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Accurate computation of chemical contrast in field ion microscopy

Shalini Bhatt , Shyam Katnagallu , Jörg Neugebauer , and Christoph Freysoldt
Max-Planck-Institut für Eisenforschung GmbH, 40227 Düsseldorf, Germany

(Received 20 December 2022; revised 25 April 2023; accepted 2 June 2023; published 16 June 2023)

We present a computational approach to simulate local contrast observed in field ion microscopy (FIM).
It is based on density-functional theory utilizing the Tersoff-Hamann approach as done in scanning tunneling
microscopy (STM). A key requirement is the highly accurate computation of the surface states’ wave-function
tails. To refine the Kohn-Sham states from standard iterative global solvers we introduce and discuss the
EXtrapolation of Tails via Reverse integration Algorithm (EXTRA). The decaying tails are obtained by reverse
integration (from outside in) using a Numerov-like algorithm. The starting conditions are then iteratively
adapted to match the values of plane-wave Kohn-Sham wave functions close to the surface. We demonstrate
the performance of the proposed algorithm by analyzing and showing the chemical contrast for Ta, W, and Re at
Ni surface.
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I. INTRODUCTION

Field ion microscopy (FIM) was the first microscopy tech-
nique to image individual atoms on a metal surface with
atomic spatial resolution [1,2]. An imaging gas (e.g., He, Ne)
is ionized above the surface of a nanosharp needle-shaped
specimen (end diameter <100 nm) subject to a high electric
field of 1010 V/m. The ions are then accelerated along the
field lines on to a two-dimensional detector to produce an
image of the tip surface magnified [3] by a factor of 107.
While FIM has been mostly replaced by scanning tunnel-
ing microscopy [4], atomic force microscopy, and similar
scanning probe techniques [5] for surface characterization,
there has been a recent resurgence when combined with field
evaporation. Field evaporation refers to the process by which
electric fields induce the removal of atoms from needle-
shaped specimens. This technique enables FIM to extend its
capabilities to provide atomically resolved 3D characteriza-
tion. The ions produced by field evaporation can be identified
using time-of-flight spectrometry, which also adds analyti-
cal capabilities to FIM. 3D-FIM [6–9] and aFIM [10,11]
are state-of-the-art techniques that utilize these capabilities
to analytically image crystallographic features with atomic
resolution in three dimensions besides electron tomography
[12]. Both 3D-FIM and aFIM are able to provide quasi-
analytical images at atomic scale not only for pure materials
(Fe,W) but also for complex samples such as FeBSi [13,14].
They were recently used to provide insights into crystallo-
graphic defects such as vacancies [8,15,16], dislocations and
voids [10,17]. Traditional FIM is also now used for analyzing
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reaction kinetics of various crystallographic facets of Rh for
catalytic CO oxidation. [18]. Despite the resurgence of FIM
based techniques, the quantitative interpretations of imaging
contrast enabled by theory have been sparse [19]. Numerous
studies have focused on understanding the image contrast in
field ion images from a theoretical perspective [20–28], but
a widely applicable framework to predict and interpret FIM
contrast has not yet emerged.

Under best imaging field conditions, the local imaging
contrast is dominated by the ionization probability at 5–10 Å
above the surface [29]. Ionization near the surface requires
an electron transfer from the gas atom into an empty surface
state, see Fig. 1. Without an electrostatic field, this would be
energetically impossible since the ionization level of the imag-
ing gas (≈15–25 eV) exceeds the work function (≈3–6 eV for
most metals). The electric field provides the required voltage
drop to overcome this difference and thereby enables electron
tunneling when the gas atom is beyond a critical distance from
the surface. For tunneling into further energetically higher
states, the tunneling distance would be accordingly larger.

Unfortunately, previous analytic theories of field ionization
have focused on simplified scenarios. Forbes concluded in his
2003 review of field ionization theory [27]: “A problem is that
the complexity of the field-ion imaging situation is so great
that it is well nigh impossible to formulate any valid detailed
numerical theory. There are image-contrast problems to be
solved, certainly with some alloy materials. But the problem
more likely lies in the nature of the electronic structure of the
substrate, and how this influences local fields above individual
atoms.”

With the present paper, we aim at closing this gap by a
general quantitative framework based on density-functional
theory (DFT). For tunneling, we adapt the well-known the
Tersoff-Hamann approach used in STM [30], that links tun-
neling probability to the local density of states (DOS), which
in turn is computed from the DFT Kohn-Sham wave functions.
Preliminary work by us [10,11] presented elements of this
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FIG. 1. Schematic diagram of field ionization. Electrons tunnel
from the imaging gas (right) to an energetically aligned empty sur-
face state (left). The plane-averaged electron potential Vavg is marked
by a green line. The ionization level (dashed line) and hence the
energy of tunneling varies with distance z due to the electric field.
For detailed discussion see Eq. (2). Below the critical distance zcrit ,
the ionization level is below the Fermi level and tunneling cannot
take place.

framework, but neither provided a complete, general treatment
of the physical picture nor of the specific computational chal-
lenges.

In our previous paper [10], we applied the Tersoff-Hamann
approximation in DFT simulations in presence of a field to
explain the brighter appearance of Re atoms during FIM imag-
ing of a Ni-Re alloy, focusing on states right above the Fermi
level. While such a selective approach explained the chemical
contrast in this case, the numerical accuracy in other cases
emerged as a critical issue. In our recent paper on Ta-doped Ni
[11], we proposed that Ta-induced empty states 1–3 eV above
the Fermi level are responsible for the brightness contrast,
but failed to quantify the interplay of distance and tunneling
energy due to numerical noise of DFT wave functions.

The computational challenge in these calculations is that
the high electric field leads to a very fast decay of wave
functions into the vacuum. In many cases, we found that the
accuracy of wave functions from standard DFT is insuffi-
cient to make quantitative predictions for FIM, as sketched
in Fig. 2. The standard wave-function optimization algo-
rithms implemented in plane-wave DFT codes are based on
the Rayleigh-Ritz method of minimizing the global norm of
the residue [31]. This implies that the highest magnitude in
the wave function determines the global algorithm’s notion
of “large” and “small”. Hence, they give the best relative
accuracy where the wave function amplitude is large. On the
downside, in areas where the wave function is small in mag-
nitude, the relative error between the approximate solution
and the exact solution can become excessively large even if
the total residue is at the numerical limit. The electrostatic
field present in FIM further leads to a strong, nonexponential
decay of wave functions and they run into a regime where
noise dominates. Unfortunately, this is exactly the region
of space where the wave functions are needed to apply the
Tersoff-Hamann approximation for FIM. We considered using
an expansion in smooth atom-centered orbitals (or any other

FIG. 2. Typical evolution of numerical wave functions on top of
Ta in a Ni(012) surface in the presence of an electric field as obtained
from a standard DFT code. The decay behavior of the wave function
(orange curve) is shown for an eigenvalue at the Fermi level. For FIM
image contrast, ψ is needed at the ionization plane.

type of predefined basis functions “attached” to the surface),
but found that this is not an option because the rising, non-
trivial vacuum potential at hand induces a decay behavior that
deviates from the assumed shape of the basis functions’ tails
(e.g., Gaussian, exponential).

The solution presented in this paper is to recompute the
tails of the wave functions with an algorithm that works at
the local scale. More precisely, we develop an algorithm that
is local with respect to the dominant direction for scale (in
the following, z), i.e., away from the slab surface. For this,
we assume that the eigenvalues εi and corresponding eigen-
functions ψi(r) close to the slab have been reliably computed.
Then, the task is to integrate the underlying second-order
differential equation, i.e., the Kohn-Sham equation from this
trusted region along the z direction.

The rest of this article is organized as follows. In Sec. II
we explain how DFT in combination with Tersoff-Hamann
tunneling theory enables the prediction of FIM contrast. In
Sec. III, we will present our tail extrapolation scheme and
show that it is robust even if the wave function amplitude
varies over several orders of magnitude along the direction of
integration. In Sec. IV we apply the algorithm to a prototype
surface, namely the Ni(012) containing substitutional atoms
(Ta, W, Re), and show that we can successfully reproduce the
enhanced brightness observed in experiment [11,13].

II. DFT-BASED THEORY OF FIM CONTRAST

In the present paper, DFT was performed in the plane-
wave PAW formalism with the SPHInX code [32] using the
Perdew-Burke-Ernzerhof (PBE) exchange-correlation func-
tional [33] The calculation was spin-polarized with colinear
spin and produced a ferromagnetic state. The Ni (012) sur-
face was modeled in the repeated slab approach with nine
atomic layers at the theoretical lattice constant (3.465 Å)
and a vacuum separation of 17.5 Å. An electric field of
40 V/nm was included via the generalized dipole correction
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FIG. 3. Top view of Ta-Ni(012) where Ta atoms (blue) are sur-
rounded by Ni atoms (green). The 3 × 3 surface cell has been
repeated in both directions for clarity.

[34]. Metal substitution (Ta, W, Re) at the surface was mod-
eled in a 3 × 3 surface unit cell, i.e., with nine surface atoms
as shown in Fig. 3. The six topmost layers were relaxed via
quasi-Newton optimization with a redundant internal coor-
dinated Hessian fitted on the fly [35] until the forces were
below 0.015 eV/Å. For the structure optimization, an offset
2 × 3 × 1 k-point sampling was used, equivalent to a k-point
spacing of 0.13 bohr−1. For computing the wave functions in
the FIM contrast simulation, the k-point density in the plane
was doubled (4 × 6 × 1).

To simulate the FIM imaging contrast due to the electronic
structure of the surface, we build on an analogy to scanning
tunneling microscopy (STM). Both STM and FIM use elec-
tron tunneling for forming an image of a solid surface. STM
relies on electron tunneling between a sample surface and
probe tip when a small voltage is applied between them. In
their ground-breaking paper [30], Tersoff and Hamann found
the tunneling current in STM to be proportional to the surface
local density of states (DOS) near the Fermi level at the
position of the STM tip. Their derivation equally applies when
the spherical tip is replaced by a single atom.

There are, however, important differences between STM
and FIM when it comes to the relevant spatial positions, in-
volved states, and the role of the applied voltage: In STM, the
tip position and the voltage between the tip and the scanned
surface can be controlled. The main role of the voltage is to
shift the Fermi level of the tip relative to one of the surface.
Explicit field-induced changes are neglected. This is well
justified for voltages of a few tenths of an eV, applied over
a distance on the order of 1 nm. The tunneling current then
occurs between states lying between the two Fermi levels.
As the tip is retracted from the surface, the tunneling current
decays exponentially.

In contrast, tunneling in FIM occurs between a single elec-
tronic level of the imaging gas (namely the highest occupied
one) and a suitably aligned empty state of the surface, see
Fig. 1. The externally applied field between the (positively
charged) surface and the (negative) counterelectrode far away
makes the energy of the imaging gas orbital rise relative to
the surface’s electronic structure as the distance to the surface
increases, as indicated by the dashed line in Fig. 1. The further
out the atom is, the higher the orbital energy. Thus, instead of

tunneling from a fixed position across a range of states defined
by the applied voltage as in STM, tunneling in FIM occurs
over a range of possible positions, and in each of these posi-
tions to those few surface states that happen to be energetically
degenerate with the ionization level of the atom at this posi-
tion. The range of accessible states is then not defined from
the applied voltage. Rather, high-lying states give negligible
contributions because the tunneling probability rapidly decays
as the distance (and thus the orbital energy) increases, which
implicitly imposes an upper limit of relevance.

Moreover, the field strength in FIM (a few ten V/nm) is
higher than in STM, so explicit fields must be considered in
simulations [10,34]. The field not only impacts the charge
distribution across the surface and the relaxation of surface
atoms due to Maxwell stress [34], but also enhances the wave
function decay. In consequence, the limits of numerical accu-
racy for the tails of the wave functions become a critical issue.

Let us now consider how this model of FIM contrast devel-
ops into a computational scheme. The partial DOS at energy
E and position r is given by

ρ(r, E ) =
∑
iσk

wk|ψiσk(r)|2δ(E − εiσk ) (1)

for state index i and spin index σ . wk denotes the k-point
weight. To turn this into a two-dimensional FIM contrast map,
we impose energy conservation for the tunneling process, i.e.,

E = εiσk = Vavg(x, y, z) − I, (2)

where I is the (positive) ionization energy of the imaging gas.
Vavg is the average potential that the imaging gas atom ex-
periences. For simplicity we assume here that Vavg(x, y, z) ≈
V (z), the planar average of the potential along the xy plane
parallel to the surface. This energy conservation condition
requires tunneling into higher-lying states to occur further
away from the surface. Due to the rapid, overexponential de-
cay of wave functions, the overall contribution of higher-lying
states is effectively dampened. This relieves us from making
ad hoc assumptions on which states are relevant for tunneling.
In practice, we truncate the energy range at ≈5 eV above the
Fermi level. We verified that the contribution of the highest of
these states to the overall intensity is negligible. Combining
Eqs. (1) and (2), the FIM contrast is proportional to

F (x, y) =
∑
iσk

wk|ψik(x, y, ziσk,I )|2 (3)

where the sum runs over states above the Fermi level. The
evaluation height ziσk,I is implicitly defined by

V (ziσk,I ) = εiσk + I. (4)

In practice, we run a search on the discrete z grid, and
then linearly interpolate the DOS between the discrete z
points. As the varying contribution of states at different en-
ergies is controlled by their decay behavior, we strongly
rely on an accurate description of the wave function tails.
The tails produced by the standard wave function optimizers
(Rayleigh-Ritz minimization) turn out to be insufficient, as
they are dominated by noise in the region of interest, i.e.,
at ziσk,I . In the following section, we therefore present an
algorithm to recompute these tails, by numerically integrating
the underlying partial differential equation in space.
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III. EXTRAPOLATION OF TAIL VIA REVERSE
INTEGRATION ALGORITHM (EXTRA)

A. Reverse integration

In DFT, the Kohn-Sham equation reads [36]( − 1
2∇ + Veff (r)

)
ψi(r) = εiψi(r) (5)

using Hartree atomic units (h̄ = 1, me = 1, 4πε0 = 1). The
effective potential is obtained as

Veff = Vext + VH + Vxc. (6)

The external potential Vext defines the Coulomb interaction
between an electron and the collection of atomic nuclei.
The Hartree potential VH describes the classical Coulomb
repulsion between the electrons, and the exchange-correlation
potential Vxc encompasses quantum mechanical corrections.
In common density-based approximations (e.g., LDA, GGA,
meta-GGA), Vxc depends on the local density and vanishes as
the density becomes zero. The vacuum potential is therefore
dominated by the electrostatic potential Vext + VH.

Rewriting Eq. (5) as

1

2

∂2

∂z2
ψi(r) =

{
−1

2

(
∂2

∂x2
+ ∂2

∂y2

)
+ Veff (r) − εi

}
ψi(r) (7)

provides the basis to numerically integrate the wave function
ψi along the z direction. For the sake of readability, we will
omit the state index i from the equations in the following.

It is well known from the theory of second-order differen-
tial equations in one dimension (1D) that there are two linearly
independent solutions. In our case, a decaying and a rising
solution are possible. In forward integration, the decaying
solution is always challenging to compute because numerical
noise (e.g., rounding errors due to the finite precision) can
produce a small contribution of the rising solution, which then
grows as the algorithm proceeds and ultimately dominates.

To circumvent this problem, one can reverse the direction
of integration: by starting deep in the vacuum and integrat-
ing towards the surface, the desired solution is growing in
magnitude and thus can be easily computed. In consequence,
the extrapolation problem is turned into a problem of choos-
ing starting conditions such that the integrated tail solution
matches the values of the global optimization near the surface,
in our case at the matching plane z = zmatch.

Before we come to the integration algorithm, let us briefly
review the key properties of the effective potential. In vacuum,
where the density becomes negligibly small, the electrostatic
part becomes dominant and Vxc vanishes. Hence, it is inter-
esting to understand how the electrostatic potential develops
far away from the surface. For this, one can apply a Fourier
transform in the xy plane [with wave vector k = (kx, ky)]
to a “mixed-space” representation V (k, z). As shown in
Appendix A, the xy-averaged electrostatic potential is con-
stant or diverges linearly along z, while the lateral potential
variations decay exponentially. Hence, beyond a certain point,
the xy-averaged potential will strongly dominate the evolution
of the wave functions along z. We, therefore, decompose the
potential

V (x, y, z) = V (z) + δV (x, y, z) (8)

FIG. 4. The effective potential along z averaged over xy plane of
a charged Ta-Ni(012) slab with nine atomic layers as indicated by
vertical lines (green: Ni, blue: Ta). An electric field of 40 V/nm is
applied at the top side

into the average potential V for kx = ky = 0 component and
the lateral variation δV for |k| > 0. Figure 4 shows the av-
erage potential obtained from DFT calculations discussed in
Sec. IV.

B. Overview of tail extrapolation

In our algorithm, we split the space above the surface into
three regions, named regions I, II, and III from outside in,
as shown schematically in Fig. 5. Region III, closest to the
surface, is where the DFT program’s global solver provides
sufficiently accurate numerical wave functions and hence does
not require additional optimization. For simplicity, we define
region III below a plane parallel to the surface, at height zmatch.
Region I is far away from the slab, where the lateral variations
of the potential are negligible. As shown in Sec. III C, this sim-
plification renders the Kohn-Sham equation separable in the
mixed space within region I, and allows us to use 1D Numerov
integration along z as an efficient and accurate algorithm to
compute wave-function tails. Closer to the slab, in region II,
lateral variations in the potential become important and the
1D Numerov would be inaccurate. We therefore generalized
the Numerov algorithm to three dimensions (see Appendix B)
to perform integrations in region II. In Sec. III D we show
that this must be combined with Fourier filtering in mixed
space to ensure robustness over many orders of magnitude for
the wave-function amplitude. In practice, our Fourier filtering
can be seen as introducing a curved boundary in mixed (k, z)
space between region I and region II.

The key task to ensure a coherent wave function across
all three regions is to make the separately computed wave
functions match at the region I/region II and the region
II/region III boundaries, respectively. For the former, this is
readily achieved by rescaling, see Sec. III C below. For the
latter, where the region III wave functions are authoritative,
we employ an iterative procedure summarized in Sec. III E. As
the I/II boundary values serve as starting values for region II
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FIG. 5. Algorithm applied to the various regions above the sur-
face. The reverse integration in z starts from the top to the bottom
(zmatch). In region I the 1D Numerov solution is computed. In region II
the EXTRA algorithm is applied. Region III contains the unmodified
plane-wave wave functions obtained from the global solver (plane-
wave DFT code).

reverse integration towards region III, we vary these boundary
values to minimize mismatch at the II/III boundary. The com-
bined approach, i.e., 1D integration in region I (Sec. III C),
Fourier-filtered generalized Numerov integration in region II
(Sec. III D), and the iterative procedure for determining the
I/II boundary values as the key unknowns in wave-function
matching (Sec. III E), is termed EXTRA (extrapolation of tails
via reverse integration algorithm).

C. Region I: 1D Numerov integration in mixed space

Deep in vacuum, δV becomes negligible, and Eq. (8) re-
duces to

V (x, y, z) ≈ V (z). (9)

Within this approximation, an in-plane Fourier transform
makes the Kohn-Sham equation, Eq. (7), separable in k and
z, i.e., in mixed space

1

2

∂2ψ (k, z)

∂z2
=

{
1

2
|k|2 + V (z) − ε

}
ψ (k, z) (10)

with both growing and decaying solutions if ε < V (z) for all z.
For recomputing the decaying tails, 1D Numerov is a feasible
algorithm [37,38]. For this, one performs reverse Numerov
integration, starting deep in the vacuum with arbitrary non-
vanishing initial values, and rescales the intermediate solution
such that it matches a given value ψ (k, zstart ) at the boundary
zstart between regions I and II.

The Numerov method is a finite difference method that
calculates the shape of the wave function by integrating
step-by-step along a grid. The one-dimensional Schrödinger

equation is solved using Numerov algorithm [39] in form of

ψn+1 = 2
(
1 − 5

12 h2k2
n

)
ψn − (

1 + 1
12 h2k2

n−1

)
ψn−1

1 + 1
12 h2k2

n+1

(11)

where

k2
n = 2ε − 2V (zn) − |k|2. (12)

There are different variants of Numerov [40,41] devel-
oped in the past for the approximate solution of Schrödinger
equation. The discretization error of the Numerov algorithm
is O(h6).

The numerical accuracy of the Numerov algorithm for ris-
ing solutions over many orders of magnitude arises from the
locality: only the previous two values are needed, and these lie
at a very similar magnitude. Uncorrelated numerical round-off
errors cannot grow faster than the exact solution, because they
either are proportional to the desired solution or belong to the
linearly independent, decaying solution. This also ensures that
starting from arbitrary values will always converge towards
the rising solution after a warmup phase.

D. Region II: Fourier-filtered generalized Numerov integration

1. Generalized Numerov algorithm

In order to numerically integrate the 3D Schrödinger equa-
tion along the z direction, we propose a generalized Numerov
algorithm given in Appendix B. The working equation is [cf.
Eq. (B6)]

[
1 + 1

6 h2
{
ε − V̂ (zn+1)

}]
ψn+1

= 2
[
1 − 5

6 h2
{
ε − V̂ (zn)

}]
ψn

−[
1 + 1

6 h2
{
ε − V̂ (zn−1)

}]
ψn−1. (13)

Equation (13) represents an in-plane partial differential equa-
tion [with linear operator V̂ (z)] for ψn+1 with a known
right-hand side that depends on the values for the two previous
steps zn and zn−1. By solving this differential equation nu-
merically using a standard (plane-global) iterative algorithm,
one can stepwise proceed along the z direction. The in-plane
kinetic operator is computed in mixed space, while the po-
tential is applied in real space, using fast Fourier transforms
to switch between these two spaces. To solve the discretized
differential equation, we employ the root finding solver of
the Scipy optimization module [42] (scipy.optimize.root) with
Krylov subspace iterations [43] and a numerical approximate
inverse Jacobian.

The key advantage of this procedure is that the numerical
solver of the in-plane equation must only deal with scale vari-
ations within the plane, while the huge changes in magnitude
along the z direction are taken care of by the explicit iteration
(ψn−1, ψn) → ψn+1.

2. High-frequency noise issues with unfiltered
generalized Numerov

We have tested the generalized Numerov numerical inte-
gration in the reverse direction in a region near the surface
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FIG. 6. 1D Numerov wave-function magnitude as a function of
surface-ion distance z using the potential shown in Fig. 4. The top-
most nuclear positions are located at z = 0. The decay rate depends
on in-plane Fourier components kx . The wave functions are calcu-
lated for an eigenvalue at the Fermi level and normalized with respect
to zmatch = 1.7 Å.

where the global solver provides a nicely decaying reference
solution discussed in the Supplemental Material [44]

Generalized Numerov is stable against numerical noise
from the unwanted solution (i.e., the exponential rising solu-
tion into vacuum). Unfortunately, when integrating towards
the surface, it produces a rapid increase of contributions
from high-frequency Fourier components in the plane that are
absent from the reference solution. This is not a failure in
principle, as we can expect from the separable approximation,
Eq. (A2) that in-plane frequency coefficients for high k values
have steeper slopes along z compared to the low-frequency
ones as shown in Fig. 6. Yet, this makes the generalized
Numerov algorithm of Appendix B sensitive to high-
frequency noise. The reason behind the discrepancy is
visualized in Fig. 7, which illustrates how the wave-function
magnitude develops for different kx values.

As shown in Fig. 7, iso-magnitude contours in mixed
(kx, ky, z) space are not parallel to the (kx, ky) plane. In con-
sequence, we find that it is not sufficient to find an algorithm
that has a local scale in only z, but actually, one that respects
the local scale in (kx, ky, z). To circumvent the above issue,
we additionally employ a z-dependent Fourier filtering in the
xy plane. The challenge is to distinguish between noise and the
true signal. Fortunately, for each mixed-space coefficient, we
can estimate the expected magnitude relative to the matching
plane from the 1D separable equation, Eq. (10). We can use
this to make a Fourier-filtering at “equal magnitude”.

3. The iso-magnitude boundary for regions I/II

At the boundary between region II/region III high-
frequency Fourier components obtained by the generalized
Numerov algorithm grow rapidly and need to be filtered out.
To do this we make the boundary k dependent using the iso-
magnitude condition

ψ1d (k, zstart (k))/ψ1d (k, zmatch ) = η (14)

FIG. 7. Iso-magnitude contours of wave functions above
Ta-Ni(012) plotted in mixed space. The wave functions were gen-
erated from 1D Numerov using the average potential (see Fig. 4),
and were normalized with respect to zmatch = 22 bohr.

where η defines the magnitude threshold. Equation (14) de-
fines a finite zstart (k) beyond which the coefficients can be
effectively ignored (set to zero) for the generalized Numerov
step as shown in Fig. 7. The choice of η is not overly
problematic in practice. We have successfully employed val-
ues of 10−6, 10−8, and even 10−20 and observed negligible
differences between the results. If η is chosen too small, high-
frequency noise occurs. If chosen too large, the original DFT
wave functions are not well reproduced near the matching
plane (where the intrinsic noise is small).

The values ψ (k, zstart (k)) = ψstart (k) are used as the ini-
tial conditions for the generalized Numerov integration. They
fully determine the shape of the wave function inside region
II. For initializing the previous value we use 1D Numerov to
estimate ψ (k, zstart (k) − h). Similarly, we use 1D Numerov
to extend ψ beyond the filtering boundary in an approximate
way namely ignoring the effect of in-plane scattering due to
the in-plane potential variant ions δV .

In this way, the iso-magnitude contour is effectively treated
as our dividing boundary between region I and region II in
mixed space. At this boundary, we initialize the Fourier com-
ponents for the region II integration. In short only coefficients
inside the boundary are included in the generalized Numerov
for region II. Outside this contour boundary, i.e., in region I,
we rescale the precomputed 1D Numerov solutions to match
the boundary value.

We note in passing that we can combine the iso-magnitude
boundary condition with a maximum for zstart based on the in-
plane lateral variations δV . In such a case, we cap the contour
when the lateral variations become negligible, and thus the 1D
Numerov integration is accurate (and far more efficient).

4. Fourier filtered generalized Numerov

To summarize the Fourier-filtered generalized Numerov,
the iteration proceeds as follows:
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(1) Given ψ (k, zn−1) in mixed space and ψ (x, y, zn) in real
space on a regular discretization grid, Fourier transforms the
latter one to mixed space via fast Fourier transforms (FFT).

(2) Set ψ (k, zn) := 0 where zn > zstart (k).
(3) For cases at the boundary, where zn = zstart , set

ψ (k, zn) = ψstart (k),

ψ (k, zn−1) = ψstart (k) · ψ1d (k, zn−1)

ψ1d (k, zn)
.

(4) Save ψ (k, zn) for the next iteration.
(5) Fourier transform both ψ (k, zn−1) and ψ (k, zn) to real

space.
(6) Perform generalized Numerov propagation by solving

Eq. (13), yielding the real space for the next iteration zn+1.
When zmatch has been reached, the missing region I tails are

added to the mixed-space representation by setting

ψ (k, zn) = ψstart (k) · ψ1d (k, zn)

ψ1d (k, zstart (k))
(15)

for all zn > zstart (k). Afterward, the real-space representation
can be recomputed from this via in-plane FFTs.

E. Iterative determination of ψstart

The final step is to determine the starting values ψstart (k)
such that integration across region II according to the
algorithm described above yields values ψII (x, y, zmatch ) at
the matching plane that agree with the desired values. These
values are given by the original DFT wave function in region
III, i.e., by ψIII (x, y, zmatch ).

For this purpose, we define the residue

R(k) = ψIII (k, zstart ) − ψII (k, zmatch ) (16)

that implicitly depends on ψstart (k), and solve the multidimen-
sional root-finding problem R = 0, treating R as a function
of ψstart . However, there is a huge difference in magnitude
between the residue R (which is similar in scale to the wave
function at the matching plane), and the starting values ψstart

at the iso-contour boundary. The latter are smaller by a factor
η, cf. Eq. (14). To accommodate the scale, we iterate on

ψinit (k) = ψ (k) · ψ1d (k, zmatch )

ψ1d (k, zstart (k))
. (17)

ψinit can be thought of as the boundary values rescaled to the
matching plane via the 1D Numerov approximation. We use
this flexible definition rather than the constant η to accom-
modate situations in which we limit zstart (k) to a maximum
based on the magnitude of δV , as explained in Sec. III D 3.
The root finding algorithm, of scipy with Krylov iteration
and numerical inverse Jacobian estimation [43], is then used
to solve for the starting values, completely analogous to our
solution of the generalized Numerov propagation, Eq. (13),
see Sec. III D 1. Figure 8 illustrates the comparison of the
original, noisy wave function from the global DFT solver
with one from EXTRA on the log scale. It demonstrates that
EXTRA overcomes the limitations of the global solution.

FIG. 8. Comparison of EXTRA and DFT computed wave func-
tions of Ta-Ni(012) along the direction z. The topmost nuclear
positions are located at z = 0. The wave functions correspond to
an eigenvalue at the Fermi level. The position of the matched plane
(dashed line) is located at zmatch = 1.7 Å where both curves have been
aligned.

IV. INVESTIGATION OF SUBSTITUTIONAL
IMPURITIES IN NI

A. Chemical contrast for Ta in Ni(012)

In this section, we will illustrate that the EXTRA algorithm
allows us to overcome the accuracy limitations that prevented
direct simulations of FIM contrast. For this evaluation, we
choose the case of substitutional Ta in Ni, before we ana-
lyze systematic trends for 5d elements series (Ta, W, Re) in
Sec. IV C. We have selected these systems because transi-
tion metal solutes in Ni have been demonstrated to enhance
high-temperature deformation resistance, a critical property
for Ni-based superalloys [45]. In a recent aFIM study with Ne
as an imaging gas, Morgado et al. investigated segregation in
Ni alloys with 2% Ta [11]. They observed that Ta was imaged
in FIM more brightly than Ni. This finding was qualitatively
explained by DFT calculations performed by some of the
present authors. The DFT calculations showed that Ta-related
states appear energetically at 1–3 eV above the Fermi level,
while only a few Ni states in the spin minority channel are
available for tunneling electrons up to 1 eV above the Fermi
level. However, due to the accuracy limitations, we could
not actually compute the FIM contrast at relevant ionization
energies, nor verify that Ta-related states at higher energies
give at all a brighter signal than the lower-lying Ni states.
More recently, Klaes et al. [13] provided quantitative data
for the spot intensity distribution of the Ni-Ta alloy in FIM.
They show two distinct maxima in the intensity histogram
of imaged atoms (Ta and Ni) from field ion images, and
concluded that intensity can be used to deduce the chemical
identity of the imaged atoms with some confidence. We will
compare our computed intensity ratios with this experimental
data in Sec. IV B

Figure 9 illustrates the results at a realistic ionization en-
ergy of 21.5 eV. In the left plot, we show simulated FIM Image
from the original DFT wave functions. At ionization energy
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FIG. 9. Simulated FIM images of Ta-Ni(012) for an ionization energy of 21.5 eV. Left: Partial DOS obtained from the original (noisy)
DFT wave functions. Right: Refined results from EXTRA. In-plane positions of the top layer atoms are indicated in the graph.

of 21.5 eV, the simulated contrast contains only noise. On the
other hand, the results obtained with EXTRA in the right plot
show a very clear contrast between Ta and surrounding Ni
atoms. As a result, the observed brightness contrast of Ta in
Ni shows the effectiveness of our approach, EXTRA.

What happens to noise at a distance closer to the surface?
As described in Sec. II, we can treat the ionization energy I as
a tunable parameter to evaluate the FIM contrast at different
heights. At lower ionization energies of 10 eV and 15 eV,
there is a single bright spot arising from Ta even from the
raw DFT wave functions (see Supplemental Material [44]).
Figure 10 shows line profiles of the simulated FIM intensity
at different ionization energies. The line scans run along the
x axis across the Ta atom and its two Ni neighbors. The
solid lines illustrate the DFT results while EXTRA results
are shown by dashed lines. At I = 10 eV and 15 eV, i.e.,
more closer to the surface, one can not see noise. However,
the relative contrast clearly changes at 10 eV and 15 eV. It is
concluded that peak shape varies with ionization energy. This
highlights that one has to simulate using the correct ionization
energy to do a quantitative comparison with the experiment.
The comparison of different ionization energies shows that
all features become broader with increasing ionization energy
(and hence increasing distance from the surface). One can

FIG. 10. 1D line scans of the simulated FIM intensity from Fig. 9
on a log scale. The line runs along the x axis across the Ta position.

clearly see the intensity difference of five orders in magnitude
at I = 10 eV and 21.5 eV, that clearly indicates the stable
performance of our algorithm EXTRA over several orders
of magnitude. At higher ionization energy of 21.5 eV the
noise level from DFT exceeds by two orders of magnitude
the expected true signal from EXTRA. The simulated FIM
contrast is hence strongly improved by the extrapolation of
wave-function tails.

B. Comparison to experiment

Klaes et al. [13] studied a NiTa alloy using 3D-FIM. Us-
ing two-pass algorithm [17] they have analysed the intensity
spectrum of imaged atoms right before evaporation. Based on
their observations, we performed a comparison by calculating
the peak intensity of Ni and Ta. Referring to Fig. 4 b of Klaes
et al. [13], we calculate the peak intensity ratio from intensity
distribution. The intensity spectrum runs between 0 and 250
for the corresponding Ni and Ta spots. Ni appears as a broad
feature around 44 (FWHM: ≈ 50) while Ta feature peaks at
222 (FWHM: ≈20). Considering these two different intensi-
ties we compute the experimental ratio as ITa/INi = 5.05. In
our current paper, we compare intensity from pure Ni metal
and added impurities. From FIM simulation we found the
peak intensity ratio to be ITa/INi = 6.18. Our theoretical ratio
is found to be in reasonable agreement with experimental
value, being larger than the experimental observation by 23%.

C. Effect of impurities on contrast

Following the same approach, we have investigated the
FIM appearance of tungsten (W) and rhenium (Re) on Ni(012)
surface. The FIM contrast maps are similar to the Ta case
(Fig. 9) with a single bright spot from the substituted atoms
(see Supplemental Material [44]). However, the brightness
enhancement varies with the chemical element. To illustrate
this, Fig. 11 provides the FIM intensity profiles for Ta, W, and
Re substitution along a line running through the central atom
and its Ni neighbors along the x direction. For reference, we
included the case of a pure Ni surface. The comparison shows
that the maximum enhancement in contrast is for the Ta atom
and Re shows the minimum, i.e., Ta > W > Re. From the line
profile plots, we can extract the relative peak intensities of
these elements. For the case of tungsten it is IW /INi = 5.06
and for Re IRe/INi = 4.38.
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FIG. 11. 1D line scans of the simulated FIM intensity for Ta, W,
and Re on Ni(012) running along the x axis (horizontally see Fig. 9)
across the central atom. The red curve shows the FIM intensity for
pure Ni.

The enhanced brightness of 5d elements emerges from
the underlying electronic structure. To analyze the surface
electronic structure atom by atom, we projected the density
of states inside spheres around each surface atom. The atomic-
projected DOS plots shown in Fig. 12 qualitatively explain the
electronic effect. Ni contains an almost filled d band. Tunnel-
ing into Ni d-states is possible only for a small unoccupied
fraction above the Fermi level. All three elements Ta, W,
and Re exhibit a very significant local density of unoccupied
d orbitals above the Fermi level. Going from Ta → W → Re
(increased d filling), the empty states decrease in number and
shift to lower energies. Interestingly, the former effect seems
to overcompensate the expected damping of tunneling into the
higher-lying states, as explained in Sec. II. Therefore bright-
ness contrast is dominated by the available unoccupied DOS

FIG. 12. Atom-projected density of states for W, Ta, and Re
atoms located in the top surface layer of Ni(012). Fermi energy is
referred at zero.

as speculated in our previous paper for Ta in Ni(012) [11].
Tunneling into these orbitals will enhance the local ionization
probability and hence the FIM brightness.

V. CONCLUSIONS

In this paper, we have laid out the foundations for an
accurate computation of tunneling-related contrast in field
ion microscopy based on state-of-the-art density functional
theory. For this, we apply the Tersoff-Hamann approximation
known from scanning tunneling microscopy to the character-
istic situation of tunneling into imaging gas atoms hovering
above the surface in the presence of a very strong field. We
identified the numerical accuracy of wave functions from the
global solvers employed in plane wave DFT codes as a major
limitation, and developed an algorithm, termed EXTRA, to re-
compute these tails in a very robust manner over many orders
of magnitude. Equipped with this algorithm, we demonstrate
for a prototypical case, Ta in Ni, that we can simulate FIM
contrast maps at realistic ionization energies with practically
no noise. This scheme paves the way to systematically address
open questions of contrast generation in FIM. We note that the
applicability of the EXTRA algorithm is not limited to these
cases but may be employed for other surface science questions
where the tails of the wave functions are of interest, e.g., in
overcoming tail shape limitations when localized orbitals are
used as a basis set. See the Supplemental Material [44] for
spin-resolved atom projected partial density of states for all
three elements.

The code is available on github [46].
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APPENDIX A: ELECTROSTATIC POTENTIAL
COMPUTED VIA POISSON EQUATION

The second derivative of the electrostatic potential relates
to the local charge density in Poisson’s equation

∇2φ(r) = −ρ(r)

ε0
. (A1)

If in-plane Fourier transform is applied along with periodic

boundary conditions denoted by (kx, ky) where k =
√

k2
x + k2

y

and perpendicular to z, Eq. (A1) becomes separable as

∂2

∂z2
V (kx, ky, z) = |k|2V (kx, ky, z) − ρ(kx, ky, z)

ε0
. (A2)

The solution in the charge-free region is
(i) if |k| = 0

V (kx = 0, ky = 0, z) = D + Ezz (A3)

for constant electric field Ez, and
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(ii) if |k| > 0

V (kx, ky, z) = D + C1e−|k|z + C2e|k|z. (A4)

Of course, any nonzero potential variation must be matched
by charges on the counter electrode. For an ideal metallic
plate-like counter electrode far away, only a homogeneous
surface charge is possible that accommodates the average
field Ez. Therefore, only the decaying solution e−|k|z must be
considered for |k| > 0.

APPENDIX B: DERIVATION OF THE GENERALIZED
NUMEROV ALGORITHM

The Kohn-Sham equation in three dimensions can be ex-
pressed as

1

2

∂2

∂z2
ψ (x, z) + {ε − V̂ (z)}ψ (x, z) = 0 (B1)

with the in-plane operator

V̂ (z) = −1

2

(
∂2

∂x2
+ ∂2

∂y2

)
+ V (x, z). (B2)

x comprises the in-plane coordinates in either real or mixed
space. The in-plane operator is strictly local along the z di-
rection, but within the plane, it is semilocal (in real space) or
even nonlocal (in mixed space). Next, we discretize along the
z direction with a spacing h, i.e., zn = nh, and Taylor series
expansion of ψ to fifth order [with ψn = ψ (x, zn)],

ψn±1 = ψn ± h
∂

∂z
ψn + h2

2

∂2

∂z2
ψn

± h3

6

∂3

∂z3
ψn + h4

24

∂4

∂z4
ψn

± h5

120

∂5

∂z5
ψn + O(h6). (B3)

Adding the equations for ψn+1 and ψn−1 makes the odd
derivatives vanish. To evaluate the term involving the fourth
derivative we act on Eq. (B1) with 1 + h2

12
∂2

∂z2 , which gives

∂2

∂z2
ψn + h2

12

∂4

∂z4
ψn + {ε − V̂ (z)}ψn + h2

12

∂2

∂z2

{
ε − V̂ (z)

}
ψn = 0. (B4)

Substituting for ∂2

∂z2 ψn + h2

12
∂4

∂z4 ψn and evaluate ∂2

∂z2 {ε − V̂ (z)}ψn gives

∂2

∂z2
{ε − V̂ (zn)}ψn = {ε − V̂ (zn+1)}ψn+1 + {ε − V̂ (zn−1)}ψn−1 − 2{ε − V̂ (zn)}ψn

h2
. (B5)

With this substitution, one can rearrange terms to arrive at[
1 + 1

6
h2{ε − V̂ (zn+1)}

]
ψn+1 = 2

[
1 − 5

6
h2{ε − V̂ (zn)}

]
ψn −

[
1 + 1

6
h2{ε − V̂ (zn−1)}

]
ψn−1. (B6)
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