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A B S T R A C T 

We present a generalized estimator for the autocorrelation function, S-ACF, which is an extended version of the standard estimator 
of the autocorrelation function (ACF). S-ACF is a versatile definition that can robustly and efficiently extract periodicity and signal 
shape information from a time series, independent of the time sampling and with minimal assumptions about the underlying 

process. Calculating the autocorrelation of irregularly sampled time series becomes possible by generalizing the lag of the 
standard estimator of the ACF to a real parameter and introducing the notion of selection and weight functions. We show that the 
S-ACF reduces to the standard ACF estimator for regularly sampled time series. Using a large number of synthetic time series, 
we demonstrate that the performance of the S-ACF is as good or better than commonly used Gaussian and rectangular kernel 
estimators, and is comparable to a combination of interpolation and the standard estimator. We apply the S-ACF to astrophysical 
data by extracting rotation periods for the spotted star KIC 5110407, and compare our results to Gaussian process (GP) regression 

and Lomb–Scargle (LS) periodograms. We find that the S-ACF periods typically agree better with those from GP regression 

than from LS periodograms, especially in cases where there is evolution in the signal shape. The S-ACF has a wide range of 
potential applications and should be useful in quantitative science disciplines where irregularly sampled time series occur. A 

PYTHON implementation of the S-ACF is available under the MIT license. 
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 I N T RO D U C T I O N  

ime series are ubiquitous throughout the experimental sciences 
nd give insight into the temporal evolution of systems and their 
nderlying processes. Time series in astrophysics, for e xample, hav e 
een instrumental in our understanding of stellar and planetary sys- 
ems: stellar light and radial velocity curves yield information about 
he temporal evolution of processes on the stellar surface, from the 
ongitudinal inhomogeneity of star-spot distributions and magnetic 
eld mechanisms to the presence of orbiting bodies and material. 
Historically, detecting periodicity in time series has focused on 

ither Fourier decomposition (for regularly sampled data) or fitting 
inusoidal models (for irregularly sampled data). An example of the 
ormer is the fast Fourier transform (FFT; Cooley, Lewis & Welch 
969 ), and examples of the latter are the standard, modified, and
ayesian Lomb–Scargle (LS) periodograms (Scargle 1982 ; Zech- 
eister & K ̈urster 2009 ; Mortier & Collier Cameron 2017 ). While

he LS method can be used for arbitrary samplings, the accuracy 
f the estimated periods can be limited for quasi-periodic processes 
nd evolving periodic signals due to the inherent assumption that the 
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rocess is well described by a pure sine wave of fixed period. Similar
ssues affect methods based on phase folding and then minimizing 
he variance or entropy of the data, as they also rely on strict
eriodicity and negligible phase evolution (e.g. Stellingwerf 2011 ; 
raham et al. 2013a , b ). More recently, flexible machine learning
ethods, applicable to both regular and irregular time series, have 

een used to describe quasi-periodic variations in stellar light curves 
e.g. Angus et al. 2018 ). 

The abo v e approaches share the same basic principle: they all fit
 model to the data to determine whether periodicity is present. The
oncept of autocorrelation, i.e. correlating the data with themselves, 
s a distinct ‘model-free’ approach that uses only the time series
ata to extract periodicity (e.g. Shumway & Stoffer 2017 ). The
utocorrelation function (ACF) is a powerful definition and a reliable 
ethod to obtain information from an y re gularly sampled time series,

s it can capture both strictly periodic and quasi-periodic processes. 
t has been widely used on space-based photometric data given the
egular sampling available (e.g. McQuillan, Aigrain & Mazeh 2013 ; 

cQuillan, Mazeh & Aigrain 2014 ), as well as on solar data (Morris
t al. 2019 ) for the same reason. Ho we ver, the requirement of the stan-
ard ACF estimator for regularly sampled data can be a limiting factor 
n its broader application, e.g. for ground-based photometric data. 

Previous studies have attempted to address this problem by 
eneralizing the standard ACF estimator to irregularly sampled 
en Access article distributed under the terms of the Creative Commons 
unrestricted reuse, distribution, and reproduction in any medium, provided 

http://orcid.org/0000-0002-7718-8190
http://orcid.org/0000-0003-2851-3070
http://orcid.org/0000-0002-7611-8772
mailto:lars.kreutzer@aei.mpg.de
https://creativecommons.org/licenses/by/4.0/


5050 L. T. Kreutzer et al. 

M

d  

s  

e  

s  

i  

s  

t  

p  

p  

t  

s  

i  

T  

o  

s  

r  

o  

(
 

(  

b  

B  

o  

i  

s  

t  

c  

s  

p  

m  

(  

a  

o  

t  

t  

c  

m  

a  

p
 

t  

t  

s  

M
 

e  

f  

g  

b  

a  

o  

u  

r
 

b  

e
 

M
 

e  

i  

t  

W  

r  

A  

p

2

W  

t  

W  

n

2

W

X

 

w  

{  

I  

o
 

o  

H  

a  

w

2

T  

1  

t  

a  

p  

t

ρ

ρ

w  

n  

T  

s  

a  

e  

fi  

t
 

t  

i  

b

ρ

T  

f  

s  

t
 

i  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/522/4/5049/7146225 by M
ax-Planck Society user on 29 June 2023
ata. A number of these methods create an approximate regularly
ampled time series in order to apply the standard autocorrelation
stimator enhanced with rules on which terms to discard in the
eries. The method proposed in Lukatskaia ( 1975 ) assumes that the
rregular sampling arises from missing data points in a regularly
ampled series, and further assumes that statistical properties of
he missing data are the same as the observed data. It is therefore
ossible to calculate an autocorrelation estimator using only data
oints that fall on to this regular sampling, with the caveat that the
ime series must be much longer than the variability period of the
ignal of interest. The method from Andronov & Chinarova ( 2005 )
nterpolates on to a regular sampling grid using a smoothing function.
hese methods can work well if the sampling is almost regular and
nly a subset of values are missing from a regularly sampled time
eries. The discrete ACF, as proposed in Edelson & Krolik ( 1988 ),
elies on binning values in time intervals to account for missing
 v erlaps. A similar method was also proposed in Mayo, Shay & Riter
 1974 ). 

As an extension of the binning proposed by Edelson & Krolik
 1988 ), and drawing from the general kernel-based methods proposed
y Hall, Fisher & Hoffmann ( 1994 ), Stoica & Sandgren ( 2006 ) and
jørnstad & Falck ( 2001 ) both use a kernel to weight the product
f observations according to the difference between the observation
nterval and the desired lag bin centre. This is also known as ‘fuzzy
lotting’. The kernels proposed are smooth density functions that tend
o zero as lag increases or decreases from the desired lag subject to a
haracteristic width parameter. Stoica & Sandgren ( 2006 ) propose a
inc function, demonstrating the efficacy of this weighting on exam-
les from o v er-the-internet temperature data, pulsar time-of-arri v al
easurements, and ice core CO 2 measurements. Bjørnstad & Falck

 2001 ) use a Gaussian kernel in the context of estimating a spatial
utocorrelation for sparse ecological population data. A comparison
f a number of correlation analysis techniques for irregularly sampled
ime series (linear interpolation, LS periodogram, correlation slot-
ing, and several kernel-based methods), in a geoscientific context,
an be found in Rehfeld et al. ( 2011 ). These authors find that while all
ethods investigated lead to consistent results for time series with
 relatively constant sampling density, the kernel-based methods
erform better for highly irregular time series. 
Related to the problem of finding the ACF of irregularly sampled

ime series is the problem of finding the power spectral density, as
he Fourier transform of the power spectrum of a (stochastic) time
eries is equi v alent to the ACF (see e.g. Scargle 1989 ; Merrifield &

cHardy 1994 ). 
In this work, we present a different generalization of the standard

stimator of the ACF, which we name the selective autocorrelation
unction estimator, or S-ACF. The S-ACF is an extended and
eneralized version of the standard estimator, which is applicable to
oth regularly and irregularly sampled time series, without making
ny assumptions about the time sampling or the statistical properties
f the discrete time series and only assuming smoothness of the
nderlying process. In particular, there are no assumptions about
egularity in the sampling of the time series. 

The S-ACF method, presented in this publication, has previously
een used under the name G-ACF in Gillen et al. ( 2020 ) and Briegal
t al. ( 2022 ). 

A PYTHON implementation of the S-ACF is available under the
IT license at github.com/joshbriegal/sacf/. 
In Section 2 , we define our mathematical notation and the standard

stimator of the ACF. We then present the S-ACF and discuss
ts main properties in Section 3 . In Section 4 , we show that
he S-ACF performs accurately on both synthetic and real data.
NRAS 522, 5049–5061 (2023) 
e investigate the effect of different time samplings with both
egularly and irregularly sampled time series and find that the S-
CF produces comparable estimates of the ACF and corresponding
eriod estimates. We conclude in Section 5 . 

 BA SIC  DEFI NI TI ONS  

e start with some elementary definitions concerning time series and
he standard estimator of the ACF in order to clarify our v ocab ulary.

e adopt the symbol : = to indicate a definition. An o v erview of the
otation can be found in Appendix A . 

.1 Time series 

e define a time series X I ( t ) to be a finite ordered set 

 I ( t) : = { ( X i , t i ) ∈ R × R 

+ | i ∈ I ⊂ N , ( t i+ 1 − t i ) > 0 ∀ i ∈ I } , 
(1)

ith I ⊂ N being a finite index set, which we can choose to be I =
 0, 1, 2, . . . , i max } . Furthermore, we will refer to the set T I : = { t i | i ∈
 } as the set of time labels and to the set X I : = { X i | i ∈ I } as the set
f time series values . 
It can be useful to think of a time series X I ( t ) as a discrete sampling

f a continuous process X ( t ). The notation X i = X ( t i ) will be used.
ence, we define a time series to be regularly sampled if there exists
 sampling constant � t > 0, such that t k = t 0 + k � t ∀ k ∈ I , else
e call the time series irregularly sampled . 

.2 Standard estimator of the autocorrelation function 

he standard estimator of the ACF (e.g. as described in Scargle
989 ; Shumway & Stoffer 2017 ) relies on the self-similarity of
he underlying process of the time series and can be applied to
ll regularly sampled time series to obtain information such as
eriodicity and signal shapes. We define the standard estimator of
he ACF of a regularly sampled time series X I ( t ) as the function 

: { 0 , 1 , . . . , i max } → [ −1 , 1] , (2) 

( k) : = 

1 

N 

i max −k ∑ 

i= 0 

( X i − 〈 X I 〉 ) × ( X i+ k − 〈 X I 〉 ) , (3) 

here 〈 X I 〉 denotes the mean of the time series values and the
ormalization N is the total sum of squares N : = 

∑ 

i∈ I 
( X i − 〈 X I 〉 ) 2 .

he choice of this normalization implies that ρ(0) ≡ 1, i.e. a time
eries is maximally similar to itself when there is no lag. The
rgument k is referred to as the lag . Equation ( 3 ) is the standard
stimator of the (true) ACF in the case of regularly sampled and
nite time series. In the following, we will use the abbreviation ACF

o mean this standard estimator. 
While this is a standard way to introduce the ACF, it can be useful

o think of the ACF as a function with a time domain instead of an
nteger lag domain. We can make this domain modification explicit
y multiplying the argument by the sampling constant � t : 

( k�t) : { 0 , �t, . . . , �t i max } → [ −1 , 1] . (4) 

hese descriptions are equi v alent, but the latter view is more useful
or the forthcoming discussion. Specifically, it is clear that the
tandard estimator is only directly applicable to time series where
he sampling is regular. 

As discussed in Section 1 , various efforts have been made to
nterpolate or infer missing data to reco v er a re gularly sampled time

http://github.com/joshbriegal/sacf/
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eries and allow the use of the standard estimator. The accuracy 
f such efforts depends on the length of the gaps or irregularities
n the time series sampling compared to the scale of structures in
he signal. If the time series has large temporal gaps compared to
he scale of the underlying process, it is in general very difficult to
estore the missing information using interpolation. Here, we seek 
o develop a new method to obtain information from arbitrary time 
eries, regardless of their sampling, which is applicable to all time 
eries. The approach presented in this work is a generalization of the
tandard estimator, based on the fact that the standard estimator is
lready applicable to all regularly sampled time series irrespective 
f the underlying process. The key step is to formalize the time label
ependence of the definition explicitly. 

 SELECTIVE  AU TO C O R R E L AT I O N  

U N C T I O N  ESTIMATOR  

e begin generalizing the definition of the standard estimator 
or time series of arbitrary sampling by introducing two func- 
ions, the selection function ˆ S and the weight function ˆ W , as 
ell as generalizing the notion of the lag to a generalized lag

ˆ 
 ∈ [0 , ( max ( T I ) − min ( T I ) ) ] . 

We define the S-ACF, for a time series of any sampling, to be
he function ˆ ρ( ̂ k ; ˆ W , ˆ S ) that, restricted to the generalized lag ˆ k , is a
unction of the form 

ˆ ( ̂ k ) : [0 , ( max ( T I ) − min ( T I ) ) ] → [ −1 , 1] . (5) 

A possible generalized definition is then given by 

ˆ 
(

ˆ k ; ˆ W , ˆ S 
)

: = 

1 

N 

∑ 

i∈ I 
t i + ̂

 k ≤max ( T I ) 

[
( X( t i ) − 〈 X I 〉 ) ×

(
X( ̂  S ( t i + 

ˆ k )) − 〈 X I 〉 
)

× ˆ W 

(∣∣ ˆ S 
(
t i + 

ˆ k 
) − (

t i + 

ˆ k 
)∣∣) ]

, (6) 

here N : = 

∑ 

i∈ I 
( X i − 〈 X I 〉 ) 2 denotes the total sum of squares and 

 X I 〉 is the mean of the time series values set. The general form of
he S-ACF is very similar to that of the standard estimator (equation
 ). The S-ACF differs from the standard estimator by the explicit
nclusion of the selection function in the second factor, the restriction
n the sum, the generalized lag, and an additional third factor given
y the weight function. In the following sections, we discuss the 
hree new components: the generalized lag, the selection function, 
nd the weight function. 

F or re gularly sampled time series, we want the S-ACF to reduce
o the standard estimator when restricting the generalized lag to 
ultiples of the sampling constant. A full proof and detailed 

xplanation of this property is given in Appendix B . This reduction
o the standard estimator is one of the core requirements of our
eneralization and ensures that the S-ACF and the standard estimator 
re equi v alent for regularly sampled time series. We note that this
equirement moti v ates some of the restrictions that we impose on the
election and weight functions. 

In the case of the ACF, the equation ρ(0) = 1 tells us that – trivially
if we do not shift the time series, the correlation is perfect. The

roperty ˆ ρ(0) = 1 should also hold for the S-ACF, which we pro v e
n Appendix C . 

.1 The generalized lag ˆ k 

s shown in equation ( 6 ), the generalized lag 
ˆ 
 ∈ [0 , ( max ( T I ) − min ( T I ) ) ] can now take any value within 
n interval in time instead of solely integer values. This is natural
ince in the most general case of irregular sampling there is no
referred time-scale – i.e. there exists no sampling constant – and 
hus we can allow the lag to be a continuous variable. 

Even though the S-ACF is a well-defined function for any lag, it
annot contain meaningful information at a higher resolution than 
he time series itself, and we suggest setting the time resolution of
he generalized lag to values no smaller than the minimal difference
etween two neighbouring time labels δ ˆ k ≥ min ( t i+ 1 − t i ) for { t i ,
 i + 1 } ∈ T I . 

The condition t i + 

ˆ k ≤ max ( T I ) on the sum is the generalization of
he upper limit i max − k of the sum in the ACF definition (equation 3 ).
his bound on the (generalized) lag enforces again that the maximum
hifting of the process along itself is equal to the temporal length of
he time series and thus when the first time label is matched up with
he last time label. 

.2 The selection function 

ˆ S 

he selection function is arguably the most important part of the
-ACF definition (equation 6 ), as it deals with the irregular sampling

ssue that is at the core of the problem considered in this work.
e define a selection function ˆ S to be a function ˆ S : R 

+ → T I that 
rojects an arbitrary point in time on to the set of available time labels,
hus selecting a specific time label for each point in time. There
re many sensible functions that one could choose to accomplish 
his; ho we ver, a natural selection function is the one that, for each
oint in time, selects the closest allowed time label (see Fig. 1 for
n illustration of this function). In the case that two time labels
re equally close to the argument one can employ the convention
f al w ays choosing the smaller or larger value, or randomize the
ecision in any practical application of the S-ACF. 
In order for this selection function to be justified, we have to make

he assumption that the process underlying the discrete time series 
as some degree of ‘smoothness’ in between the time labels. 

A key difference of this selection function, compared to the kernel-
ased methods described in Section 1 (see e.g. Rehfeld et al. 2011 ), is
hat the selection function does not have a kernel with a fixed width.
he distance in lag between a time label and the selected shifted time

abel can be as large as half the size of the largest gap in the time
eries sampling, as can be seen in Fig. 1 . 

A possible alternative definition of the selection function would 
e to find the closest time label for the first shifted time label and
hen pair up all subsequent labels instead of finding the closest
ime label for each shifted label individually. While this definition 
educes the computational complexity, it did not produce as accurate 
 reconstruction of the standard ACF as taking the closest time label
or each individual time label when tested on synthetic time series. 

.3 The weight function 

ˆ W 

e define a weight function ˆ W to be a function ˆ W : [0 , ∞ ) → [0 , 1]
ith ˆ W (0) ≡ 1. We will interpret the weight function as a function

hat assigns time differences δt ≥ 0 a weight within the interval [0, 1].
pecifically, we see from equation ( 6 ) that the weight function is used

o assign a weight to the difference between the argument and the
alue of the selection function and is thereby a statement about the
uality of the ‘selection’. Every fixed point of the selection function

ˆ 
 

(
t i + 

ˆ k 
) = t i + 

ˆ k will therefore lead to a term in the S-ACF with
eight equal to 1 because of the requirement that ˆ W (0) ≡ 1. 
There are many choices for possible weight functions, but we have

o make sure that the condition ˆ W (0) ≡ 1 is observed since this is
n important property (see Appendices B and C ) and turns out to
MNRAS 522, 5049–5061 (2023) 
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M

Figure 1. Each graphic (a)–(e) shows a set of time labels on the real axis and 
below them the same set of time labels shifted by a real generalized lag ̂  k . The 
red lines indicate how the selection function ˆ S matches the shifted time labels 
to the original set of time labels abo v e by choosing the closest time label from 

the set of time labels T I . The generalized lag increases from panel (a) to (e), 
which corresponds to the lower set of labels ‘shifting’ to the right. A supple- 
mentary animated version of this figure is available on the journal website. 
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Figure 2. The top panel shows three time series with an underlying sine 
process (17.8 d period), sampled regularly (black), randomly (red), and with 
a cadence-like sampling that possesses additional larger gaps (blue). All time 
label sets have the same cardinality of | T I | = 250. The bottom panel shows 
the S-ACFs of the abo v e time series. A v ertical green line is plotted at the 
period of the signal (17.8 d) in generalized lag. 
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e a natural condition to ask for. Additionally, it would be natural
or the weight function to be a monotonically decreasing function
ending towards zero, since this reflects the interpretation that terms
hat involve time series values at similar points in time should be
referred. There are infinitely many such functions, including an
xponential function or one half of a Gaussian distribution; ho we ver,
 rational function is simpler and arguably more natural. 

The PYTHON implementation published with this work supports
e veral dif ferent weight functions. Simple tests indicate that dif ferent
eight functions, which fit the abo v e criteria, do not lead to clearly

ignificant changes in the accuracy of the method. Finding the
ptimal weight function is beyond the scope of this paper. 
We propose the following weight function 

ˆ 
 ( δt) = 

1 

1 + αδt 
, α > 0 , δt ≥ 0 , (7) 

here α is the inverse of the characteristic scale parameter of the
ime series labels, e.g. one may choose α = 1/ 〈 T I 〉 . The δt represents
 generic time difference and does not hav e an y interpretation as a
ampling constant. 

Naively, one may expect that the S-ACF will depend on the scale
f the time labels since we are free to rescale time labels arbitrarily,
ut we know that the correlation between the different points in time
f a process should not depend on the o v erall time-scale. The use
f the inverse scale parameter cancels out any rescaling of the time
NRAS 522, 5049–5061 (2023) 
abels since it will rescale in the inverse fashion. This is the simplest
ontinuous weight function that fits the abo v e criteria and is also the
ost efficient for explicit calculations. 
It is possible to consider a discrete weight function that satisfies

ˆ 
 (0) = 1 but is zero in all other cases, thus discarding all terms

hat do not have matching shifted time labels and hence eliminating
he selection function from the definition. Ho we ver, in the case of
rregularly sampled time series, such a discrete weight function
ay eliminate the majority of the terms contributing to the S-
CF for a given lag and even almost matching terms would not
e considered. This method is best suited to the case of an almost
egular sampling where a small percentage of values are missing
rom an otherwise regularly sampled time series. In this case, most
erms in the autocorrelation function will have a match when the lag
orresponds to an integer multiple of the ‘regular’ sampling constant
nd only a small number of terms without a matching time label need
o be discarded. 

 S-AC F  APPLIED  TO  SYNTHETI C  A N D  R E A L  

ATA  

.1 Synthetic data: simple sinusoidal time series 

e created a periodic sinusoidal signal. To investigate the impact
f the temporal sampling on the S-ACF, we considered three
ifferent examples: (i) regularly sampled, (ii) randomly sampled, and
iii) cadence-like sampling with gaps. This third time series seeks
o simulate the observing strategy of ground-based astronomical
urv e ys, i.e. data during night-time, gaps during daytime, and
poradic additional gaps due to bad weather. For ease of comparison,
ach time series contains the same number of data points ( | T I | =
50) and they differ only in the temporal distribution of the data
oints. 
These three time series are shown in the top panel of Fig. 2 .

he S-ACF of the regularly sampled time series is identical to
he ACF, as expected due to their definitions. The S-ACFs of the
andom and cadence-like samplings are similar to the ACF, but with
mall differences due to the data gaps and corresponding loss of

art/stad1223_f1.eps
art/stad1223_f2.eps
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Figure 3. Same as Fig. 2 but for a time series with an underlying process 
described by the sum of two sine functions with 8.9 and 17.8 d periods. 
Vertical orange and green lines are plotted at the periods of the signal (8.9 
and 17.8 d, respectively) in generalized lag. 
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Figure 4. Same as Fig. 2 but for a time series with an underlying process 
described by the sum of a comparable amplitude sine function and stochastic 
GP. A vertical green line is plotted at the period of the deterministic component 
of the signal (17.8 d) in generalized lag. 
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nformation. These differences depend on the exact position and size 
f gaps within the data. 
In Fig. 3 , we consider the sum of two sine functions with the

ame three temporal samplings described abo v e. Similar behaviour 
s seen in both the two-sine and single sine function examples, i.e.
oth the random and cadence-like sampling cases display modest 
eviations from the regularly sampled case but overall comparable 
utocorrelation functions. 

.2 Synthetic data: more complex time series 

n order to investigate the efficacy of the S-ACF on more realistic
ata sets, we generated a periodic signal with a large stochastic 
oise component. The periodic signal was again a sine function with 
 period of 17.8 d. The stochastic component was drawn from a
aussian process (GP) using a simple harmonic oscillator (SHO) 
ernel (with quality factor Q = 1/3 and characteristic time-scale ρ = 

 d), as implemented in the CELERITE2 PYTHON package (Foreman- 
ackey et al. 2017 ; Foreman-Mackey 2018 ). The amplitudes of the

inusoidal and stochastic components were comparable. 
The same three temporal samplings were used as in Section 4.1 ,

nd the resulting time series and corresponding S-ACFs are shown 
n Fig. 4 . The S-ACF displays a prominent peak corresponding to the
eriod of the sinusoidal component, although the exact position of 
his peak will be moderately affected by the large noise component, 
s expected. Despite the periodic and noise components having 
omparable amplitudes, the S-ACF is able to accurately reco v er a
lear periodic signal in all three sampling cases. 

.3 Synthetic data, quantitati v e analysis: comparison to kernel 
stimators and interpolation 

e want to quantitatively compare the performance of the S-ACF 

o that of the standard autocorrelation estimator, as well as to 
everal other methods. To do this, we assume that the standard 
utocorrelation estimator of a regular sampling of a process is close 
o the true ACF and thus we measure the other estimators relative to
his function. We focus on comparing the estimators directly without 
etermining the periods of the process. 
We consider the following methods: S-ACF, the rectangular and 
aussian kernel estimators (as implemented in Collenteur et al. 
019 ), and the standard autocorrelation estimator following a linear 
nterpolation of the irregularly sampled time series on to a regular
ampling. 

Throughout this section, we consider the same kind of process as
n Section 4.2 , i.e. processes that consist of a GP rotation signal with
n additional GP noise component. The GP rotation component has a
eriod between 0.1 and 50 d, standard deviation σ = 1, quality factor
 0 = 5 (with d Q = 1), and fractional amplitude of the secondary
ode relative to the primary mode f = 0.5. The noise is again drawn

rom a GP using an SHO kernel, with quality factor Q = 1/3 and
haracteristic time-scale ρ between 0.1 and 50 d. The period of the
eriodic component of the process and the noise time-scale are drawn
niformly at random from the interval 0.1–50. The signal-to-noise 
atios (S/N) considered are between 0.001 and 20. The o v erall length
f the processes is 100 d. 
From these processes we generate time series with sampling 

ensities (or time label densities) varying between 0.1 and 20 time
abels per day. The length of each time series is kept fixed at
00 d. The distributions of the time labels can be a uniform random
istribution or a cadence-like distribution with regular sampling 
uring night-times and additional larger gaps (e.g. simulating nightly 
bservations with periods of bad weather). 
The random sampling is generated by selecting time labels 

niformly at random until the given average time label density is
eached. The cadence-like sampling is generated by placing regularly 
ampled time labels during the night-time (considered to last 8 h)
round 10 (larger) gaps, where the edges of the gaps are chosen
niformly at random. A small number of time labels are then added,
t random, around the gaps until the given average time label density
s reached. 

Figs 5 and 6 illustrate how we compare the different estimators
n the case of cadence-like sampling (the process of comparing the
ifferent estimators is equivalent for the random sampling). Fig. 5 
hows an ‘easy’ time series with an average sampling density of 2.5
ime labels per day and an S/N of 5. We then compute the estimators
erived from these methods based on the cadence-like sampling 
f the process. Finally, we compute the residuals and root-mean- 
quare errors (RMSEs) of each estimator relative to the standard 
utocorrelation estimator of the regularly sampled time series (i.e. 
MNRAS 522, 5049–5061 (2023) 
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Figure 5. Top: three versions of a process comprising both a periodic component ( P = 17.8 d) and a correlated noise component (characteristic time-scale 
l = 5 d), which has an average sampling density of 2.5 time labels per day and an S/N of 5.0. The three versions are a regular sampling of the process (black 
triangles), a cadence-like sampling (magenta circles), and an interpolation of the cadence-like process on to the regular sampling (cyan squares). Bottom left: 
comparison of the different estimators of the ACF for this process. The standard estimator (black line) is based on the regularly sampled time series. The S-ACF 
estimator (red dashed), rectangular kernel estimator (blue dash–dotted), and Gaussian kernel estimator (green dotted) are based on the cadence-like sampling 
of the process. Finally, we use the interpolated regular sampling of the process to again apply the standard estimator (cyan dash–dot–dotted). Bottom right: 
residuals of the different estimators (S-ACF, rectangular and Gaussian kernels, and interpolation) relative to the standard estimator (i.e. the ACF). RMSEs are 
indicated in the legend. 
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o gaps). Fig. 6 repeats this for a ‘hard’ time series with an average
ampling density of 0.5 time labels per day and an S/N of 0.1. It is
orth noting that the discrete time series shown in Fig. 6 (top) appear

smoother’ than the underlying continuous process, due to their low
ampling density. 

Using the RMSEs computed in this way, we can quantitatively
ompare the S-ACF to the standard estimator for time series with
andom and cadence-like samplings. In the case of regular sampling,
he S-ACF reduces to the standard estimator (see Appendix B ),
hich makes this comparison trivial by design. Fig. 7 shows the

verage RMSEs of the S-ACF for a wide range of parameters. The
MSEs are generally much lower in the case of random sampling.
oreo v er, we can see that the S/N has essentially no effect when

omparing the S-ACF directly to the standard estimator of the
egularly sampled time series, without applying further methods
o detect periodicity. For sampling densities below 0.2, the RMSEs
ncrease in both sampling cases. 

In order to compare the S-ACF to other estimators of irregularly
ampled time series, we compare the RMSEs of the S-ACF, relative
o the standard estimator of the regularly sampled time series, to the
qui v alent RMSEs of the other methods for the same processes. This
s equi v alent to running many analyses as in Fig. 5 and taking the
ifferences between the RMSEs of each method and the RMSE of the
NRAS 522, 5049–5061 (2023) 
-ACF. The differences between the RMSEs are al w ays computed
or the same time series and are av eraged o v er a large number of
ifferent time series. In Figs 8 and 9 , we show the results for time
eries with random and cadence-like samplings, respectively. 

The S-ACF performs better than the tw o k ernel methods in all areas
f the parameter space, but especially when the time label density is
ery low ( ≤0.2 d −1 ), and this effect is more pronounced in the case
f random sampling. The performance of the S-ACF is very similar
o the interpolation method in all areas of the parameter space for
he processes considered here. In the regime of very low S/N ( ≤0.1),
he interpolation method slightly outperforms the S-ACF, at least in
erms of the RMSE value. We note, however, that while the RMSE
s a useful indicator of an accurate estimator, we are often concerned
bout extracting periods from these estimator functions, e.g. from
he location of the first peak (or weighted average of the first few
eaks). Considering Fig. 6 , as an illustrativ e e xample, the bottom-
eft panel shows that only the S-ACF has a first peak in general
greement with the ACF, so any period extracted from these estimator
unctions w ould lik ely f a v our S-ACF o v er the other methods, at
east in this particular example. Further tests, using a robust period
nding algorithm across the full parameter space, would be needed

o ascertain whether S-ACF or interpolation produces more accurate
eriod estimates. This is beyond the scope of this work. 
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Figure 6. Same as Fig. 5 for a process with a periodic component ( P = 17.8 d) and a correlated noise component (characteristic time-scale l = 15 d), an average 
sampling density of 0.5 time labels per day, and an S/N of 0.1. 

Figure 7. Average RMSEs of the S-ACF estimator for randomly sampled time series (left) and for time series with cadence-like sampling (right) relative to the 
standard estimator of the same process with regular sampling. Each bin shows the average of many e v aluations (totalling 140 700 processes per plot). Negative 
RMSEs are not possible and the colour scale is chosen to be consistent with Figs 8 and 9 , where differences between RMSEs are shown. 
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.4 Real data: the Kepler light cur v e of the spotted star KIC 

110407 

e wish to test the efficacy of the S-ACF on real time series data and
xplore how the periods estimated from the S-ACF compare to other 
l  
ommonly used period estimation techniques. We estimate periods 
rom the S-ACF by calculating an FFT of the first three peaks of
he S-ACF. Restricting the lag time used in the period estimation
educes the effect of signal shape evolution on the S-ACF at long
ag times and correspondingly impro v es the accurac y of the period
MNRAS 522, 5049–5061 (2023) 
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Figure 8. Differences between RMSEs (relative to the standard estimator of the regularly sampled time series) using randomly sampled time series for the 
S-ACF estimator versus the rectangular kernel estimator (left), the Gaussian kernel estimator (centre), and the standard estimator on the interpolation of the 
randomly sampled time series (right). These are comparable to the RMSEs of the left-hand panel of Fig. 7 . Red indicates a larger RMSE of the S-A CF estimator , 
blue indicates a larger RMSE of the respective other estimator, and black indicates comparable RMSEs. 

Figure 9. Same as Fig. 8 but for time series with a cadence-like sampling. 
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stimated. Using an FFT to calculate the periodicity of the S-ACF
s possible as the S-ACF is a continuous function by definition. We
ote that another method of extracting periodicity from the S-ACF
ould be to calculate the position of the first peak in the S-ACF, or

alculating the positions of subsequent peaks in addition in order to
efine this period estimate, such as the technique used in McQuillan
t al. ( 2013 ). 

While the S-ACF is not restricted to astronomy, the standard
CF has been widely used to estimate the rotation periods of stars

rom time series photometry. Therefore, as an illustrative example,
e selected a spotted star observed by Kepler , KIC 5110407 (e.g.
oettenbacher et al. 2013 ), and compare the period predictions of
-ACF to two other techniques for rotation period estimation: GP
egression and LS periodograms. Using a rotationally variable star
or this comparison allows us to probe the efficacy of S-ACF on
ime series that display evolution in the signal (phase) shape. While
e focus on the period here, we note that other useful information,

uch as the evolution time-scale, can also be extracted from the S-
CF. Our approach to comparing S-ACF, GP regression, and LS
eriodograms follows Gillen et al. ( 2020 ) and we refer the reader to
ection 3 of that paper for further details, but give a brief o v erview
elow of the GP and LS models used here. 
The GP model is based on the CELERITE2 package (Foreman-
acke y et al. 2017 ; F oreman-Macke y 2018 ), as implemented
NRAS 522, 5049–5061 (2023) 
hrough the exoplanet framework (F oreman-Macke y et al. 2021a ,
 ), and uses the standard rotation kernel with an additional SHO
ernel (with quality factor Q = 1/3) to capture any non-periodic
tructure in the light curves. The posterior parameter space was
xplored via gradient-based Markov chain Monte Carlo (MCMC)
sing the No U-Turn Sampler, as available through exoplanet ,
hich in turn uses PyMC3 and theano (Hoffman & Gelman 2014 ;
alvatier , W iecki & Fonnesbeck 2016 ; Theano Development Team
016 ; K umar et al. 2019 ). F or each quarter, we ran 5 independent
hains of 5000 tuning steps followed by 10 000 sampling steps. GP
eriods were taken as the median of the posterior period distribution.
t is worth noting that the GP model requires an initial period
uess, in contrast to both S-ACF and LS, for which we give the
verage of the S-ACF and LS period estimates. The GP model is
lso sensitive to data not well captured by the chosen rotation kernel,
uch as stellar flares, which we account for by performing an initial
aximum a posteriori fit, masking 3 σ outliers, and refitting. For the
S model, we use the version available through the ASTROPY project

Astropy Collaboration 2013 ; Price-Whelan et al. 2018 ). LS periods
re estimated from the largest peak in the periodogram. Both the LS
nd S-ACF models were run on the data without further processing
uch as flare masking. 

Kepler observed KIC 5110407 for almost 4 yr spanning 13 of
he 17 quarters. Kepler quarters typically last ∼90 d and have
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Figure 10. Rotation period estimates for the spotted star KIC 5110407 from S-ACF, GP regression, and LS periodogram. Top panel : the system’s quarter 7 
Kepler light curve. Middle left : S-ACF (blue) with the identified period highlighted (yellow). Middle centre : GP posterior period distribution (orange) with the 
median and 1 σ uncertainties highlighted (solid and dashed orange lines). For comparison, the S-ACF and LS periods are also shown (blue and green solid lines, 
respectively). Middle right : LS periodogram (green) with the identified period highlighted (yellow). Bottom row : the Kepler light curve phase-folded on the 
corresponding method’s period (S-ACF, GP, and LS; left to right) and coloured from the beginning (blue) to the end (yellow) of the observations. 
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ssentially continuous observations with a cadence of ∼30 min. 
he ACF has been successfully applied to such Kepler data (e.g. 
cQuillan et al. 2013 , 2014 ), but, as noted, the ACF is not applicable

o non-continuous data that cannot be accurately interpolated on to a 
egularly spaced time series grid, i.e. time series with large data gaps,
uch as ground-based photometry. We therefore estimated the stellar 
otation period of KIC 5110407 from two versions of its Kepler 
ight curve: (i) the full Kepler light curve and (ii) the Kepler light
urve as though it had been observed from the ground (i.e. with gaps
uring daytime and simulated ‘bad weather’ events 1 ). Fig. 10 shows
he results for the full Kepler light curve observed during quarter 7
nd Fig. 11 shows the results for ‘ground-based’ version of the light
urve. The Kepler data from this quarter shows moderate evolution 
hroughout and displays both ‘double-dip’ patterns (e.g. at ∼20 d) and 
inusoidal modulation (e.g. at ∼40–80 d). For this quarter therefore 
he S-ACF and GP periods agree best, whereas the LS period predic-
ion is slightly larger. This is the case for both the full and ‘ground-
ased’ light curves. The better agreement between S-ACF and GP is
ecause they are more flexible than LS (i.e. they do not assume a rigid
inusoidal model), and hence are more applicable to such evolving 
ime series. The periods can be best compared in the middle centre
anel of Figs. 10 and 11 and by comparing the phase-folded light

urves. 

 All quarters had the same relative times mask ed. Night-time w as considered 
o last 8 h of each 24 h period and bad weather was simulated between the 
ollowing times: 18.5–22.5, 34.5–37.5, 48.5–52.5, 62.5–64.5, and 76.5–81.5 d 
relative to the start of each quarter). 

L  

K  

c  

fi  

2

a

We performed the same analysis on each available quarter of 
epler data and compare the period predictions for S-ACF, GP, and
S across quarters in Fig. 12 . Across quarters, and for both the full
nd ‘ground-based’ light curves, the S-ACF and GP periods agree 
est o v erall. The LS predictions agree well for some quarters, mainly
hose that show sinusoidal modulation, but less well for those that
ho w e volving modulation patterns, which results in a larger scatter
nd correspondingly larger uncertainties on the mean rotation period 
rediction compared to S-ACF or GP. The mean periods and standard
eviations across quarters are S-ACF = 3.51 ± 0.06 and 3.51 ± 0.06 d
or the full and ‘ground-based’ light curv es, respectiv ely; GP =
.50 ± 0.04 and 3.50 ± 0.04 d; and LS = 3.53 ± 0.08 and
.53 ± 0.08 d. We note that Roettenbacher et al. ( 2013 ) estimate
 rotation period for KIC 5110407 through light-curve inversion of 
.4693 d, which agrees to within 1 σ for all three methods. 
This comparison between the S-ACF and the GP and LS methods,

or both continuous and irregularly sampled time series, illustrates 
he validity of the S-ACF for such applications. Furthermore, as 
he S-ACF is a very general approach with minimal assumptions 
bout the process, it can be applied to time series data of essentially
ny form, without the need to adapt the kind of model chosen (in
he case of GP) or assume a rigid sinusoidal model (in the case of
S). The S-ACF method took approximately 0.6 s on the quarter 7
IC 5110407 light curve (4117 data points) using a single laptop

ore. 2 The GP regression took ∼8.3 s for the maximum a posteriori
t (and ∼7 min for the MCMC), while the LS periodogram took
MNRAS 522, 5049–5061 (2023) 

 The runtime of the S-ACF is dependent on both the number of data points 
nd the number of lag time-steps. 
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Figure 11. Same as Fig. 10 but simulating KIC 5110407 being observed from the ground (i.e. observations during night-time only with additional gaps from 

bad weather). 

Figure 12. Rotation period estimates for KIC 5110407 from S-ACF (blue), GP (orange), and LS (green) for all quarters with Kepler data. Circles show the 
period estimates from the full Kepler light curve and triangles from the ‘ground-based’ version of the light curve. The S-ACF periods typically agree better with 
the GP periods than with LS, especially in cases where there is evolution in the signal shape (e.g. quarters 7 and 15). The right-hand panel shows the mean and 
standard deviation of the period estimates across all quarters. The mean S-ACF periods from both the full and ‘ground-based’ versions of the light curves agree 
with each other, and with the values from both the GP and LS methods. The scatter in the S-ACF periods across quarters is smaller than the scatter in LS periods 
but larger than the scatter in GP periods. 
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pproximately 0.01 s to run on the same laptop core. Each method
s performing different calculations, and the GP MCMC method
dditionally provides a period uncertainty, so their respective times
re simply included here for completeness and general interest. The
NRAS 522, 5049–5061 (2023) 
-ACF is a powerful and efficient approach to extract periodicity,
uasi-periodicity, and short-term self-similarity from time series data
n general, and especially data for which the true functional form is
nknown. 
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Furthermore, we note that the S-ACF has been successfully applied 
o ground-based data from the Next-Generation Transit Survey 
Wheatley et al. 2018 ) to extract various kinds of stellar variability,
ncluding rotation, pulsations, and eclipsing binaries (Gillen et al. 
020 ; Briegal et al. 2022 ). 

.5 A note on aliasing 

n the case of cadence-like sampling (e.g. ground-based astronomical 
urv e ys), which possess a (mostly) fixed periodicity of sampling 
aps, alias signals can appear in the S-ACF due to the missing
nformation in between well-sampled clusters of data. These aliases 
an be easily identified since their periodicity will be equal to 
he periodicity of the data clusters and their amplitude will be 
roportional to the relative size of the gaps between clusters (see 
.g. Briegal et al. 2022 ). This effect will not be relevant for most
pplications unless the structure (or period) of interest is comparable 
o the structure of the sampling clusters (i.e. sidereal day for ground-
ased astronomical surv e ys). We suspect that it may be possible
o reduce this modest effect by generalizing the normalization to 
 function that depends on both the lag and time label density.
o we v er, a full remo val of these aliases will likely not be possible

ince gaps imply missing information that cannot be restored without 
dditional information or assumptions. We note, ho we ver, that these 
ffects are small if there are sufficient data points per period of the
rocess. 

 C O N C L U S I O N S  

he S-ACF is a new and versatile definition that can reliably and
fficiently extract – among others – periodicity and signal shape 
nformation from any time series, virtually independent of the time 
eries sampling and only assuming the smoothness of the underlying 
rocess. We show that the standard estimator of the ACF can 
e generalized and applied to irregularly sampled time series by 
eneralizing the lag to a real variable and introducing both selection 
nd weight functions. We show that the S-ACF reduces to the 
tandard estimator for regularly sampled time series and possesses 
he property of maximal correlation at zero lag. 

The S-ACFs derived from both simple and more complex synthetic 
ime series with different samplings (regular, random, and ‘cadence- 
ike’) agree well; ho we ver, there are small deviations due to the data
aps and corresponding loss of information. We calculate the RMSE 

f the S-ACF of irregularly sampled synthetic processes, relative 
o the standard estimator of the ACF of the same process with a
egular sampling. The RMSEs are calculated for a large number of
rocesses spanning a wide range of time label densities and S/N. 
he RMSEs of the S-ACF are then compared to the equi v alent
MSEs of other methods that aim to estimate the true ACF, including
aussian and rectangular kernel estimators and a combination of 

inear interpolation and the standard estimator. The RMSEs of the 
-ACF increase significantly at low time label densities ( < 1 d −1 ) and

he same effect can be seen with the other methods. The RMSEs of the
-ACF have essentially no dependence on the S/N. For the processes
onsidered here, the S-ACF performs better than the tw o k ernel
ethods (most notably at low time label densities) and comparable 

o the interpolation method (although we note that the interpolation 
ethod performs slightly better at low S/N, which may be due to

roperties of the GP noise that dominates the process in this regime).
t high time label densities and modest-to-high S/N, all considered 
ethods perform well and are very close to the standard estimator 

f the ACF. 
We compare the period predictions of S-ACF to those from GP
egression and LS periodograms by extracting rotation periods for 
he spotted star, KIC 5110407. The S-ACF and GP periods typically
gree best across the different Kepler quarters, with LS periods 
eing comparable in quarters with mainly sinusoidal modulation but 
ore discrepant for quarters displaying more complex or evolving 

atterns. All three methods achieve consistent mean periods and 
ncertainties. 
There are a wide range of potential applications for the S-ACF, not

nly within astronomy but also in other quantitative sciences where 
rregularly sampled time series occur, such as economics, finance, 
limatology , geology , biology , and others. 

The PYTHON implementation used in this work is available open 
ource under the MIT license at github.com/joshbriegal/sacf, and 
dditionally can be installed through PYPI using the command pip 
nstall sacf . 
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PPEN D IX  B:  P RO O F  O F  T H E  R E D U C T I O N  O F  

H E  S-AC F  TO  T H E  STANDARD  ESTIMATOR  

O R  R E G U L A R LY  SAMPLED  TIME  SERIES  

rom the definition of the S-ACF (equation 6 ), the selection function
Section 3.2 ), and the property ˆ W (0) ≡ 1 of the weight function,
e can derive a consistency property of the S-ACF for the case of

egularly sampled time series, which is that the S-ACF reduces to 
he standard estimator in this case. 

If a time series is regularly sampled, then there exists a sampling
onstant � t that describes the time difference between any two 
eighbouring time labels t i and t i + 1 by t i + 1 − t i = � t with i , i
 1 ∈ I . In this case, we can compute the standard estimator as well

s the S-ACF. If we want to compare the two functions for the same
ime series, then we can only compare their values on their common
omain, which means that the generalized lag ˆ k of the S-ACF has to
atisfy the relation ˆ k = k �t with respect to the lag k of the standard
stimator. We thus have to restrict the real generalized lag to the
omain of the standard estimator, given by integer multiples of the 
ampling constant. 

Using the restriction on the generalized lag, all points in time of
he form t i + 

ˆ k will satisfy 

 i + 

ˆ k = t i + k �t, (B1) 

ut, since the time series is regularly sampled, adding multiples of
he sampling constant will give another time label 

 i + 

ˆ k = t i+ k ∈ T I . (B2) 

f we now apply the selection function to this equation, we obtain
hat 

ˆ 
 

(
t i + 

ˆ k 
) = 

ˆ S ( t i+ k ) , (B3) 

ut since the selection function – by construction – maps its argument 
o the closest time label, we can use the fact that time labels are fixed
oints of the selection function, meaning that 

ˆ 
 ( t i+ k ) = t i+ k , (B4) 

o arrive at the equation 

ˆ 
 

(
t i + 

ˆ k 
) = t i+ k . (B5) 

his result will be central to reducing the S-ACF to the definition of
he standard estimator for regularly sampled time series. 

If we look at the definition of the S-ACF (equation 6 ), we see that
t only differs from the standard estimator by the factor of the weight
unction and the insertions of the selection function. If we focus only
n the last factor in equation ( 6 ), we can directly apply equations
 B2 ) and ( B5 ) to give 

ˆ 
 

(| ̂  S 
(
t i + 

ˆ k 
) − (

t i + 

ˆ k 
) | ) = 

ˆ W ( | t i+ k − t i+ k | ) = 

ˆ W (0) . (B6) 

ut we defined the weight function to satisfy the property ˆ W (0) ≡ 1
nd thus we obtain 

ˆ 
 

(| ̂  S 
(
t i + 

ˆ k 
) − (

t i + 

ˆ k 
) | ) = 1 , (B7) 
he Author(s) 2023. Published 
y Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article di
ns.org/ licenses/by/ 4.0/ ), which permits unrestricted reuse, distribution, and reproduction in any medi
emoving the weight factor from the definition of the S-ACF. 
The second factor in the definition of the S-ACF (equation 6 ) 

( ̂  S ( t i + 

ˆ k )) − 〈 X I 〉 (B8) 

s also modified by the selection function. Ho we ver, we can apply
quation ( B5 ) and obtain 

( ̂  S ( t i + 

ˆ k )) − 〈 X I 〉 = X i+ k − 〈 X I 〉 , (B9) 
nd thus we again reco v er the factor from the definition of the
tandard estimator. 

Since the first factor of the S-ACF (equation 6 ) is the same as in
he standard estimator, the only further modification is the restriction 

 i + 

ˆ k ≤ max ( T I ) , (B10) 

n the sum. We can again use equation ( B2 ) to obtain 

 i+ k ≤ max ( T I ) . (B11) 

f we write this equation in terms of the indices, we arrive at 

 + k ≤ i max , (B12) 

hich is equi v alent to writing the upper limit of the sum on i as i max 

k , as is the case in the definition of the standard estimator. 
The abo v e proof shows that the S-ACF reduces to the definition of

he standard estimator if the time series is regularly sampled and we
estrict the generalized lag to the domain of the standard estimator. 

PPENDI X  C :  T H E  P RO O F  O F  ˆ ρ(0) = 1 

e pro v e that ˆ ρ(0) = 1 by considering the S-ACF definition (equa-
ion 6 ) at zero lag. For ˆ k = 0, we find 

ˆ (0) 

= 

1 

N 

∑ 

i∈ I 
t i ≤max ( T I ) 

[
( X( t i ) − 〈 X I 〉 ) ×

(
X( ̂  S ( t i )) − 〈 X I 〉 

)

× ˆ W 

(| ̂  S ( t i ) − ( t i ) | 
) ]

, (C1) 

ut since ˆ S ( t i ) = t i and ˆ W (0) = 1, we have 

ˆ (0) = 

1 

N 

∑ 

i∈ I 
i≤i max 

[
( X( t i ) − 〈 X I 〉 ) × ( X( t i ) − 〈 X I 〉 ) 

]
. (C2) 

sing the definition of the normalization, we arrive at the desired
quation 

ˆ (0) = 

N 

N 

= 1 . (C3) 
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