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ABSTRACT
We present a generalised estimator for the autocorrelation function, S-ACF, which is an extended version of the standard estimator
of the autocorrelation function (ACF). S-ACF is a versatile definition that can robustly and efficiently extract periodicity and signal
shape information from a time series, independent of the time sampling and with minimal assumptions about the underlying
process. Calculating the autocorrelation of irregularly sampled time series becomes possible by generalising the lag of the
standard estimator of the ACF to a real parameter and introducing the notion of selection and weight functions. We show that the
S-ACF reduces to the standard ACF estimator for regularly sampled time series. Using a large number of synthetic time series
we demonstrate that the performance of the S-ACF is as good or better than commonly used Gaussian and rectangular kernel
estimators, and is comparable to a combination of interpolation and the standard estimator. We apply the S-ACF to astrophysical
data by extracting rotation periods for the spotted star KIC 5110407, and compare our results to Gaussian process (GP) regression
and Lomb-Scargle (LS) periodograms. We find that the S-ACF periods typically agree better with those from GP regression
than from LS periodograms, especially in cases where there is evolution in the signal shape. The S-ACF has a wide range of
potential applications and should be useful in quantitative science disciplines where irregularly sampled time series occur. A
Python implementation of the S-ACF is available under the MIT license.
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1 INTRODUCTION

Time series are ubiquitous throughout the experimental sciences and
give insight into the temporal evolution of systems and their under-
lying processes. Time series in astrophysics, for example, have been
instrumental in our understanding of stellar and planetary systems:
stellar light and radial velocity curves yield information about the
temporal evolution of processes on the stellar surface, from the lon-
gitudinal inhomogeneity of starspot distributions and magnetic field
mechanisms, to the presence of orbiting bodies and material.
Historically, detecting periodicity in time series has focused on

either Fourier decomposition (for regularly sampled data) or fitting
sinusoidal models (for irregularly sampled data). An example of the
former is the Fast Fourier Transform (FFT; Cooley et al. 1969), and
examples of the latter are the standard, modified and Bayesian Lomb-
Scargle periodograms (Scargle 1982; Zechmeister & Kürster 2009;
Mortier & Collier Cameron 2017). While the Lomb-Scargle method
can be used for arbitrary samplings, the accuracy of the estimated
periods can be limited for quasi-periodic processes and evolving pe-
riodic signals due to the inherent assumption that the process be
well-described by a pure sine wave of fixed period. Similar issues
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affect methods based on phase folding and then minimising the vari-
ance or entropy of the data, as they also rely on strict periodicity and
negligible phase evolution (e.g. Stellingwerf 2011; Graham et al.
2013a,b). More recently, flexible machine learning methods, appli-
cable to both regular and irregular time series, have been used to
describe quasi-periodic variations in stellar light curves (e.g. Angus
et al. 2018).

The above approaches share the same basic principle: they all fit
a model to the data to determine whether periodicity is present. The
concept of autocorrelation, i.e. correlating the data with itself, is a
distinct ‘model-free’ approach that uses only the time series data to
extract periodicity (e.g. Shumway & Stoffer 2017). The autocorrela-
tion function (ACF) is a powerful definition and a reliable method
to obtain information from any regularly sampled time series, as it
can capture both strictly periodic and quasi-periodic processes. It has
been widely used on space-based photometric data given the regu-
lar sampling available (e.g. McQuillan et al. 2013, 2014), as well
as on solar data (Morris et al. 2019) for the same reason. However,
the requirement of the standard ACF estimator for regularly sam-
pled data can be a limiting factor in its broader application, e.g. for
ground-based photometric data.

Previous studies have attempted to address this problem by gen-
eralising the standard ACF estimator to irregularly sampled data. A
number of these methods create an approximate regularly sampled
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time series in order to apply the standard autocorrelation estimator
enhanced with rules on which terms to discard in the series. The
method proposed in Lukatskaia (1975) assumes that the irregular
sampling arises from missing data points in a regularly sampled se-
ries, and further assumes that statistical properties of the missing
data are the same as the observed data. It is therefore possible to
calculate an autocorrelation estimator using only data points which
fall on to this regular sampling, with the caveat that the time se-
ries must be much longer than the variability period of the signal of
interest. The method from Andronov & Chinarova (2005) interpo-
lates onto a regular sampling grid using a smoothing function. These
methods can work well if the sampling is almost regular and only a
subset of values are missing from a regularly sampled time series.
The Discrete Autocorrelation Function, as proposed in Edelson &
Krolik (1988), relies on binning values in time intervals to account
for missing overlaps. A similar method was also proposed in Mayo
et al. (1974).
As an extension of the binning proposed by Edelson & Krolik

(1988), and drawing from the general kernel based methods pro-
posed by Hall et al. (1994), Stoica & Sandgren (2006) and Bjørnstad
& Falck (2001) both use a kernel to weight the product of obser-
vations according to the difference between the observation interval
and the desired lag bin centre. This is also known as ‘fuzzy slot-
ting’. The kernels proposed are smooth density functions that tend to
zero as lag increases or decreases from the desired lag subject to a
characteristic width parameter. Stoica & Sandgren (2006) propose a
sinc function, demonstrating the efficacy of this weighting on exam-
ples from over-the-internet temperature data, pulsar time-of-arrival
measurements and ice core CO2 measurements. Bjørnstad & Falck
(2001) use a Gaussian kernel in the context of estimating a spatial au-
tocorrelation for sparse ecological population data. A comparison of
a number of correlation analysis techniques for irregularly sampled
time series (linear interpolation, Lomb-Scargle periodogram, corre-
lation slotting and several kernel based methods), in a geoscientific
context, can be found in Rehfeld et al. (2011). These authors find
that while all methods investigated lead to consistent results for time
series with a relatively constant sampling density, the kernel based
methods perform better for highly irregular time series.
Related to the problem of finding the autocorrelation function of

irregularly sampled time series is the problem of finding the power
spectral density (PSD), as the Fourier transform of the power spec-
trum of a (stochastic) time series is equivalent to the ACF (see e.g.
Scargle 1989; Merrifield & McHardy 1994).
In this work we present a different generalisation of the standard

estimator of the autocorrelation function, which we name the selec-
tive autocorrelation function estimator, or S-ACF. The S-ACF is an
extended and generalised version of the standard estimator, which
is applicable to both regularly and irregularly sampled time series,
without making any assumptions about the time sampling or the
statistical properties of the discrete time series and only assuming
smoothness of the underlying process. In particular, there are no
assumptions about regularity in the sampling of the time series.
The S-ACF method, presented in this publication, has previously

been used under the name G-ACF in the publications Gillen et al.
(2020) and Briegal et al. (2022).
A Python implementation of the S-ACF is available under theMIT

license at github.com/joshbriegal/sacf/.
In Section 2 we define our mathematical notation and the standard

estimator of the autocorrelation function. We then present the S-
ACF and discuss its main properties in Section 3. In Section 4 we
show that the S-ACF performs accurately on both synthetic and real
data. We investigate the effect of different time samplings with both

regularly and irregularly sampled time series and find that the S-ACF
produces comparable estimates of the autocorrelation function and
corresponding period estimates. We conclude in Section 5.

2 BASIC DEFINITIONS

We start with some elementary definitions concerning time series
and the standard estimator of the autocorrelation function in order
to clarify our vocabulary. We adopt the symbol := to indicate a
definition. An overview of the notation can be found in Appendix A.

2.1 Time series

We define a time series 𝑋𝐼 (𝑡) to be a finite ordered set

𝑋𝐼 (𝑡) := {(𝑋𝑖 , 𝑡𝑖) ∈ R×R+ |𝑖 ∈ 𝐼 ⊂ N, (𝑡𝑖+1 − 𝑡𝑖) > 0∀𝑖 ∈ 𝐼} (1)

with 𝐼 ⊂ N being a finite index set, which we can choose to be
𝐼 = {0, 1, 2, . . . , 𝑖max}. Furthermore we will refer to the set 𝑇𝐼 :=
{𝑡𝑖 |𝑖 ∈ 𝐼} as the set of time labels and to the set 𝑋𝐼 := {𝑋𝑖 |𝑖 ∈ 𝐼} as
the set of time series values.
It can be useful to think of a time series 𝑋𝐼 (𝑡) as a discrete sampling

of a continuous process 𝑋 (𝑡). The notation 𝑋𝑖 = 𝑋 (𝑡𝑖) will be used.
Hence we define a time series to be regularly sampled if there exists
a sampling constant Δ𝑡 > 0, such that 𝑡𝑘 = 𝑡0 + 𝑘 · Δ𝑡 ∀𝑘 ∈ 𝐼, else
we call the time series irregularly sampled.

2.2 Standard estimator of the autocorrelation function (ACF)

The standard estimator of the autocorrelation function (ACF; e.g. as
described in Scargle 1989; Shumway & Stoffer 2017) relies on the
self-similarity of the underlying process of the time series and can be
applied to all regularly sampled time series to obtain information such
as periodicity and signal shapes. We define the standard estimator of
the autocorrelation function of a regularly sampled time series 𝑋𝐼 (𝑡)
as the function

𝜌 : {0, 1, . . . , 𝑖max} → [−1, 1] (2)

𝜌(𝑘) := 1
𝑁

𝑖max−𝑘∑︁
𝑖=0

(𝑋𝑖 − 〈𝑋𝐼 〉) × (𝑋𝑖+𝑘 − 〈𝑋𝐼 〉) (3)

where 〈𝑋𝐼 〉 denotes the mean of the time series values and the nor-
malisation 𝑁 is the total sum of squares 𝑁 :=

∑
𝑖∈𝐼

(𝑋𝑖 − 〈𝑋𝐼 〉)2. The

choice of this normalisation implies that 𝜌(0) ≡ 1, i.e. a time series
is maximally similar to itself when there is no lag. The argument 𝑘
is referred to as the lag.
Equation 3 is the standard estimator of the (true) autocorrelation

function in the case of regularly sampled and finite time series. In
the following we will use the abbreviation ACF to mean this standard
estimator.
While this is a standard way to introduce the ACF, it can be useful

to think of the ACF as a function with a time domain instead of an
integer lag domain. We can make this domain modification explicit
by multiplying the argument by the sampling constant Δ𝑡:

𝜌(𝑘Δ𝑡) : {0,Δ𝑡, . . . ,Δ𝑡 · 𝑖max} → [−1, 1] . (4)

These descriptions are equivalent, but the latter view is more useful
for the forthcoming discussion. Specifically, it is clear that the stan-
dard estimator is only directly applicable to time series where the
sampling is regular.
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As discussed in the Introduction, various efforts have been made
to interpolate or infer missing data to recover a regularly sampled
time series and allow the use of the standard estimator. The accuracy
of such efforts depends on the length of the gaps or irregularities
in the time series sampling compared to the scale of structures in
the signal. If the time series has large temporal gaps compared to
the scale of the underlying process it is in general very difficult to
restore the missing information using interpolation. Here, we seek
to develop a new method to obtain information from arbitrary time
series, regardless of their sampling, which is applicable to all time
series. The approach presented in this work is a generalisation of the
standard estimator, based on the fact that the standard estimator is
already applicable to all regularly sampled time series irrespective
of the underlying process. The key step is to formalise the time label
dependence of the definition explicitly.

3 SELECTIVE AUTOCORRELATION FUNCTION
ESTIMATOR (S-ACF)

Webegin generalising the definition of the standard estimator for time
series of arbitrary sampling by introducing two functions, the selec-
tion function 𝑆 and the weight function �̂� , as well as generalising the
notion of the lag to a generalised lag �̂� ∈ [0 , (max(𝑇𝐼 ) −min(𝑇𝐼 ))].
We define the selective autocorrelation function estimator, for a

time series of any sampling, to be the function �̂�( �̂�; �̂�, 𝑆) which,
restricted to the generalised lag �̂� , is a function of the form

�̂�( �̂�) : [0, (max(𝑇𝐼 ) −min(𝑇𝐼 ))] → [−1, 1] . (5)

A possible generalised definition is then given by

�̂�

(
�̂�; �̂�, 𝑆

)
:=

1
𝑁

∑︁
𝑖∈𝐼

𝑡𝑖+�̂�≤max(𝑇𝐼 )

[
(𝑋 (𝑡𝑖) − 〈𝑋𝐼 〉) ×

(
𝑋 (𝑆(𝑡𝑖 + �̂�)) − 〈𝑋𝐼 〉

)

× �̂�

(���𝑆 (
𝑡𝑖 + �̂�

)
−
(
𝑡𝑖 + �̂�

)���) ] . (6)

Where 𝑁 :=
∑
𝑖∈𝐼

(𝑋𝑖 − 〈𝑋𝐼 〉)2 denotes the total sum of squares and

〈𝑋𝐼 〉 is the mean of the time series values set. The general form of
the S-ACF is very similar to that of the standard estimator (Equation
3). The S-ACF differs from the standard estimator by the explicit
inclusion of the selection function in the second factor, the restriction
on the sum, the generalised lag and an additional third factor given
by the weight function. In the following sub-sections we discuss the
three new components: the generalised lag, the selection function
and the weight function.
For regularly sampled time series, we want the S-ACF to reduce to

the standard estimator when restricting the generalised lag to multi-
ples of the sampling constant. A full proof and detailed explanation
of this property is given in Appendix B. This reduction to the stan-
dard estimator is one of the core requirements of our generalisation
and ensures that the S-ACF and the standard estimator are equivalent
for regularly sampled time series. We note that this requirement mo-
tivates some of the restrictions that we impose on the selection and
weight functions.
In the case of the ACF, the equation 𝜌(0) = 1 tells us that –

trivially – if we do not shift the time series the correlation is perfect.
The property �̂�(0) = 1 should also hold for the S-ACF, which we
prove in Appendix C.
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Figure 1. Each graphic (a) to (e) shows a set of time labels on the real axis
and below them the same set of time labels shifted by a real generalised lag �̂�.
The red lines indicate how the selection function �̂� matches the shifted time
labels to the original set of time labels above by choosing the closest time
label from the set of time labels 𝑇𝐼 . The generalised lag increases from panel
(a) to (e), which corresponds to the lower set of labels ‘shifting’ to the right.
A supplementary animated version of this figure is available on the journal
website.

3.1 The generalised lag �̂�

As shown in Equation 6, the generalised lag
�̂� ∈ [0 , (max(𝑇𝐼 ) −min(𝑇𝐼 ))] can now take any value within
an interval in time instead of solely integer values. This is natural
since in the most general case of irregular sampling there is no
preferred time scale – i.e. there exists no sampling constant – and
thus we can allow the lag to be a continuous variable.
Even though the S-ACF is a well defined function for any lag, it

cannot contain meaningful information at a higher resolution than
the time series itself, and we suggest setting the time-resolution of
the generalised lag to values no smaller than the minimal differ-
ence between two neighbouring time labels 𝛿�̂� ≥ min(𝑡𝑖+1 − 𝑡𝑖) for
{𝑡𝑖 , 𝑡𝑖+1} ∈ 𝑇𝐼 .
The condition 𝑡𝑖 + �̂� ≤ max(𝑇𝐼 ) on the sum is the generalisation of

the upper limit 𝑖max − 𝑘 of the sum in theACFdefinition (Equation 3).
This bound on the (generalised) lag enforces again that the maximum
shifting of the process along itself is equal to the temporal length of
the time series and thus when the first time label is matched up with
the last time label.
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Figure 2. The top panel shows three time series with an underlying sine
process (17.8 day period), sampled regularly (black), randomly (red) and
with a cadence-like sampling that possesses additional larger gaps (blue).
All time label sets have the same cardinality of |𝑇𝐼 | = 250. The bottom
panel shows the selective autocorrelation functions (S-ACF) of the above
time series. A vertical green line is plotted at the period of the signal (17.8
days) in generalised lag.

3.2 The selection function 𝑆

The selection function is arguably the most important part of the S-
ACF definition (Equation 6), as it deals with the irregular sampling
issue that is at the core of the problem considered in this work.
We define a selection function 𝑆 to be a function 𝑆 : R+ → 𝑇𝐼 that
projects an arbitrary point in time onto the set of available time labels,
thus selecting a specific time label for each point in time. There
are many sensible functions that one could choose to accomplish
this, however a natural selection function is the one that, for each
point in time, selects the closest allowed time label (see Figure 1
for an illustration of this function). In the case that two time labels
are equally close to the argument one can employ the convention
of always choosing the smaller or larger value, or randomise the
decision in any practical application of the S-ACF.
In order for this selection function to be justified we have to make

the assumption that the process underlying the discrete time series
has some degree of “smoothness” in between the time labels.
A key difference of this selection function, compared to the kernel

based methods described in the Introduction, see e.g. Rehfeld et al.
(2011), is that the selection function does not have a kernel with a
fixed width. The distance in lag between a time label and the selected
shifted time label can be as large as half the size of the largest gap in
the time series sampling, as can be seen in Figure 1.
A possible alternative definition of the selection function would

be to find the closest time label for the first shifted time label and
then pair up all subsequent labels instead of finding the closest time
label for each shifted label individually. While this definition reduces
the computational complexity, it did not produce as accurate a re-
construction of the standard ACF as taking the closest time label for
each individual time label when tested on synthetic time series.

3.3 The weight function �̂�

We define a weight function �̂� to be a function �̂� : [0,∞) → [0, 1]
with �̂� (0) ≡ 1. We will interpret the weight function as a function
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Figure 3. As Figure 2 but for a time series with an underlying process
described by the sum of two sine functions with 8.9 and 17.8 day periods.
Vertical orange and green lines are plotted at the periods of the signal (8.9
and 17.8 days respectively) in generalised lag.
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Figure 4. As Figure 2 but for a time series with an underlying process de-
scribed by the sum of a comparable amplitude sine function and stochastic
Gaussian process. A vertical green line is plotted at the period of the deter-
ministic component of the signal (17.8 days) in generalised lag.

that assigns time differences 𝛿𝑡 ≥ 0 a weight within the interval
[0, 1]. Specifically we see from Equation 6 that the weight function
is used to assign a weight to the difference between the argument
and the value of the selection function and is thereby a statement
about the quality of the ‘selection’. Every fixed point of the selection
function 𝑆

(
𝑡𝑖 + �̂�

)
= 𝑡𝑖 + �̂� will therefore lead to a term in the S-ACF

with weight equal to one because of the requirement that �̂� (0) ≡ 1.

There are many choices for possible weight functions, but we have
to make sure that the condition �̂� (0) ≡ 1 is observed since this is
an important property (see Appendices B and C) and turns out to
be a natural condition to ask for. Additionally, it would be natural
for the weight function to be a monotonically decreasing function
tending towards zero, since this reflects the interpretation that terms
that involve time series values at similar points in time should be
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preferred. There are infinitely many such functions, including an
exponential function or one half of a Gaussian distribution – however
a rational function is simpler and arguably more natural.
The Python implementation published with this work supports

several different weight functions. Simple tests indicate that different
weight functions, that fit the above criteria, do not lead to clearly
significant changes in the accuracy of themethod. Finding the optimal
weight function is beyond the scope of this paper.
We propose the following weight function

�̂� (𝛿𝑡) = 1
1 + 𝛼𝛿𝑡

, 𝛼 > 0, 𝛿𝑡 ≥ 0 (7)

where 𝛼 is the inverse of the characteristic scale parameter of the time
series labels, e.g. one may choose 𝛼 = 1/〈𝑇𝐼 〉. The 𝛿𝑡 represents a
generic time difference and does not have any interpretation as a
sampling constant.
Naively one may expect that the S-ACF will depend on the scale

of the time labels since we are free to re-scale time labels arbitrarily,
but we know that the correlation between the different points in time
of a process should not depend on the overall time scale. The use
of the inverse scale parameter cancels out any re-scaling of the time
labels since it will re-scale in the inverse fashion. This is the simplest
continuous weight function that fits the above criteria and is also the
most efficient for explicit calculations.
It is possible to consider a discrete weight function that satisfies

�̂� (0) = 1 but is zero in all other cases, thus discarding all terms
that do not have matching shifted time labels and hence eliminating
the selection function from the definition. However in the case of
irregularly sampled time series such a discrete weight function may
eliminate the majority of the terms contributing to the S-ACF for a
given lag and even almost matching terms would not be considered.
This method is best suited to the case of an almost regular sampling
where a small percentage of values are missing from an otherwise
regularly sampled time series. In this case most terms in the autocor-
relation function will have a match when the lag corresponds to an
integer multiple of the ‘regular’ sampling constant and only a small
number of terms without a matching time label need to be discarded.

4 S-ACF APPLIED TO SYNTHETIC AND REAL DATA

4.1 Synthetic data: simple sinusoidal time series

We created a periodic sinusoidal signal. To investigate the impact
of the temporal sampling on the S-ACF we considered three differ-
ent examples: (i) regularly sampled, (ii) randomly sampled, and (iii)
cadence-like sampling with gaps. This third time series seeks to sim-
ulate the observing strategy of ground-based astronomical surveys,
i.e. data during nighttime, gaps during daytime, and sporadic addi-
tional gaps due to bad weather. For ease of comparison, each time
series contains the same number of data points (|𝑇𝐼 | = 250) and they
differ only in the temporal distribution of the data points.
These three time series are shown in the top panel of Figure 2.

The S-ACF of the regularly sampled time series is identical to the
ACF, as expected due to their definitions. The S-ACF of the random
and cadence-like samplings are similar to the ACF, but with small
differences due to the data gaps and corresponding loss of informa-
tion. These differences depend on the exact position and size of gaps
within the data.
In Figure 3 we consider the sum of two sine functions with the

same three temporal samplings described above. Similar behaviour
is seen in both the two-sine and single sine function examples, i.e.
both the random and cadence-like sampling cases display modest

deviations from the regularly sampled case but overall comparable
autocorrelation functions.

4.2 Synthetic data: more complex time series

In order to investigate the efficacy of the S-ACF on more realistic
data sets, we generated a periodic signal with a large stochastic
noise component. The periodic signal was again a sine function with
a period of 17.8 days. The stochastic component was drawn from
a Gaussian process (GP) using a simple harmonic oscillator (SHO)
kernel (with quality factor𝑄 = 1/3 and characteristic timescale 𝜌 = 5
days), as implemented in the celerite2 Python package (Foreman-
Mackey et al. 2017; Foreman-Mackey 2018). The amplitude of the
sinusoidal and stochastic components were comparable.
The same three temporal samplings were used as in Section 4.1,

and the resulting time series and corresponding S-ACFs are shown
in Figure 4. The S-ACF displays a prominent peak corresponding to
the period of the sinusoidal component, although the exact position
of this peak will be moderately affected by the large noise compo-
nent, as expected. Despite the periodic and noise components having
comparable amplitudes, the S-ACF is able to accurately recover a
clear periodic signal in all three sampling cases.

4.3 Synthetic data, quantitative analysis: comparison to kernel
estimators and interpolation

We want to quantitatively compare the performance of the S-ACF to
that of the standard autocorrelation estimator, as well as to several
other methods. To do this, we assume that the standard autocorre-
lation estimator of a regular sampling of a process is close to the
true autocorrelation function and thus we measure the other estima-
tors relative to this function. We focus on comparing the estimators
directly without determining the periods of the process.
We consider the following methods: S-ACF, the rectangular and

Gaussian kernel estimators (as implemented in Collenteur et al.
(2019)), and the standard autocorrelation estimator following a lin-
ear interpolation of the irregularly sampled time series onto a regular
sampling.
Throughout this section we consider the same kind of process as

in section 4.2, i.e. processes that consist of a GP rotation signal with
an additional GP noise component. The GP rotation component has a
period between 0.1 - 50 days, standard deviation𝜎 = 1, quality factor
𝑄0 = 5 (with 𝑑𝑄 = 1) and fractional amplitude of the secondary
mode relative to the primary mode 𝑓 = 0.5. The noise is again drawn
from a GP using a simple harmonic oscillator (SHO) kernel, with
quality factor 𝑄 = 1/3 and characteristic timescale 𝜌 between 0.1 -
50 days. The period of the periodic component of the process and
the noise time scale are drawn uniformly at random from the interval
0.1 - 50. The signal-to-noise ratios considered are between 0.001 and
20. The overall length of the processes is 100 days.
From these processes we generate time series with sampling den-

sities (or time label densities) varying between 0.1 - 20 time labels
per day. The length of each time series is kept fixed at 100 days. The
distributions of the time labels can be a uniform random distribution
or a cadence-like distributions with regular sampling during night-
times and additional larger gaps (e.g. simulating nightly observations
with periods of bad weather).
The random sampling is generated by selecting time labels uni-

formly at randomuntil the given average time label density is reached.
The cadence-like sampling is generated by placing regularly sampled
time labels during the night time (considered to last 8 hours) around
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Figure 5. Top: three versions of a process comprising both a periodic component (𝑃 = 17.8 days) and a correlated noise component (characteristic timescale
𝑙 = 5 days), which has an average sampling density of 2.5 time labels per day and a signal-to-noise ratio of 5.0. The three versions are a regular sampling
of the process (black triangles), a cadence-like sampling (magenta circles) and an interpolation of the cadence-like process onto the regular sampling (cyan
squares). Bottom left: comparison of the different estimators of the autocorrelation function for this process. The standard estimator (black line) is based on the
regularly sampled time series. The S-ACF estimator (red dashed), rectangular kernel estimator (blue dash-dotted) and Gaussian kernel estimator (green dotted)
are based on the cadence-like sampling of the process. Finally, we use the interpolated regular sampling of the process to again apply the standard estimator
(cyan dash-dot-dotted). Bottom right: residuals of the different estimators (S-ACF, rectangular and Gaussian kernels, and interpolation) relative to the standard
estimator (i.e. the ACF). Root-mean-square errors (RMSEs) are indicated in the legend.

10 (larger) gaps, where the edges of the gaps are chosen uniformly at
random. A small number of time labels are then added, at random,
around the gaps until the given average time label density is reached.
Figures 5 and 6 illustrate how we compare the different estimators

in the case of cadence-like sampling (the process of comparing the
different estimators is equivalent for the random sampling). Figure
5 shows an ‘easy’ time series with an average sampling density of
2.5 time labels per day and a signal-to-noise ratio (S/N) of 5. We
then compute the estimators derived from these methods based on
the cadence-like sampling of the process. Finally, we compute the
residuals and root-mean-square errors (RMSE) of each estimator
relative to the standard autocorrelation estimator of the regularly
sampled time series (i.e. no gaps). Figure 6 repeats this for a ‘hard’
time serieswith an average sampling density of 0.5 time labels per day
and a S/N of 0.1. It is worth noting that the discrete time series shown
in Figure 6 (top) appear “smoother” than the underlying continuous
process, due to their low sampling density.
Using the RMSEs computed in this way we can quantitatively

compare the S-ACF to the standard estimator for time series with
random and cadence-like sampling. In the case of regular sampling
the S-ACF reduces to the standard estimator (see Appendix B), which
makes this comparison trivial by design. Figure 7 shows the average

RMSEs of the S-ACF for a wide range of parameters. The RMSEs
are generally much lower in the case of random sampling. Moreover
we can see that the signal-to-noise ratio has essentially no effect
when comparing the S-ACF directly to the standard estimator of
the regularly sampled time series, without applying further methods
to detect periodicity. For sampling densities below 0.2 the RMSEs
increase in both sampling cases.
In order to compare the S-ACF to other estimators of irregularly

sampled time series, we compare the RMSEs of the S-ACF, relative
to the standard estimator of the regularly sampled time series, to the
equivalent RMSEs of the other methods for the same processes. This
is equivalent to running many analyses as in Figure 5 and taking the
differences between the RMSEs of eachmethod and the RMSE of the
S-ACF. The differences between the RMSEs are always computed
for the same time series and are averaged over a large number of
different time series. In Figures 8 and 9 we show the results for time
series with random and cadence-like sampling, respectively.
The S-ACF performs better than the two kernel methods in all

areas of the parameter space, but especially when the time label den-
sity is very low (6 0.2 day−1), and this effect is more pronounced
in the case of random sampling. The performance of the S-ACF is
very similar to the interpolation method in all areas of the parameter
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Figure 6. Same as Figure 5 for a process with a periodic component (𝑃 = 17.8 days) and a correlated noise component (characteristic timescale 𝑙 = 15 days),
an average sampling density of 0.5 time labels per day and a signal-to-noise ratio of 0.1.
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Figure 7. Average RMSEs of the S-ACF estimator for randomly sampled time series (left) and for time series with cadence-like sampling (right) relative to the
standard estimator of the same process with regular sampling. Each bin shows the average of many evaluations (totalling 140700 processes per plot). Negative
RMSEs are not possible and the colour scale is chosen to be consistent with Figures 8 and 9, where differences between RMSEs are shown.
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Figure 8. Differences between RMSEs (relative to the standard estimator of the regularly sampled time series) using randomly sampled time series for the
S-ACF estimator vs. the rectangular kernel estimator (left), the Gaussian kernel estimator (centre) and the standard estimator on the interpolation of the randomly
sampled time series (right). These are comparable to the RMSEs of the left panel of Figure 7. Red indicates a larger RMSE of the S-ACF estimator, blue indicates
a larger RMSE of the respective other estimator, and black indicates comparable RMSEs.
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Figure 9. Same as Figure 8 but for time series with a cadence-like sampling.

space for the processes considered here. In the regime of very low
S/N ratios (6 0.1) the interpolation method slightly outperforms the
S-ACF, at least in terms of the RMSE value. We note, however, that
while the RMSE is a useful indicator of an accurate estimator, we are
often concerned about extracting periods from these estimator func-
tions, e.g. from the location of the first peak (or weighted average of
the first few peaks). Considering Figure 6, as an illustrative example,
the bottom left panel shows that only the S-ACF has a first peak in
general agreement with the ACF, so any period extracted from these
estimator functions would likely favour S-ACF over the other meth-
ods, at least in this particular example. Further tests, using a robust
period finding algorithm across the full parameter space, would be
needed to ascertain whether S-ACF or interpolation produces more
accurate period estimates. This is beyond the scope of this work.

4.4 Real data: the Kepler light curve of the spotted star KIC
5110407

Wewish to test the efficacy of the S-ACF on real time series data and
explore how the periods estimated from the S-ACF compare to other
commonly used period estimation techniques. We estimate periods
from the S-ACF by calculating a Fast Fourier Transform (FFT) of the
first 3 peaks of the S-ACF. Restricting the lag time used in the period
estimation reduces the effect of signal shape evolution on the auto-

correlation function at long lag times and correspondingly improves
the accuracy of the period estimated. Using a FFT to calculate the
periodicity of the S-ACF is possible as the S-ACF is a continuous
function by definition. We note that another method of extracting
periodicity from the S-ACF would be to calculate the position of the
first peak in the S-ACF, or calculating the positions of subsequent
peaks in addition in order to refine this period estimate, such as the
technique used in McQuillan et al. (2013).
While the S-ACF is not restricted to astronomy, the standard ACF

has been widely used to estimate the rotation periods of stars from
time series photometry. Therefore, as an illustrative example, we
selected a spotted star observed by Kepler, KIC 5110407 (e.g. Roet-
tenbacher et al. 2013), and compare the period predictions of S-ACF
to two other techniques for rotation period estimation: Gaussian pro-
cess (GP) regression and Lomb-Scargle (LS) periodograms. Using
a rotationally variable star for this comparison allows us to probe
the efficacy of S-ACF on time series that display evolution in the
signal (phase) shape. While we focus on the period here, we note that
other useful information, such as the evolution timescale, can also be
extracted from the S-ACF. Our approach to comparing S-ACF, GP
regression and LS periodograms follows Gillen et al. (2020) and we
refer the reader to Section 3 of that paper for further details, but give
a brief overview below of the GP and LS models used here.
The GP model is based on the celerite2 package (Foreman-
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Figure 10. Rotation period estimates for the spotted star KIC 5110407 from S-ACF, Gaussian process (GP) regression, and Lomb-Scargle (LS) periodogram.
Top panel: the system’s quarter 7 Kepler light curve.Middle left: Selective autocorrelation function (blue) with the identified period highlighted (yellow).Middle
centre: GP posterior period distribution (orange) with the median and 1 𝜎 uncertainties highlighted (solid and dashed orange lines). For comparison, the S-ACF
and LS periods are also shown (blue and green solid lines, respectively). Middle right: LS periodogram (green) with the identified period highlighted (yellow).
Bottom row: The Kepler light curve phase-folded on the corresponding method’s period (S-ACF, GP and LS; left-to-right) and coloured from the beginning
(blue) to the end (yellow) of the observations.

Figure 11. Same as Figure 10 but simulating KIC 5110407 being observed from the ground (i.e. observations during night time only with additional gaps from
bad weather).
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Figure 12. Rotation period estimates for KIC 5110407 from S-ACF (blue), GP (orange) and LS (green) for all quarters with Kepler data. Circles show the period
estimates from the full Kepler light curve and triangles from the ‘ground-based’ version of the light curve. The S-ACF periods typically agree better with the
GP periods than with LS, especially in cases where there is evolution in the signal shape (e.g. quarters 7 and 15). The right hand panel shows the mean and
standard deviation of the period estimates across all quarters. The mean S-ACF periods from both the full and ‘ground-based’ versions of the light curves agree
with each other, and with the values from both the GP and LS methods. The scatter in the S-ACF periods across quarters is smaller than the scatter in LS periods
but larger than the scatter in GP periods.

Mackey et al. 2017; Foreman-Mackey 2018), as implemented through
the exoplanet framework (Foreman-Mackey et al. 2021b; Foreman-
Mackey et al. 2021a), and uses the standard rotation kernel with an
additional simple harmonic oscillator (SHO) kernel (with quality
factor 𝑄 = 1/3) to capture any non-periodic structure in the light
curves. The posterior parameter space was explored via gradient-
based Markov-chain Monte Carlo (MCMC) using the No U-Turn
Sampler (NUTS), as available through exoplanet, which in turn
uses PyMC3 and theano (Hoffman & Gelman 2014; Kumar et al.
2019; Salvatier et al. 2016; Theano Development Team 2016). For
each quarter, we ran 5 independent chains of 5,000 tuning steps
followed by 10,000 sampling steps. GP periods were taken as the
median of the posterior period distribution. It is worth noting that the
GP model requires an initial period guess, in contrast to both S-ACF
and LS, for which we give the average of the S-ACF and LS period
estimates. The GP model is also sensitive to data not well captured
by the chosen rotation kernel, such as stellar flares, which we account
for by performing an initial maximum a posteriori fit, masking 3𝜎
outliers, and refitting. For the LS model, we use the version available
through the astropy project (Astropy Collaboration et al. 2013;
Price-Whelan et al. 2018). LS periods are estimated from the largest
peak in the periodogram. Both the LS and S-ACF models were run
on the data without further processing such as flare masking.

Kepler observed KIC 5110407 for almost four years spanning 13
of the 17 quarters. Kepler quarters typically last ∼90 days and have
essentially continuous observations with a cadence of ∼30 mins.
The ACF has been successfully applied to such Kepler data (e.g.
McQuillan et al. 2013, 2014) but, as noted, the ACF is not applicable
to non-continuous data that cannot be accurately interpolated onto a
regularly spaced time series grid, i.e. time series with large data gaps,
such as ground-based photometry. We therefore estimated the stellar
rotation period of KIC 5110407 from two versions of its Kepler light
curve: (i) the full Kepler light curve and (ii) the Kepler light curve as
though it had been observed from the ground (i.e. with gaps during

daytime and simulated ‘bad weather’ events1). Figure 10 shows the
results for the full Kepler light curve observed during quarter 7 and
Figure 11 shows the results for ‘ground-based’ version of the light
curve. The Kepler data from this quarter shows moderate evolution
throughout and displays both ‘double-dip’ patterns (e.g. at ∼20 days)
and sinusoidal modulation (e.g. at ∼40–80 days). For this quarter,
therefore, the S-ACF and GP periods agree best whereas the LS
period prediction is slightly larger. This is the case for both the full
and ‘ground-based’ light curves. The better agreement between S-
ACF and GP is because they are more flexible than LS (i.e. they do
not assume a rigid sinusoidal model), and hence are more applicable
to such evolving time series. The periods can be best compared in
the middle centre panel of Figures 10 and 11 and by comparing the
phase-folded light curves.
We performed the same analysis on each available quarter of Ke-

pler data and compare the period predictions for S-ACF, GP and LS
across quarters in Figure 12. Across quarters, and for both the full
and ‘ground-based’ light curves, the S-ACF and GP periods agree
best overall. The LS predictions agree well for some quarters, mainly
those which show sinusoidal modulation, but less well for those that
show evolving modulation patterns, which results in a larger scatter
and correspondingly larger uncertainties on the mean rotation period
prediction compared to S-ACF or GP. The mean periods and stan-
dard deviations across quarters are: S-ACF = 3.51 ± 0.06 and 3.51 ±
0.06 days for the full and ‘ground-based’ light curves, respectively;
GP = 3.50 ± 0.04 and 3.50 ± 0.04 days; and LS = 3.53 ± 0.08 and
3.53 ± 0.08 days. We note that Roettenbacher et al. (2013) estimate

1 All quarters had the same relative times masked. Nighttime was considered
to last 8 hours of each 24 hour period and bad weather was simulated between
the following times: 18.5–22.5, 34.5–37.5, 48.5–52.5, 62.5–64.5 and 76.5–
81.5 days (relative to the start of each quarter).
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a rotation period for KIC 5110407 through light-curve inversion of
3.4693 days, which agrees to within 1𝜎 for all three methods.
This comparison between the S-ACF and the GP and LS methods,

for both continuous and irregularly sampled time series, illustrates
the validity of the S-ACF for such applications. Furthermore, as the
S-ACF is a very general approach with minimal assumptions about
the process, it can be applied to time series data of essentially any
form, without the need to adapt the kind of model chosen (in the case
of GP) or assume a rigid sinusoidal model (in the case of LS). The
S-ACF method took approximately 0.6 seconds on the quarter 7 KIC
5110407 light curve (4,117 data points) using a single laptop core2.
The GP regression took ∼8.3 seconds for the maximum a posteriori
fit (and ∼7 minutes for the MCMC), while the LS periodogram took
approximately 0.01 seconds to run on the same laptop core. Each
method is performing different calculations, and the GP MCMC
method additionally provides a period uncertainty, so their respective
times are simply included here for completeness and general interest.
The S-ACF is a powerful and efficient approach to extract periodicity,
quasi-periodicity and short-term self-similarity from time series data
in general, and especially data for which the true functional form is
unknown.
Furthermore, we note that the S-ACF has been successfully ap-

plied to ground-based data from the Next-Generation Transit Survey
(NGTS; Wheatley et al. 2018) to extract various kinds of stellar vari-
ability, including rotation, pulsations and eclipsing binaries (Gillen
et al. 2020; Briegal et al. 2022).

4.5 A note on aliasing

In the case of cadence-like sampling (e.g. ground-based astronomical
surveys), which possess a (mostly) fixed periodicity of sampling gaps,
alias signals can appear in the S-ACF due to the missing information
in between well-sampled clusters of data. These aliases can be easily
identified since their periodicity will be equal to the periodicity of the
data clusters and their amplitude will be proportional to the relative
size of the gaps between clusters (see e.g. Briegal et al. 2022). This
effect will not be relevant for most applications unless the structure
(or period) of interest is comparable to the structure of the sampling
clusters (i.e. sidereal day for ground-based astronomical surveys).
We suspect that it may be possible to reduce this modest effect by
generalising the normalisation to a function that depends on both the
lag and time label density. However, a full removal of these aliases
will likely not be possible since gaps imply missing information that
cannot be restored without additional information or assumptions.
We note, however, that these effects are small if there are sufficient
data points per period of the process.

5 CONCLUSIONS

The S-ACF, or selective autocorrelation function estimator, is a new
and versatile definition that can reliably and efficiently extract -
amongst others - periodicity and signal shape information from any
time series, virtually independent of the time series sampling and
only assuming the smoothness of the underlying process. We show
that the standard estimator of the autocorrelation function can be
generalised and applied to irregularly sampled time series by gener-
alising the lag to a real variable and introducing both selection and

2 The run time of the S-ACF is dependent on both the number of data points
and the number of lag time steps.

weight functions.We show that the S-ACF reduces to the standard es-
timator for regularly sampled time series and possesses the property
of maximal correlation at zero lag.
The S-ACFs derived from both simple andmore complex synthetic

time series with different samplings (regular, random and ‘cadence-
like’) agree well, however there are small deviations due to the data
gaps and corresponding loss of information. We calculate the root-
mean-square error (RMSE) of the S-ACF of irregularly sampled
synthetic processes, relative to the standard estimator of the ACF of
the same process with a regular sampling. The RMSEs are calculated
for a large number of processes spanning a wide range of time label
densities and signal-to-noise ratios. The RMSEs of the S-ACF are
then compared to the equivalent RMSEs of other methods that aim
to estimate the true ACF, including Gaussian and rectangular kernel
estimators and a combination of linear interpolation and the standard
estimator. The RMSEs of the S-ACF increase significantly at low
time label densities (< 1 day−1) and the same effect can be seen with
the other methods. The RMSEs of the S-ACF have essentially no
dependency on the signal-to-noise ratio. For the processes consid-
ered here, the S-ACF performs better than the two kernel methods
(most notably at low time label densities) and comparable to the in-
terpolation method (although we note that the interpolation method
performs slightly better at low signal-to-noise ratios, which may be
due to properties of the GP noise that dominates the process in this
regime). At high time label densities and modest-to-high S/N all
considered methods perform well and are very close to the standard
estimator of the ACF.
We compare the period predictions of S-ACF to those from GP

regression and LS periodograms by extracting rotation periods for
the spotted star, KIC 5110407. The S-ACF and GP periods typically
agree best across the differentKepler quarters, with LS periods being
comparable in quarters with mainly sinusoidal modulation but more
discrepant for quarters displayingmore complex or evolving patterns.
All three methods achieve consistent mean periods and uncertainties.
There are a wide range of potential applications for the S-ACF, not

only within astronomy but also in other quantitative sciences where
irregularly sampled time series occur, such as economics, finance,
climatology, geology, biology and others.
The Python implementation used in this work is available open-

source under the MIT license at github.com/joshbriegal/sacf, and
additionally can be installed through PyPI using the command: pip
install sacf.
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APPENDIX A: NOTATION

Table A1 lists the notation used in this work.

APPENDIX B: PROOF OF THE REDUCTION OF THE
S-ACF TO THE STANDARD ESTIMATOR FOR
REGULARLY SAMPLED TIME SERIES

From the definition of the S-ACF (Equation 6), the selection function
(Section 3.2) and the property �̂� (0) ≡ 1 of the weight function,
we can derive a consistency property of the S-ACF for the case of
regularly sampled time series, which is that the S-ACF reduces to the
standard estimator in this case.
If a time series is regularly sampled, then there exists a sampling

constantΔ𝑡 that describes the time difference between any two neigh-
bouring time labels 𝑡𝑖 and 𝑡𝑖+1 by 𝑡𝑖+1−𝑡𝑖 = Δ𝑡 with 𝑖, 𝑖+1 ∈ 𝐼. In this
case we can compute the standard estimator as well as the S-ACF. If
we want to compare the two functions for the same time series then
we can only compare their values on their common domain, which
means that the generalised lag �̂� of the S-ACF has to satisfy the
relation �̂� = 𝑘 ·Δ𝑡 with respect to the lag 𝑘 of the standard estimator.
We thus have to restrict the real generalised lag to the domain of
the standard estimator, given by integer multiples of the sampling
constant.
Using the restriction on the generalised lag, all points in time of

the form 𝑡𝑖 + �̂� will satisfy

𝑡𝑖 + �̂� = 𝑡𝑖 + 𝑘 · Δ𝑡, (B1)

but, since the time series is regularly sampled, adding multiples of
the sampling constant will give another time label

𝑡𝑖 + �̂� = 𝑡𝑖+𝑘 ∈ 𝑇𝐼 . (B2)

If we now apply the selection function to this equation we obtain that

𝑆

(
𝑡𝑖 + �̂�

)
= 𝑆 (𝑡𝑖+𝑘 ) , (B3)

but since the selection function – by construction –maps its argument
to the closest time label, we can use the fact that time labels are fixed
points of the selection function, meaning that

𝑆 (𝑡𝑖+𝑘 ) = 𝑡𝑖+𝑘 (B4)

to arrive at the equation

𝑆

(
𝑡𝑖 + �̂�

)
= 𝑡𝑖+𝑘 . (B5)

This result will be central to reducing the S-ACF to the definition of
the standard estimator for regularly sampled time series.

If we look at the definition of the S-ACF (Equation 6), we see that it
only differs from the standard estimator by the factor of the weight
function and the insertions of the selection function. If we focus only
on the last factor in Equation 6, we can directly apply Equations B2
and B5 to give

�̂�

(
|𝑆

(
𝑡𝑖 + �̂�

)
−
(
𝑡𝑖 + �̂�

)
|
)
= �̂� ( |𝑡𝑖+𝑘 − 𝑡𝑖+𝑘 |) = �̂� (0). (B6)
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Table A1. A brief summary of the notation of the sets, functions and parameters used.

Symbol Description

𝐼 Finite index set of natural numbers
𝑖max := max(𝐼 ) The maximum of the index set
𝑋 (𝑡) A continuous real process
𝑋𝐼 (𝑡) A time series with index set 𝐼
𝑋𝑖 = 𝑋 (𝑡𝑖) A time series value corresponding to the label 𝑡𝑖
𝑋𝐼 The set of time series values
𝑇𝐼 The set of time labels
Δ𝑡 A positive sampling constant
𝜌(𝑘) The standard estimator of the autocorrelation function (ACF)
𝑘 The integer lag of the standard estimator
〈𝑇𝐼 〉 The mean value of the time label set
〈𝑋𝐼 〉 The mean value of the time series value set
𝑁 :=

∑
𝑖∈𝐼

(𝑋𝑖 − 〈𝑋𝐼 〉)2 The normalisation of the ACF/S-ACF

�̂�( �̂�) The selective autocorrelation function estimator (S-ACF)
�̂� The real generalised lag of the S-ACF
�̂� (𝛿𝑡) The weight function of the S-ACF
𝛿𝑡 A generic positive time difference
�̂� (𝑡) The selection function of the S-ACF
𝛼 A positive constant

But we defined the weight function to satisfy the property �̂� (0) ≡ 1
and thus we obtain

�̂�

(
|𝑆

(
𝑡𝑖 + �̂�

)
−
(
𝑡𝑖 + �̂�

)
|
)
= 1 (B7)

removing the weight factor from the definition of the S-ACF.

The second factor in the definition of the S-ACF (Equation 6)

𝑋 (𝑆(𝑡𝑖 + �̂�)) − 〈𝑋𝐼 〉 (B8)

is also modified by the selection function. However we can apply
Equation B5 and obtain

𝑋 (𝑆(𝑡𝑖 + �̂�)) − 〈𝑋𝐼 〉 = 𝑋𝑖+𝑘 − 〈𝑋𝐼 〉 (B9)

and thus we again recover the factor from the definition of the
standard estimator.

Since the first factor of the S-ACF (Equation 6) is the same as in the
standard estimator, the only further modification is the restriction

𝑡𝑖 + �̂� ≤ max(𝑇𝐼 ) (B10)

on the sum. We can again use Equation B2 to obtain

𝑡𝑖+𝑘 ≤ max(𝑇𝐼 ). (B11)

If we write this equation in terms of the indices we arrive at

𝑖 + 𝑘 ≤ 𝑖max (B12)

which is equivalent to writing the upper limit of the sum on 𝑖 as
𝑖max − 𝑘 , as is the case in the definition of the standard estimator.

The above proof shows that the S-ACF reduces to the definition of
the standard estimator if the time series is regularly sampled and we
restrict the generalised lag to the domain of the standard estimator.

APPENDIX C: THE PROOF OF �̂�(0) = 1

We prove that �̂�(0) = 1 by considering the S-ACF definition (Equa-
tion 6) at zero lag. For �̂� = 0 we find

�̂�(0) =

1
𝑁

∑︁
𝑖∈𝐼

𝑡𝑖≤max(𝑇𝐼 )

[
(𝑋 (𝑡𝑖) − 〈𝑋𝐼 〉) ×

(
𝑋 (𝑆(𝑡𝑖)) − 〈𝑋𝐼 〉

)

× �̂�

(
|𝑆 (𝑡𝑖) − (𝑡𝑖) |

) ]
, (C1)

but since 𝑆(𝑡𝑖) = 𝑡𝑖 and �̂� (0) = 1 we have

�̂�(0) = 1
𝑁

∑︁
𝑖∈𝐼

𝑖≤𝑖max

[
(𝑋 (𝑡𝑖) − 〈𝑋𝐼 〉) × (𝑋 (𝑡𝑖) − 〈𝑋𝐼 〉)

]
. (C2)

Using the definition of the normalisation we arrive at the desired
equation

�̂�(0) = 𝑁

𝑁
= 1. (C3)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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