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Slow kinetic processes of molecular systems can be analyzed by computing dominant

eigenpairs of the Koopman operator or its generator. In this context, the Variational Ap-

proach to Markov Processes (VAMP) provides a rigorous way of discerning the quality of

different approximate models. Kernel methods have been shown to provide accurate and

robust estimates for slow kinetic processes, but are sensitive to hyper-parameter selection,

and require the solution of large-scale generalized eigenvalue problems, which can easily

become computationally demanding for large data sizes. In this contribution, we employ a

stochastic approximation of the kernel based on random Fourier features (RFFs), to derive

a small-scale dual eigenvalue problem which can easily be solved. We provide an interpre-

tation of this procedure in terms of a finite randomly generated basis set. By combining

the RFF approach and model selection by means of the VAMP score, we show that kernel

parameters can be efficiently tuned, and accurate estimates of slow molecular kinetics can

be obtained for several benchmarking systems, such as deca alanine and the NTL9 protein.
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I. INTRODUCTION

The automated extraction of essential information about thermodynamic and kinetic properties

of molecular systems from large-scale computer simulations remains one of the major open prob-

lems in computational physics and chemistry to this day. The challenge consists in processing

very long time series of high-dimensional data in such a way that relevant features of the molec-

ular system are determined automatically, with limited user input or intervention. The precise

definition of what is regarded as relevant depends on the context, but in many applications, the

determination of slow relaxation processes and their associated metastable sets is among the most

important features to be detected. This applies, for example, to protein folding, ligand binding, or

protein–protein association1–3.

Let us highlight two milestones that have shaped the field in the last two decades: The first

was the inception of Markov State Models (MSMs) in the late 1990s and early 2000s4–6, which

allowed for the construction of easily interpretable discrete kinetic models, from which a wealth of

information could be extracted. The second milestone was the variational approach to conforma-

tional dynamics (VAC) for reversible systems7,8, and its extension called variational approach to

Markov processes (VAMP)9, which provided a rigorously defined scalar objective function (called

VAMP score) to assess the quality of kinetic models. Combined, these developments have led to

a standard workflow for the construction of MSMs, usually consisting of a linear dimensional-

ity reduction using time-lagged independent component analysis (TICA)10, geometric clustering,

as well as MSM estimation and validation11,12. It was also shown that MSMs and the VAC are

closely related to the Koopman operator framework13,14, and in particular the extended dynamic

mode decomposition (EDMD) algorithm15,16, which have primarily emerged in the analysis of

fluid dynamics and related fields. The Koopman framework is therefore a unifying theme for the

construction of kinetic models. Extensions of the EDMD algorithm can also be used to approxi-

mate the generator of dynamical systems (e.g., the Kolmogorov backward operator for stochastic

differential equations) as shown in17.

Despite the remarkable success of MSMs, the construction process remains somewhat unsatis-

factory, at least from a theoretical perspective. The initial TICA step presupposes that there is a

kinetically informative linear subspace of the initial set of descriptors used for MSM building. In

order to move beyond this requirement, algorithms based on deep neural networks (DNNs) were

introduced in recent years18,19, allowing to learn in one step the complete non-linear transfor-
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mation from raw atomic coordinates to low-dimensional features that optimize the VAMP score.

Both the MSM construction process (including state definition) and neural networks require a

non-linear optimization step, which is typically solved by means of stochastic algorithms. A sig-

nificant number of hyper-parameters need to be tuned in both cases, such as network architecture,

network depth and height for DNNs, or number of cluster centers, number of iterations, conver-

gence threshold, etc. for clustering-based MSMs.

A different avenue that has been considered is to employ reproducing kernels, which have long

been known in machine learning20,21 as a powerful non-linear model class with rich theoretical

properties. Kernel methods have also been demonstrated in many applications to be fairly robust if

the available data is only small- to medium-sized. Kernel-based versions of EDMD were suggested

in22–24, and applied to high-dimensional molecular simulations in25. Extracting slow timescales

from kernel representations requires the solution of a large-scale generalized eigenvalue problem,

where the size of the matrix depends on the number of snapshots. Even for moderate data size, the

solution of this problem can be challenging. Moreover, although kernel methods usually require

only a few hyper-parameters (such as the bandwidth of the hugely popular Gaussian kernel), these

need to be tuned accurately, requiring to solve the above-mentioned eigenvalue problem many

times, which can be prohibitively time-consuming.

In this work, we show that kernel methods can be made tractable for the analysis of molecular

kinetics by employing Random Fourier Features (RFFs)26, a well-known low-rank approximation

technique for kernel matrices, to convert the original large-scale eigenvalue problem into a much

smaller one, which can be easily solved. We derive the associated small-scale matrix problem

both for the Koopman operator and its generator, and show that this approach can be interpreted

as applying EDMD with a specific randomly chosen basis set. We demonstrate that the VAMP

score can be effectively used for hyper-parameter tuning of the kernel method. The combination

of these ideas leads to an efficient approximation algorithm, which is robust with respect to the

data size and the stochastic Fourier feature selection. Therefore, our method presents a promising

new direction for the automated analysis of molecular kinetics.

The remainder of this paper is structured as follows: In Section II, we review elements of

the Koopman formalism, the EDMD approximation algorithm, reproducing kernel Hilbert spaces

(RKHSs), and Koopman modeling using RKHSs. Then, in Section III, we present our main con-

tribution, an approximation algorithm for the Koopman operator or generator based on Random

Fourier Features. Further computational details, especially regarding model selection, are dis-
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cussed in Section IV, while applications to benchmarking problems in molecular dynamics are

shown in Section V.

II. THEORETICAL BASICS

We will briefly introduce the stochastic Koopman operator and its generator as well as numeri-

cal methods to estimate these operators and their spectral properties from data.

A. Stochastic Dynamical Systems

Computer simulations are routinely used to explore the thermodynamics and kinetics of molec-

ular systems. Many available implementations of molecular dynamics (MD) can be described as

a stochastic process {Xt}t≥0, where t is the time and Xt ∈ X ⊂ Rd the state of the system at time

t. In particular, a widely used model in this context is given by stochastic differential equations

(SDEs) of the form

dXt = F(Xt)dt +G(Xt)dWt . (1)

where F : Rd → Rd and G : Rd → Rd×d are vector- and matrix-valued fields, respectively, called

the drift and diffusion of the SDE, and Wt is d-dimensional Brownian motion. The covariance

matrix of the diffusion is denoted by

a(x) := G(x)G(x)>.

As far as the thermodynamics is concerned, the primary goal of molecular simulations is to sample

the Boltzmann distribution

dµ(x)∼ exp(−βV (x))dx,

where V is the potential energy at position x and β−1 = kBT is the inverse temperature. Most

simulation protocols are built to achieve this goal, i.e., the Boltzmann distribution is invariant, and

long time averages converge to spatial averages with respect to µ (ergodicity). A standard example

is Brownian or overdamped Langevin dynamics

dXt =−
1
γ

∇V (Xt)dt +
√

2γ−1β−1 dWt , (2)

with friction parameter γ .
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B. Koopman Operator and Generator

When it comes to inferring kinetic information about Xt , significant progress has been made in

recent years by considering an operator-based approach to the statistics of the stochastic process

Xt . For a fixed lag time t ≥ 0, the Koopman operator13 K t acts on a functions φ : X→ R by

taking the conditional expectation:

K t
φ(x) = Ex[φ(Xt)] = E[φ(Xt) | X0 = x].

In other words, evaluation of the function K tφ at x yields the expectation of φ after starting the

dynamics at x, and evolving until time t. The linear operators K t satisfy the semigroup equa-

tion K s+t = K sK t , which implies the existence of another linear operator L , called Koopman

generator, such that the following linear differential equation holds for the function φt = K tφ :

∂

∂ t
K t

φ(x) = L K t
φ(x).

For SDE dynamics of the form (1), stochastic calculus shows that L is a second-order differential

operator, and we obtain the Kolmogorov equation

∂

∂ t
φt(x) =

d

∑
i=1

F(i)(x)
∂

∂xi φt(x)+
1
2

d

∑
i, j=1

a(i, j)(x)
∂ 2

∂xi∂x j φt(x)

= F(x) ·∇φt(x)+
1
2

a(x) : ∇
2
φt(x)

= L φt(x),

where we used the colon notation for the Frobenius inner product between matrices, i.e., A : B =

∑i, j A(i, j)B(i, j). For overdamped Langevin dynamics, the generator is given by

LOD =−1
γ

∇V ·∇+ γ
−1

β
−1

∆.

We will summarily refer to the Koopman operators or the generator as dynamical operators for

the dynamical system Xt . If the dynamics are reversible with respect to the invariant distribution

µ , then the generator L is symmetric with respect to the inner product

〈φ1, φ2〉µ =
∫
X

φ1(x)φ2(x)dµ(x).

As a consequence, all eigenvalues of the generator L are real-valued and non-positive, i.e., for all

solutions of the equation

L ψi = κi ψi,
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we have κi ≤ 0. An object of prime interest for molecular kinetics are low-lying eigenvalues

0 ≤ −κi � 1, as these encode slow motions corresponding to metastable behavior encountered

in many examples of molecular systems6,27. The connection between close-to-zero eigenvalues

and metastability is also apparent in the fact that eigenfunctions of the generator are also eigen-

functions of the Koopman operator at any t, with eigenvalue λi(t) = e−κit . If −κi� 1, then the

corresponding eigenvalues λi(t) decay slowly, as expected for metastable dynamics.

C. Finite-dimensional Approximation

The basic data-driven approximation algorithm for the Koopman operator is called extended

dynamic mode decomposition (EDMD)28, its adaptation to the generator is then called gEDMD17.

Both methods require choosing a finite dictionary of observable functions {φ1, . . . ,φn}. The pro-

jections of the dynamical operators onto the linear span of these functions can be represented by

matrices:

Kt = G−1At , L = G−1AL,

with mass and stiffness matrices given by

G(i, j) =
〈
φi, φ j

〉
µ
, At(i, j) =

〈
φi, K

t
φ j
〉

µ
, AL(i, j) =

〈
φi, L φ j

〉
µ
.

Given a long trajectory {x1,x2, . . . ,xm+1} of the process Xt , the data-based estimators for these

matrices are given by

Ĝ(i, j) =
1
m

m

∑
l=1

φi(xl)φ j(xl), Ât(i, j) =
1
m

m

∑
l=1

φi(xl)φ j(xl+1),

ÂL(i, j) =
1
m

m

∑
l=1

φi(xl)L φ j(xl),

where we assumed the time step between samples to equal t in the formula for Ât . This is not

required in practice if a sliding-window estimator is used, see12,29 for details.

For reversible dynamics, the stiffness matrix AL and its estimator ÂL above can be replaced by

the following energy-like expressions17:

AL(i, j) =−1
2

∫
X

∇
>

φi(x)a(x)∇φ j(x)dµ(x),

ÂL(i, j) =− 1
2m

m

∑
l=1

∇
>

φi(xl)a(xl)∇φ j(xl).
(3)
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The latter estimator only requires first-order derivatives and retains the symmetry of AL even for

finite data.

Eigenvalues of the dynamical operators can be approximated by diagonalizing the data-driven

estimators K̂t = Ĝ−1Ât and L̂ = Ĝ−1ÂL, or equivalently, by solving one of the generalized eigen-

value problems

Âtvi = λ̂i(t)Ĝvi, ÂLvi = κ̂i Ĝvi. (4)

D. Collective Variables

For large molecular systems, the dictionary is typically defined in terms of a set of lower-

dimensional descriptors z∈RN , N≤ d, often called collective variables (CVs), such as intramolec-

ular distances or angles. Formally, CVs are given by a smooth mapping ξ : X→ RN . Choosing

a dictionary {φ̃i}n
i=1 of functions depending only on CV space, that is φ̃i(x) = φi(ξ (x)), does not

lead to any conceptual changes to the EDMD approach. When approximating the generator, the

gEDMD method is straightforwardly adapted by computing all x-derivatives in the definition of the

generator using the chain rule. This leads to a particularly elegant reformulation of the symmetric

estimator (3) in terms of an effective diffusion matrix

aξ (x) = ∇
>
x ξ (x)a(x)∇x ξ (x), (5)

where ∇x ξ is the d×N-dimensional Jacobian of the mapping ξ . The symmetric estimator (3)

then becomes

ÂL(i, j) =− 1
2m

m

∑
l=1

∇
>
z φi(zl)aξ (xl)∇zφ j(zl)

as shown in17. Note that once the effective diffusion matrices have been computed, only the basis

functions and their derivatives in CV-space are required.

E. Reproducing Kernel Hilbert Space

A critical modeling decision for the (g)EDMD approach is the choice of the dictionary

{φ1, . . . ,φn}. Recent works22–25 have shown that accurate results, even for large systems, can

be obtained using methods based on reproducing kernel Hilbert spaces (RKHS) generated by a

kernel function k. These approaches lead to powerful approximation spaces, yet only depend on

few model parameters.
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A reproducing kernel Hilbert space (RKHS)21,30 is a Hilbert space H, with inner product 〈·, ·〉H,

of continuous functions on X, defined by a symmetric, positive-definite two-argument function

k(x,y), called the kernel. Each such kernel corresponds to a unique RKHS30. Given k, one can

define a map from X into H, called the feature map, by

Φ(x)(y) = k(x,y).

Functions f in the RKHS then satisfy the reproducing property

〈 f , Φ(x)〉H = f (x) ∀ f ∈H.

Example II.1 Arguably the most widely used kernel is the Gaussian radial basis function (RBF)

kernel

kσ (x,y) = exp
(
− 1

2σ2‖x− y‖2
)
,

with bandwidth parameter σ > 0. On a periodic domain [−L,L]d , the closely related periodic

Gaussian kernel

kp
σ (x,y) = exp

(
− 2

σ2

d

∑
i=1

sin2(0.5(xi− yi))

)
,

analogously generates an RKHS of periodic functions31. 4

For many popular kernels, including the Gaussian RBF kernel, the associated RKHS is infinite-

dimensional, and densely embedded into most relevant function spaces. Kernels therefore provide

powerful approximation spaces, reducing the problem of dictionary selection to the choice of a

single function, the kernel, and its hyper-parameters, such as the bandwidth for the Gaussian RBF

kernel.

F. RKHS Representation of Dynamical Operators

Given a kernel k with RKHS H, the analogues of the matrices G, At and AL in Section II C are

given by linear operators on H, see23,24 for a derivation:

G f =
∫
X

f (x)Φ(x)dµ(x), A t f =
∫
X

K t f (x)Φ(x)dµ(x), A L f =
∫
X

L f (x)Φ(x)dµ(x). (6)

Here, Φ is again the feature map. The eigenvalue problem (4) then turns into an infinite-

dimensional generalized eigenvalue equation for eigenfunctions ψi ∈H:

A t
ψi = λi(t)G ψi, A L

ψi = κiG ψi. (7)
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Natural empirical estimators for the RKHS operators in (6) are given by

Ĝ f =
1
m

m

∑
l=1

f (xl)Φ(xl), ˆA t f =
1
m

m

∑
l=1

f (xl+1)Φ(xl), ˆA L f =
1
m

m

∑
l=1

L f (xl)Φ(xl).

The range of these operators is in the linear span of the feature map at the data sites, Hm =

span{Φ(xl)}m
l=1. Therefore, it makes sense to restrict these operators to the m-dimensional space

Hm, which leads to the matrix representations

[KX ] (r,s) = k(xr,xs),[
Kt

X
]
(r,s) = k(xr+1,xs),[

KL
X
]
(r,s) =

1
2

d

∑
i, j=1

a(i, j)(xr)
∂ 2

∂xi∂x j k(xr,xs)+
d

∑
i=1

Fi(xr)
∂

∂xi k(xr,xs),

(8)

and (7) can be replaced by a matrix generalized eigenvalue problem

Kt
X wi = λ̂i(t)KX wi, KL

X wi = κ̂iKX wi. (9)

The derivatives in the definition of KL
X are taken with respect to first argument of the kernel func-

tion. It is important to note that, as expected for a kernel method, assembling the matrices (8)

requires only kernel evaluations at the data sites, along with kernel derivatives and coefficients of

the SDE in the generator setting. For reversible dynamics, there is again an alternative symmet-

ric formulation, which leads to the following Hermitian generalized eigenvalue problem instead

of (9):

Krev
X wi = κ̂iKX KX wi,

Krev
X (r,s) =− 1

2m

m

∑
l=1

∇
>k(xl,xr)a(xl)∇k(xl,xs).

(10)

The derivations of (8), (9) and (10) were shown in23,24, we repeat them for the reader’s convenience

in Appendix A.

The linear problems (9) and (10) represent large-scale generalized eigenvalue problems. Solv-

ing these problems efficiently for large data sets is one of the central challenges common to most

applications of kernel methods. In the following section, we present an approach based on a ran-

domized low-rank representation obtained from Fourier transformation of the kernel function.

III. LOW-RANK REPRESENTATIONS OF KERNEL EIGENVALUE PROBLEMS

In this section, we will present our main contribution: an approach to solving the generalized

eigenvalue problems (9) and (10) using a randomized low-rank decomposition.

9



A. Random Fourier Features

Random Fourier Features (RFFs) have been introduced in26 as a low-rank approximation

framework for large kernel matrices. The basis for this approach is Bochner’s theorem, stating

that a translation-invariant kernel k, which is normalized to k(x,x) = 1 for all x, possesses the

following stochastic representation32:

k(x,y) =
1√
2π

∫
Rd

e−i(x−y)>ω dρ(ω) = Eω∼ρ

[
e−ix>ω e−iy>ω

]
.

Here, ρ is a probability measure in frequency space, called the spectral measure. This representa-

tion extends to the derivatives of the kernel function, namely

Dαk(x,y) = Eω∼ρ

[
(−iω)αe−ix>ω e−iy>ω

]
, (11)

where α ∈ Nd is a multi-index and ωα = (ω1)α(1) . . .(ωd)α(d). The derivatives in the above ex-

pression are again taken with respect to the first argument. For the Gaussian RBF kernel with

bandwidth σ , the spectral measure is also Gaussian with bandwidth σ−1. For the periodic Gaus-

sian kernel, the spectral measure is discrete, supported on all wave vectors π

L k for k ∈ Zd , with

probabilities

ρ

(
π

L
k
)
=

d

∏
j=1

Ik( j)(σ
−2)e−σ−2

,

where Ik is the modified Bessel function of the first kind, see33. Thus, drawing independent sam-

ples from the spectral measure is easily accomplished for many popular kernel functions.

B. Representation of Kernel Matrices

We apply the RFF representation to the generalized eigenvalue problems (9) and (10) by sub-

stituting it into the kernel matrices KX ,Kt
X ,K

L
X given by (8). We again denote samples in real

space (in the form of a long trajectory1) by {xl}m+1
l=1 . Additionally, we assume there are p samples

{ωu}p
u=1 in frequency space, sampled from the spectral measure ρ . Replacing expectation values

by finite-sample averages, we obtain

KX = [k(xr,xs)]r,s =
[
Eω∼ρ

[
e−ix>r ω e−ix>s ω

]]
r,s
≈ 1

p

[
MMH]

r,s ,

Kt
X = [k(xr+1,xs)]r,s ≈

1
p

[
MtMH]

r,s ,

(12)

1 Instead of using one long trajectory, it would also be possible to extract a training data set {(xl ,yl)}m
l=1 from many

short trajectories, see34 for details.
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with RFF feature matrices

M =
[
e−ix>r ωu

]
r,u
, Mt =

[
e−ix>r+1ωu

]
r,u
. (13)

That is, the rows of M correspond to the data points and the columns of M to the randomly sampled

features. When approximating the generator, we use the representation of derivatives given in (11),

to find

KL
X =

[
1
2

d

∑
i, j=1

a(i, j)(xr)
∂ 2

∂xi∂x j k(xr,xs)+
d

∑
i=1

F(i)(xr)
∂

∂xi k(xr,xs)

]
r,s

≈ 1
p

p

∑
u=1

[(
−1

2

d

∑
i, j=1

a(i, j)(xr)ωu(i)ωu( j)− i
d

∑
i=1

F(i)(xr)ωu(i)

)
e−ix>r ωu e−ix>s ωu

]
r,s

=
1
p

[
MLMH]

r,s , (14)

with generator feature matrix ML, which can be written compactly using the Frobenius inner

product as

ML =

[(
−1

2
a(xr) : (ωu⊗ωu)− iF(xr) ·ωu

)
e−ix>r ωu

]
r,u
.

We will address the reversible case further below after analyzing the RFF-based approximation

in more detail. Together, (12) and (14) provide low-rank approximations of the kernel matrices

which can be easily assembled by evaluation of complex exponentials.

C. Solution of the Generalized Eigenvalue Problems

Let us now use the approximations (12) and (14) to solve the generalized eigenvalue prob-

lems (9), which read (note that the normalization 1
p can be omitted):

MtMHwi = λ̂i(t)MMHwi, MLMHwi = κ̂iMMHwi. (15)

If p ≤ m, we can employ a standard trick to express this equivalently as a lower-dimensional

eigenvalue problem. Defining vi = MHwi, we can verify directly that

MHMtvi = MHMtMHwi = λ̂i(t)MHMMHwi = λ̂i(t)MHMvi.

The last equality shows that all non-zero eigenvalues of (15) can be equivalently computed by the

lower-dimensional dual problem:

MHMtvi = λ̂i(t)MHMvi, MHMLvi = κ̂iMHMvi. (16)
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This p-dimensional generalized eigenvalue equation is the central problem to be solved within the

context of RFF-based kernel approximation. If p is much smaller than m, (16) already leads to

computational savings compared to (9).

In fact, it is not even necessary to assemble the matrices in (16), because the equation can

be solved by operating only on the RFF feature matrices M, Mt , ML. To this end, we apply a

whitening transformation, which is widely used within the context of (g)EDMD. Using a truncated

singular value decomposition of M,

M≈ UΣWH,

and retaining r ≤ p components of the SVD, we obtain a linear transformation T = WΣ−1, which

eliminates the matrix on the right-hand sides of (16):

THMHMT = Σ
−1WHWΣUHUΣWHWΣ

−1 = Idr×r.

Applying the same transformation to the left-hand sides of (16) leads to the reduced matrices

Rt = THMHMtT = UHMtWΣ
−1, RL = THMHMLT = UHMLWΣ

−1. (17)

It is then sufficient to diagonalize these reduced matrices in order to solve (16). If the truncation

rank of M is significantly smaller than p, additional computational savings can be harnessed this

way. Algorithm 1 summarizes our solution method in compact form.

D. Interpretation as (g)EDMD Problem

The transformation of the dual problem (16) to its reduced form is completely analogous to

what is called the whitening transformation for (g)EDMD29. This is not a coincidence: consider a

finite dictionary defined by

φRFF(x) :=


φ1(x)

...

φp(x)

=


eix>ω1

...

eix>ωp

 .

Using the notation of Section II C, the empirical mass and stiffness matrices for this basis set
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are given by

Ĝ(u,v) =
1
m

m

∑
l=1

φu(xl)φv(xl) =
1
m

m

∑
l=1

eix>l ωue−ix>l ωv =
1
m

[
MHM

]
(u,v),

Ât(u,v) =
1
m

[
MHMt](u,v),

ÂL(u,v) =
1
m

[
MHML](u,v),

which are precisely the constituent matrices in (16)2. We conclude that the solution of the trans-

posed problem is equivalent to the eigenvalue estimation based on (g)EDMD using a random

dictionary of complex plane waves. With this interpretation at hand, we can also derive a conve-

nient symmetric formulation for reversible dynamics, upon replacing the estimator for ÂL by its

symmetric version (3):

ÂL(u,v) =− 1
2m

m

∑
l=1

∇
>

φu(xl)a(xl)∇φv(xl)

=− 1
2m

m

∑
l=1

ω
>
u a(xl)ωv eix>l ωue−ix>l ωv.

To compute the reduced matrix, we just have to apply the transformation T from Section III C

from left and right, i.e.,

RL = THÂLT = Σ
−1WHÂLWΣ

−1, (18)

resulting again in a symmetric estimator.

2 We need to consider complex-valued observables at this point, leading to complex conjugation of the second argu-

ment in inner products.
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Algorithm 1 RFF-based Spectral Approximation of the Operator or Generator

Input: data matrix X = [x1, . . . ,xm+1] ∈ Rd×(m+1),

kernel function k with spectral measure ρ ,

number of features p, truncation rule for singular values.

Output: Approximate eigenpairs (λ̂i(t), ψ̂i) or (κ̂i, ψ̂i) of the dynamical operator.

1: Draw p samples {ωu}p
u=1 from the spectral measure ρ .

2: Form matrix M given by (13).

3: Non-reversible case: form matrix Mt or ML as in (13) or (14).

4: Compute SVD of M, choose rank r according to truncation rule: M≈ UΣWH.

5: Form reduced matrix Rt or RL according to (17) or (18).

6: Compute eigenpairs of reduced problem Rtui = λ̂i(t)ui or RLui = κ̂iui.

7: Transform to original RFF basis: vi = Tui, ψ̂i(x) = vH
i φRFF(x).

E. Computational Effort

Let us break down the computational effort required for Algorithm 1: The SVD of M requires

O(mp2) operations. Assembling the reduced matrix costs O(rpm) operations for the Koopman

operator. In the case of generator approximation, we obtain an additional dependence on the

dimension, due to the required contraction of derivatives of the kernel function. We can upper-

bound the resulting effort as O(mp(d2 + r)) in the non-reversible case and by O(m(rpd + r2d2))

in the reversible case. Note that this bound assumes a dense and state-dependent diffusion field

a, it reduces to linear dependence on d for diagonal diffusions, such as overdamped Langevin

dynamics. Finally, the diagonalization of the reduced matrix amounts to O(r3) floating point

operations. Comparing this to full kernel method, we see that the most drastic computational

savings will result from being able to choose p small compared to m, as it reduces a factor O(m3)

to O(mp2).

IV. METHODS

In this section, we will discuss aspects of the practical application of our spectral RFF method

and also introduce the systems studied in the results section below. For the numerical examples,
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we will use the Gaussian RBF kernel or its periodic counterpart for periodic domains.

A. Model Selection

Before we can apply Algorithm 1, we have to choose the number of features p, the truncation

threshold for singular values, and as many hyper-parameters as required by the kernel function

(e.g., the bandwidth for Gaussian RFF kernels). We select these parameters by cross-validating

the VAMP score metric on randomly selected subsets of the data, as explained below. The only

exception is the truncation threshold for singular values of M. Here, we adopt the rule that all

singular values smaller than 10−4 times the largest singular value are discarded. This choice is

based on prior experience and works well in all considered examples.

The VAMP score metric is based on the Rayleigh variational principle, which states that for

reversible systems, the exact leading K eigenfunctions are optimizers of the Rayleigh trace

K−1

∑
i=0

λi(t) = max
φ0,...,φK−1

K−1

∑
i=0

〈
φi, K

t
φi
〉

µ
, s.t.

〈
φi, φ j

〉
µ
= δi j.

The sum to be maximized on the right-hand side is a special case of the slightly more general

VAMP score introduced for Koopman operators in7,9 and for the Koopman generator in35. When

considering the generator, the maximum becomes a minimum instead. The variational principle

also generalizes to non-reversible systems by considering singular functions instead of eigenfunc-

tions9. However, we only analyze reversible systems in what follows. The VAMP score can be

easily estimated upon replacing inner products by their empirical estimators, as shown in Sec-

tion II C. The maximal VAMP score within a finite-dimensional model class can also be straight-

forwardly computed, see again7. In this way, we can simply compare the maximal VAMP score

obtained for each choice of hyper-parameters, e.g., choice of kernel bandwidth σ and number of

Fourier features p, and choose the best.

To account for the estimation error stemming from the use of finite data, and also to avoid over-

fitting, we employ a standard cross-validation approach, and first compute the optimal functions

φ0, . . . ,φK−1 for each model class on a random subsample of the data (training data). We then

recompute the VAMP score for the K-dimensional space spanned by φ0, . . . ,φK−1 on the remaining

data (test data). This process is repeated ntest times, where ntest is either 10 or 20 below, and we

choose the model class optimizing the test score on average. The ratio of training data to test data

is always chosen as a 75/25 percent split.
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B. Spectral Analysis and Clustering

Solution of the eigenvalue problem for the reduced matrix R provides estimates of the leading

eigenvalues λ̂i(t) or κ̂i, respectively, and their associated eigenfunctions ψ̂i. The first point to

note is that (16) is a complex eigenvalue problem, so the eigenvectors can be scaled by arbitrary

complex numbers. Before analyzing the eigenvectors, we simply apply a grid search over complex

phase factors to determine the one that minimizes the imaginary part of all eigenvector entries and

use the rescaled eigenvectors for further analysis.

Second, we transform the eigenvalues of the Koopman operator into implied timescales defined

as

ti =−
t

log(λ̂i(t))
,

which have units of time, and can be interpreted as physical relaxation timescales for the i-th

eigenmode of the Koopman operator. Since timescales are independent of the lag time in the

absence of projection and estimation error36, we monitor convergence of implied timescales with

increasing lag time t in order to select an optimal lag time11. We also compute the timescales when

approximating the generator, in this case they are simply given by

ti =−
1
κ̂i
.

In order to analyze metastable sets, we evaluate the top eigenfunctions ψ̂i at all data points, and

apply the spectral clustering method PCCA37 to assign each data point xl to each metastable set q

with a degree of membership χq(xl), which is a number between zero and one. We then identify

data point xl as part of metastable set q if χq(xl) ≥ 0.6, the remaining data points are treated as

transition states.

C. Systems and Simulation Setups

We study four different examples in order to illustrate different aspects of the performance of

the proposed method. The first is overdamped Langevin dynamics (2) in a two-dimensional model

potential, which is a minor modification of the Lemon-Slice potential38, given in polar coordinates

as

V (r,ϕ) = cos(4ϕ)+10(r−1)2 +1+
1
r
+

1
cosϕ

, (19)
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see Figure 1 for a visualization. We can easily generate large amounts of simulation data by

applying the standard Euler–Maruyama integrator, the elementary simulation time step is set to

∆t = 10−3. Friction γ and inverse temperature β are both set to one. Reference implied timescales

are obtained from a Markov state model based on a k-means discretization of the two-dimensional

state space, using 50 discrete states and m = 105 data points.

The second system is molecular dynamics simulation data of the alanine dipeptide in explicit

water, at temperature T = 300K, employing the Langevin thermostat. We generated a total of

one million data points at 1ps time spacing. Reference implied timescales were computed by a

Markov state model in the well-known two-dimensional space of backbone dihedral angles φ and

ψ , using a 30×30 box discretization and all one million data points.

The third example is molecular dynamics simulation data of the deca alanine peptide in explicit

water at temperature T = 300K, see39 for a description of the simulation setup. The data comprises

a total of four million time steps at 1ps time spacing. As reference values, we refer to the MSM

analysis presented in40, which is built on a 500-state k-means discretization after applying time-

lagged independent component analysis (TICA)10 in the space of the peptide’s sixteen backbone

dihedral angles.

Finally, we re-analyze the 39-residue protein NTL9, which was simulated on the Anton su-

percomputer by D.E. Shaw Research, see41 for details. The data comprises around 1.2 million

frames corresponding to a time spacing of ∆t = 2ns. As a reference, we apply linear TICA on

the set of 666 minimal heavy atom inter-residue distances. We also rank these distance according

to the fraction of simulation time where a contact is formed, that is, the distance does not exceed

0.35nm, see40, and calculate TICA models using only the first [20,100,200,300,400,500,666] of

these distances.

V. RESULTS

A. Lemon-Slice Potential

We start by analyzing the Lemon-Slice potential (19), shown in Figure 1 A, which features four

metastable states corresponding to the wells of the potential energy. We use this system as a first

test case for approximating the generator L , due to the availability of all relevant quantities in

analytical form.
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Figure 1 B shows the VAMP score as a function of the bandwidth for a selection of data sizes

m and feature numbers p. We see that while m = 1000 data points are not sufficient, for m = 5000

data points, the score stabilizes for a range of bandwidths σ ∈ [0.3,0.8], and already attains optimal

values for very small p. We confirm this finding by plotting the first three non-trivial eigenvalues

of the generator, for m = 5000 and p = 50, as a function of the bandwidth in Figure 1 C. Indeed,

accurate estimates for eigenvalues can be obtained in the suggested regime of bandwidths. After

calculating the eigenvectors of the reduced matrix for σ = 0.4, and applying the PCCA analysis,

we see that the metastable structure is perfectly recovered, see Figure 1 D. Thus, the VAMP score

reliably guides the hyper-parameter search towards a very efficient approximation of the leading

spectral components of this system.

B. Alanine Dipeptide

For alanine dipeptide, we approximate the Koopman operator with lag time t, using the peri-

odic Gaussian kernel on the well-known two-dimensional reaction coordinate space given by the

dihedral angles φ and ψ . Figure 2 A shows the familiar free energy landscape of the system in

the reaction coordinate space. For all RFF-based approximations, we downsample the data set to

m = 20000 points, corresponding to a time spacing of 50ps. We apply the same model selection

protocol as before, and find that a range of kernel bandwidths σ ∈ [0.4,1.0] can be stably identified

as optimal in terms of the VAMP score. We observe in Figure 2 B that again a small number of

Fourier features p = 50 is sufficient to arrive at an optimal VAMP score. We also confirm that the

optimal parameter regime is stable across different lag times. Note that the VAMP score neces-

sarily decreases with increasing lag time, as all eigenvalues but λ0(t) decay exponentially with t.

As shown in Figure 2 C, the optimal range of bandwidths indeed allows for accurate estimation

of the three leading implied timescales of the system. Further, we also verify that the metastable

decomposition of the dihedral space into four states is correctly recovered using the RFF model,

see Figure 2 D. The dramatic rank reduction for the kernel matrix achieved by using a small num-

ber of Fourier features allows us to easily compute eigenvalues and test scores for a broad range

of parameters, using m = 20000 data points in real space. Solving the same problem by means of

standard methods would be significantly more costly if the same data size was used.
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FIG. 1. Results for the Lemon-Slice potential. A: Contour of the potential (19). B: VAMP score as a

function of the kernel bandwidth for different data sizes m and feature numbers p. C: Leading non-trivial

eigenvalues of the generator for m = 5000 and p = 50, as a function of the bandwidth. Black lines indicate

the Markov model reference values. D: Decomposition into four metastable states based on eigenvectors

for σ = 0.4, p = 50, m = 5000. All error bars are based on twenty independent simulations.

C. Deca Alanine

We use the deca alanine example to demonstrate that, by means of low-rank kernel methods,

generator models can be efficiently learned on a reaction coordinate space that is more than just

one- or two-dimensional, and that dynamical hypotheses can be tested this way. We project the

system onto the space of its sixteen interior backbone torsion angles. The generator of the full

molecular dynamics is not readily available in closed form. It is well-known, however, that if

observed only on a subset of position space, many systems driven by thermostatted molecular

dynamics behave like the reversible overdamped Langevin dynamics at long timescales42. For
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FIG. 2. Results for alanine dipeptide. A: Free Energy (in kJ/mol) in two-dimensional dihedral space. B:

VAMP Score for selected feature sizes p and lag times t as a function of the kernel bandwidth. C: Implied

timescales for t = 100ps and p = 50 as a function of the bandwidth. D: Metastable decomposition obtained

for σ = 0.6, p = 50 and t = 100ps.

that reason, we set the full space diffusion matrix to 1
β

times the identity and employ our reversible

estimator. The effective diffusion (5) then turns into

aξ (z) =
1
β

∇ξ
>(x)∇ξ (x),

where ∇ξ is the Jacobian of the mapping from Euclidean coordinates to the peptide’s backbone

dihedral angles, which can be evaluated analytically. Note that this approach can be seen as a dy-

namical hypothesis: we choose to model the position space dynamics as an overdamped Langevin

process, and test if its projection onto the dihedral angle space can recover all relevant features of

the full MD simulation.

We find in Figure 3 A that a kernel bandwidth σ ∈ [2.0,8.0] leads to an optimal VAMP score for
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the projected generator. Using about m = 1000 data points in real space and p = 300 Fourier fea-

tures is sufficient to obtain stable results, rendering the calculation highly efficient. The optimality

of this regime of bandwidths in confirmed by plotting the first three non-trivial eigenvalues of the

generator, as shown in Figure 3 B. We note that these eigenvalues differ from those of the reference

MSM by a constant factor. This is due to the re-scaling of time inherent in assuming overdamped

Langevin dynamics in position space, rendering the effective dynamics too fast. However, we

also see in Figure 3 that all slow eigenvalues are indeed re-scaled by the same factor. Moreover,

the PCCA analysis of the slowest eigenvectors obtained for the optimal RFF model also recovers

the metastable states of the deca alanine system, corresponding to the folded and unfolded states

as well as two intermediates. The effective overdamped Langevin model learned by the kernel

method thus retains all major features of the original molecular dynamics, up to the re-scaling of

time.

D. NTL9

We use the NTL9 data set to demonstrate once again the ability of the proposed method to

efficiently and robustly analyze large data sets. We downsample the available trajectory data to

around m = 15.000 data points at 200ns time spacing. As mentioned before, m = 15.000 is still a

significant data size for kernel methods. We project the MD simulations onto the 666-dimensional

space of minimal heavy atom inter-residue distances. It is known from previous publications that

these coordinates capture the folding process of NTL9 very well40,43. Indeed, just using linear

TICA on the top-ranked 300 distances allows for an accurate estimation of the slowest implied

timescale t1, associated to the folding process, see the top green line in Figure 4 B.

Figure 4 A shows that using Gaussian bandwidth parameters σ ∈ [10,50] can be identified as

optimal in terms of the VAMP score, again across different lag times. In Figure 4 B, we first

compare the slowest timescale t1 obtained for σ = 15 as a function of the lag time, for different

feature numbers p (blue lines). We see that already for p≥ 300, satisfactory convergence of t1 with

t can be obtained, reducing the computational cost by about a factor two thousand compared to

the full kernel eigenvalue problem. Interestingly, timescale convergence improves with p in about

the same way as the performance of TICA improves as more and more of the ranked distances are

added. However, we show that the kernel method is more robust with respect to the selection of

input coordinates, by randomly selecting d = 50 out of the 666 distances, and recomputing both
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FIG. 3. Results for the Koopman generator on backbone dihedral angle space of the deca alanine peptide.

A: VAMP score for selected data sizes m and feature sizes p as a function of the kernel bandwidth. B:

Eigenvalues for m = 1000 and p = 300 as a function of the bandwidth. The reference MSM results are

shown in black. Re-scaling MSM eigenvalues by the average ratio between optimal RFF and MSM eigen-

values leads to the magenta lines. C–F: Representative structures for each of the four PCCA states based on

the RFF model at m = 1000, p = 300, σ = 4.0.

the VAMP score and implied timescales for different bandwidths, keeping the number of Fourier

features fixed at p = 300. We see in Figures 4 A–B that both the optimal value of the VAMP score

as well as the timescale estimates remain stable across random selections of the input distances

(magenta lines in panel A, red lines in panel B). Convergence of timescales is therefore mainly

dependent on the number of Fourier features p, which can be automatically tuned using the VAMP

score, and not on the selection of input coordinates. Moreover, we also find that under the random

distance selection, the optimal regime of kernel bandwidths changes as the dimension of the input

coordinate space is significantly smaller. This is reliably reflected by the behavior of the VAMP

score, see again Figure 4 A.
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FIG. 4. Results for NTL9 protein. A: VAMP score for Gaussian RFF approximation as a function of the

kernel bandwidth σ . Red and blue lines show the results using all 666 distances, for different lag times

and different numbers of Fourier features p. The magenta lines show the average values over ten random

selections of only 50 distances, with p = 300 fixed. B: Slowest implied timescale t1 as a function of the lag

time t. Green lines show estimates based on linear TICA using the top-ranked 20, 100, and 300 distances.

Blue lines show RFF-based estimates on all distances using different values of p, using σ = 15.0. Red lines

are averages over the above-mentioned random subsamples of the distance coordinates, where p = 300 is

fixed.

VI. CONCLUSIONS

We have introduced a new approach to extract the dominant eigenvalues of dynamical operators

associated with stochastic processes, corresponding to the slow timescale dynamics in molecular

kinetics. Building on kernel representations of the Koopman operator and generator, our main

novelty is a dual low-rank representation of the kernel matrices using random Fourier features.

We have derived the corresponding reduced eigenvalue problem, and provided an interpretation of

the method in terms of a random dictionary of plane waves. Using four examples of increasing

complexity, we have shown that hyper-parameters of the method can be very effectively tuned

using the VAMP score metric. Moreover, we have shown that only a few hundred Fourier features

were sufficient to obtain accurate and robust results for all systems considered. This finding al-

lowed us to rapidly scan kernel hyper-parameters for data sizes in the ten thousands, on coordinate

spaces of dimension up to several hundred. The computational savings compared to the full eigen-

value problem, measured in floating point operations, were on the order of three to four orders of
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FIG. 5. Top Row: Representations of the two PCCA states obtained for σ = 15, p = 300, t = 2 µs. For

each PCCA state, we show the fraction of simulation time during which each residue-residue pair forms a

contact, see also40. Bottoms Row: Representative protein structure for both PCCA states.

magnitude.

The main promise of our method is the ability to analyze large data sets using a very generic,

and in fact randomly generated basis set. The success on the method depends on the number of

required Fourier features. Future research will need to test if this number indeed remains small

even for larger systems, which would make the method scalable beyond the benchmarking exam-

ples studied here. It will also be interesting to see if kernel functions with more specific properties

can be used, for instance, kernels incorporating more detailed symmetries than only translational

invariance, or kernels acting on mixed types of domain (periodic and non-periodic). Finally, com-

bining our approach with re-weigthing techniques would allow application of the method to en-
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hanced sampling simulation data.
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Appendix A: Derivation of Kernel Eigenvalue Problems

Our derivation of the kernel eigenvalue problems in Section II F follows23,24. We compute the

matrix elements of the operators Ĝ , ˆA t , ˆA L on the finite-dimensional space Hm, with respect to

its canonical basis {Φ(xl)}m
l=1:

〈
Φ(xr), Ĝ Φ(xs)

〉
H
=

1
m

m

∑
l=1

Φ(xs)(xl)〈Φ(xr), Φ(xl)〉H

=
1
m

m

∑
l=1

k(xs,xl)k(xl,xr) =
1
m
[KX KX ] (r,s),〈

Φ(xr), Â tΦ(xs)
〉
H
=

1
m

m

∑
l=1

Φ(xs)(xl+1)〈Φ(xr), Φ(xl)〉H

=
1
m

m

∑
l=1

k(xs,xl+1)k(xl,xr) =
1
m
[KX KY ] (r,s),〈

Φ(xr), Â LΦ(xs)
〉
H
=

1
m

m

∑
l=1

(L Φ(xs))(xl)〈Φ(xr), Φ(xl)〉H

=
1
m

m

∑
l=1

[
∇F(xl) ·∇Φ(xs)(xl)+

1
2

a(xl) : ∇
2
Φ(xs)(xl)

]
k(xl,xr)

=
1
m

m

∑
l=1

[
∇F(xl) · 〈∇1k(xl, ·), Φ(xs)〉H+

1
2

a(xl) :
〈
∇

2
1k(xl, ·), Φ(xs)

〉
H

]
k(xl,xr)

=
1
m

m

∑
l=1

[
∇F(xl) ·∇1k(xl,xs)+

1
2

a(xl) : ∇
2
1k(xl,xs)

]
k(xl,xr)

=
1
m

[
KX KL

X
]
(r,s).

Here, we used the subscript ∇1 for the nabla-operator to indicate differentiation with respect to the

first variable. To get from the second to the third line, we used the derivative reproducing property

Dα f (x) = 〈Dα
1 k(x, ·), f 〉H ,

which holds for any multi-index α and all RKHS functions f as soon as the kernel is at least

2|α|-times continuously differentiable in both arguments, see20.

We see that in all cases, the full-rank matrix KX can be canceled out, which leaves us with (9).

In the reversible case, we replace the operator ˆA L by a symmetric bi-linear form

ˆA rev( f ,g) =− 1
2m

m

∑
l=1

∇
> f (xl)a(xl)∇g(xl).
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Computing its matrix elements on Hm, we find

ˆA rev(Φ(xr),Φ(xs)) =−
1

2m

m

∑
l=1

∇
>

Φ(xr)(xl)a(xl)∇Φ(xs)(xl)

=− 1
2m

m

∑
l=1

∇
>
1 k(xl,xr)a(xl)∇1k(xl,xs) = Krev

X (r,s).

In this case, we cannot cancel a factor KX , which leads to (10).
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