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ABSTRACT

We present a generalized estimator for the autocorrelation function, S-ACF, which is an extended version of the standard estimator
of the autocorrelation function (ACF). S-ACF is a versatile definition that can robustly and efficiently extract periodicity and signal
shape information from a time series, independent of the time sampling and with minimal assumptions about the underlying
process. Calculating the autocorrelation of irregularly sampled time series becomes possible by generalizing the lag of the
standard estimator of the ACF to a real parameter and introducing the notion of selection and weight functions. We show that the
S-ACF reduces to the standard ACF estimator for regularly sampled time series. Using a large number of synthetic time series,
we demonstrate that the performance of the S-ACF is as good or better than commonly used Gaussian and rectangular kernel
estimators, and is comparable to a combination of interpolation and the standard estimator. We apply the S-ACF to astrophysical
data by extracting rotation periods for the spotted star KIC 5110407, and compare our results to Gaussian process (GP) regression
and Lomb-Scargle (LS) periodograms. We find that the S-ACF periods typically agree better with those from GP regression
than from LS periodograms, especially in cases where there is evolution in the signal shape. The S-ACF has a wide range of
potential applications and should be useful in quantitative science disciplines where irregularly sampled time series occur. A

PYTHON implementation of the S-ACF is available under the MIT license.
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1 INTRODUCTION

Time series are ubiquitous throughout the experimental sciences
and give insight into the temporal evolution of systems and their
underlying processes. Time series in astrophysics, for example, have
been instrumental in our understanding of stellar and planetary sys-
tems: stellar light and radial velocity curves yield information about
the temporal evolution of processes on the stellar surface, from the
longitudinal inhomogeneity of star-spot distributions and magnetic
field mechanisms to the presence of orbiting bodies and material.
Historically, detecting periodicity in time series has focused on
either Fourier decomposition (for regularly sampled data) or fitting
sinusoidal models (for irregularly sampled data). An example of the
former is the fast Fourier transform (FFT; Cooley, Lewis & Welch
1969), and examples of the latter are the standard, modified, and
Bayesian Lomb—Scargle (LS) periodograms (Scargle 1982; Zech-
meister & Kiirster 2009; Mortier & Collier Cameron 2017). While
the LS method can be used for arbitrary samplings, the accuracy
of the estimated periods can be limited for quasi-periodic processes
and evolving periodic signals due to the inherent assumption that the

* E-mail: lars kreutzer @aei.mpg.de
1 Winton Fellow.

The Author(s) 2023. Published

process is well described by a pure sine wave of fixed period. Similar
issues affect methods based on phase folding and then minimizing
the variance or entropy of the data, as they also rely on strict
periodicity and negligible phase evolution (e.g. Stellingwerf 2011;
Graham et al. 2013a, b). More recently, flexible machine learning
methods, applicable to both regular and irregular time series, have
been used to describe quasi-periodic variations in stellar light curves
(e.g. Angus et al. 2018).

The above approaches share the same basic principle: they all fit
a model to the data to determine whether periodicity is present. The
concept of autocorrelation, i.e. correlating the data with themselves,
is a distinct ‘model-free’ approach that uses only the time series
data to extract periodicity (e.g. Shumway & Stoffer 2017). The
autocorrelation function (ACF) is a powerful definition and a reliable
method to obtain information from any regularly sampled time series,
as it can capture both strictly periodic and quasi-periodic processes.
It has been widely used on space-based photometric data given the
regular sampling available (e.g. McQuillan, Aigrain & Mazeh 2013;
McQuillan, Mazeh & Aigrain 2014), as well as on solar data (Morris
etal. 2019) for the same reason. However, the requirement of the stan-
dard ACF estimator for regularly sampled data can be a limiting factor
in its broader application, e.g. for ground-based photometric data.

Previous studies have attempted to address this problem by
generalizing the standard ACF estimator to irregularly sampled
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data. A number of these methods create an approximate regularly
sampled time series in order to apply the standard autocorrelation
estimator enhanced with rules on which terms to discard in the
series. The method proposed in Lukatskaia (1975) assumes that the
irregular sampling arises from missing data points in a regularly
sampled series, and further assumes that statistical properties of
the missing data are the same as the observed data. It is therefore
possible to calculate an autocorrelation estimator using only data
points that fall on to this regular sampling, with the caveat that the
time series must be much longer than the variability period of the
signal of interest. The method from Andronov & Chinarova (2005)
interpolates on to a regular sampling grid using a smoothing function.
These methods can work well if the sampling is almost regular and
only a subset of values are missing from a regularly sampled time
series. The discrete ACF, as proposed in Edelson & Krolik (1988),
relies on binning values in time intervals to account for missing
overlaps. A similar method was also proposed in Mayo, Shay & Riter
(1974).

As an extension of the binning proposed by Edelson & Krolik
(1988), and drawing from the general kernel-based methods proposed
by Hall, Fisher & Hoffmann (1994), Stoica & Sandgren (2006) and
Bjgrnstad & Falck (2001) both use a kernel to weight the product
of observations according to the difference between the observation
interval and the desired lag bin centre. This is also known as ‘fuzzy
slotting’. The kernels proposed are smooth density functions that tend
to zero as lag increases or decreases from the desired lag subject to a
characteristic width parameter. Stoica & Sandgren (2006) propose a
sinc function, demonstrating the efficacy of this weighting on exam-
ples from over-the-internet temperature data, pulsar time-of-arrival
measurements, and ice core CO, measurements. Bjgrnstad & Falck
(2001) use a Gaussian kernel in the context of estimating a spatial
autocorrelation for sparse ecological population data. A comparison
of anumber of correlation analysis techniques for irregularly sampled
time series (linear interpolation, LS periodogram, correlation slot-
ting, and several kernel-based methods), in a geoscientific context,
can be found in Rehfeld et al. (2011). These authors find that while all
methods investigated lead to consistent results for time series with
a relatively constant sampling density, the kernel-based methods
perform better for highly irregular time series.

Related to the problem of finding the ACF of irregularly sampled
time series is the problem of finding the power spectral density, as
the Fourier transform of the power spectrum of a (stochastic) time
series is equivalent to the ACF (see e.g. Scargle 1989; Merrifield &
McHardy 1994).

In this work, we present a different generalization of the standard
estimator of the ACF, which we name the selective autocorrelation
function estimator, or S-ACF. The S-ACF is an extended and
generalized version of the standard estimator, which is applicable to
both regularly and irregularly sampled time series, without making
any assumptions about the time sampling or the statistical properties
of the discrete time series and only assuming smoothness of the
underlying process. In particular, there are no assumptions about
regularity in the sampling of the time series.

The S-ACF method, presented in this publication, has previously
been used under the name G-ACF in Gillen et al. (2020) and Briegal
et al. (2022).

A PYTHON implementation of the S-ACF is available under the
MIT license at github.com/joshbriegal/sacf/.

In Section 2, we define our mathematical notation and the standard
estimator of the ACF. We then present the S-ACF and discuss
its main properties in Section 3. In Section 4, we show that
the S-ACF performs accurately on both synthetic and real data.
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We investigate the effect of different time samplings with both
regularly and irregularly sampled time series and find that the S-
ACF produces comparable estimates of the ACF and corresponding
period estimates. We conclude in Section 5.

2 BASIC DEFINITIONS

We start with some elementary definitions concerning time series and
the standard estimator of the ACF in order to clarify our vocabulary.
We adopt the symbol := to indicate a definition. An overview of the
notation can be found in Appendix A.

2.1 Time series
We define a time series X;(t) to be a finite ordered set

X)) ={X;,t)eRxRielI CcN, (1 —1)>0Viell),

¢y

with I C N being a finite index set, which we can choose to be I =
{0, 1,2, ..., ima }. Furthermore, we will refer to the set T; := {1|i €
I} as the set of time labels and to the set X; := {X;|i € I} as the set
of time series values.

It can be useful to think of a time series X;(7) as a discrete sampling
of a continuous process X(¢). The notation X; = X(;) will be used.
Hence, we define a time series to be regularly sampled if there exists
a sampling constant At > 0, suchthatt, =1y +k At Vk e I, else
we call the time series irregularly sampled.

2.2 Standard estimator of the autocorrelation function

The standard estimator of the ACF (e.g. as described in Scargle
1989; Shumway & Stoffer 2017) relies on the self-similarity of
the underlying process of the time series and can be applied to
all regularly sampled time series to obtain information such as
periodicity and signal shapes. We define the standard estimator of
the ACF of a regularly sampled time series X;(#) as the function

p:{0, 1, ... inx} — [—1, 1], ?)
l‘max*k

Pl = D (X = (X)) X (X — (X0, 3)
i=0

where (X;) denotes the mean of the time series values and the
normalization N is the total sum of squares N := > (X; — (X 2
The choice of this normalization implies that ,0(0)11 1, i.e. a time
series is maximally similar to itself when there is no lag. The
argument k is referred to as the lag. Equation (3) is the standard
estimator of the (true) ACF in the case of regularly sampled and
finite time series. In the following, we will use the abbreviation ACF
to mean this standard estimator.

While this is a standard way to introduce the ACF, it can be useful
to think of the ACF as a function with a time domain instead of an
integer lag domain. We can make this domain modification explicit
by multiplying the argument by the sampling constant Af:

p(kAt) 1 {0, At, ..., Atina} — [—1, 1] “)

These descriptions are equivalent, but the latter view is more useful
for the forthcoming discussion. Specifically, it is clear that the
standard estimator is only directly applicable to time series where
the sampling is regular.

As discussed in Section 1, various efforts have been made to
interpolate or infer missing data to recover a regularly sampled time
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series and allow the use of the standard estimator. The accuracy
of such efforts depends on the length of the gaps or irregularities
in the time series sampling compared to the scale of structures in
the signal. If the time series has large temporal gaps compared to
the scale of the underlying process, it is in general very difficult to
restore the missing information using interpolation. Here, we seek
to develop a new method to obtain information from arbitrary time
series, regardless of their sampling, which is applicable to all time
series. The approach presented in this work is a generalization of the
standard estimator, based on the fact that the standard estimator is
already applicable to all regularly sampled time series irrespective
of the underlying process. The key step is to formalize the time label
dependence of the definition explicitly.

3 SELECTIVE AUTOCORRELATION
FUNCTION ESTIMATOR

We begin generalizing the definition of the standard estimator
for time series of arbitrary sampling by introducing two func-
tions, the selection function S and the weight function W, as
well as generalizing the notion of the lag to a generalized lag
k € [0, (max(T}) — min(7}))].

We define the S-ACF, for a time series of any sampling, to be
the function p(k; W, ) that, restricted to the generalized lag £, is a
function of the form

A [0, (max(T;) — min(T))] — [—1, 1]. (%)

A possible generalized definition is then given by

p (R W, §)
1 N o
=~ Xj[am—mnwmm+m—m»

el
ti+k<max(Ty)

< W (18 (6 +8) = (5 +R)]) | ©)

where N := > (X; — (X /))? denotes the total sum of squares and
(Xp) is the ml;a[n of the time series values set. The general form of
the S-ACF is very similar to that of the standard estimator (equation
3). The S-ACF differs from the standard estimator by the explicit
inclusion of the selection function in the second factor, the restriction
on the sum, the generalized lag, and an additional third factor given
by the weight function. In the following sections, we discuss the
three new components: the generalized lag, the selection function,
and the weight function.

For regularly sampled time series, we want the S-ACF to reduce
to the standard estimator when restricting the generalized lag to
multiples of the sampling constant. A full proof and detailed
explanation of this property is given in Appendix B. This reduction
to the standard estimator is one of the core requirements of our
generalization and ensures that the S-ACF and the standard estimator
are equivalent for regularly sampled time series. We note that this
requirement motivates some of the restrictions that we impose on the
selection and weight functions.

In the case of the ACF, the equation p(0) = 1 tells us that — trivially
— if we do not shift the time series, the correlation is perfect. The
property 5(0) = 1 should also hold for the S-ACF, which we prove
in Appendix C.

3.1 The generalized lag k

As shown in equation (6), the generalized lag
k € [0, (max(T;) — min(7;))] can now take any value within
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an interval in time instead of solely integer values. This is natural
since in the most general case of irregular sampling there is no
preferred time-scale — i.e. there exists no sampling constant — and
thus we can allow the lag to be a continuous variable.

Even though the S-ACF is a well-defined function for any lag, it
cannot contain meaningful information at a higher resolution than
the time series itself, and we suggest setting the time resolution of
the generalized lag to values no smaller than the minimal difference
between two neighbouring time labels sk > min(t; ) — t;) for {ti,
ti+ 1} eT;. )

The condition #; + k < max(77;) on the sum is the generalization of
the upper limit iy, — k of the sum in the ACF definition (equation 3).
This bound on the (generalized) lag enforces again that the maximum
shifting of the process along itself is equal to the temporal length of
the time series and thus when the first time label is matched up with
the last time label.

3.2 The selection function §

The selection function is arguably the most important part of the
S-ACF definition (equation 6), as it deals with the irregular sampling
issue that is at the core of the problem considered in this work.
We define a selection function S to be a function § : Rt — T; that
projects an arbitrary point in time on to the set of available time labels,
thus selecting a specific time label for each point in time. There
are many sensible functions that one could choose to accomplish
this; however, a natural selection function is the one that, for each
point in time, selects the closest allowed time label (see Fig. 1 for
an illustration of this function). In the case that two time labels
are equally close to the argument one can employ the convention
of always choosing the smaller or larger value, or randomize the
decision in any practical application of the S-ACF.

In order for this selection function to be justified, we have to make
the assumption that the process underlying the discrete time series
has some degree of ‘smoothness’ in between the time labels.

A key difference of this selection function, compared to the kernel-
based methods described in Section 1 (see e.g. Rehfeld et al. 2011), is
that the selection function does not have a kernel with a fixed width.
The distance in lag between a time label and the selected shifted time
label can be as large as half the size of the largest gap in the time
series sampling, as can be seen in Fig. 1.

A possible alternative definition of the selection function would
be to find the closest time label for the first shifted time label and
then pair up all subsequent labels instead of finding the closest
time label for each shifted label individually. While this definition
reduces the computational complexity, it did not produce as accurate
a reconstruction of the standard ACF as taking the closest time label
for each individual time label when tested on synthetic time series.

3.3 The weight function w

We define a weight function W to be a function W : [0, 0o) — [0, 1]
with W(0) = 1. We will interpret the weight function as a function
that assigns time differences 6¢ > 0 a weight within the interval [0, 1].
Specifically, we see from equation (6) that the weight function is used
to assign a weight to the difference between the argument and the
value of the selection function and is thereby a statement about the
quality of the ‘selection’. Every fixed point of the selection function
St + IQ) = t; + k will therefore lead to a term in the S-ACF with
weight equal to 1 because of the requirement that W(0) = 1.

There are many choices for possible weight functions, but we have
to make sure that the condition W(0) = 1 is observed since this is
an important property (see Appendices B and C) and turns out to
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Figure 1. Each graphic (a)—(e) shows a set of time labels on the real axis and
below them the same set of time labels shifted by a real generalized lag £. The
red lines indicate how the selection function § matches the shifted time labels
to the original set of time labels above by choosing the closest time label from
the set of time labels 7. The generalized lag increases from panel (a) to (e),
which corresponds to the lower set of labels ‘shifting’ to the right. A supple-
mentary animated version of this figure is available on the journal website.

be a natural condition to ask for. Additionally, it would be natural
for the weight function to be a monotonically decreasing function
tending towards zero, since this reflects the interpretation that terms
that involve time series values at similar points in time should be
preferred. There are infinitely many such functions, including an
exponential function or one half of a Gaussian distribution; however,
a rational function is simpler and arguably more natural.

The PYTHON implementation published with this work supports
several different weight functions. Simple tests indicate that different
weight functions, which fit the above criteria, do not lead to clearly
significant changes in the accuracy of the method. Finding the
optimal weight function is beyond the scope of this paper.

We propose the following weight function

Wt = a >0, 8t >0, )

1
1+ adt’
where « is the inverse of the characteristic scale parameter of the
time series labels, e.g. one may choose o = 1/(T}). The 8t represents
a generic time difference and does not have any interpretation as a
sampling constant.

Naively, one may expect that the S-ACF will depend on the scale
of the time labels since we are free to rescale time labels arbitrarily,
but we know that the correlation between the different points in time
of a process should not depend on the overall time-scale. The use
of the inverse scale parameter cancels out any rescaling of the time
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Figure 2. The top panel shows three time series with an underlying sine
process (17.8 d period), sampled regularly (black), randomly (red), and with
a cadence-like sampling that possesses additional larger gaps (blue). All time
label sets have the same cardinality of |77| = 250. The bottom panel shows
the S-ACFs of the above time series. A vertical green line is plotted at the
period of the signal (17.8 d) in generalized lag.

labels since it will rescale in the inverse fashion. This is the simplest
continuous weight function that fits the above criteria and is also the
most efficient for explicit calculations.

It is possible to consider a discrete weight function that satisfies
W(0) = 1 but is zero in all other cases, thus discarding all terms
that do not have matching shifted time labels and hence eliminating
the selection function from the definition. However, in the case of
irregularly sampled time series, such a discrete weight function
may eliminate the majority of the terms contributing to the S-
ACF for a given lag and even almost matching terms would not
be considered. This method is best suited to the case of an almost
regular sampling where a small percentage of values are missing
from an otherwise regularly sampled time series. In this case, most
terms in the autocorrelation function will have a match when the lag
corresponds to an integer multiple of the ‘regular’ sampling constant
and only a small number of terms without a matching time label need
to be discarded.

4 S-ACF APPLIED TO SYNTHETIC AND REAL
DATA

4.1 Synthetic data: simple sinusoidal time series

We created a periodic sinusoidal signal. To investigate the impact
of the temporal sampling on the S-ACF, we considered three
different examples: (i) regularly sampled, (ii) randomly sampled, and
(iii) cadence-like sampling with gaps. This third time series seeks
to simulate the observing strategy of ground-based astronomical
surveys, i.e. data during night-time, gaps during daytime, and
sporadic additional gaps due to bad weather. For ease of comparison,
each time series contains the same number of data points (|7;| =
250) and they differ only in the temporal distribution of the data
points.

These three time series are shown in the top panel of Fig. 2.
The S-ACF of the regularly sampled time series is identical to
the ACF, as expected due to their definitions. The S-ACFs of the
random and cadence-like samplings are similar to the ACF, but with
small differences due to the data gaps and corresponding loss of
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Figure 3. Same as Fig. 2 but for a time series with an underlying process
described by the sum of two sine functions with 8.9 and 17.8 d periods.
Vertical orange and green lines are plotted at the periods of the signal (8.9
and 17.8 d, respectively) in generalized lag.

information. These differences depend on the exact position and size
of gaps within the data.

In Fig. 3, we consider the sum of two sine functions with the
same three temporal samplings described above. Similar behaviour
is seen in both the two-sine and single sine function examples, i.e.
both the random and cadence-like sampling cases display modest
deviations from the regularly sampled case but overall comparable
autocorrelation functions.

4.2 Synthetic data: more complex time series

In order to investigate the efficacy of the S-ACF on more realistic
data sets, we generated a periodic signal with a large stochastic
noise component. The periodic signal was again a sine function with
a period of 17.8 d. The stochastic component was drawn from a
Gaussian process (GP) using a simple harmonic oscillator (SHO)
kernel (with quality factor Q = 1/3 and characteristic time-scale p =
5 d), as implemented in the CELERITE2 PYTHON package (Foreman-
Mackey et al. 2017; Foreman-Mackey 2018). The amplitudes of the
sinusoidal and stochastic components were comparable.

The same three temporal samplings were used as in Section 4.1,
and the resulting time series and corresponding S-ACFs are shown
in Fig. 4. The S-ACF displays a prominent peak corresponding to the
period of the sinusoidal component, although the exact position of
this peak will be moderately affected by the large noise component,
as expected. Despite the periodic and noise components having
comparable amplitudes, the S-ACF is able to accurately recover a
clear periodic signal in all three sampling cases.

4.3 Synthetic data, quantitative analysis: comparison to kernel
estimators and interpolation

We want to quantitatively compare the performance of the S-ACF
to that of the standard autocorrelation estimator, as well as to
several other methods. To do this, we assume that the standard
autocorrelation estimator of a regular sampling of a process is close
to the true ACF and thus we measure the other estimators relative to
this function. We focus on comparing the estimators directly without
determining the periods of the process.

S-ACF 5053
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Figure 4. Same as Fig. 2 but for a time series with an underlying process
described by the sum of a comparable amplitude sine function and stochastic
GP. A vertical green line is plotted at the period of the deterministic component
of the signal (17.8 d) in generalized lag.

We consider the following methods: S-ACF, the rectangular and
Gaussian kernel estimators (as implemented in Collenteur et al.
2019), and the standard autocorrelation estimator following a linear
interpolation of the irregularly sampled time series on to a regular
sampling.

Throughout this section, we consider the same kind of process as
in Section 4.2, i.e. processes that consist of a GP rotation signal with
an additional GP noise component. The GP rotation component has a
period between 0.1 and 50 d, standard deviation o = 1, quality factor
Qo = 5 (with dQ = 1), and fractional amplitude of the secondary
mode relative to the primary mode f = 0.5. The noise is again drawn
from a GP using an SHO kernel, with quality factor Q = 1/3 and
characteristic time-scale p between 0.1 and 50 d. The period of the
periodic component of the process and the noise time-scale are drawn
uniformly at random from the interval 0.1-50. The signal-to-noise
ratios (S/N) considered are between 0.001 and 20. The overall length
of the processes is 100 d.

From these processes we generate time series with sampling
densities (or time label densities) varying between 0.1 and 20 time
labels per day. The length of each time series is kept fixed at
100 d. The distributions of the time labels can be a uniform random
distribution or a cadence-like distribution with regular sampling
during night-times and additional larger gaps (e.g. simulating nightly
observations with periods of bad weather).

The random sampling is generated by selecting time labels
uniformly at random until the given average time label density is
reached. The cadence-like sampling is generated by placing regularly
sampled time labels during the night-time (considered to last 8 h)
around 10 (larger) gaps, where the edges of the gaps are chosen
uniformly at random. A small number of time labels are then added,
at random, around the gaps until the given average time label density
is reached.

Figs 5 and 6 illustrate how we compare the different estimators
in the case of cadence-like sampling (the process of comparing the
different estimators is equivalent for the random sampling). Fig. 5
shows an ‘easy’ time series with an average sampling density of 2.5
time labels per day and an S/N of 5. We then compute the estimators
derived from these methods based on the cadence-like sampling
of the process. Finally, we compute the residuals and root-mean-
square errors (RMSEs) of each estimator relative to the standard
autocorrelation estimator of the regularly sampled time series (i.e.
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Figure 5. Top: three versions of a process comprising both a periodic component (P = 17.8 d) and a correlated noise component (characteristic time-scale
[ =5 d), which has an average sampling density of 2.5 time labels per day and an S/N of 5.0. The three versions are a regular sampling of the process (black
triangles), a cadence-like sampling (magenta circles), and an interpolation of the cadence-like process on to the regular sampling (cyan squares). Bottom left:
comparison of the different estimators of the ACF for this process. The standard estimator (black line) is based on the regularly sampled time series. The S-ACF
estimator (red dashed), rectangular kernel estimator (blue dash—dotted), and Gaussian kernel estimator (green dotted) are based on the cadence-like sampling

of the process. Finally, we use the interpolated regular sampling of the pro

cess to again apply the standard estimator (cyan dash—dot—dotted). Bottom right:

residuals of the different estimators (S-ACF, rectangular and Gaussian kernels, and interpolation) relative to the standard estimator (i.e. the ACF). RMSEs are

indicated in the legend.

no gaps). Fig. 6 repeats this for a ‘hard’ time series with an average
sampling density of 0.5 time labels per day and an S/N of 0.1. It is
worth noting that the discrete time series shown in Fig. 6 (top) appear
‘smoother’ than the underlying continuous process, due to their low
sampling density.

Using the RMSEs computed in this way, we can quantitatively
compare the S-ACF to the standard estimator for time series with
random and cadence-like samplings. In the case of regular sampling,
the S-ACF reduces to the standard estimator (see Appendix B),
which makes this comparison trivial by design. Fig. 7 shows the
average RMSEs of the S-ACF for a wide range of parameters. The
RMSE:s are generally much lower in the case of random sampling.
Moreover, we can see that the S/N has essentially no effect when
comparing the S-ACF directly to the standard estimator of the
regularly sampled time series, without applying further methods
to detect periodicity. For sampling densities below 0.2, the RMSEs
increase in both sampling cases.

In order to compare the S-ACF to other estimators of irregularly
sampled time series, we compare the RMSEs of the S-ACF, relative
to the standard estimator of the regularly sampled time series, to the
equivalent RMSE:s of the other methods for the same processes. This
is equivalent to running many analyses as in Fig. 5 and taking the
differences between the RMSEs of each method and the RMSE of the
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S-ACF. The differences between the RMSEs are always computed
for the same time series and are averaged over a large number of
different time series. In Figs 8 and 9, we show the results for time
series with random and cadence-like samplings, respectively.

The S-ACF performs better than the two kernel methods in all areas
of the parameter space, but especially when the time label density is
very low (<0.2 d™!), and this effect is more pronounced in the case
of random sampling. The performance of the S-ACF is very similar
to the interpolation method in all areas of the parameter space for
the processes considered here. In the regime of very low S/N (<0.1),
the interpolation method slightly outperforms the S-ACEF, at least in
terms of the RMSE value. We note, however, that while the RMSE
is a useful indicator of an accurate estimator, we are often concerned
about extracting periods from these estimator functions, e.g. from
the location of the first peak (or weighted average of the first few
peaks). Considering Fig. 6, as an illustrative example, the bottom-
left panel shows that only the S-ACF has a first peak in general
agreement with the ACF, so any period extracted from these estimator
functions would likely favour S-ACF over the other methods, at
least in this particular example. Further tests, using a robust period
finding algorithm across the full parameter space, would be needed
to ascertain whether S-ACF or interpolation produces more accurate
period estimates. This is beyond the scope of this work.
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Figure 6. Same as Fig. 5 for a process with a periodic component (P = 17.8 d) and a correlated noise component (characteristic time-scale / = 15 d), an average

sampling density of 0.5 time labels per day, and an S/N of 0.1.
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Figure 7. Average RMSEs of the S-ACF estimator for randomly sampled time series (left) and for time series with cadence-like sampling (right) relative to the
standard estimator of the same process with regular sampling. Each bin shows the average of many evaluations (totalling 140 700 processes per plot). Negative
RMSEs are not possible and the colour scale is chosen to be consistent with Figs 8 and 9, where differences between RMSEs are shown.

4.4 Real data: the Kepler light curve of the spotted star KIC
5110407

We wish to test the efficacy of the S-ACF on real time series data and
explore how the periods estimated from the S-ACF compare to other

commonly used period estimation techniques. We estimate periods
from the S-ACF by calculating an FFT of the first three peaks of
the S-ACE. Restricting the lag time used in the period estimation
reduces the effect of signal shape evolution on the S-ACF at long
lag times and correspondingly improves the accuracy of the period
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Figure 9. Same as Fig. 8 but for time series with a cadence-like sampling.

estimated. Using an FFT to calculate the periodicity of the S-ACF
is possible as the S-ACF is a continuous function by definition. We
note that another method of extracting periodicity from the S-ACF
would be to calculate the position of the first peak in the S-ACF, or
calculating the positions of subsequent peaks in addition in order to
refine this period estimate, such as the technique used in McQuillan
et al. (2013).

While the S-ACF is not restricted to astronomy, the standard
ACF has been widely used to estimate the rotation periods of stars
from time series photometry. Therefore, as an illustrative example,
we selected a spotted star observed by Kepler, KIC 5110407 (e.g.
Roettenbacher et al. 2013), and compare the period predictions of
S-ACF to two other techniques for rotation period estimation: GP
regression and LS periodograms. Using a rotationally variable star
for this comparison allows us to probe the efficacy of S-ACF on
time series that display evolution in the signal (phase) shape. While
we focus on the period here, we note that other useful information,
such as the evolution time-scale, can also be extracted from the S-
ACF. Our approach to comparing S-ACF, GP regression, and LS
periodograms follows Gillen et al. (2020) and we refer the reader to
section 3 of that paper for further details, but give a brief overview
below of the GP and LS models used here.

The GP model is based on the CELERITE2 package (Foreman-
Mackey et al. 2017; Foreman-Mackey 2018), as implemented
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through the exoplanet framework (Foreman-Mackey et al. 2021a,
b), and uses the standard rotation kernel with an additional SHO
kernel (with quality factor Q = 1/3) to capture any non-periodic
structure in the light curves. The posterior parameter space was
explored via gradient-based Markov chain Monte Carlo (MCMC)
using the No U-Turn Sampler, as available through exoplanet,
which in turn uses PyMC3 and theano (Hoffman & Gelman 2014,
Salvatier, Wiecki & Fonnesbeck 2016; Theano Development Team
2016; Kumar et al. 2019). For each quarter, we ran 5 independent
chains of 5000 tuning steps followed by 10000 sampling steps. GP
periods were taken as the median of the posterior period distribution.
It is worth noting that the GP model requires an initial period
guess, in contrast to both S-ACF and LS, for which we give the
average of the S-ACF and LS period estimates. The GP model is
also sensitive to data not well captured by the chosen rotation kernel,
such as stellar flares, which we account for by performing an initial
maximum a posteriori fit, masking 3o outliers, and refitting. For the
LS model, we use the version available through the ASTROPY project
(Astropy Collaboration 2013; Price-Whelan et al. 2018). LS periods
are estimated from the largest peak in the periodogram. Both the LS
and S-ACF models were run on the data without further processing
such as flare masking.

Kepler observed KIC 5110407 for almost 4 yr spanning 13 of
the 17 quarters. Kepler quarters typically last ~90 d and have
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Figure 10. Rotation period estimates for the spotted star KIC 5110407 from S-ACF, GP regression, and LS periodogram. Top panel: the system’s quarter 7
Kepler light curve. Middle left: S-ACF (blue) with the identified period highlighted (yellow). Middle centre: GP posterior period distribution (orange) with the
median and 1o uncertainties highlighted (solid and dashed orange lines). For comparison, the S-ACF and LS periods are also shown (blue and green solid lines,
respectively). Middle right: LS periodogram (green) with the identified period highlighted (yellow). Bottom row: the Kepler light curve phase-folded on the
corresponding method’s period (S-ACF, GP, and LS; left to right) and coloured from the beginning (blue) to the end (yellow) of the observations.

essentially continuous observations with a cadence of ~30 min.
The ACF has been successfully applied to such Kepler data (e.g.
McQuillan et al. 2013, 2014), but, as noted, the ACF is not applicable
to non-continuous data that cannot be accurately interpolated on to a
regularly spaced time series grid, i.e. time series with large data gaps,
such as ground-based photometry. We therefore estimated the stellar
rotation period of KIC 5110407 from two versions of its Kepler
light curve: (i) the full Kepler light curve and (ii) the Kepler light
curve as though it had been observed from the ground (i.e. with gaps
during daytime and simulated ‘bad weather’ events'). Fig. 10 shows
the results for the full Kepler light curve observed during quarter 7
and Fig. 11 shows the results for ‘ground-based’ version of the light
curve. The Kepler data from this quarter shows moderate evolution
throughout and displays both ‘double-dip’ patterns (e.g. at ~20d) and
sinusoidal modulation (e.g. at ~40-80 d). For this quarter therefore
the S-ACF and GP periods agree best, whereas the LS period predic-
tion is slightly larger. This is the case for both the full and ‘ground-
based’ light curves. The better agreement between S-ACF and GP is
because they are more flexible than LS (i.e. they do not assume a rigid
sinusoidal model), and hence are more applicable to such evolving
time series. The periods can be best compared in the middle centre
panel of Figs. 10 and 11 and by comparing the phase-folded light
curves.

! All quarters had the same relative times masked. Night-time was considered
to last 8 h of each 24 h period and bad weather was simulated between the
following times: 18.5-22.5,34.5-37.5,48.5-52.5,62.5-64.5,and 76.5-81.5d
(relative to the start of each quarter).

We performed the same analysis on each available quarter of
Kepler data and compare the period predictions for S-ACF, GP, and
LS across quarters in Fig. 12. Across quarters, and for both the full
and ‘ground-based’ light curves, the S-ACF and GP periods agree
best overall. The LS predictions agree well for some quarters, mainly
those that show sinusoidal modulation, but less well for those that
show evolving modulation patterns, which results in a larger scatter
and correspondingly larger uncertainties on the mean rotation period
prediction compared to S-ACF or GP. The mean periods and standard
deviations across quarters are S-ACF =3.51 +0.06 and 3.51 £0.06d
for the full and ‘ground-based’ light curves, respectively; GP =
3.50 &£ 0.04 and 3.50 £ 0.04 d; and LS = 3.53 £ 0.08 and
3.53 4+ 0.08 d. We note that Roettenbacher et al. (2013) estimate
a rotation period for KIC 5110407 through light-curve inversion of
3.4693 d, which agrees to within 1o for all three methods.

This comparison between the S-ACF and the GP and LS methods,
for both continuous and irregularly sampled time series, illustrates
the validity of the S-ACF for such applications. Furthermore, as
the S-ACF is a very general approach with minimal assumptions
about the process, it can be applied to time series data of essentially
any form, without the need to adapt the kind of model chosen (in
the case of GP) or assume a rigid sinusoidal model (in the case of
LS). The S-ACF method took approximately 0.6 s on the quarter 7
KIC 5110407 light curve (4117 data points) using a single laptop
core.? The GP regression took ~8.3 s for the maximum a posteriori
fit (and ~7 min for the MCMC), while the LS periodogram took

2The runtime of the S-ACF is dependent on both the number of data points
and the number of lag time-steps.
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but larger than the scatter in GP periods.

approximately 0.01 s to run on the same laptop core. Each method
is performing different calculations, and the GP MCMC method
additionally provides a period uncertainty, so their respective times
are simply included here for completeness and general interest. The
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S-ACF is a powerful and efficient approach to extract periodicity,
quasi-periodicity, and short-term self-similarity from time series data
in general, and especially data for which the true functional form is
unknown.
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Furthermore, we note that the S-ACF has been successfully applied
to ground-based data from the Next-Generation Transit Survey
(Wheatley et al. 2018) to extract various kinds of stellar variability,
including rotation, pulsations, and eclipsing binaries (Gillen et al.
2020; Briegal et al. 2022).

4.5 A note on aliasing

In the case of cadence-like sampling (e.g. ground-based astronomical
surveys), which possess a (mostly) fixed periodicity of sampling
gaps, alias signals can appear in the S-ACF due to the missing
information in between well-sampled clusters of data. These aliases
can be easily identified since their periodicity will be equal to
the periodicity of the data clusters and their amplitude will be
proportional to the relative size of the gaps between clusters (see
e.g. Briegal et al. 2022). This effect will not be relevant for most
applications unless the structure (or period) of interest is comparable
to the structure of the sampling clusters (i.e. sidereal day for ground-
based astronomical surveys). We suspect that it may be possible
to reduce this modest effect by generalizing the normalization to
a function that depends on both the lag and time label density.
However, a full removal of these aliases will likely not be possible
since gaps imply missing information that cannot be restored without
additional information or assumptions. We note, however, that these
effects are small if there are sufficient data points per period of the
process.

5 CONCLUSIONS

The S-ACF is a new and versatile definition that can reliably and
efficiently extract — among others — periodicity and signal shape
information from any time series, virtually independent of the time
series sampling and only assuming the smoothness of the underlying
process. We show that the standard estimator of the ACF can
be generalized and applied to irregularly sampled time series by
generalizing the lag to a real variable and introducing both selection
and weight functions. We show that the S-ACF reduces to the
standard estimator for regularly sampled time series and possesses
the property of maximal correlation at zero lag.

The S-ACFs derived from both simple and more complex synthetic
time series with different samplings (regular, random, and ‘cadence-
like’) agree well; however, there are small deviations due to the data
gaps and corresponding loss of information. We calculate the RMSE
of the S-ACF of irregularly sampled synthetic processes, relative
to the standard estimator of the ACF of the same process with a
regular sampling. The RMSEs are calculated for a large number of
processes spanning a wide range of time label densities and S/N.
The RMSEs of the S-ACF are then compared to the equivalent
RMSE:s of other methods that aim to estimate the true ACF, including
Gaussian and rectangular kernel estimators and a combination of
linear interpolation and the standard estimator. The RMSEs of the
S-ACF increase significantly at low time label densities (<1 d~') and
the same effect can be seen with the other methods. The RMSEs of the
S-ACF have essentially no dependence on the S/N. For the processes
considered here, the S-ACF performs better than the two kernel
methods (most notably at low time label densities) and comparable
to the interpolation method (although we note that the interpolation
method performs slightly better at low S/N, which may be due to
properties of the GP noise that dominates the process in this regime).
At high time label densities and modest-to-high S/N, all considered
methods perform well and are very close to the standard estimator
of the ACF.

S-ACF 5059

We compare the period predictions of S-ACF to those from GP
regression and LS periodograms by extracting rotation periods for
the spotted star, KIC 5110407. The S-ACF and GP periods typically
agree best across the different Kepler quarters, with LS periods
being comparable in quarters with mainly sinusoidal modulation but
more discrepant for quarters displaying more complex or evolving
patterns. All three methods achieve consistent mean periods and
uncertainties.

There are a wide range of potential applications for the S-ACF, not
only within astronomy but also in other quantitative sciences where
irregularly sampled time series occur, such as economics, finance,
climatology, geology, biology, and others.

The PYTHON implementation used in this work is available open
source under the MIT license at github.com/joshbriegal/sacf, and
additionally can be installed through PYPI using the command pip
install sacf.
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APPENDIX A: NOTATION

Table Al lists the notation used in this work.

Table Al. A brief summary of the notation of the sets, functions, and parameters used.

Symbol Description

I Finite index set of natural numbers

imax := max (1) The maximum of the index set

X(r) A continuous real process

X;(t) A time series with index set [

X; = X(t) A time series value corresponding to the label #;

X The set of time series values

T; The set of time labels

At A positive sampling constant

p(k) The standard estimator of the ACF

k The integer lag of the standard estimator

(Ty) The mean value of the time label set

(X1) The mean value of the time series value set

N =3 (X; — (X )2 The normalization of the ACF/S-ACF
iel

Bl03) The S-ACF

k The real generalized lag of the S-ACF

W(st) The weight function of the S-ACF

8t A generic positive time difference

0 The selection function of the S-ACF

o A positive constant
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APPENDIX B: PROOF OF THE REDUCTION OF
THE S-ACF TO THE STANDARD ESTIMATOR
FOR REGULARLY SAMPLED TIME SERIES

From the definition of the S-ACF (equation 6), the selection function
(Section 3.2), and the property W(0) = 1 of the weight function,
we can derive a consistency property of the S-ACF for the case of
regularly sampled time series, which is that the S-ACF reduces to
the standard estimator in this case.

If a time series is regularly sampled, then there exists a sampling
constant Ar that describes the time difference between any two
neighbouring time labels #; and #; | by t;+1 — t; = At with i, i
+ 1 € I. In this case, we can compute the standard estimator as well
as the S-ACEF. If we want to compare the two functions for the same
time series, then we can only compare their values on their common
domain, which means that the generalized lag & of the S-ACF has to
satisfy the relation £ = k Ar with respect to the lag k of the standard
estimator. We thus have to restrict the real generalized lag to the
domain of the standard estimator, given by integer multiples of the
sampling constant.

Using the restriction on the generalized lag, all points in time of
the form #; + £ will satisfy

6+ k=1+kAt, (B1)

but, since the time series is regularly sampled, adding multiples of
the sampling constant will give another time label

ti+k=tyeTy. (B2)
If we now apply the selection function to this equation, we obtain
that

S(t+k)=38tw, (B3)

but since the selection function — by construction — maps its argument
to the closest time label, we can use the fact that time labels are fixed
points of the selection function, meaning that

§ (ti+1) =t (B4)
to arrive at the equation
S (ll‘ + 12) = litk- (B5)

This result will be central to reducing the S-ACF to the definition of
the standard estimator for regularly sampled time series.

If we look at the definition of the S-ACF (equation 6), we see that
it only differs from the standard estimator by the factor of the weight
function and the insertions of the selection function. If we focus only
on the last factor in equation (6), we can directly apply equations
(B2) and (B5) to give

W (IS (6 + k) = (5 + k) 1) = Wtk — k) = W(0).  (B6)

But we defined the weight function to satisfy the property W(0) = 1
and thus we obtain

W (I8 (1 +k)— (1 +k) 1) =1, (B7)

The Author(s) 2023. Published
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removing the weight factor from the definition of the S-ACF.
The second factor in the definition of the S-ACF (equation 6)

XSt + k) — (X)) (B8)

is also modified by the selection function. However, we can apply
equation (B5) and obtain

XS + k) = (X1) = X — (X)), (BY)
and thus we again recover the factor from the definition of the
standard estimator.

Since the first factor of the S-ACF (equation 6) is the same as in
the standard estimator, the only further modification is the restriction

f; + k < max(Ty), (B10)
on the sum. We can again use equation (B2) to obtain

tipr < max(Ty). (B11)
If we write this equation in terms of the indices, we arrive at

i +k < imax, (B12)

which is equivalent to writing the upper limit of the sum on i as iy
— k, as is the case in the definition of the standard estimator.

The above proof shows that the S-ACF reduces to the definition of
the standard estimator if the time series is regularly sampled and we
restrict the generalized lag to the domain of the standard estimator.

APPENDIX C: THE PROOF OF 50 =1

We prove that §(0) = 1 by considering the S-ACF definition (equa-
tion 6) at zero lag. For k = 0, we find

p(0)
1 N
=N Z |:(X(li) — (X)) x (X@S@)) — (X1))
iy <max(Ty)
x W (IS(ti)—(ti)l)], (&)

but since S(¢;) = ; and W(0) = 1, we have

1
p0) = N Z] |:(X([i) — (X)) x (X)) — (X)) |- (C2)

Using the definition of the normalization, we arrive at the desired
equation

A(O)—ﬁ—l (C3)
pO) =+ =1

This paper has been typeset from a TEX/I&TEX file prepared by the author.
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