
ium genus. Moreover, segmental duplicated genes in strain II5
are upregulated during infection (8 d post inoculation; median
log2-fold change = 2.69; Fig. S7; Table S6), suggesting a role of
these genes in the infection process. These duplications are

possibly driven by TE activity (Wicker et al., 2010; Faino
et al., 2016), and we observe that segmental duplications in
strain II5 occur closer to transposable elements (median distance
of 1734 kb, P < 0.05, two-sided Mann–Whitney U-test) than
other duplication types (dispersed 7721 bp, proximal 7503 bp,
and tandem 5941 bp), suggesting that TE activity might influ-
ence segmental duplications.

The highest number of segmental duplicated genes (2887) is
observed in Fol4287, carrying the largest accessory genome
(19Mb, 30% of the total genome size; Figs 6d, S6) and 2366
(82%) of the segmental duplicated genes are in ARs. Interest-
ingly, many segmental duplicated genes are shared between acces-
sory chromosomes 3 and 6 (Fig. S8), as observed previously (Ma
et al., 2010), indicating that accessory chromosomes evolved by
inter-chromosomal segmental duplication that drives the expan-
sion of ARs in Fusarium.

Duplications of AR genes significantly affect effector reper-
toires as 336 out of 669 predicted effectors in II5 evolved via
duplications, and nine effectors are part of segmental duplica-
tions. Among the segmental duplicated effectors is SIX1, an effec-
tor that is essential for full virulence to banana (Widinugraheni
et al., 2018). Three copies of SIX1 (SIX1a,b,c) are present in the
AR on chromosome 1 of the TR4 strains M1, 36 102, and II5.
SIX1a and SIX1b are part of a segmentally duplicated block
(Fig. 6g), whereas SIX1c is a proximal duplication that shares
82% amino acid sequence identity with SIX1a and 73% sequence
identity with SIX1b. By contrast, the R1 strain CR1.1 contains
only one copy of SIX1, resembling SIX1c. The duplicated blocks
with SIX1 in strain II5 are interspersed with nonduplicated genes
(Fig. 6g), indicating that over time these blocks further diverged
by gene gains and losses. Interestingly, the segmentally duplicated
SIX1 blocks also share similarity to a region on contig 12
(Fig. 6g), yet no copy of SIX1 is present, and thus, SIX1 is either
lost or has been gained on chromosome 1 after the segmental
duplication between chromosome 1 and contig 12 occurred. Seg-
mental duplications therefore contribute to the evolution of viru-
lence factors such as SIX1, which is essential for successful banana
infection (Widinugraheni et al., 2018).

To estimate the relative timing of the duplication events, we
used the synonymous substitution rate (dS) between duplicated
gene pairs as a proxy of time. Dispersed duplicated genes had the
highest average dS value (3.08), suggesting that these are the most
ancient duplicates, while gene pairs that arose via segmental
duplication evolved more recently, with a significantly lower
average dS value of 0.61 (Fig. 6f). To assess whether even more
recent large-scale duplications are present in our global panel, we
determined the read depth of all isolates sequenced with short
reads against II5. Based on the genome-wide average read depth
(c. 409 coverage), we determined that contig 12 has been entirely
duplicated (read depth of c. 809 coverage), while a section (posi-
tion c. 0.6–1.1Mb; c. 1609 coverage) occurs four times
(Fig. 6h), suggesting additional copy number changes in strain
II5 next to the previously observed segmental duplications
(Fig. 6h). Similar copy number changes were observed when
aligning the reads to a repeat masked genome assembly (Fig. S9),
indicating that the coverage increase is not due to the expansion
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of repetitive sequences in the re-sequenced genome or to the col-
lapse of repeats in our assembly. Additionally, the alignment of
the long-read sequences also supports the observed copy number
increased (Fig. S9). Interestingly, no copy number variation of
the AR of chromosome 1 is observed. The partial copies of contig
12 possibly originate from additional duplications, yet it cur-
rently remains unclear whether these are attached to (core)
chromosome(s), or whether they might give rise to an additional

smaller accessory chromosome. To resolve the origin of this
duplicated region, we mapped the long reads to the assembly.
We observed many clipped reads in this region; however, clipped
regions did not align to another chromosome, suggesting that
contig 12 or part of it are not attached to another chromosomal
arm. Interestingly, the copy number increase in contig 12 can
also be observed in three additional TR4 strains from the Middle
East, but not in the other 26 TR4 strains (Fig. 6h). Collectively,
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Fig. 6 Segmental duplications are involved in the expansion of accessory regions (ARs) in Fusarium oxysporum. (a) Four different types of duplications are
distinguished. (b) Segmental duplications (pink) occur mainly in the ARs in strain II5 (tropical race 4 (TR4); Fusarium odoratissimum). Sub-telomeric regions
have more dispersed duplicated genes (blue) than the chromosomal arms. On average, the read coverage of II5 mapped onto the II5 reference genome is
409, whereas contig 12 has a coverage between 809 and 1609, suggesting copy number variations. (c) The schematic tree depicts the relationship of
Fusarium species with (d) their genome sizes. (e) Extensive segmental duplications are only found in F. oxysporum and Fusarium solani and are virtually
absent in Fusarium verticillioides and Fusarium graminearum. (f) The age of duplications was estimated from the number of synonymous substitutions
(kS) between duplicated gene pairs. Segmental duplications occurred most recently (kS = 0.119). kS distributions differ significantly between all duplication
types (P < 0.05, two-sided Mann–Whitney U-test). Dotted lines indicate the median values. (g) Genes encoding the virulence factor Secreted In Xylem
(SIX) 1 (red) are part of a segmental duplication within chromosome 1. SIX1a and SIX1b are segmentally duplicated, and SIX1c is a proximal duplication
sharing 82% amino acid sequence similarity to SIX1a. Light red blocks indicate segmental duplications; brown lines between the genes (blue arrows)
highlight the genes involved in the segmental duplication. Not all genes in a block are part of the segmental duplication, for example a region on contig 12
is similar to the SIX1 regions on chromosome 1, yet SIX1 is absent on contig 12. (h) Sequencing read coverage of F. oxysporum strain II5 (TR4;
F. odoratissimum) and three additional II5 strains from the Middle East (JV11, ISR5, and JV14) show a twofold increase relative to the genome-wide
coverage. The other 26 strains do not show an increase in coverage, although smaller duplications are found throughout contig 12.
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we demonstrate that the evolutionary dynamics of ARs in
F. oxysporum is driven by recent segmental duplications.

Discussion

Many fungal plant pathogens evolved compartmentalized gen-
omes with conserved core regions and variable ARs (Dong
et al., 2015; Torres et al., 2020). Some members of the
F. oxysporum species complex are important plant pathogens and
are well-known to have extensive ARs that can encompass entire
chromosomes (S�anchez-Vallet et al., 2018), which have been
linked to pathogenicity toward specific hosts. Here, we use a pan-
genomic framework to study the occurrence, composition, and
evolution of ARs in a global collection of banana-infecting
F. oxysporum strains, belonging to the several distinct lineages
that have recently recognized as distinct species (Maryani
et al., 2019). Fusarium oxysporum strains carry up to 15Mb of
ARs that contain in planta induced effector genes as well as most
SIX effectors. ARs are highly divergent among strains and races,
and consequently, we cannot identify shared ARs or accessory
chromosomes that can be linked to pathogenicity toward banana.
We furthermore demonstrate that members of the Fusarium
genus evolved by extensive duplications and that ARs specifically
are shaped by recent segmental duplications in F. oxysporum and
F. solani. Lastly, we uncover that an accessory contig in strain II5
underwent a recent copy number change, suggesting that these
processes drive the emergence and evolution of ARs in
F. oxysporum.

Fusarium wilt of banana is a major threat to food security as
banana is a major staple crop in tropical and subtropical regions
(Drenth & Kema, 2021; van Westerhoven et al., 2022b). Com-
pared with R1 strains, which caused epidemics in Gros Michel
bananas in the 1900s, TR4 strains emerged more recently (1967)
and caused the ongoing FWB pandemic in Cavendish planta-
tions (van Westerhoven et al., 2022b). TR4 strains are genetically
highly similar, corroborating that a single clone that circumvents
Cavendish resistance drives the ongoing pandemic (Ordonez
et al., 2015; van Westerhoven et al., 2022b). By contrast, R1
strains are genetically diverse, which is possibly due to prolonged
co-evolution of R1 strains with a plethora of genetically diverse
banana varieties in the center of origin in Southeast Asia (Perrier
et al., 2011). Extensive genetic diversity among F. oxysporum
strains that infect the same host is not uncommon (Baayen
et al., 2000; van Dam et al., 2016; Henry et al., 2021; Fayyaz
et al., 2023), yet their ARs and effector profiles are typically
remarkably similar (van Dam et al., 2016; Fokkens et al., 2018;
Brenes Guallar et al., 2022). We, however, observe that the ARs
and effector profile of R1 strains show extensive variation, under-
scoring their diversity and possibly suggesting that different
mechanisms contribute to disease in banana (Henry et al., 2021;
Brenes Guallar et al., 2022). F. oxysporum strains that infect
strawberry have two distinct ARs, one that contributes to yellow-
ing and the other to wilting (Henry et al., 2021). Quantitative
differences in banana corm-discoloration have been noted
between R1 strains (Garcia-Bastidas, 2019), and our results sug-
gest that this might relate to differences in effector profiles, yet

further functional assays are needed to elucidate the link between
specific effectors and phenotypic variation.

We identify abundant and recent segmental duplications in
F. oxysporum ARs, as well as a copy number change in contig 12
in TR4 strain II5. Previous studies have observed large-scale
duplications and deletions in the ARs of F. oxysporum during
in vitro chromosome transfer (Vlaardingerbroek et al., 2016; Li
et al., 2020), yet our results show that duplication of ARs also
occurs in F. oxysporum strains sampled directly from infected
banana plants. Although variations in chromosome number or
large-scale duplications typically come with a fitness cost (Todd
et al., 2017), it can also provide genetic variation necessary for
adaptation, for example increasing virulence or fungicide resis-
tance (Sionov et al., 2010; Ropars et al., 2018). We speculate that
the observed large-scale duplications play a major role in the ori-
gin and evolution of ARs in Fusarium. In the wheat pathogen
Zymoseptoria tritici, chromosomal duplication, together with
breakage and fusion, shapes the evolutionary dynamics of ARs
(Croll et al., 2013; M€oller et al., 2018). Similar dynamics of
chromosome duplication, fission, and fusion may underly the
recent segmental duplications observed in F. oxysporum. For
example, the fusion of a (partially) duplicated contig 12 with the
arm of chromosome 1 in strain II5 could explain the observed
homology between the ARs, or alternatively, the fission of chro-
mosome 1 could have led to the emergence of contig 12. The
process underlying these chromosome dynamics remains unclear.
Fusarium oxysporum has long been considered to evolve strictly
asexually (Gordon & Martyn, 1997); however, the presence of an
active sexual cycle in F. oxysporum populations has recently been
proposed (McTaggart et al., 2022; Fayyaz et al., 2023) and we
similarly observe reticulation between strains that caused FWB
(Fig. S10), which supports an evolutionary history in which
ancient or infrequent sexual recombination is followed by clonal
expansion of selected lineages. In this scenario, incomplete chro-
mosome pairing and nondisjunction during meiosis might drive
copy number variation of chromosomes, segmental duplications,
and ARs diversification. We show that ARs are similar within
individual F. oxysporum lineages but are genetically distinct when
comparing strains from genetically distant lineages. Individual
lineages accumulate genomic changes over time, and this process
might be sufficient to explain ARs diversity. If new F. oxysporum
lineages indeed arise from a meiotic cycle followed by clonal
expansion, recombination, gain, or loss of ARs during meiosis
might further explain the diversity of ARs between lineages. Simi-
larly, the absence of meiotic recombination during subsequent
clonal expansion would explain the similarity of ARs within clo-
nal lineages. However, we observe copy number variation within
individual clonal lineages, for instance the duplication of contig
12 in some F. oxysporum strains, which demonstrates that this
variation can occur independent of a meiotic cycle. Thus, chro-
mosome dynamics in F. oxysporum require further elucidation,
and so far, the mechanisms leading to chromosomal duplications
are unclear; they might arise from nondisjunction during mitosis
or meiosis (Fayyaz et al., 2023), from incomplete chromosome
loss following heterokaryon formation (Harrison et al., 2014;
Shahi et al., 2016), or through consecutive horizontal
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chromosome transfers when strains acquire the identical chromo-
some or parts of it several times.

In contrast to the structural variation in the ARs, the core chro-
mosomes in F. oxysporum are remarkably stable. Although ARs are
likely more tolerant to structural variation as they encode fewer
essential genes, additional processes can influence genome stability.
First of all, the accessory genome is enriched in transposable ele-
ments and the activity of these elements can contribute to struc-
tural variation including gene duplications (Faino et al., 2016;
Torres et al., 2021; Stalder et al., 2022; Wang et al., 2022). Possi-
bly the activity of transposable elements in the accessory genomic
regions gave rise to the observed segmental duplications, for exam-
ple, in plant genomes, large-scale duplications can arise through
double-stranded break repair upon TE-induced double-stranded
breaks (Wicker et al., 2010; Wang et al., 2022). Moreover, the pre-
sence of histone modifications such as trimethylation of lysine 27
on histone 3 (H3K27me3), a histone modification often enriched
in ARs (Fokkens et al., 2018; M€oller et al., 2019; Cook et al.,
2020; Torres et al., 2020) in fungal plant pathogens, has been
implied in genome instability (Seidl et al., 2016; M€oller
et al., 2019). H3K27me3 also occurs in the ARs of F. oxysporum
infecting tomato (Fol4287), but can also be found in smaller core
chromosomes (‘fast-core’ chromosomes, 9–11; Fokkens et al.,
2018) that do not seem to undergo segmental duplications or copy
number changes, and thus, additional factors likely influence chro-
mosome stability in F. oxysporum.

Extensive duplications similarly occur in other plant pathogens
(Dutheil et al., 2016; M€uller et al., 2019; Wyka et al., 2021;
Wacker et al., 2023) and are thought to be important drivers in
co-evolutionary arms races with their hosts. Understanding the
evolution of ARs in Fusarium oxysporum can facilitate the discov-
ery of new effector genes and provide insights into effector diver-
sification. Knowledge of effector profiles is crucial for designing
effective disease control strategies and supports the identification
of durable resistances in crops (Vleeshouwers et al., 2008).
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Fig. S1 Chromosomes 9, 10, and 11 of strain II5 (TR4; Fusar-
ium odoratissimum) share few genomic regions with other Fusar-
ium oxysporum strains infecting banana and have more
polymorphic sites.

Fig. S2 Nucleotide alignments between accessory regions of the
chromosome-level Fusarium oxysporum genome assemblies iden-
tify diverse accessory regions.

Fig. S3 Fraction of shared accessory regions in different sub-
groups of Fusarium oxysporum strains infecting banana.

Fig. S4 Accessory regions are shared between genetically related
Fusarium oxysporum strains.

Fig. S5 Functional enrichment of core, softcore, and accessory
genes.

Fig. S6 Duplication types found in the core, softcore, and acces-
sory regions in the seven chromosome-level genome assemblies of
Fusarium oxysporum strains infecting banana and the Fusarium
oxysporum strain infecting tomato (Fol4287).

Fig. S7 Distribution of log2-fold gene expression changes per
gene in strain II5 (TR4; Fusarium odoratissimum), comparing
gene expression between in vitro growth with 8 d post inoculation
of Cavendish banana.

Fig. S8 Segmental duplications between accessory regions.

Fig. S9 Alignment of short reads against the repeat masked strain
II5 (TR4; Fusarium odoratissimum) and long reads against the
unmasked strain II5 (TR4; Fusarium odoratissimum).

Fig. S10 Splitstree network shows indications of reticulation that
might suggest recombination between some Fusarium oxysporum
strains infecting banana.

Methods S1 Supporting materials and methods.
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banana analyzed in this study.
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sporum strains sequenced with nanopore long-read sequencing
technology.

Table S5Number of duplicated genes as reported compared with
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