
MAX—PLANCK—INSTITUT
FÜR

INFORMATIK

On intersection searching problems

involving curved objects

Prosenjit Gupta. Ravi Janardan Michiel Smid

MPI—I—93—124 June 1993

(VPE
INFORMATIK

Im Stadtwald

66 123 Saarbrücken

Germany

On intersection searching problems

involving curved objects

Prosenjit Gupta. Ravi J anardan Michiel Smid

MPI—I—93—124 June 1993

On Intersection. Searching Problems Involving
Curved Objects

Prosenjit Gupta“ Ravi J anardan“ Michiel Smid'r

June 2, 1993

Abstract

Three classes of geometric intersection searching problems are considered, i.e., prob-
lems in which a. set 8 of geometric objects is to be preprocessed into a data structure so
that for any query object q, the objects of S that are intersected by q can be counted
or reported efliciently. In the first class, S is a set of linear objects, such as lines or
line segments, and q is a curved object, such as a circle, disk, or circular arc. In the
second class, S is a. set of curved objects, such as d—balls, d—spheres, circles, or circular
arcs, and q is also a curved object. In the third class, which is a generalization of the
first two, the objects in S are curved or linear and each is assigned a color. Given a.
query q, such as a disk or an annulus, the goal is to count or report the distinct colors
of the objects intersected by q.

Eflicient solutions are presented for a wide variety of problems from these classes.
The solution techniques are based on geometric transformations, on compositions of
known solutions for simplex range searching, on the locus approach, and on persistent
data structures. Previously, eficient solutions for such curved intersection searching
problems were known only for the case where 5' consists of curved objects and q is
linear.

Keywords: Computational geometry, data. structures, intersection searching, geomet-
ric transforms, partition trees, cutting trees, spanning paths of low stabbing number,
simplex range searching, simplex composition, persistent data structures.

*Department of Computer Science, University of Minnesota, Minneapolis, MN 55455, U.S.A. Email:
{pgupta, janardan}0cs .umn. edu. The research of these authors was supported in part by NSF grant
CCR—92—00270.

"Max-Planck—Institut für Informatik, W—6600 Saarbrücken, Germany. Email: michielempi-sb .mpg.de.
This author was supported by the ESPRIT Basic Research Actions Program, under contract No. 7141
(project ALCOM II).

1 Introduction

Intersection searching problems are among the most fundamental and widely-studied classes

of problems in computational geometry. In a generic instance of such a problem, a. set, S, of n

geometric objects must be preprocessed into a suitable data structure, so that for any query

object, q, the objects of S that are intersected by q can be reported or counted efliciently.

Specific examples of the objects in S and of q are intervals on the real line, points, lines,

line segments, rays, and triangles in the plane, and, more generally, points, hyperplanes,

and simplices in higher dimensions. (Of course, q need not be of the same type as the

objects in S.) Intersection searching problems arise in diverse application areas, such as,

for instance, robot motion planning, computer graphics, and computer-aided design, and so

eficient solutions (measured in terms of the space used by the data structure and the query

time) are of great interest. Such space- and query-time-efficient solutions have been devised

for many of these problems. See, for instance, [Cha86, CW89, DE87, Aga89, Mat92, CJ 92]

for a sampling of such results.
With a few exceptions, all previous work on these problems assumes that the input

objects and the query object are linear (e.g., lines or line segments) or piecewise-linear (e.g.,

polygonal or polyhedral). The case where the input and/or the query are non-linear (e.g.,

circles, disks, circular arcs, Jordan curves) has been largely ignored. Yet, such problems

arise often in practice, such as, for instance, in planning a collision-free path for a disk-

shaped robot in an environment consisting of polygonal obstacles. The only previous work

on intersection searching in this setting that we are aware of is [AvKO, VKOAQO, Sha91].

In [AvKO], efficient solutions are given for several problems where the input objects are

non-linear (e.g., circles, disks, circular arcs, Jordan arcs) and the query object is linear (e.g.,

lines, line segments, halfspaces, rays). In [vKOA90], intersection searching with lines or line

segments in sets of disks is considered. In [Sha91], the problem of stabbing a set of disks in

the plane with a query point is considered.
In this paper, we make further contributions to such curved intersection searching prob-

lems by presenting efficient solutions to three broad classes of problems. (In the context

of this paper, the term “curved” means circular or Circle-like objects such as circles, disks,

circular arcs, annuli, d—balls, and d—spheres.)
The first thrust of this paper is the design of efficient solutions to the following general

problem: Preprocess a set S of n linear objects (e.g., points, lines, or line segments), so that

the k objects that are intersected by a curved query object (e.g., a circle, disk, or circular arc)

can be counted _or reported eficiently. Thus, this part of our work complements the results

[Input alljectsl Query object I Query mode | Space | Query time |
Points Variable-rain? Count /fiat 17.3“ log n (+k)

annulus n log n «510g2 n (+k)
Variable-radius Count / Report n3+6 log n (+k)

circle/ disk 12 112/34" (+k)
Report n log2 n 12.2/3log2 n + k

Lines Fixed-radius Count / Report 12. 121/2“ (+k)
circle/ disk Report n log n mhk/510g2 n + k,

- fi logn+klogn}
Variable-radius Count / Report n3+‘ log n (+k)

circular arc n taz/3“ (+k)
Horizontal Variable—radius Report n log5 n @ log5 n + k

line segments circle
Variable-radius Report n3+~£ log n + k

disk n n2l3+€ + k
Arbitrary Fixed-radius Report n log2 n min{\/17 log” n + 1:,

line segments disk fi log n + k log n}
Variable-radius Report 17. 112/3” + k

circle ”3+: log n + k

Table 1: Summary of main results for intersection searching on linear objects with curved
query objects. I: denotes the output size for the reporting problem. All bounds are big-oh
and worst-case. Additional space-query time tradeoflt's are possible but not shown.

in [AVKO]. Table 1 summarizes our results.1 Our goal has been to obtain useful space and
query time trade-offs and, as can be seen from the table, we obtain polylogarithmic query

time at one extreme and linear or almost-linear space at the other extreme. We remark that
other intermediate trade-offs are also easily derived from our results; however, in order to
keep the paper to reasonable length, we do not discuss these here.

The second thrust of the paper is efficient solutions for the problem of preprocessing a
set 5 of n curved objects (e.g., d—balls, d—spheresz, circles, circular arcs) so that the ones

that are intersected by a curved query object can be counted or reported efficiently. This
problem was left open in [AVKO]. Table 2 summarizes our results for this class of problems.

1Throughout the paper, a. query time mitten in the form 0(t(n) (+lc)) should be interpreted as O(t(n))
for the counting problem and 0(t(n) + Ic) for the reporting problem. We use this convention for brevity.
Also, throughout 6 > 0 is an arbitrarily small constant. Whenever c appears in a. query time (resp. space)

bound, the corresponding space (resp. query time) bound contains a multiplicative factor which goes to oo

as € —> 0.
2A d-spherc is the boundary of a. closed d—ball

| Input objects | QueryEject] Qu_e_ry mode | Spice] Query time __I
d-ball d-ball Gait/Rafi" n nl—Twzmoglog n)0(1) (+76)—

nd+2+‘ log n (+k)
Report n log log n n1'1/ [(d+2)/21 (log n)0(1) + k

d-sphere d-sphere Count/ Report n nl'I/(d+2)(log log n)°(1) (+k)
nd+2+‘ log n (+k)

Circular arcs Circle ' Report n 11314“ +]:
n3+€ log n + k

Circles Circular arc Report n 123/4“ + k
n3+‘ log n + !:

Table 2: Summary of results for intersection searching on curved objects using a curved
query object. The input objects are of arbitrary radii and the radius of the query object is
variable. All bounds are big-oh "and worst-case. Additional space-query time tradeofl’s are
possible but not shown.

Here again, we only show the tradeofl’s at the two extremes.

Finally, we also consider a. generalized version of these intersection searching problems. In
this setting, the set 5' consists of 12. linear or curved objects that are colored and the goal is t o .

count or report the distinct colors of the objects that are intersected by a query object. Such

generalized problems have been considered recently in [J L93, GJ393, AvK93] in the context
of intersection searching involving linear input and query objects and have been shown to
be rich in applications. The goal in these problems is to obtain efficient solutions whose
query times are sensitive to the output size, namely the number, z', of intersected colors (not
the number, k, of intersected objects, which can be much larger). Typically, we seek query
times of the form 0(f (n) (+z')), where f (n) is polylogarithmic. Table 3 summarizes our
results for these problems. Note that these problems contain, as a special case, the standard
intersection searching problems where we are interested in all the objects intersected by the
query—the standard problem is obtained by assigning each input object a distinct color—
hence the term “generalized”. Thus, for instance, the fixed-radius bounds in Table 3 also
apply to the corresponding standard problems. (To avoid repetition, we have omitted these

results from the earlier tables.)
Our results are based on two main approaches. The first approach is to convert the

curved problem at hand to an instance of an appropriate simplex range searching problem
by the application of one or more geometric transforms. We then solve the latter problem by

suitably composing together well-known techniques such as partition trees, cutting trees, and

spanning paths of low stabbing number. This general approach has been used in [AvKO].

3

FIaut objects | Q_uery object Query mode Space Query time
Points Fixed-radius

annulus
Lines Fixed-radius

Arbitrary circle/ disk Count / Report n2 log n (+i)
line segments
Disks of arb— Fixed-radius
itrary radii disk

Variable-radii Count n2 log2 n log2 n
annulus Report n“ log n log n + i

Points
Variable-radius

disk
Lines Variable-radius

circle/ disk Count n4 log n
Arbitrary line log n (+i)

segments Report 72.4
Variable-radius

Disks of disk
arbitrary radii

Table 3: Summary of results for generalized intersection searching with curved objects. All
bounds are big-oh and Worst-case. Here 5 is the output size for the generalized problem, i.e.,
the number of distinct colors intersected by the query.

What makes this part of our work interesting is that the characterization of intersection and
the appropriate transform(s) to use is not always apparent; indeed, in some cases, we need
to apply successively more than one transform in order to obtain a problem of the desired
form. We use several well—known transforms and also introduce some new ones.

Our second approach, which we use for the generalized problems, is based on a combi-
nation of the locus approach and persistent data structures: We partition the plane into
suitable regions within which the answer to a query is invariant and store With each re—
gion the associated answer. However, storing this information in its entirety entails a large
storage overhead. We show how to reduce the storage by roughly an order of magnitude,
without affecting the query time, by ordering the regions suitably and applying persistence
techniques. Furthermore, for the variable-radius problems, the querying strategy is some-
what subtle because the answer to the query is not available explicitly in the information
stored with each region but rather is embedded in a region-specific total order on the input
objects. We show how the search within this total order can be reduced to a generalized
1-dimensional range searching problem, which is solvable efficiently.

Thus the contribution of the paper is a uniform framework to solve efficiently a. Wide
variety of interSection searching. problems involving curved objects. We believe that our
methods will be useful in solving intersection searching problems involving other kinds of
curved objects as well.

The rest of the paper is organized as follows: Section 2 reviews several techniques that
we use frequently in the paper. Sections 3-5 discuss intersection searching on linear objects
with curved query objects. The problem of querying curved objects with curved objects
is considered in Section 6. Section 7 discusses the generalized problems. We conclude in
Section 8 with a discussion of some open problems.

In general, in this paper we will ignore the issue of degenerate configurations, such as, for
instance, a query object merely touching an input object. Our algorithms can be modified
easily to handle degenerate cases without any loss of asymptotic efficiency (as we illustrate
for the algorithm in Section 5.1), but at the expense of complicating the exposition.

2 Preliminaries

In this section, we review certain geometric transformations and data structuring techniques
that we use frequently in the paper. Our review is brief and we refer the reader to the
references provided for further details.

2.1 Geometric transformations

We consider the following three groups of transformations. Further details can be found in
[Ede87, AvKO].

1. Let C be a circle in the plane, with center (a, b) and radius r and let p = (c, d) be a point
in R2. Define <p(C) to be the plane z = a(2a: — a) + b(2y — b) + r2 in R3 and define 1/)(p)
to be the point (c, d, C2 + d2) in R3. ¢(p) is the vertical projection of p onto the paraboloid
U : z = :02 + 3/2. („(C) is the unique plane in R3 which intersects the paraboloid U in the
vertical projection of C onto U. Note that ¢(p) lies below (resp. on, above) <p(C) iff p lies
inside (resp. on, outside) C.

2 . Let C be as in (1) above and let € be the non-vertical line y = ma: + c. Let 2+ (resp.
€“) be the closed halfplane lying above (resp. below) [.3 Define „(C) to be the point
(a, b, r) in R3 and w(£+) (resp. w(€')) to be the halfspace z _>_ (ma: — y + c) N117 (resp.
z 2 (—m:c + y — CHM—5) in R3. If € is the vertical line a: = c, then define w(£+) (resp.
w(€')) to be the halfspace z 2 :c - c (resp. z 2 —:z: + c). It can be verified easily that €*“
(resp. €") intersects C ifi' „(C) € w(€+) (resp. „(C) € w(£')). Moreover, € intersects C ifi'
„(C) € w(£+) fl w(€').

3. The following transformation, ?, is the well-known point-hyperplane duality. Consider
the point p = (a, b) and the non-vertical line € : y = sa: — t in “R2. Define f(p) to be the line
y = aa: — b and f(fl) to be the point (s, t) . Likewise, given the point p = (a, b, c) and the
non-vertical plane € : z = so: + ty -— u in R3, let f(p) be the plane z = aa: + by — c and f(ß)
the point (s‚t , u). It is easy to see that parallel lines (resp. planes) are mapped to points
with the same y—coordinate (resp. :c- and y—coordinate) and, moreover, p lies above (resp.
on, below) £ iff f(p) lies below (resp. on, above) f(l).

In addition to the above transforms, we also introduce some new transforms in Section 6
for intersection searching on curved objects with curved query objects.

2.2 Data structures for simplex range searching

In the simplex range searching problem, a set .5' of 11 points in ’R.“ is to be preprocessed so
that the points inside a query simplex can be reported or counted efficiently. An important
special case is halfspace range searching, Where the query is a halfspace. Our interest in this

3In general, if h is a non-vertical hyperplane in 12.", d Z 2, then we use h+ (resp. h ") to denote the closed
halfspace lying above (resp. below) h.

problem stems from the fact that many of our curved intersection searching problems can ‘
be reduced, usually via a geometric transformation, to simplex range searching.

Recently, several techniques, exhibiting difierent space-query time tradeoffs, have been

developed for this problem. These include spanning paths of low stabbing number [CW89],
partition trees [Mat92], and cutting trees [Mat91a]. We review these and a technique called
simplex composition [vK92] in this subsection. (A very good exposition on most of these
topics can be found in [vK92, dB92].)

2.2.1 Spanning paths of low stabbing number

Let S be any set of n points in ’Rd and let A g 5'. Following Chazelle and Welzl [CW89],
we say that a query range q stabs A if there exist 3,3; € A such that a: € q and y i q. In
particular, if |A| = 2, say A = {:c, y}, then q stabs the line segment (edge) “537 if q stabs A.
Chazelle and Welzl have shown that S admits a. polygonal path H, which spans the points
of S, such that any query halfspace in Rd stabs at most c(n) = 0(n1'1/“) edges of H. The
number c(n) is called the stabbing number of H.

Given H, we can construct a binary tree, T, of height 0(log n) which stores the points
of 5 at its leaves, in the order in which they appear 011 H. This tree is called an s-tree
[AvKO]. Let T(v) be the subtree of T rooted at a node v, let S (0) be the points of S
stored at the leaves of T(v), and let 11(1)) be the subpath of H spanning S’(v). For any query
halfspace, H, in R‘! the canonical nodes of T w.r.t. H are the highest nodes v of T such
that H(v) is not stabbed by H. Let VH be the set of canonical nodes w.r.t. H. As shown in
[CW89], lVHl = 0(n1"1/“ log n). The sets S(v), v € VH, partition S and each S(v) either lies
completely in H or is disjoint from it. Thus, once VH has been identified, the points lying in
H can be counted by simply adding up IS (v)| for each v 6 V3 such that S(v) lies completely
in H. (IS (v)| is computed during preprocessing.) Thus, the query time is upper—bounded
by the time to identify VH. Similarly, for the reporting case. (Here we also need to include
k—the number of points reported—in the query time.)

As noted in [CW89], all of the above discussion also applies to the case where the query
range is a d-dimensional simplex or a d-ball (d fixed), rather than a halfspace.

How (and how fast) can VH be computed? In [CW89], it has been shown that if d = 2, 3,
then for any halfspace H, VH can be computed in time 0(n1'1/d log‘i—1 n) , as follows: Do
3. depth-first search of T but not searching below a node v ifi' H does not stab S(v), i.e.,
iff the bounding plane of H does not intersect the convex hull CH(v) of S(v). Each such
0 is included in VH. Since the intersection test takes 0(log n) time [DK83], the total time
is 0(n1‘1/dlog2 n). However, for d = 2, a logarithmic factor can be trimmed via fractional

cascading [CG86]. This establishes the claimed bound. The space used by T is 0(n log n).
Clearly, this bound also extends to a query simplex.

As shown in [CW89], if d = 2 then for any query disk D (a 2—ball), VH can be found
in 0(\/1ilog2 n) time. The idea is to do a. depth—first search of T but not search below a
node 1) iff D does not stab S(v). (Each such 0 is included in V3.) Let C be the bounding
circle of D. By using the transformations cp and ib of Section 2.1 the above stabbing test
becomes equivalent to testing whether, in R3, the plane 90(0) intersects the convex hull of
the point-set {rb(p) I p € S(v)}. Since this takes O(log n) time [DK83], the claimed bound
follows. Again, T uses O(n log n) space.

2 .2 .2 Simplicial partitions and partition trees

Let S be a set of n points in Rd. In [Mat92], Matousek has shown that for any parameter
r S n, 'Rd can be decomposed into m = 0(r) simplices 31,32, . . . ‚sm such that (i) each s.-
contains a subset 5; of 5 , (ii) the sets S,- together partition S, (iii) ISgI S 2n/m, and (iv)
any hyperplane intersects only 0(r1‘1/d) simplices. (Note that simplices may overlap and a
simplex s.- can contain other points of .5' besides ‚S,-.) Such a decomposition is called a fine
simplicial partition for S.

This decomposition is the basis for the construction of an efficient partition tree, T, for
simplex range searching on S. T is defined recursively as follows: We associate the pair
(Rd, S") with the root v of T, where S’ = S. If S’ is greater than some prescribed constant,
then we compute a fine simplicial partition for S’, With r = |.S" |1'1/d , and, for 1 S i S m, we
associate the pair (s,-, 55) with a child of v. We then construct recursively the subtree rooted
at each child of 2).

To answer a counting or reporting query for a simplex q, we search in T starting at v.
Let u be the current node in the search, with associated pair (s,-, Si). If it is a leaf, then we
check the points of S; against q one by one. Suppose that u is not a leaf. If q contains 5},
then we add [S,-| (which is computed during preprocessing) to a global count or report the
points in 35. If q is disjoint from 55, we st0p searching below u. If q intersects Si, then we
recursively search all of u’s children.

Theorem 2.1 [Mat92] A set S of n points in Rd can be preprocessed, in time O(n log n),

into a data structure of size 0(n) such that a simples: counting (resp. reporting} query can be
answered in time 0(n1'1/d(log log n)°(1) (+k)) , where]: is the number of points reported. Ü

2.2.3 Cuttings and cutting trees

Whereas simplicial partitions are defined on a set of points, cuttings are defined on a set of
hyperplanes and hence, in a sense, operate in the dual space.

Let H be a set of n hyperplanes in 12". In [CF91], Chazelle and Friedman have shown
that for any parameter r 5 n , ’12" can be partitioned into m = 00‘“) simplices, s l , 82, . . . , sm,

such that any simplex intersects at most n / r hyperplanes of H. Such a partition is called a
ä—cutting for H.

A cutting tree, T, for H is defined as follows: With the root 1) of T we associate the

4—tuple (s,H’,H°,Hb), where 3: 72“, H’ = H, and H“ = @ (resp. H5 = 0) is the subset
of hyperplanes of H lying above (resp. below) 5. If IH' | is larger than some prescribed
constant then we compute a ä—cutting for H' , for some r S n. For 1 5 i S m, let 3,- be a
simplex in the cutting and let H,- g H’ consist of the hyperplanes that intersect si. Let H,?
(resp. Hf) consist of the hyperplanes of H’ that are above (resp. below) sg. We associate
(35, H;, Hf, H?) with a child of v and then recursively construct its subtree.

Let S’ be a set of n points in Rd. Let us consider how to use the cutting tree T to answer
a halfspace counting or reporting query using a query halfspace h+. By duality, we are
equivalently searching in a set, H, of hyperplanes for those hyperplanes that lie below the

query point q = .77(h) We search from the root of T, always maintaining the invariant that
q is in the simplex associated with the current node u. Let (s,-, H;,H‚9, Hf) be the 4-tuple
associated with u. We first add IHf’I to a global count (or report its hyperplanes). If u is a
leaf then we also check the hyperplanes in H,- against q one by one. Otherwise, we determine
the child of u whose associated simplex contains q and search its subtree recursively.

Theorem 2.2 [Cha91] A set S of n points in 12" can be preprocessed, in time 0(nd), into a

data structure of size 0(nd) such that the points that lie in a query halfspace can be counted

(resp. reported) in time O(logn (+k)), where 1: is the number of reported points. Ü

Now suppose that the query is a simplex q. Then q dualizes to a set q' of d + 1 points
in 72", one per bounding hyperplane of q. Thus, we are searching for the hyperplanes of
H that satisfy the appropriate above/ below relationship w.r.t. each point in q’. We can
solve this problem as above, except that at each node u of T we recursively append an
auxiliary structure of the same kind for H,? and for Hf. (Thus, there are d levels of auxiliary
structures.) To answer a query, we search in the outermost tree with one of the points of

q' and identify a set of O(log n) nodes whose associated simplices contain the point. We
then search the auxiliary structures of these nodes recursively with the remaining points in

9

q’. This approach yields a total query time of 0(log‘JH'1 n). By using additional techniques
(see [Cha91, CSW90, Mat91a] or [dB92]) this can be reduced to OG log n) while the storage
becomes O(nd+‘), where e > 0 is an arbitrarily small constant.

Theorem 2 .3 [Cha91, CSWQO, Mat91a] A set S of n points in Rd can be preprocessed, in

time O(nd+°)‚ into a data structure of size 0(n‘H“) such that the points that lie in a query

simplen: can be counted (resp. reported) in time 0(logn (+h))‚ where h is the number of
reported points and 6 > 0 is an arbitrarily small constant. Ü

2.2.4 Simplex composition.

Let 8 be a set of n geometric objects in Rd and let D be a. data structure for some query
problem on 8. Let the space and query time bounds for D be 0(f(n)) and O(g(n)), re—
spectively. Suppose that we wish to now solve our query problem not w.r.t. S but w.r.t. a
subset S’ of 8 that satisfies some condition. Moreover, suppose that 8’ can be specified by
putting 8 in 1—1-correspondence with a set 'P of points in Rd and letting &" correspond to
the subset 'P' of 'P that is contained in a query simplex.

How can we solve the query problem on S’ and what is its complexity as a function of n ,
d, f (n), and g(n)? In [VK92], van Kreveld investigates this general problem, which he calls
a simplen: composition an ? to D , and proves the following result:

Theorem 2.4 [vK92] Let 'P be a set of n points in Rd in 1—1-correspondence with a set 8
of n objects in 72“. Let D be a data structure on S of size O(f(n)) and with query time
0(g(n)), For an arbitrarily small constant e > 0, the application of simplen: composition an
'P to D results in a data structure

(i) of size O(n‘(nd + f(n))) and. query time 0(log n + g(n)),

(ii) of size 0(n + f (n)) and query time 0(n‘E(nl"1/"I + g(n)))‚

(iii) of size 0(m‘(m + f (n))) and query time 0(n‘(g(n) + n/ml/d)) , for any n 5 m 5 nd ,

assuming that f(n) / n is nondecreasing and g(n)/n is nonincreasing. Ü

We note that for a reporting problem, g(n) represents just the time to search in D for
the answer and does not include the time to actually output the answer. For the reporting
problem, if the query time of D is of the form “0(g(n)) plus the output size”, then for the

10

composed problem we must include the overall output size as a linear additive term in the
query times given in Theorem 2.4(i)-—(iii).

Very briefly, part (i) of the theorem is obtained by building a. cutting tree T on the set of
hyperplanes that are dual to the points in ’P and storing at each node u an instance of D for
the subset of 8 that is in correspondence with the hyperplanes that miss u’s simplex in the
cutting. Given the query simplex, a. subset of the nodes of T is identified (as in Section 2.2.3)
and the D-structure at these nodes is queried. Part (ii) is obtained by building a partition
tree on 'P and storing at each node u an instance of D for the subset of 8 that is in
correspondence with the points of 'P associated with u’s simplex in the simplicialpartition.
Part (iii) is obtained by combining parts (i) and (ii) suitably.

We will use Theorem 2.4 extensively in this paper. For brevity, throughout we will apply
only parts (i) and (ii) to illustrate the two extremes in the space-query time trade-off that are
attainable. The reader should be aware that part (iii) can also be applied to get intermediate
trade-offs. .

Let us illustrate the above ideas with the following (somewhat contrived) example: Let
8 be a set of n vertical line segments in R2 and let D be a data structure for the following
query problem on S : “Given a. query line €, find the segment of S whose midpoint is closest
to €.” Now suppose that we wish to restrict our search to only those segments of S that are
intersected by €. Since a segment s € 8 intersects € ifi' its upper endpoint is in !"” and its

lower endpoint is in £“ , we can cast the intersection condition as two halfplane (i.e., simplex)
compositions: In the first, we associate 8 with the set Z»! of upper endpoints and use €*; in
the second, we associate 8 with the set £ of lower endpoints and use €“. We then apply
these two compositions successively using Theorem 2.4.

As another example (and the kind that we encounter most frequently in this paper),
suppose that we wish to count or report the segments of S that are intersected by €. We
take D to be a linked list of the objects of 8 and store its size at its head. Clearly, D solves
the trivial “query” problem, “count or report the segments of 8 ,” in f (n) = 0(n) space and
g(n) = 0(1) query time. Thus, as in the previous example, the restricted problem (namely,
“count or report the segments in S that are also intersected by €”) can be solved via. two
successive halfplane compositions. The query time is 0(log n (+k)) (resp. 0(n1/2+° (+k)))
and the space is O(n2+‘) (resp. O(n)).

11

3 Variable-radii annulus range searching

As a warm-up problem, we consider the following problem whose solution is fairly simple

but illustrates some of the ideas: Let S be a. set of n points in the plane. Let Ann(q, rl, r2)
be a. query annulus, i.e., the closed region of the plane bounded by the circles 0'1 and C2 of
radius r1 and r2 (rl 5 T2), respectively, centered at q. We assume that rl and T2 are part

of the query and not known beforehand. The problem is to preprocess 5 so that the points
that lie in Ann(q, r1,r2) can be counted or reported efficiently. Our approach is based on
geometric duality and simplex composition.

Let 01 and 0'2 be the inner and outer circle, respectively, of the query annulus. From the

discussion of the transforms cp and zb in Section 2.1 it follows that our problem is equivalent

to counting or reporting those points in the set S" = {¢(p) I p E S } in R3 that lie between
the planes (‚0(C1) and (‚0(0'2), i.e., in go(C1)+ n 90(02)‘. We solve this by two applications 'of

halfspace composition in R3 (Theorem 2.4).
With reference to Theorem 2.4, let 8 = 'P = S" and let the structure D be a linked list

of points, with its size stored at the head. Clearly, f(n) = 0(n) and g(n) = 0(1). Applying
Theorem 2.4(i) on D (with d = 3) gives a structure D' of size f’ (n) = 0(n‘(n3+n)) = 0(n3+‘)
and query time g’ (n) = 0(log n) to count or report the points lying in (‚0(C1)+. (For the
reporting problem, the overall time is g’ (n) plus the output size.) Applying Theorem 2.4(i)
again, with D = D' and S = ’P = S", gives a structure of size O(n“(n3 + n3+‘)) = O(n3+")
and query time 0(log n + log n (+k)) = 0(log n (+k)) to count or report the points lying in
<P(01)+ n 9402)”-

Theorem 3.1 A set S of n points in the plane can be preprocessed into a data structure of

size 0(n3+‘), where € > 0 is an arbitrarily small constant, such that the points lying inside a

variable-radius query annulus can be counted (resp. reported} in time 0(logn (+k)) , where

k is the number of reported points. Ü

Note that Theorem 2.4(ii) can be similarly applied to get a structure of size 0(n) and
query time 0(n2/3+‘). However, we can use a different approach to get the much lower
query time of Oh/Hlog2 n (+k)), while the space increases only slightly to 0(n log n). This
approach is similar to the one given in [CW89] for disk range searching,

As before, our goal is to report or count those points in the set {d)(p) | p E S} that
lie in 90(Cl)+ n 50(0'2)’. In preprocessing, we construct a spanning path II of stabbing
number c(n) = Oh/fi) (w.r.t. disks) on the points of S and build an s-tree on it (of. the

12

discussion in Section 2.2.1). At each node v, we store the convex hull CH(v) of the point-set

«(t/)(?) IP € 500)}-

To answer a. query, we compute the set V1 of canonical nodes of T w.r.t. the disk bounded
by Cl, as described in Section 2.2.1. Let Vl’ g V1 consist of those nodes v such that CH(v) is
in (p(C1)+. We next compute (a subset of) the canonical nodes of T w.r.t. the disk bounded
by 02 by searching only in the subtrees rooted at the nodes belonging to V1' . Let V2’ g V2
consist of those nodes 12 such that CH(v) lies in (p(Cz)', and, therefore, in (‚0(C1)+ (\ (‚o(Cg)".
For each v € Vz’, we simply add up the IS (v)|’s for a counting query and report the points
in S(v) for a reporting query. The query time and space follow from the discussion in
Section 2.2.1 and we thus conclude:

Theorem 3.2 A set S of n points in the plane can be preprocessed into a data structure

of size 0(n log n) such that the points lying inside a variable-radius query annulus can be

counted (resp. reported} in time O(filog2n (+lc)), where k is the output size. El

4 Intersection searching "on lines

In this section, we consider how to preprocess a set S of lines in the plane so that we can
count or report efficiently the intersections of a query circle or circular arc with the lines. We
note that all our results in this section also hold for query disks since a line in S intersects
a circle ifi it intersects the corresponding disk.

4.1 Querying with a variable-radius circle

We successively apply two of the transformations from Section 2.1 to convert the problem
to one in R3, concerning line segments and a query plane.

Let q = (a, 6) be the center and r the radius of the query circle C = C(q,r). Let
€ : y = mw + c be any line in the input set S. From Section 2.1, we know that C intersects €
ifi' the point p = „(C) = (a, b, r) is contained in the wedge w(£"') nw(£"). By definition of no,
there exist planes H1 and H2, such that w(£+) = H?“ and w(l') = H; . Thus, C intersects €
ifl' p € Hi" 0 H3" .

Let us now apply the transform .7: to map p to a non-vertical plane and H1 and H2 to
points in 72". Since p is above H1 ifi' .7:(p) is below .? (H1) (and similarly for H2), it follows
that C intersects € iii .? (p) is below the line segment f(H1)f(H2). Hence, we have reduced

13

the problem of counting or reporting the lines intersected by a variable-radius query circle
to the following problem:

Problem 4 .1 Preprocess a set S" of n line segments in R3 so that for any non-vertical query
plane H, the segments that lie completely in H"" can be counted or reported efi‘iciently.

We can solve this problem using halfspace composition, as follows: With reference to
Theorem 2.4, let 8 = S’ and let ? be the set of left endpoints (say) of the segments in S' . Let
D be a linked list of the segments, with its size stored at its head. As before, f (n) = 0(n)
and g(n) == O(1). Applying Theorem 2.4(i) to D, with d = 3, we get a structure D’ of
size f’ (n) = O(n3+‘) and query time 9’ (n) = O(log n) . Applying Theorem 2.4(i) again, with
D = D' and S and ’P being the set of right endpoints, gives the desired data structure, which

uses 0(n3+") space and has a query time of O(logn (+lc)), where e' > 0 is an arbitrarily
small constant.

Alternatively, we can apply Theorem 2.4(ii). This yields a structure with space O(n) and
query time O(n2/3'l'" (+k)).

Finally, we can also obtain a. faster query time for the reporting problem, while increasing
the space slightly. We build a spanning path of stabbing number 0(n2/3) (w.r.t. halfspaces)
on the endpoints of the segments in S’ and then build an s-tree, T , on i t . At each node v ,
we store an instance, I (v) of the halfspace reporting structure of Aggarwal et al. [AHL90].
(This is in addition to the convex hull CH(v) of S’(v)——cf. Section 2.2.1.) I (v) is built on
a set, S"(v), of points, defined as follows: for each point p E S’(v), we include in S”('v) the
other endpoint of the segment to which p belongs. I (v) uses O(m log m) space and has a
query time of O(log m + k), where m = |S”(v)|.

Given a query halfspace H '", we identify the set, VH+, of canonical nodes and then

determine a subset VI?” of VH+ consisting of the nodes v of T such that S’(v) G H"'. At
each node v € V11”, we query I (v) with H'". The correctness of the method is clear. From
the discussion in Section 2.2.1, V,}... has size O(n2/3 log n) and can be found in 0(n2/3 log2 n)
time. The halfspace queries take O(nz/3 log2 n + k) total time. The space used per level of
T is O(n log n) and so the overall storage is O(n log2 n) .

Thus, we have shown:

Theorem 4 .1 A set 5 of 17. lines in the plane can be preprocessed into a data structure of

size 0(n3+°) (resp. O(n)) such the lines that are intersected by any variable—radias query

circle, can be counted or reported in time O(logn (+lc)) (resp. 0(n2/3+‘ (+16))), where e > 0
is an arbitrarily small constant and k is the number of reported lines. Moreover, for the

14

reporting problem, there is also a solution which uses O(n log2 n) space and has a query time

of 001”3 log2 n + k). EI

4.1.1 The case of a fixed-radius query circle

If the radius, r , of C is fixed, then there is a simpler and more eflicient solution, which is

based on the following easily-prOved lemma.

Lemma 4.1 A circle C of radius r intersects a line € if the center of C lies within the

closed strip, strip” whose bounding lines are parallel to € and at a distance of r on each side

oft. EI

Using the transform ‚7:, we duah'ze the bounding lines of each non-vertical strip to two
points that have the same :c—coordinate; thus a. strip dualizes to the vertical line segment
joining the two points. (As we will see, vertical strips can be handled easily.) The query
point q dualizes to a line. By the incidence-preserving property of .'F, the point enclosure
problem for the strips is now equivalent to: preprocess a set S ’ of n vertical line segments in
R2 so that the segments that are intersected by a query line € can be counted or reported
efficiently. But this is precisely the example discussed in Section 2.2.4. It was shown there
that the problem is solvable in 0(n) space and 0011/24" (+k)) query time. (There is also an
0(n2"")-space and 0(log n (+k))-query time solution. However, this is inferior to the bounds
that can be obtained from Section 7.3 for the more general problem of querying colored lines

with a fixed-radius query circle.)
For the reporting problem, yet another tradeofl' is possible. The segments in S" that are

intersected by £ can be reported in 0(n log n) space and O(min{\/h log n+k log n , “510g2 n+
k}) query time using an algorithm given in [0.192], which is based on spanning paths of low
stabbing number.

Finally, we discuss how vertical strips are handled. Let HD(C) be the horizontal line
segment that extends a. distance of r on each side of q. It is easy to prove that a vertical
line € € S intersects C(q,r) ifi € intersects HD(C). This observation reduces the problem
to a l-dimensional range reporting problem since € intersects HD(C) ifl' (’3 projection on
the z-axis (a point) lies inside the :::—projection of HD(C) (an interval). The counting (resp.
reporting) problem can be solved in 0(n) space and 0(log n (+k)) query time by storing
the x—projections of the vertical lines in sorted order in an array and doing a binary search
for each endpoint of the query interval. Thus, vertical lines do not affect the asymptotic
complexity of the solutions presented earlier.

15

Theorem 4.2 A set S of n lines in the plane can be stored in a data structure of size 0(n2),

(resp. 0(n)}, such that the lines that are intersected by a fixed-radius query circle can be

counted (resp. reported} in O(logn (+k)) (resp. 0(n1/2+‘ (+h))} time, where e > 0 is an

arbitrarily small constant. Moreover, the reporting problem can also be solved in 0(n log n)

space with a query time of O(min{\/n log n + klog n , de'—flog2 n + k}) . D

4.2 Querying with a Variable-radius circular arc

Let 7 be the variable-radius query arc. Let circ(7) denote the circle that 7 is a. part of, let 7'
denote the closure of circ(7) —— 7 , let chord (7) denote the line segment joining the endpoints
of 7, and let center(7) and radins(7) denote, respectively, the center and radius of circ(7).

Lemma 4.2 [AvKO] A line € intersects a circular are 7 if one of the following two condi-

tions is satisfied:

(i) E separates the endpoints of 7 , or

(ii) both endpoints of 7 and the circular are 7' lie on the same side of 2, and € intersects

circ(7). Ü

Let us first consider only the non-vertical lines of 3 . Lines € satisfying condition (i) of
the lemma must intersect chord (7) and so can be handled as follows: By duality, € intersects
chord(7) ifi' f(f) lies in the doublewedge, W, formed by .77(a) and ‚7:(b), where a and b are
the endpoints of 7 . In [CW89] it is shown how to count or report the points in a fixed-size
convex polygon in O(n) space and 0(\/7_?‚ log n (+k)) time. We simply apply this query twice,
once for each wedge of W. Alternatively, we can use two halfplane compositions based on
cutting trees (Theorem 2.4(i)) to solve the problem in 0(n2+‘) space and 0(logn (+k))
query time.

For condition (ii), we need to (a.) find those lines € such that 35 and 7’ are on the same
side of € and (b) among these lines find those that intersect circ(7). VVlog assume that 7
lies above E; if E is vertical, then wlog assume that 7 lies to its left. Then it is clear that
a and b must both lie below any line € satisfying condition (a) above. That is, by duality,
f(l) must lie in f(a)‘ fi f(b)‘. Thus condition (a) reduces to two halfplane compositions.

Moreover, as seen in Section 4.1, condition (b) can be reduced to two halfspace com—
positions. It follows now that we can determine lines satisfying condition (ii) by using two
halfplane compositions and then two halfspace compositions. Applying Theorem 2.4(i) (resp.

16

Theorem 2.4(ii)), we get a data. structure of size O(n3+") (resp. C(12)) and a query time of
0(logn (+k)) (resp. 0(n2/3"'" (+k))).

Finally, we discuss how to handle vertical lines in S . Clearly, a vertical line € intersects 7
if K’s abscissa lies in the interval that is obtained by projecting 7 onto the :c-axis. Thus the
problem reduces to 1-dimensional range searching, which can be solved in 0(n) space and
0(logn (+k)) query time.

Note that the sets of lines in S satisfying condition (i), condition (ii), and the set of
vertical lines are mutually disj oint. Thus for the counting problem, we simply sum up the
counts obtained for each case. We may now conclude:

Theorem 4.3 A set S of n lines in the plane can be preprocessed into a data structure of

size 0(n3+“') (resp. O(n)), so that given any variable-radius query circular are 7 , we can

count or report the lines intersected by 7 in 0(log n(+k)) (resp. O(n2/3'"€ (+lc))) time. Here

6 > 0 is an arbitrarily small constant. El

5 Intersection searching on line segments

In this section we assume that the given set 5' consists of finite line segments and that
queries are variable-radius circles or disks. We first consider the case where all the segments
are parallel (say horizontal), which, for query circles, already turns out to be an interesting

problem, and later consider the case of arbitrary segments.
First some notation. We denote the query disk by D , its center by center(D), and its

radius by radius(D). Let VD(D) denote the vertical line segment of length 2 - radius(D)
centered at center (D). Analogous definitions apply When the query is a circle C.

5.1 Querying horizontal line segments with a variable-radius cir-
cle

The following lemma characterizes the intersections between a horizontal line segment and
the query circle C .

Lemma 5.1 Let int(C) denote the interior of the closed disk bounded by C . A circle C in-
tersects a horizontal line segment 3 if at least one of the following two conditions is satisfied:
(i) int(C) or C contains exactly one of the endpoints of 3, or
(ii) VD(C) intersects s and int(C) contains no endpoints of 3.

17

Proof Let s = E and let ezt(C) be the exterior of the closed disk bounded by C . If s
intersects C only once, then it must be of one of the following types: (a) a € int(C) and
b € ext(C), or (b) a € int(C) and b € 0, or (c) a € C and 6 € ezt(C). All three cases are
covered by condition (i). If s intersects C twice, then it must intersect VD(C) and, moreover,
a and b must both be in 0 U ezt(C) This is covered by condition (ii). Finally, if s does not
intersect C at all, then either a and b are both in ext(C) and s does not intersect VD(C) or
a and b are both in int(C) In either case, neither condition (i) nor condition (ii) holds. Ü

We determine the segments satisfying condition (i) by extending to R3 the algorithm of
Cheng and J anardan [CJ 92] which reports intersections between a query line and a set of
possibly intersecting line segments in R2.

Let us map C to the plane H = cp(C) and map each segment s = c't—b to a segment
s' = W in 3-space. Recall that H'" (resp. H ') denotes the closed halfspace above
(resp. below) H. Also, let H'" and H ' be the corresponding open halfspaces. Referring to
the proof of Lemma 5.1, if s = 517 is of type (a), (b), or (c), then correspondingly we have:
(a) ¢(a) € H“ and gb(b) € IT", or (b) 1,5(a) € H“ and ¢(b) € H, or (c) 11;(a)'€ H and
¢(b) e FI+.

We now show how to report the types (a)-—(c) segments. (Throughout, we use the notation
of Section 2.2.1.) We build a spanning path H of stabbing number O(\/TD (w.r.t. disks) on
the endpoints of the segments in S and then build an s—tree T on II. For any node 1) € T,
let S’(v) = {z,b(p) | p € S(v)}. At 1), we store an instance, 1(0), of the halfspace reporting
structure given in [AHL90] (this is in addition to CH(v)). I (0) is constructed on a set S”(v)
of points that is obtained by including for each point zß(p) € S’(v), the other endpoint of the
segment of which 1,0(p) is an endpoint.

To answer a query, we first find the set VH+ of canonical nodes w.r.t. H"’. At each node
v € VH+ , we apply a halfspace reporting query using H " and for each point zb(p) found, we
report the segment s € 5' having p as an endpoint. Next, we repeat the above steps With
H'" replaced by H ' and H' replaced by H'".

Lemma 5.2 Given a set S of n horizontal line segments in the plane, the k segments that
satisfy condition (z") of Lemma 5.1 w.r.t. any query circle C can be found in 0(fi log2 n+k)
time using 0(n log2 n) space.

Proof From the preceding discussion it should be clear that the first query, using H"',
reports all type (a) and type (b) segments and that the second query, using H “ , reports all

type (a) and type (0) segments. Morever, any segment 3 which does not satisfy condition (i) of
Lemma. 5.1 must have both endpoints in int(C) or in ext(C) or on C . Thus, the corresponding

18

segment 3' has both endpoints in H“ or in IT" or on H. Since in each query we query first
with a closed halfspace, the first two types of segments will not be reported. Moreover, since
in each query the halfspace reporting query is done with an open halfspace, the third type
of segment is also not reported. This proves the correctness of the method.

For the running time, note that |VH+| = O(\/1710g2 n), since His constructed w.r.t. disks.
As seen in Section 2.2.1, the time to compute VH+ is 0(\/n log2 n). Since a halfspace query on
an m-point set takes 0(log m) time [AHLQO], the total time for the first query (and similarly
for the second one) is 0(\/1_ilog2 n). The space used by the halfspace query structure is
0(m log m), which sums up to 0(n log n) across each level and, hence, to 0(n log2 n) overall.
El

Let us now consider how to find the segments satisfying condition (ii) of Lemma 5.1.
First, we note that the data structure of Lemma 5.2 also allows us to find, within the same
bounds, the 19 segments 3 = a; E S that have both endpoints in C U ext(C), i.e., intersect C
twice. This is because then s' = W is such that both endpoints are in H U Ü'l' = H"“.
Thus we can first find VH+ and then answer a halfspace reporting query at each v 6 VH+
using H'" again as the query. Let us call this structure D.

Second, let us represent each s € 5 as a triplet (51,32,33), where (31,33) and (32,33) are
the left and right endpoints of 3, respectively. Similarly, we represent VD(C) as a triplet
(vl, ‘02, v3), where (vl, '02) and (vl, v3) are the lower and upper endpoints of VD(C). Then, s
intersects VD(C) iff 31 5 vl and 32 2 vl and ‘02 S 33 $ ‘03.

Thus, our problem reduces to finding among the segments that satisfy the above inequal-
ities the ones that are intersected twice by 0 . We can do this by building a 4—level binary
tree, where the innermost level is the structure D described above and each of the other
levels merely adds a range restriction as specified by the above inequalities.

Thus we have shown:

Lemma 5.3 Given a set .5‘ of n horizontal line segments in the plane, the k segments that
satisfy condition (ii) of Lemma 5.1 w.r.t. any query circle can be found in 0(\/r710g5 n + k)
time using 0(n log5 n) space.

Proof The correctness of the method is clear from the preceding discussion. For the time
and space bounds, we note that each of the first three levels contributes a logarithmic factor
to the bounds of the structure D. El

From Lemmas 5.1—5.3 we get the main result of this section:

Theorem 5.1 A set S of n horizontal line segments in the plane can be preprocessed into a

data structure of size 0(n log5 n) such that the k segments that are intersected by a variable-

19

radins query circle C can be repo'rted in time 0(\/Hlog5 n + k). Ü

5.1.1 The case of a variable-radius query disk

For a query circle, we had to be careful not to report those segments that had both endpoints

in int(C)—which is what made the problem challenging. This restriction does not apply to a
query disk and leads to a simpler and more efficient solution, Which is based on the following

easily-proved lemma:

Lemma 5.4 A disk D intersects a horizontal segment s if at least one of the following two

conditions is satisfied:

(i} D contains at least one of the endpoints of 3, or

(ii) VD(D) intersects s . D

Segments satisfying condition (i) in Lemma 5.4 can be reported by preprocessing the

endpoints of the segments so that the points lying inside D can be reported efficiently. This

can be done in 0(n log n) space and 0(log n+ k) query time using the algorithm of Aggarwal

et al. [AHL90]. (If radius-(D) is fixed, then the space drops to 0(n) using the algorithm of

Lenhof and Smid [L391].) To report the segments satisfying condition (ii), we organize the
segments into a hive graph [Cha86] and query it with VD(C). This takes O(n) space and
O(log n + k) query time.

Theorem 5.2 A set S of n horizontal line segments in the plane can be preprocessed into

a data structure of size O(n log n), so that the k segments that are intersected by a variable-

radins query disk D can be reported in 0(logn+ k) time. For the fixed-radius case, the space

bound is 0(n). Ü

5 .2 Querying arbitrary line segments with a variable-radius disk

Unlike the case of horizontal segments, it is now possible for a. segment of .5' to intersect D
twice without intersecting VD(D). Hence, we use the following characterization:

Lemma 5.5 [AvKO] For any segment s, let strips be the closed region of the plane that is

bounded by the two lines perpendicular to 3 and passing through its endpoints. A segment

3 € S is intersected by a disk D ifl' at least one of the following conditions is satisfied:

20

(i) D contains at least one of the endpoints of 3, or

(ii) center(D) € strip, and D intersects €, , where £, is the supporting line of 3. Ü

To report the 1: segments of S that satisfy condition (i) of Lemma. 5.5, we can use the
approach given in Section 5.1.1, which takes 0(n log n) space and O(logn + k) query time.
Alternatively, we can solve the problem as follows: We map each segment endpoint p in S to
a. point ¢(p) in R3 and then build a partition tree on the set of transformed points. Clearly,
given a query disk D, with bounding circle C , we can solve our problem by determining the
points that lie in cp(C)" and for each such point 2/)(p) reporting the segment of S for which
p is an endpoint. The halfspace query can be done in O(n) space and 0022/“c + k) query
time by using Theorem 2.4(ii).

For condition (ii), let us first consider how to report the k segments s 6 S such that
center(D) € strips. By applying the transform ?, we can dualize each strip to a vertical line
segment and can dualize center(D) to a line. Thus the problem is equivalent to reporting the
vertical line segments that are intersected by J:(center(D)). As seen in Section 4.1.1, this
problem is solvable in O(n) space and O(n1/2+‘+k) query time via two halfplane compositions
based on Theorem 2.4(ii). It is also solvable in O(n2"") space and O(logn + k) query time
by using Theorem 2.4(i).

Now, let us consider how to report the k segments 3 E S such that €, is intersected by
D. As seen in Section 4.1, this problem can be transformed to that of reporting among a
set of line segments in R3 the ones that lie completely on one side of a query halfspace. The
latter problem is solvable via two halfspace compositions in O(n) space and 0(n2/3+‘ + Ic)
query time or, alternatively, in O(n3+‘) space and O(log n + k) query time.

It should now be clear that condition (ii) of Lemma 5.5 can be handled by applying two
halfplane and two halfspace compositions in the context of Theorem 2.4. The time and space
bounds are dominated by those for the halfspace compositions.

F&om the preceding discussion we get:

Theorem 5.3 A set S of n arbitrarily—oriented line segments in the plane can be preprocessed

into a data structure of size O(n) (resp. 0(n3+°)} such that the k line segments that are

intersected by a variable-radius query disk D can be reported in 0(n2/3+‘+k) (resp. O(log n+

h)} time, where e > 0 is an arbitrarily small constant. Ü

21

5 .2 .1 The case of a fixed-radius disk

The k segments of S that satisfy condition (i) of Lemma 5.5 can be found in O(log n+k) time
and C(72) space using the approach given in Section 5.1.1. To find the segments satisfying

condition (ii), note that, in addition to lying in strips, center(D) must be within distance
radius(D) of each such segment s . In other words, center(D) must lie in the rectangle

obtained by truncating strip, at a distance of radius(D) on each side of 3. Thus, our problem

reduces to point enclosure searching in a set of arbitrarily-oriented rectangles. This can be

solved by dividing each rectangle into two triangles and using the triangle stabbing algorithm

given in [CJ 92], which uses 0(n log2 n) space and reports the triangles that contain a query

point in time O(min{\/Elog2 n + k, @ log n + k log n}).

Theorem 5.4 A set S of 71. arbitrarily-oriented line segments in the plane can be preprocessed

into a data structure of size O(n log2 n) such that the k segments that are intersected by a

fixed-radius query disk D can be reported in 0(min{\/1_z log2 n+k, @ log n+klog n}) time. Ü

5.3 Querying with a variable-radius circle

The following lemma, which is easily derived from Lemmas 5.1 and 5.5, characterizes inter-

sections between an arbitrary segment and a circle C.

Lemma 5.6 A circle C intersects an arbitrarily-oriented segment s = 35 if at least one of

the following conditions is true:

(i} int(C) or C contains exactly one endpoint of 3, or

(ii) center(C) € strip, and C intersects the supporting line, €, , of 3. Ü

As seen in Section 5.1 (proof of Lemma 5.1), segments that satisfy condition (i) of

Lemma 5.6 are of one of the types (a)—(c) and can be found via two halfspace composi—

tions, one using H"‘ and H“ and the other using H ' and III+. This takes O(n) (resp.

0(n3"")) space and 0(n2/3+‘ + k) (resp. O(logn + h)) query time. Segments satisfying
condition (ii) can be found as we did for variable-radius disk reporting (see the discussion

preceding Theorem 5.3) in the same bounds as for condition (i). Thus we have:

Theorem 5.5 A set S of n arbitrarily—oriented line segments in the plane can be preprocessed

into a data structure of size O(n) (resp. 0(n3+°)) such that the 1: segments intersecting a

variable radius query circle C , can be reported in time 0(n2/3+‘ + k) (resp. 0(log n+ h)). U

22

6 Intersection searching on curved objects with curved

query objects

So far we have considered problems where the input objects are linear and the query object
is curved. We now turn to the second class of problems considered in this paper, namely
where both the input objects and the query objects are curved. Table 2 summarizes our
results.

6.1 Querying d—balls with a d-ball

In this section, We prove the following:

Theorem 6.1 Let B = {B1,B2, . . . ,B„} be a collection of closed d-balls in Rd, cl _>_ 2,
of possibly difi'erent radii. B 'can be preprocessed into a data structure of size O(n) (resp.
0(nd+2+‘)) such that the d-balls that are intersected by a variable-radius cl-ball, Q, can be
counted or reported in time 0(n1"1/(d+2)(log log n)0(1) (+lc)) (resp. O(logn (+k))). Here
6 > 0 is an arbitrarily small constant and k is the number of intersected d-balls. Moreover,
for the reporting case, there is also a solution which uses O(n log log n) space and has a query
time of 0(n1“1/l(d+2)/2J (log n)°(1) + k).

Proof First some notation. We use the coordinates 331,32, . . . ‚$.; in 7%“. Let C.- =
(b.1,.. ‚b,-d) be the center of B- and 7‘; its radius, 1 S i S 12.. Let C'q = (q1,. . . ,qd) be the
center ‚of Q and rQ its radius.

If Q intersects some Bi, then either their boundaries intersect or one is contained inside
the other. It 18 easy to prove that Q intersects B,- iff the Euclidean distance between their
centers is at most r,- + Tq, i . e . ,

d

Q intersects B; ifi :(bgj -- q_‚-)2 5 (r,— + Tq)2. (l)
i=1

Let us define a. transformation, T, which maps B.- to a point in R4“, as follows:

7(B.-) -— (bi1.--.bia.re.b.1 + + 5.2. - ".2-) (2)
Also, let us define a transformation, a, which maps Q to a hyperplane in 72"“, as follows:

a (Q) = $d+2 = 291331 + ' ' ' + 2qa$d + 2rQ$d+1 _ Qi _ ' " _ 93 + 7'3- (3)

23

Claim: Q intersects B.- iff T(B‚°) € a(Q) ' ‚ where a(Q)" is the closed halfspace lying below

MQ)-
Proof of claim:

By Equations (1)—(3), it is sufficient to show that

:!
; (b i j—q S (T ;+Tq)2 iff I): + ° ' ' +bä1_7 ' ‚ ?5 2q lb ;1+- - -+2qdb;d+2rqr ‚ -—qf—. . .—qä+rä .
i=1 -

(4)
This can be verified by straightforward algebraic manipulation.

End of proof of claim
Thus, we have transformed our d—ball problem in ’R.“ to halfspace searching in 72““ . In

[Mat92], it is shown how the latter problem can be solved in O(n1'1/ “+” (log log n)°(1) . (+k))

query time using O(n) space. Alternatively, we can use Theorem 2.2 to solve the problem in
O(log n (+k)) query time using 0(nd+2+‘) space. If we are interested only in the reporting
problem, then we can also use the solution given in [Mat91b] to solve the problem with a
query time of 0(n1‘1/l(d+2)/2J (log n)0(1) + k) using O(n log log n) space. Ü

Remark 6.1 For d = 2, the O(n4+‘) space bound given by Theorem 6.1 can be improved
to 0(n3+‘), without affecting the O(logn (+k)) query time, as follows: In Section 2.1 of
[A391], Agarwal and Sharir show how to count efficiently the intersections between m red
circles and 12 blue circles in the plane. Their approach can be adapted to the query mode
by taking one red query circle and n blue input circles and can be made to work for disks
as well.

Moreover, their approach can be extended to the reporting case also. A straightforward
implementation gives an 0(n4) space bound and O(log n + k) query time: As in [A591], we
compute a certain family of n arrangements in two dimensions, each composed of ®(n) conic
plane curves. For each arrangement, we store with each face a list of O(n) blue circles that
satisfy a. certain incidence property w.r.t. the face. As there are O(nz) faces per arrangement,
the space used is 0(n3) per arrangement, hence 0(n4) overall. To improve upon this, we
store the lists for each arrangement in a persistent way. (We will not discuss this in detail,
as we will examine this idea at length in Section 7 for a different set of problems.) This
reduces the space to 0(n2) per arrangement, hence 0(n3) overall. The overall space is now
dominated by the O(n3+‘) space required by a spatial point location scheme employed in
[A391].

24

6.2 Querying d—spheres with a d—sphere

By a d-sphere, Si, we mean the boundary of the closed d—ball Bi, with radius r,- and center
C.- = (Ia-1,652, . . . ,bgd), 1 5 i 5 n . (For example, a 2—sphere is a circle.) We show how to

extend the ideas of Section 6.1 to preprocess a set S = (51, 52, . . . , Sn) of d—spheres so that
counting and reporting queries with a variable-radius d-sphere Q can be answered efficiently.

Let Cg = (q1,q2,. . .,qd) be the center of Q and rg its radius. Q intersects S; iii the
d-baJls that they bound intersect and neither d—ball is contained in the other, i.e., ifi' the
Euclidean distance between C.- and CQ is at most r.- + n; and at least I r.- — rQ | . In other

words,

d
Q intersects S.- _ifi' (r; — m)2 S ZUM _ %)2 S (Ti + TQ)2- (5)

i=1
Consider the following transformation, ß , which maps Q to a hyperplane in RJ“:

MQ) 3 a7al+2 = 2‘11271 + ° ° ' + 2qdzd — 2ed+1 —- q: -— - - - — (13+ r3. (6)

In addition, consider the transformations 7- and a of Section 6.1, which can be extended
in the obvious way to d—spheres. It is easily verified that Q intersects 5.- iff T(S.-) E a(Q) ' n
ß(Q)+, where ß(Q)+ is the closed hyperplane above ß(Q). The points r(S.-) satisfying the
above condition can be found via two halfspace compositions. From Theorem 2.4 we conclude
directly: '

Theorem 6.2 Let 8 = {51,52, . . . ,Sn} be a collection ofd—spheres in 'R“ , d 2 2, of possibly

different radii. S can be preprocessed into a data structure of size O(n) (resp. 0(nd+2+‘)}

such that the d-spheres that are intersected by a variable-radius d-sphere, Q, can be counted

or reported in time 0(n1“1/(d+2)(log log n)°(1) (+k)) (resp. O(logn (+k))). Here e > 0 is an

arbitrarily small constant and 1: "is the number of intersected d-spheres. El

Remark 6.2 From Remark 6.1, the above problem can be solved in 0(n3+‘) space and
0(log n (+k)) query time for circles.

6.3 Querying circular arcs with a circle

We show how to preprocess a set S of n circular arcs, of possibly different radii, so that
the ones that are intersected by a variable-radius query circle C can be reported eficiently.

25

VVlog we may assume that the arcs in .5' are x-monotone, i.e., any vertical line intersects an
arc in at most one point, since any arc can be decomposed into at most three z—monotone
pieces.

Recall that for an arc 7 E S , chord(7) is the line segment joining its endpoints, circ(7)
is 7’s supporting circle, and center(7) is the center of circ(7). Let l(7) and r(7) be 7’s left
and right endpoints, respectively. Let disk(C) be the closed disk bounded by C . Define ff“
(resp. ff“) to be the halfplane bounded by the line joining center(7) and I (7) and containing
(resp. not containing) 7. Define ff." and €,?“ similarly. The following lemma follows from the
discussions in [Pe192].

Lemma 6.1 A Circle C and an x-monotone are 7 intersect ifl' one of the following conditions

is true:

(i) C separates the endpoints of 7

(ii) C intersects circ(7) and

(a) I(7) & disk(C) and r(7) € disk(C), and center(C) E if" 0 ff." or
(5) !(7) E disk(C) and r(7) € disk(C)‚ and center(C) € E?“ n 33“. El

An arc 7 satisfies condition (i) ifi' C stabs chord(7). To report such arcs, we apply the
transform 1/; to the endpoints of 7 and the transform go to C and convert the problem to
one of reporting those line segments $(l(7))1b(r(7)) in R3 whose endpoints are in opposite
halfspaces of cp(C) This can be done via two halfspace compositions in 0(n) (resp. 0(n3""))
space and 0079/34"E + k) (resp. 0(log n + h)) query time (Theorem 2.4).

Let us now consider how to report arcs that satisfy condition (ii). First consider con-
dition (ii)(a). Using the transforms 11: and cp, the condition “l(7) $ disk(C) and r(7) $
disk(C)” transforms to “¢(l(7))¢(r(7)) lies above (p(C) in R3”. This in turn can be ex—
pressed as two halfspace compositions in R3.

Next, note that the wedge €?" n E?“ is of one of the three forms ti" n t; , tl" n t5", or
ti" n t; for some lines t1 and t2. Thus, by applying the transform f to C , t l , and t2,
the condition “center(C) E ff“ 0 Ein”, transforms to “f(center(C)) is below or above or
intersects W” . Each of these three cases can in turn be expressed as two halfplane
compositions in 722. _

Similarly, condition (ii)(b) can be expressed as two halfspace and two halfplane compo—
sitions.

We are now ready to apply Theorem 2.4. As the structure D of that theorem, we take the
0(n)-space structure of Theorem 6.1, for d = 2, to report the circles circ(7) intersected by C .

26

This structure has a. query time of 0(n3/4+°+k). Alternatively, we can take the 0(n3+‘)-spa.ce
structure with query time 0(log n+ k) mentioned in Remark 6.2. We then build a 4-level tree
structure, where the nodes at the innermost level are augmented with instances of D. The
two outermost levels apply halfspace compositions and the next two levels apply halfplane
compositions. To answer a query, we first apply the halfspace compositions corresponding
to the first part of condition (ii)(a), then, in turn, each of the three halfplane compositions
corresponding to the second part, and finally query the structure D at the nodes of the
innermost tree that are visited. We then repeat this for condition (ii)(b).

The correctness and bounds follow from the above discussion and from Theorem 2.4.

Theorem 6.3 A set S of n circular arcs in the plane, of possibly dzferent radii, can be

preprocessed into a data structure of size 0(n) (resp. 0(n3+‘)) such that the k arcs that are

intersected by a variable-radius query circle 0 can be reported in time 0(n3/4+‘ + k) (resp.

0(logn + h)). El

Remark 6.3 In [A391], the counting problem is solved in 0(n3+‘) space and 0(log n) query
time. As in Remark 6.1, we can extend this approach to solve the reporting problem in
O(n3+‘) space and 0(logn + k) query time.

6.4 Querying circles with a circular arc

Again, we may assume that the query arc, 7 , is :c-monotone. Lemma 6.1 still applies;
however, the approach is somewhat different since the roles of arcs and circles is now reversed.

To report the circles that separate the endpoints of 7 (condition (i) of Lemma 6.1), we
map each Circle C to the point .7:(go(C)) in R3 and the endpoints [(7) and r(7) of 7 to
the planes H; = .7:(1/;(l(’y))) and H, = f(1ß(r(7))), respectively. It is then clear that the
original problem has been transformed to one of reporting among a set of points in R3 those
that lie in a query doublewedge formed by H; and H,. This problem can be solved by two
applications of two halfspace compositions in R3.

Let us now consider condition (ii)(a) of Lemma 6.1. By using .? , go, and 2/) as above, the
condition “!(7) € disk(C') and r(7) & disk(C)” transforms to “f((p(C)) lies in Hf" fi Hf”.
This in turn can be expressed as two halfspace compositions in R3. Moreover, the condition
“center(C) € €?“ 0 ff?” can be expressed immediately as two halfplane compositions in ’72".
A similar discussion applies for condition (ii)(b).

We can now apply Theorem 2.4 to report the segments that satisfy condition (ii). We
choose the structure D as in Section 6.3 and build a 4-level tree structure as before. To

27

query, we first apply the halfspace compositions, then the halfplane compositions, and then
finally query D at the nodes of the innermost tree that are visited.

Theorem 6.4 A set S of n circles in the plane, of possibly difierent radii, can be preprocessed

into a data structure of size 0(n) (resp. 0(n3"")) such that the k circles that are intersected

by a variable—radius query circular arc 'y can be reported in time 0(n3/4+‘+k) (resp. 0(log n+

h)). EI

7 Generalized intersection searching with curved ob-

jects

We now turn to the third class of problems considered in this paper: Each object (points,
lines, line segments, or disks) in the input set 5 is assigned a color. (The number of colors
used can range from 1 to n; thus several objects can receive the same color. VVlog we assume
that the colors are integers in the range [l , n].) The goal is to preprocess 5 so that the z'

distinct colors of the objects that are intersected by a query object (fixed- or variable-radius,
circle, disk, or annulus) can be" counted or reported efficiently. Table 3 summarizes our
results.

We begin with a brief review of persistent data structures and also introduce a method
for ordering the faces of a planar subdivision—techniques that we use extensively in this
section.

7.1 Persistent data structures

Ordinary data structures are ephemeral in the sense that once an update is performed the

previous version is no longer available. In contrast, a persistent data structure supports
Operations on the most recent version as well as on previous versions. A persistent data
structure is partially persistent if any version can be accessed but only the most recent one
can be updated; it is fully persistent if any version can be both accessed and updated.

In [DSST89], Driscoll et al describe a general technique to make persistent any ephemeral
linked data structure. A linked data structure consists of a finite collection of nodes, each

with a fixed number of fields. Each field can hold either a piece of data such as, say, an
integer or a real, or a pointer to another node. The in—degree of a node is the number of
other nodes pointing to it . Access to the structure is accomplished via one or more access
pointers. Examples of linked structures include linked lists and balanced binary search trees.

28

An update operation typically modifies one or more fields in the structure. We will call
each modification a memory modification. Driscoll et al showed that any linked structure
whose nodes have constant in—degree can be made partially or fully persistent such that
each memory modification in the ephemeral structure adds just 0(1) amortized space to
the persistent structure and, moreover, the query time of the persistent structure is only a
constant factor larger than that of the ephemeral structure.

For our purposes, partial persistence suffices. Our general approach is to begin with some
ephemeral dynamic linked structure (e.g., a linked list or a. binary search tree), which has
one access pointer. Starting with an empty structure, we then perform a suitable sequence of
0(n) updates using the technique of Driscoll et al and obtain a partially persistent structure,
which contains all versions of the ephemeral structure. Each version has an associated
“timestamp” , usually an :c-coordinate (or a y—coordinate) in the input. We store the access
pointers of the different versions in an array, sorted by timestamp; thus any desired version
can be accessed for querying by doing a binary search in the array. If m(n) is the total number
of memory modifications made by the update sequence, then the persistent structure uses
0(m(n)) space.

7.1.1 Ordering the faces of a planar subdivision

Our solutions for the generalized problems involve constructing a planar subdivision of some
kind and storing suitable information with each face of the subdivision. A query is answered
by locating a suitable face and reading off the associated information. The straightforward
approach of storing the information for each face in its entirety takes up too much space.
However, we can exploit the fact that the information associated with “nearby” faces is not
too different and apply persistence to reduce the storage significantly. To do so we need a
suitable ordering of the faces. The following lemma is the basis for such an ordering; we will
use appropriate instantiations of this in later sections. We note that the lemma. holds not
only for conventional linear sub divisions but also for subdivisions composed of curves.

Lemma 7.1 Let P be a planar subdivision with m vertices. There exists an ordering, Tp,
of the faces of P such that Tp has length 0(m) , consecutive faces in Tp share an edge, and
Tp visits each face of P at least once.

Proof Let G p be the graph-theoretic dual of P, defined as follows: For each face (including
unbounded faces) in P, create a vertex in G p . Connect two vertices in G p by a pair of edges
if the corresponding faces in P share an edge. It can be shown that G p is connected.
Moreover, since P has 0(m) faces (resp. edges), GP has 0(m) vertices (resp. edges). Since

29

every vertex of GP has even degree, GP contains an Eulerian walk. This walk visits each
edge of GP exactly once and so has length 0(m). Also, it visits each vertex at least once.
The theorem follows. Ü

7.2 Generalized annular range searching

Let S be a set of n colored sites (points) in the plane. Let Ann(q, r1, r2) be the query annulus
of radius rl and r2 (rl S r2), centered at q. We first consider the case where r1 and r2 are
fixed and only q varies with the query.

7.2.1 Querying with a fixed-radii annulus

Clearly, a. site 39 € S is in Ann(q,r1,r2) iff q is in Ann(p,r1,r2). Extending the idea of
Bentley and Maurer [BM79], we construct Ann (p, 11,73) for each p € S and give it p’s color.
Let A be the arrangement of the corresponding 2n circles. Each face of A is the intersection
of zero or more of the annuli. We preprocess A for fast planar point location using, for
instance, a straightforward extension of the point location scheme of Sarnak and Tarjan
[ST86]. Since ‚A has 0(n2) vertices, edges (i.e. circular arcs) and faces, this takes O(n2)
space and allows point location in O(log n) time. To solve the counting (resp. reporting)
problem, we determine for each face f the annuli whose intersection is f and store with f,
a count, count f , (resp. a list Lf) of the distinct colors of these annuli. To answer the query
Ann(q,r1,r2), we locate the face f containing q and output count f er L f as appropriate.
The total space for the counting (resp. reporting) problem is 0(n2) (resp. O(n3)) and the
query time is 0(logn (+z')). .

We can reduce the space for the reporting problem to 0(n2) by storing the L-lists in a
persistent way. Let TA = f1, f2, . . . , f1, l = 0(n2), be the ordering of A’s faces, as provided
by Lemma 7.1. We initialize an array C [1 : n] of colors to zero. Then we construct L ;, (as
an unordered doubly-linked list) and increment C [i] for each color i in L ‚e,. We then scan
TA. Let f ; , i Z 2, be the current face. Let a be the edge shared by f,-_1 and fi. Assume
that 0 belongs to the outer circle of some annulus A and that a appears convex to points
in f.-_1 and concave to points in fg. (See Figure 1, which illustrates this for an arrangement
of two annuli.) Let A’s color be j . If C [7] = 0 then we increment it and insert j into L f£_1
in a persistent way to get L f , ; otherwise, we merely record the fact that LfH = L fr On
the other hand, suppose that a appears concave to points in f‚-_1 and convex to points in f,-
(i.e., f,-_1 and f,- are exchanged in Figure 1). We decrement CU]. If CU] = 0 now then we
delete it from Lim in a persistent way to get L‚e,; otherwise, we just record the fact that

30

e .
Q.?
.

Figure 1: Faces f.- and f,-_1 sharing an edge which belongs to the outer circle of annulus A.
Edge a is convex w.r.t. f,-_1 and'concave w.r.t . f,“.

L„_, = L f... (To do the deletion eficiently, we also maintain in CU] a pointer to j in the
current L—list.) A symmetric discussion applies if a belongs to the inner circle of A. Since
TA has length 0(n2), there are 0(n2) updates and so the total space is 003”).

Note that the same face can appear in TA more than once. We scan TA and pick the first
occurrence of each face. Let f1 = f{, fg, . . . be the sequence of faces picked. We store access
pointers into the persistent structure to only those versions that correspond to f{, f5, To
answer a query Ann(q,r1,r2), we determine the face f of A containing q. Let f = f,! . We
then query the ith version of the persistent structure and output L „ . The query time is
0(log n + i).

Theorem 7.1 A set 5 of n colored points in the plane can be preprocessed into a data

structure of size 0(n2) sach that the i distinct colors of the points Iying inside any fixed-radii

query annulus can be counted (resp. reported) in O(logn (+i)) time. Ü

7.2.2 Querying with a variable-radii annulus

The approach of Section 7.2.1 does not work if the radii of the query annulus are not known
beforehand. In this case, we resort to a diiferent approach of partitioning the plane into
regions, as stated in the following lemma.

Lemma 7.2 Let S be a set of n sites in the plane. Let A be the arrangement of the per-
pendicalar bisectors of the line segments joining pairs of points in S . Let f be any face of A
and let p1 and p; be any two points in f . Then the ordering of the sites by non-decreasing
distance from pl is the same as the ordering of the sites by non-decreasing distance from 12;.

31

Proof Let a and b be any two sites in 5'. Let P(a, b) be the perpendicular bisector of
the line segment E and let Pa (a, b) (resp. Pb(a, b)) be the closed halfplane of P(a, b) which
contains a (resp. b). For any point p in the plane d(p,a) S d(p, b) (resp. d(p, a) 2 d(p‚ b)) if
p € P‚(a, b) (resp. P:,(a, b)), where d(-‚) is the Euclidean distance function.

For a face f 6 A, any two sites of 5 can be compared w.r.t their distances from any
point p E f. Thus the sites can be totally ordered by their distances from p. Now f is the
intersection of halfplanes P„(a, b) for all pairs (a, b) of sites in S , where a: is either a or b. It
follows that the ordering of the sites by nondecreasing distances from different points of f is

invariant. Ü
Let us first consider the reporting problem. We preprocess ‚A for fast planar point location

[ST86]. Given the query Ann(q,r1, r2) we locate q in a face f of A. Let 5(f) = 31, 32, . . . , s„
be the ordering of the sites w.r.‘t. f, as given by Lemma 7.2. By definition of 8(f) , the
sites (if any) that are at distance at least 1'1 and at most r2 from q (i.e., the ones that are
in Ann(q,r1,r2)) are contiguous in 8(f), say s,-‚. . . ‚sk, for somej 2 1 and I:: S n . Thus,
we can restate our generalized annulus problem as: “Given a sequence of colored integers
1,2, . . . , n on the real line (namely, the indices of the sites in €(f))‚ report the z' distinct
colors of the points lying in the interval [j, k].” This is just (a special case of) the generalized
I-dimensz'onal range searching problem considered in [GJ393]. In [GJ393] it is shown that
this problem can be solved in 0(n) space and 0(logn + i) query time. Thus, given j and k,
we can answer our annulus reporting query in 0(log n + 2) time.

But how do we find j and k eficiently? We find 3' using binary search as follows: Note
that 3,- is the leftmost site in 8(f) such that d(q,s,-) 2 r1. Let T; be a red-black tree
[CLR90] storing the sites according to the order given by 6 (f) Let 3 be the site at Tf’s
root. If d(q,s) _>_ r1 (resp. d(q,s) < n) then we visit the left (resp. right) subtree of the
root recursively. Let [be the leaf where the search runs off T and let s’ be the site stored

at 1. If the search at l branched left then j is simply the index of 3’ in 8 (f); otherwise, j is
the index of the site stored in the inorder successor of 1 . (If the inorder successor is nil, then
we stop querying since no site can lie in the query annulus.) Clearly, the time to find j is
0(log n). The index k can be found symmetrically.

Thus the overall query time for the annulus reporting problem is 0(log n + 2). For the
space bound, note that A is an arrangement of ('2') lines and hence has 0(n4) faces. With
each face we store Tf and Df , where D‚‘ is an instance of the generalized l-dimensional range
searching data structure given in [GJ S93]. Each structure uses 0(n) space. Thus the total
space is 0(n5).

32

We can reduce the space to 0(n‘ log n) by using persistence, as follows: For faces f and
f’ of A, let A(f, f') denote the number of positions in which 8 (f) and 8 (f’) differ.

Lemma 7.3 Let S be a set of n sites in the plane. Let A be the arrangement of the per-
pendicular bisectors of the line segments joining pairs of sites in .S' . There is an order-ing,
fl , fg, fg, . . . , f,’ , of the t faces of A such that 23;: A(f,! , {+1 = 0(n4).

Proof Let TA = f1, f2, . . . , f; be the ordering of .A’s faces, as given by Lemma 7.1, where
I = 002‘). Consider any two consecutive faces f.- and f‚-+1, 1 S i £ 1 — 1. Let the supporting

line of the edge that f.- and f.-+1 share be the perpendicular bisector of the sites a and b of
3 . Then 8 (fg) and 8 (f.-+1) are the same except that the positions of a and 6 are swapped.
Thus A(f.-,f.-+1) = 2 and so 22.3 A(f,-,f.-+1) = 002‘). The desired sequence fl , fg, . . . , f,’ is
obtained by scanning fl, f2, . . . , f; and taking the first occurrence of each face. The lemma

follows since 53 Am, $..) 5 5;: Am, f£+1)- D
We can now use the ordering- fl , . . . , f; provided by Lemma 7.3 to store all the Tf’s and

D f ’s persistently. First recall that Tf is a red—black tree and so supports updates in 0(log n)
time with 0(1) memory modifications. D; is essentially a priority search tree [McC85] (see
[GJS93]) and so supports updates in 0(log n) time with 0(log n) memory modifications.
We build Tf; and Di; and then scan fg, . . . , fl . For i 2 2, we determine the elements in
€ (f,!_1) whose ranks change in € (f,’), delete them from T_,e’,:_1 and D f.’_1 and reinsert them
With their new ranks. These updates are done in a persistent way and yield Ti: and D fe" By
Lemma 7.3, there are 0(n4) updates. Since each causes 0(log n) memory modifications, the
total space is O(n4 log n).

We can solve the generalized annulus counting problem in a similar way. For D f we use
the structure given in [GJ 893] for generalized l—dimensional range counting. This structure
uses 0(n log n) space and has a query time of 0(log2 n). The update time is 0(log2 n)
amortized; thus the number of memory modifications per update is also 0(log2 n) amortized.
(As shown in [GJS93], the 0(log2 12) update time also holds in the worst-case; however, for
our discussions the amortized bound is more convenient as it gives the upper bound on the
number of memory modifications directly.) By proceeding as in the reporting case, we get a
space bound of 0(n5 log n), which we can reduce, as before, using persistence to 0(n410g2 n).
The overall query time is 0(log2 n). (For the non-persistent scheme, we can also use a static
version of .Df, which takes 0(n log n) space and has a query time of 0(log n). This yields
an alternative solution for the annulus problem, whose space bound is O(n5 log n) and query
time is 0(log n).)

33

Theorem 7.2 A set 5 of n colored points in the plane can be preprocessed into a data

structure of size O(n4 log2 n) (resp. 0(n4 log n)) such that the i distinct colors of the points
lying inside any variable-radii query'annulus can be counted (resp. reported) in 0(log2 n)

(resp. 0(log n + i)} time. The counting problem can also be solved in O(n5 log n) space and

0(log n) query time El '

7.2.3 The special case of a variable-radius disk

If the query annulus is Ann(q, 0 , Tg), then we are searching with a variable-radius disk, of
some radius r2. In this case, a slightly better solution than Theorem 7.2 is possible. We
discuss this in some detail now, since many of our subsequent schemes use variable-radius
query disks. As before we construct the arrangement A of the perpendicular bisectors and
obtain the ordering € (f) for each face f. Assuming that q falls inside f, the sites at distance
at least zero and at most r2 (the ones of interest) form a prefix, s l , . . . , sk, of E(f) = 31,. . . , 3“,
for some k S n . Thus our problem translates to a. generalized l-dimensional range searching
problem on 1, 2, . . . , n with the query interval (—00, Is]. As shown in [GJ 393], for this special
query the problem is solvable in 0(n) space and 0(log n (+i)) query time. Moreover, the
number of memory modifications is 0 (log n) for the counting problem and just 0(1) for the
reporting problem. By applying the persistence—based approach described in Section 7.2, we
immediately get:

Theorem 7.3 A set S of n colored points in the plane can be preprocessed into a data
structure of size O(n4 log n) (resp. 0(n4)) such that the i distinct colors of the points lying
inside any variable—radius query disk can be counted (resp. reported) in 0(logn (+i)) time.

7.3 Generalized intersection searching on lines with a query cir-
cle

Here 3 is a. set of n colored lines in the plane. Let C (q, r) denote the query circle of radius
r , centered at q.

7.3.1 The fixed-radius case

Recall Lemma 4.1. We replace each line € by strip! and give it 2’s color. We then compute
the arrangement ‚A of the lines bounding the strips and preprocess it for fast planar point
location. For each face f of A, we determine the strips whose intersection is f and store with

34

f a count, count}, or a list, Lf , of the distinct colors of these strips. To answer a query, we
locate the face containing q and output the associated information. This takes 0(log n (+i))
time. The overall space is 0(n2) (resp. O(n3)) for the counting (resp. reporting) problem.
By using the persistence—based approach as described in Section 7.2.1, the space for the
reporting problem can be reduced to 0(n2).

Theorem 7.4 A set S of n colored lines in the plane can be preprocessed into a data structure

of size O(n2) sach that the i distinct colors of the lines that are intersected by a fixed-radius

query circle (or disk} can be counted (resp. reported) in 0(logn (+i)) time. El

7.3.2 The variable-radius case

In this case, r is not known beforehand. Given C (q, r) , we need to count or report the
distinct colors of the lines that are at (perpendicular) distance at most r from q. For this, we
partition the plane into regions such that for any point p in a region the ordering of the lines
in S by their distances from p is invariant. The following lemma summarizes this approach.

Lemma 7.4 Let S be a set of n lines in the plane. Let a and b be any two lines in S and
consider the two lines that bisect the angles at the point of intersection of a and b. Let A be
the arrangement of such bisectors for all pairs of lines a , b € S . Let f be any face of ‚A and
let p1 and p2 be any two points in f . Then the ordering of the lines in S by non-decreasing
distance from pl is the same as their ordering by non-decreasing distance from 1);».

Proof Let a and b be any two lines in 5'. At their intersection we have a pair of dou-
blewedges, DW„(a, b) and DWb(a, b), containing a and b respectively. (See Figure 2.) Let
p(a:, y) denote the Euclidean distance between point a: and line y. By a straightforward
geometric argument, for any point p in the plane p(p, a) S p(p, b) (resp. p(p, a) Z p(p, b)) if
p € DW„(a, b) (resp. p € DWb(a, b))

Given a face f G A, any two lines of .5' can be compared w.r.t their distances from any
point p E f. Thus the lines can be totally ordered by their distances from p. Now f is the
intersection of doublewedges BW„(a, b) for all pairs (a, b) of lines in S , where :: is either a or
b. It follows that the ordering of the lines by nondecreasing distances from different points
in f is invariant. Ü

Let € (f) denote the above ordering for face f and suppose that q lies in f . As in Sec-
tion 7.2.3, we can interpret our problem as a generalized 1-dimensional counting or reporting
problem on 1, 2, . . . , n with a query interval of the form (—oo, k]. Thus the counting (resp.

35

«??-ggf“. ;: _ ga". _“? 52522325}???

R'fikfifi. $. ' . :
“am-.433 ' -.-.-.:.-:' „Haft-q." ' ä-:-:- . . '

:?“._.? :'
".. _.'“"'- '-. fä-

.
. I I Iu I . » A.. o ‚".-'n'

' ' ' .- . : .? _.5;.-:-:;.;.;.;.;.;.-.;:- «>: 535-—

Figure 2: Doublewedges formed by angular bisectors at the intersection of a. pair of lines a

and b.

reporting) problem is solvable in 0(n4 log n) (resp. O(n4)) space and 0(log n (+i)) query
time.

Theorem 7.5 A set .5' of n colored lines in the plane can be preprocessed into a data structure

of size O(n4 log n) (resp. 0(n4)) such that the i distinct colorslof the lines intersected by

a variable-radius query circle (or disk) can be counted (resp. reported) in 0(logn (+i))

time. Ü

7.4 Generalized intersection searching on line segments with a

query disk or circle

Here 3 is a. set of n arbitrarily-oriented line segments in the plane and the query is a. disk

D = D(q,r), with radius r and center q.

7.4.1 The case of a fixed-radius query disk

Instead of Lemma. 5.5, we use the following alternative characterization of intersections

between a. disk and a line segment, which is more convenient.
For any line segment s = h_b E S, we define the drum of radius r around s , denoted

Drum(r,s), as follows: Let Da(r, 5) and D„(r, s) denote, respectively, the closed disks of

radius r centered at a and at b respectively. Let R(r, 3) be the rectangular region of the

plane defined by the four points at which strip3 intersects Da(r, s) and D503 3). Then

Drum(r,s) = Da(r,s) U Db(r,s) U R(r, 3). (See Figure 3 for an example.)

Lemma 7.5 A disk D with radius r and center q intersects a segment s if q € Drum(r, s) .

36

Figure 3: The drum of radius r around a segment s = 5

Proof Let ja"(p, s) denote the Euclidean distance between a point p and a line segment s =
“55. That is, if the normal projection 13 of p on the line supporting 3 falls on 3, then 5(1), 3) =
(1(1), fi); otherwise, ß(p, s) = min{d(p, a), d(p, b)}. (Recall that d(-, -) is the Euclidean distance
functiOn for points.) Now, D intersects 5 if they have a common point, i.e., ifi' ja'(q, s) S 7‘.
By construction, Drum(r,s) is the locus of all points at distance at most r from 5. The
lemma. follows. Cl

We construct the arrangement A of the drums and preprocess it for fast planar point
location using a simple extension of the algorithm in [ST86]. As before, for each face f we
determine the drums whose intersection is f and store With f a count, count ! , or a list, L f ,
of the distinct colors of these drums. The total space is 0(n2) for the counting problem and
0025’) for the reporting problem. We can reduce the latter to 007?) by applying persistence
techniques as in Section 7.2.1. To answer a query, we locate the face containing q and output
the associated information. '

Theorem 7.6 A set S of n arbitrarily-oriented colored line segments in the plane can be

preprocessed into a data structure of size O(n2) such that the z' distinct colors of the segments

that are intersected by a fixed-radius query disk D can be counted (resp. reported) in time

0(logn (+i)) El

7.4.2 The case of a fixed-radius query circle

In fact, we can extend Lemma 7.5 to characterize intersections between a circle 0 With radius
r and center q, and a line segment 3 = .::—6, as follows: Let int(R) denote the interior of any
region R in the plane. We define the cut drum of radius r around s, denoted by Drum’ (r, 3),
as the region Drum(r, s) — £nt(Da(r,s) n Db(r,s)).

37

Lemma 7.6 A circle C with radius r and center q intersects a line segment s = E ifl'
q € Drum'(r,s).

Proof Let D be the closed disk bounded by C . Then C intersects s ifi' D intersects 3 and a
and b are not both in int(D), i.e., iff D intersects 3 and a and 6 are not both at distance less
than r from (1. The region int(Da(r, 3) n Db(r, s)) is the locus of all points at distance less
than r from q. By Lemma. 7.5, D intersects s ifl’ q € Drnm(r, s) . It follows that C intersects
3 ill q is in Drum(r,s) — int(Da(r,s) n D„(r, s)) = Drum'(r,s). Ü

We can now use a structure similar to that of Theorem 7.6. We omit the details and
conclude directly:

Theorem 7 .7 A set .S' of n arbitrarily-oriented colored line segments in the plane can be

preprocessed into a data structure of size 0(n2) such that the i distinct colors of the segments

that are intersected by a fixed-radius query circle C can be counted (resp. reported) in time

0(logn (+i)). El

7.4.3 Querying with a variable-radius disk

Let s,- and 5,- (i 75 j) be two segments in S . Let Bi, be the locus of all points p such
that fi(p,s‚-) = ß(p,s_,—). As shown in [LD81], 8.3 is in general made up of five pieces: one
line segment, two rays, and two parabolic arcs. Let .A be the arrangement of the Bü,
1 _<__ i < j S n . We preprocess ‚A for planar point location using a simple extension of the
Sarnak—Tarjan algorithm [ST86]. Since the pieces of B.,—,- are of constant degree, any two can
intersect only 0(1) times, which implies that A has 0(n4) vertices, faces, and edges (line
segments, rays, or subarcs of parabolic arcs). As in Lemma 7.2, we can prove that for any
face f and for difl'erent points p. € f , the ordering of the 333 by nondecreasing fi(p,s‚—) is
invariant. Call this ordering € (f)

Proceeding as in Section 7.2.3, we can now interpret the problem at hand as a gener-
alized l—dimensional range searching problem on 1, 2, . . . , n , with (—-00, k] being the query.
Together with the persistence—based approach for space reduction, this immediately gives us
the following:

Theorem 7.8 A set S of n arbitrarily-oriented colored line segments in the plane can be

preprocessed into a data structure of size 0(n4 log n) (resp. 0(n4)} such that the i distinct

colors of the segments intersected by a variable radius query disk D, can be reported in time

O(logn (+i)). EI

38

7.5 Generalized intersection searching on disks with a query disk

Here S = {Dh D2, . . . , Du} is a collection of closed disks in the plane, of possibly different
radii. Let Q be the closed query disk. Let C.- be the center of D.- a.nd r,- its radius, 1 5 i 5 n.
Let C'Q and rQ denote the corresponding quantities for Q.

Recall the intersection condition for two disks Q and Di, namely: Q intersects D.- ifl’
d(Cq, Cg) g rg + r,-.

7 .5 .1 The fixed-radius case

Let D: be the closed disk of radius m + r,- centered at C,. From the above-mentioned
intersection condition it is clear that our problem is to count or report the distinct colors of
the disks D; that contain Cg.

We construct the arrangement ‚A of the disks D}, process it for fast planar point location,
and store with each face f either count f or L ‚« (whose definitions are analogous to those
in previous sections). In the reporting case, we also apply persistence techniques, as in the
previous sections, to reduce the total space to 001”). Queries are answered by locating the
face containing CQ and reading off the associated information.

Theorem 7.9 A set 8 of 17. disks in the plane (of possibly difi'erent radii} can be prepro-

cessed into a data structure of size 0(n2) such that the i distinct colors of the disks that are

intersected by a fixed-radius query disk can be counted or reported in 0(log n (+i)) time. Ü

7.5 .2 The variable-radius case

The approach of Section 7.5.1 cannot be applied if rQ is part of the query. In this situation,
it is advantageous to interpret the above-mentioned intersection condition for Q and D,- as:
Q intersects D,— ifl' d(CQ, Cg) — r,— 5 rg.

For any D,- and D,- (i 79 j), let I.,-,- be the locus of the points p such that d(p, Ci) — r,— =:
d(p, Cj) — r,. It is well-known [Sha85] that Lg,- is a ray or a hyperbolic arc. We construct
the arrangement A of the L„ 1 S i < j S 17.. Since the Lg,- ’s are of constant degree, any two
can intersect only 0(1) times. Thus, A consists of 0(n4) vertices, faces, and edges (rays,
line segments, or subarcs of hyperbolic arcs).

Using a proof similar to Lemma 7.2 it is easy to show that within each face f of A, for
different points p € f the ordering of the 033 by nondecreasing d(p, Cg) — r,- is invariant. Let
€ (f) denote this ordering for f . As in Section 7.2.8, we can solve our generalized problem for
disks by answering a. generalized l—dimensional range searching query on 1, 2, . . . , n using a

39

query interval of the form (-—oo, k] . Together with the persistence-based approach for space
reduction, this immediately gives us the following:

Theorem 7.10 A set 5 of n disks in the plane, of possibly difierent radii, can be preprocessed

into a data structure of size O(n4 log n) (resp. 0(n4)} such that the i distinct colors of the

disks that are intersected by a variable-radius query disk can be counted (resp. reported} in

0(logn (+i)) time. U

8 Conclusions and further research

We have investigated the problem of intersection searching involving curved (specifically,
circular and circle-like objects) and have presented efficient solutions for three broad classes
of problems, namely (i) for linear input objects and curved query objects, (ii) for curved
input objects and curved query objects, and (iii) for a generalized version of the previous
two classes.

We close by mentioning two interesting directions for further research: First, can our so-
lutions be made dynamic, so that in addition to answering queries we can also accommodate
efficiently insertions and deletions of objects in the input set? Second, can eficient solutions
be designed for other types of curved objects?

References

[Aga89] P.K. Agarwal. Ray shooting and other applications of spanning trees with low
stabbing number. In Proceedings of the 5th Annual Symposium on Computational
Geometry, pages 315—325, 1989.

[AHL90] ' A. Aggarwal, M. Hansen, and T . Leighton. Solving query—retrieval problems by
compacting Voronoi diagrams. In Proceedings of the 18th Annual ACM Sympo-
sium on Theory of Computing, pages 331—340, 1990.

[A891] P.K. Agarwal and M. Sharir. Counting circular arc intersections. In Proceedings
of the 6th Annual Symposium on Computational Geometry, pages 10—20, 1991.

[AvK93] P.K. Agarwal and M. van Kreveld. Connected component and simple polygon
intersection searching. In Proceedings of the 1993 Workshop on Algorithms and
Data Structures, August 1993. To appear.

40

[AVKO]

[BM79]

[CF91]

[case]

[Cha86]

[Cha91]

[CJ92]

[CLRQO]

[cswgo]

[owes]

[(11392]

[DE87]

[DK83]

[DSST89]

P.K. Agarwal, M. van Kreveld, and M. Overmars. Intersection queries in curved
objects. Manuscript. Preliminary version in Proc. 1991 Symp. on Computational
Geometry, pp. 41—50.

J .L. Bentley and H. A. Maurer. A note on Euclidean near neighbor searching in
the plane. Information Processing Letters, 8:133—136, 1979.

B.M. Chazelle and J. Friedman. Point location among hyperplanes and unidirec-
tional ray-shooting. Technical Report TR—333—91, Dept. of Computer Science,
Princeton University, 1991.

B.M. Chazelle and L.J. Guibas. Fractional cascading: I. A data structuring
technique. Algorithmica, 1:133—162, 1986.

B.M. Chazelle. Filtering search: a new approach to query-answering. SIAM
Journal on Computing, 15:703-724, 1986.

B.M. Chazelle. An optimal convex hull algorithm and new results on cuttings. In
Proceedings of the 32nd Annual IEEE Symposium on Foundations of Computer
Science, pages 29—38, 1991.

SW. Cheng and R. 'Janardan. Algorithms for ray—shooting and intersection
searching. Journal of Algorithms, 13:670—692, 1992.

TH. Cormen, C.E. Leiserson, and BL. Rivest. Introduction to Algorithms. MIT
Press and McGraw-Hill, 1990.

B.M. Chazelle, M. Sharir, and E. Welzl. Quasi—optimal upper bounds for sim—
plex range searching and new zone theorems. In Proceedings of the 6th Annual
Symposium on Computational Geometry, pages 23—33, 1990.

B. Chazelle and E. Welzl. Quasi-optimal range searching in Spaces of finite VC-
dimension. Discrete and Computational Geometry, 4:467—489, 1989.

M. de Berg. Eflicient algorithms for ray-shooting and hidden surface removal.
PhD thesis, Department of Computer Science, University of Utrecht, Utrecht,
the Netherlands, 1992.

DP. Dobkin and H. Edelsbrunner. Space searching for intersecting objects. Jour-
nal of Algorithms, 8:348—361, 1987.

D.P. Dobkin and D.G. Kirkpatrick. Fast detection of polyhedral intersection.
Theoretical Computer Science, 27:241—253, 1983.

J .R. Driscoll, N. Sarnak, D.D. Sleator, and R.E. Tarjan. Making data structures
persistent. Journal of Computer und System Sciences, 38:86—124, 1989.

41

[Ede87]
[GJ893]

[JL93]

[LD81]

[L391]

[Mat91a]

[Mat91b]

[Mat92]

[McC85]

[Pel92]

[Sha85]

[Sha91]

[ST86]

[vK92]

H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer—Verlag, 1987.

P. Gupta, R. J anardan, and M. Smid. Further results on generalized intersection
searching problems: counting, reporting, and dynamization. In Proceedings of
the 1993 Workshop on Algorithms and Data Structures, August 1993. To appear.
Available as Tech. Rept. TR—92—72, Dept. of Computer Science, University of
Minnesota, Minneapolis, MN. Also submitted.

R. J anardan and M. Lopez. Generalized intersection searching problems. Inter-
national Journal of Computational Geometry 8' Applications, 3:39—69, 1993.

D.T. Lee and R.L. Drysdale. Generalization of Voronoi diagrams in the plane.
SIAM Journal on Computing, 10:73—87, 1981.

H-P. Lenhof and M. Smid. An optimal construction method for generalized convex
layers. In Proceedings of the 2nd International Symposium on Algorithms, pages
349—361, Taiwan, December 1991.

J . Matouäek. Cutting hyperplane arrangements. Discrete 8' Computational Ge-
ometry, 6:385—406, 1991.

J . Matouäek. Reporting points in halfspaces. In Proceedings of the 32nd Annual
IEEE Symposium on Foundations of Computer Science, pages 207—215, 1991.

J . Matouéek. Eficient partition trees. Discrete é? Computational Geometry,
8:315-334, 1992. (

E.M. McCreight. Priority search trees. SIAM Journal on Computing, 14:257—276,
1985.

M. Pellegrini. A new algorithm for counting circular arc intersections. Techni-
cal Report TR—92—010, International Computer Science Institute, Berkeley, CA,
1992.

M. Sharir. Intersection and closest-pair problems for a set of planar disks. SIAM
Journal on Computing, 14:448—468, 1985.

M. Sharir. The k—set problem for arrangement of curves and surfaces. Discrete
and Computational Geometry, 6:593—613, 1991.

N. Sarnak and R.E. Tarjan. Planar point location using persistent search trees.
Communications of the ACM, 29:669—679, 1986.

M. van Kreveld. New“ results on data structures in computational geometry. PhD
thesis, Department of Computer Science, University of Utrecht, Utrecht, the
Netherlands, 1992.

42

[vKOA90] M. van Kreveld, M. Overmars, and P. K. Agarwal. Intersection queries in sets of
disks. In Proceedings of the 1.9.90 Scandinavian Workshop on Algorithm Theory,
LNCS 44 7, pages 393—403. Springer—Verlag, 1990.

43

