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Comparative phylotranscriptomics reveals 
ancestral and derived root nodule  
symbiosis programmes
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Sébastien Carrère    2, Tatiana Vernié    1, Jean-Malo Couzigou    1, 
Caroline Callot3, Isabelle Dufau    3, Stéphane Cauet    3, William Marande3, 
Tabatha Bulach4, Amandine Suin4, Catherine Masson-Boivin2, 
Philippe Remigi    2 , Pierre-Marc Delaux    1  & Delphine Capela    2 

Symbiotic interactions such as the nitrogen-fixing root nodule symbiosis 
(RNS) have structured ecosystems during the evolution of life. Here we 
aimed at reconstructing ancestral and intermediate steps that shaped 
RNS observed in extant flowering plants. We compared the symbiotic 
transcriptomic responses of nine host plants, including the mimosoid 
legume Mimosa pudica for which we assembled a chromosome-level 
genome. We reconstructed the ancestral RNS transcriptome composed of 
most known symbiotic genes together with hundreds of novel candidates. 
Cross-referencing with transcriptomic data in response to experimentally 
evolved bacterial strains with gradual symbiotic proficiencies, we found the 
response to bacterial signals, nodule infection, nodule organogenesis and 
nitrogen fixation to be ancestral. By contrast, the release of symbiosomes 
was associated with recently evolved genes encoding small proteins in each 
lineage. We demonstrate that the symbiotic response was mostly in place in 
the most recent common ancestor of the RNS-forming species more than  
90 million years ago.

Interactions between organisms form a continuum of associations, 
from parasitism to mutually beneficial symbioses1, which have contrib-
uted to the evolution and diversification of the plant lineage for billions 
of years2. The mutualistic symbioses formed with fungal or bacterial 
symbionts are associated with key ecological and evolutionary transi-
tions, such as the colonization of land by plants 450 million years ago, 
which was enabled by the evolution of the arbuscular mycorrhizal sym-
biosis (AMS)3,4. Following this initial event, plants and their symbiotic 
partners have diversified, leading to the emergence of multiple types 
of mutualistic symbioses with microorganisms2. Two main groups of 

symbiotic associations can be distinguished: intracellular and extracel-
lular symbioses. Extracellular symbioses include for instance plant–
cyanobacteria interactions where the bacterial symbiont is hosted in 
dedicated canals and glands5,6, ectomycorrhizal symbioses between 
plant roots and ascomycete or basidiomycete fungi7, or the very specific 
association between Dioscorea sansibarensis and its bacterial symbiont 
restricted to leaf drip tips8. Intracellular symbioses in plants are mainly 
established with fungal symbionts9. The nitrogen-fixing root nodule 
symbiosis (RNS) is a rare example of intracellular accommodation of 
bacteria9. However, intracellular accommodation of symbionts during 
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Bradyrhizobium sp. 1AE200 strain (Ledermann and Couzigou, unpub-
lished). L. albus forms peculiar lupinoid nodules30 and its genome has 
been recently sequenced31. In brief, we identified 3,976/4,944 (up/
down) differentially regulated genes in mature nodules in response to 
Bradyrhizobium sp. 1AE200 compared to non-inoculated roots (Sup-
plementary Tables 1, 3 and 4). These differentially expressed genes 
(DEGs) represent around 33% of the 26,204 L. albus expressed genes.

To obtain comparable datasets, raw RNA-seq reads obtained in the 
presence or absence of their respective bacterial symbionts from seven 
other nodulating species (Supplementary Table 1) were remapped on 
their respective genomes, and differentially expressed genes were 
computed following the same approach as for M. pudica and L. albus. 
Due to sampling and sequencing depth heterogeneity among spe-
cies, we used different fold-change thresholds to obtain comparable 
numbers of differentially expressed genes (see Methods). For each 
species, we also concatenated all differentially expressed genes at 
any time point to estimate the whole symbiotic response for up- and 
downregulated genes.

Between 2,275 (Hippophae rhamnoides) and 9,034 (M. pudica) 
differentially upregulated and 1,906 (H. rhamnoides) and 16,470  
(M. pudica) downregulated genes were detected in the nine sampled 
species at any time of the symbiotic interaction (Supplementary  
Tables 3, 4 and 5). As expected, species for which transcriptomic 
responses were only analysed in mature nodules, such as H. rham-
noides, Datisca glomerata and L. albus, exhibited a lower proportion 
of differentially regulated genes (Supplementary Tables 3 and 5) as 
the earliest responses to the symbiont were probably not captured.

The observed massive symbiotic transcriptomic responses in each 
species reflect either a conserved response, species-specific responses 
or a mix of both patterns. To determine the evolutionary origin of these 
responses, we computed orthogroups32 for the nine studied species, 
together with 16 additional species from the NFN clade and Arabidopsis 
thaliana as outgroup (Supplementary Table 6). The additional species 
were chosen on the basis of genome quality and to cover RNS- and 
non-RNS-forming clades. The list of DEGs for each species was then 
cross-referenced with the list of genes present in each orthogroup. 
Using this approach, we were able to identify, for each species, the list 
of orthogroups containing at least one up- or downregulated gene.

Using a simplified phylogeny composed of the nine species 
analysed here, we then mapped the presence/absence of each 
DEG-containing orthogroup (hereafter called DEOG for differentially 
expressed orthogroups) on each tip of the tree, allowing us to deter-
mine at which evolutionary node the genes have been recruited for 
RNS, using an ancestral state reconstruction of a discrete trait with 
a fixed-rates continuous-time Markov model. Using this method, we 
determined at which phylogenetic node the genes became differen-
tially regulated during symbiosis (see Methods and Extended Data  
Fig. 1 for node label and position on the tree). Besides expression itself, 
the number of predicted DEOGs at a given node depends on several fac-
tors such as the maximum number of orthogroups present at that node 
or the accuracy of the orthogroup reconstruction method. To consider 
these biases, we assessed whether the experimentally determined 
values for each node significantly deviated from random expectation 
(see Methods). For each species, most of the genes were found to be 
differentially regulated in a species-specific manner (Fig. 1 and Sup-
plementary Table 5). However, the observed numbers were either not 
significantly different from the null expectation, or were lower than 
expected (Supplementary Table 5). By contrast, a number of internal 
nodes displayed significantly more DEOGs than expected (Supple-
mentary Table 5). In particular, 759/1,493 (up/down) orthogroups 
(211%/268% increase compared to the mean null expectation, Supple-
mentary Table 5) were inferred to have been already up/downregulated 
in the most recent common ancestor of all RNS-forming species. Among 
the 759 ancestrally upregulated orthogroups, 157 contain genes with 
a known function, such as the Nod-factor receptor LjNFR5/MtNFP33,34, 

RNS occurs in different physical structures depending on the plant spe-
cies, including transcellular tubular structures that retain bacteria10 or 
organelle-like structures called symbiosomes11 that completely release 
bacteria in host cells.

In extant species, RNS is found in ~17,500 species from four orders 
of flowering plants12: ~17,300 species from the Fabales and 230 species 
from the Fagales, Cucurbitales and Rosales, which together form the 
nitrogen-fixing nodulation (NFN) clade13. Comparative phylogenomic 
studies coupled with previous phylogenetic and physiological work 
provided insights into the evolutionary history of RNS. Although the 
original phylogenetic work14 and recent follow-up15 support convergent 
gains of RNS, the most likely scenario proposes that RNS was gained 
only once, before the diversification of the NFN clade. Following that 
single gain, RNS diversified in each lineage and was lost subsequently 
multiple times, leading to the scattered distribution observed in extant 
species13,16,17. The rate of RNS loss differs between lineages, with some 
displaying an evolutionarily stabilized association while others seem to 
have experienced massive losses10. However, the nature of the ancestral 
RNS, its functioning and how it diversified over 92–110 million years of 
evolution12 remain elusive.

The comparison of transcriptomic patterns across species in each 
context, whether developmental or in response to the environment, 
allows reconstruction of ancestral and derived responses to that con-
text. For instance, this approach has been used in plants to reconstruct 
the flooding response in angiosperms18, to study the evolution of the 
shoot meristem19, organs and gametes20, and to infer the ancestral 
AMS transcriptome4.

Here we combine transcriptomics in multiple species and phylog-
enomics to reconstruct the ancestral RNS transcriptome. We further 
dissect the transcriptional shifts associated with each symbiotic step 
by exploiting experimentally evolved bacterial strains21, which progres-
sively recapitulate the full symbiotic interaction. We use this combina-
tion of transcriptomics, phylogenomics and experimental evolution to 
reconstruct the evolution of the plant symbiotic programme.

Results and discussion
Identification of an ancestral RNS transcriptomic signature
The two largest groups of RNS-forming species, the Papilionoideae 
subfamily and the Mimosoid clade which is nested in the largely 
non-nodulating Caesalpinioideae subfamily17,22, belong to the Fabales 
order. While transcriptomic data have been obtained in response to RNS 
in a number of Papilionoideae23–28, the Mimosoids have been ignored. 
To fill this gap, we conducted a time-course experiment with Mimosa 
pudica inoculated with its bacterial symbiont Cupriavidus taiwanensis 
(Supplementary Table 1). As a preliminary to gene expression studies, 
we de novo sequenced the genome of M. pudica. This Mimosa species is 
tetraploid (2n = 4x = 52)29 and its genome size was previously estimated 
to be around 900 Mb (ref. 16). To generate a high-quality genomic 
sequence, we used a combination of long-read sequencing and optical 
mapping (see Methods) leading to a near-chromosome-level assembly 
(Supplementary Table 2). This method produced 74 hybrid scaffolds 
(from 128 kbp to 25.5 Mbp with N50 = 16.1 Mbp) for 52 expected chro-
mosomes and a total genome size of 797.25 Mb. Automated structural 
annotation of the genome yielded 73,541 protein-coding genes and 
5,134 non-coding RNAs. Finally, the high completeness of the annotated 
genome was evidenced by a 97% (2,255 genes) Busco recovery score on 
eudicots_odb10 (C:97.0% (S:10.2%, D:86.8%), F:1.1%, M:1.9%, n: 2,326). 
As expected for a tetraploid genome, most of the genes are duplicated. 
The expression of 51,214 Mimosa genes was detected in our complete 
transcriptomic dataset, 43% of which were differentially expressed 
(9,034 genes up/16,470 genes downregulated) during the symbiotic 
interaction with C. taiwanensis in at least one time point compared to 
non-inoculated roots (Supplementary Tables 3 and 4).

In addition, we generated the transcriptome of the Papilio-
noideae Lupinus albus, from the Genisteae tribe, inoculated with 
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members of the downstream signalling pathway SYMRK/DMI2  
(refs. 35,36), CCaMK/DMI3 (ref. 37) and CYCLOPS/IPD3 (ref. 38), the mas-
ter symbiotic regulator NIN39 or the infection-associated gene RPG40,41. 
The phylogenetic distribution of three of them (LjNFR5/MtNFP, NIN and 
RPG) has been recently linked with the ability to form RNS in the NFN 
clade. Indeed, all three genes have been lost independently in multi-
ple lineages no longer able to form RNS16,17. In addition to the known 
genes, 593 orthogroups with undescribed functions were detected, 
including 110 that are absent from at least one non-RNS-forming spe-
cies and present in all RNS-forming species, and thus represent top 
candidates for subsequent investigation by reverse genetics (Fig. 1 and 
Supplementary Table 7).

Specifically, the combination of transcriptomic responses 
and phylogenomics allowed us to identify a set of 759 orthogroups 
considered as ancestrally upregulated during RNS. We also identi-
fied orthogroups and genes recruited during the diversification of 
RNS in independent lineages, a pattern reminiscent of the potentia-
tion–actualization–refinement model proposed for the evolution of  
novel traits42,43.

Transcriptomic recruitment from pre-existing processes
Genetic dissection of RNS in model species proposed that its evolution 
relied on the co-option of genes regulating the more ancient AMS and 
lateral-root development9,27. To determine the contribution of these 
two programmes to the ancestral RNS transcriptomic response, we 
cross-referenced RNA-seq data obtained in the model legume Med-
icago truncatula for lateral-root development27 and AMS differentially 
regulated genes shared by Lotus japonicus44 and M. truncatula45 with the 
inferred ancestral transcriptome (Fig. 2 and Supplementary Table 7). 
Among the 759/1,493 orthogroups up/downregulated in the ancestral 
RNS transcriptome, 46%/33% behave like the lateral root, the AMS or 

both transcriptomic responses (Fig. 2 and Supplementary Table 7). 
Reversely, 54%/67% were specific to the RNS response, indicating that 
RNS evolved by combining the co-option of the older lateral-root and 
AMS programmes, but also via the recruitment of a substantial number 
of additional pathways.

Transcriptomic rewiring by experimentally evolved 
symbionts
RNS is a complex interaction involving multiple physiological and 
developmental processes that are often coupled and overlapping. 
In the case of most Fabales, these processes include the perception 
and response to the symbiotic signal produced by the symbionts (the 
so-called Nod-factors, NF), nodule organogenesis and the concomitant 
penetration of bacteria within root and nodule tissues, symbiosome 
release and persistence, and nitrogen fixation. The evolutionary tran-
sition from a non-RNS-forming state to a fully functional RNS state 
probably occurred over millions of years through a number of inter-
mediate stages that cannot be captured in extant species. To define 
the transcriptional modules (and their evolutionary origin) associated 
with each process, we exploited a collection of bacterial mutants that 
gradually induce the full symbiotic programme. Most of these bacterial 
mutants originate from an evolution experiment that was developed to 
replay the evolution of symbiotic abilities in a legume symbiont46–48. In 
this evolution experiment, we first introduced the symbiotic plasmid 
pRalta from the rhizobium C. taiwanensis LMG19424 (refs. 49–51), 
one of many natural symbionts of M. pudica, into the non-symbiotic, 
soil-borne bacterium Ralstonia solanacearum GMI1000. Then, we 
propagated these chimaeric bacteria for 400 generations along suc-
cessive nodulation cycles on M. pudica. Throughout the experiment, 
clones gradually gained symbiotic abilities46,48,52 and adaptive muta-
tions responsible for the main phenotypic changes observed in the 

Trema orientalis
Parasponia andersonii
Morus notabilis
Discaria trinervis
Hippophae rhamnoides
Fragaria vesca
Dryas drummondii
Betula pendula

Alnus glutinosa
Casuarina glauca
Juglans regia
Lagenaria siceraria
Cucurbita maxima
Begonia fuchsioides
Datisca glomerata
Arachis hypogaea
Aeschynomene evenia
Nissolia schottii
Glycine max
Lotus japonicus
Medicago truncatula
Lupinus albus
Castanospermum australe
Mimosa pudica
Arabidopsis thaliana

Carpinus fangiana

Fabales

Cucurbitales

Fagales

Rosales

DEOG
Down
Up

Species
specific

1,000
2,000
3,000

Indeterminate

Determinate Rhizobia Peripheral vasculature

Central vasculatureFrankia

RNS origin

585 323

1,493 759

4728

159 213

0

Fig. 1 | Conservation of the RNS transcriptomic response across NFN species. 
The tree depicts the orthofinder NFN phylogeny with A. thaliana as outgroup. 
Species used to compare symbiotic transcriptomes are indicated in black; 
species used to compute orthogroups are indicated in grey. The volcano plots on 

the right represent the logFC (x axis) by FDR P values (y axis) for the nine species 
at the latest time point. Blue and gold dots indicate significant downregulated 
and upregulated genes, respectively.
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evolved clones were identified. RNS was obtained following muta-
tions inactivating the Type Three Secretion System of R. solanacearum.  
A stop mutation in hrcV, a gene encoding a Type Three Secretion Sys-
tem structural protein, conferred to bacteria the capacity to nodulate 
M. pudica but nodules were only extracellularly invaded (Fig. 3a). By 
contrast, a stop mutation in hrpG, a gene encoding a global regulator 
of hundreds of genes including Type Three Secretion System genes, 
enabled bacteria to form nodules and invade them intracellularly 
through the formation of symbiosomes, which are released in the 
cytoplasm of nodule cells46. However, hrpG mutants degenerate very 
rapidly following symbiosome release (Fig. 3a). Cumulating an hrpG 
mutation with a mutation in the regulator efpR enhanced symbio-
some persistence of bacteria although to a level not yet equivalent to 
a wild-type or a non-fixing mutant of C. taiwanensis48 and was not yet 
sufficient to enable nitrogen fixation in interaction with M. pudica. We 
reconstructed the adaptive mutations hrcV, hrpG and hrpG-efpR in the 
non-symbiotic original GMI1000+pRalta strain to generate a collection 
of nearly isogenic strains with increased symbiotic abilities (Fig. 3a). 
We analysed the transcriptome of M. pudica in response to inoculation 
with each of these three mutants, as well as with the non-nodulating 
parental strains GMI1000, GMI1000+pRalta and an nifH mutant of  
C. taiwanensis, which is only affected in its ability to fix nitrogen53. We 
harvested tissue samples, either roots, nodule primordia or nodules, 
at different time points between 1 and 21 d after inoculation to capture 
the most advanced symbiotic response (that is, most advanced stage/
organ development) induced by each mutant (Supplementary Table 1).

The evolution of improved symbiotic abilities in Ralstonia strains 
correlated with a gradual increase in the number of M. pudica DEGs that 
are also DEGs during the interaction with the wild-type C. taiwanensis 
strain (Fig. 3b). The gain of the symbiotic plasmid was sufficient on its 
own to activate 19%/10% (up/down) of the whole symbiotic response 
(Fig. 3b and Supplementary Table 4). Accompanying this gain of sym-
biotic response, the GMI1000+pRalta strain also did not activate the 
expression of 586 M. pudica genes specifically induced by the wild-type 
GMI1000 R. solanacearum strain (Supplementary Table 4 and Extended 
Data Fig. 2). A notable number of these genes are associated with the 

GO terms ‘oxido-reduction’, ‘cell wall organization’, ‘terpene synthase 
activity’, ‘diterpenoid biosynthetic process’, ‘gibberellin dioxyge-
nase activity’ and ‘response to oxidative stress’, some of which may 
be involved in plant responses to microbial attack (Supplementary  
Table 8). This indicates that the horizontal gain of a symbiotic plasmid, 
a phenomenon widely observed within rhizobial populations54, may be 
sufficient to limit the activation of plant immunity. In the Ralstonia hrcV 
mutant forming extracellularly infected nodules, the transcriptomic 
response shared with the wild-type symbiont increased up to 60%/42% 
(up/down), while these proportions reached 66%/50% (up/down) with 
the hrpG-efpR strain. This pattern confirms phenotypic observations 
indicating that evolved Ralstonia strains are arrested at different stages 
along the progression towards a fully functional mutualistic state.

The ancestral transcriptome supported multiple symbiotic 
traits
Next, we sought to trace the evolutionary history of transcriptomic 
recruitment or innovation associated with each of the following sym-
biotic traits: response to NF, nodule organogenesis and infection, sym-
biosome release, symbiosome persistence and nitrogen fixation. To 
do so, we exploited the gradual improvement in symbiotic abilities of 
Ralstonia strains and compared the responses of M. pudica to couples 
of strains that are able or unable to realize the different symbiotic traits 
(Fig. 3a and Supplementary Table 3). Transcriptomic responses to direct 
NF treatments were also available for two other Fabales, M. truncatula 
and L. japonicus55,56. Another dataset available for M. truncatula was 
obtained from laser-capture microdissection associated with nodule 
tissue differentiation, corresponding to symbiosome release (FIId) 
and symbiosome persistence (FIIp), plant and bacteroid cell differen-
tiation (FIIp, IZ) and nitrogen fixation (ZIII) (Supplementary Tables 3 
and 4)57. To consider genes related to the different traits, we focused 
on genes differentially regulated in the trait of interest in the same 
way as in the whole symbiotic transcriptomic response (Fig. 3, and 
Supplementary Tables 3 and 4). For example, genes upregulated for 
symbiosome release in M. truncatula have to be identified as upregu-
lated in ‘FIId’ and in the whole symbiotic response RNS transcriptomic 
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response of M. truncatula. As we have done above, all the genes linked 
with symbiotic traits were cross-referenced with orthogroups to infer 
when (that is, at which phylogenetic node) they were recruited for 
symbiosis during evolution.

The distributions of the gene sets for the different traits at the 
different evolutionary nodes were compared to the whole symbiotic 
transcriptomic response (Fig. 3). To do so, we used Fisher’s exact test 
to compare the whole symbiotic transcriptomic response and each 
trait node by node (Fig. 4 and Supplementary Table 9) to estimate 
over/under representation of genes in the different nodes. This analy-
sis indicates that all stages of RNS involve genes that were already 
expressed in the most recent common ancestor of all RNS-forming spe-
cies, although in different proportions, followed by different degrees 
of species-specific refinement.

An enrichment in ancestral genes was observed in the transcrip-
tional responses associated with the perception of symbiont-produced 
Nod-factors in M. truncatula and L. japonicus as well as with nodule 
infection and organogenesis. In addition, both processes were linked 
with an impoverishment in species-specific DEOGs (Fig. 4b,c and 
Supplementary Table 9). Taken together, these results suggest that 
Nod-factor perception recruited ancestral DEOGs, followed by a large 
species-specific diversification facilitating recognition between symbi-
otic partners. Among the ancestral DEOGs in response to Nod-factors, 
we detected well-characterized NF-signalling components such as 
the transcription factors NIN58,59, NF-YA1 (ref. 60), NF-YA2 and ERN1/2  
(ref. 61), the infection genes RPG40,41, VAPYRIN62,63, SYFO64 and the 
LysM-RLK EPR3/LYK10 (ref. 65), the LRR-RLK RINRK1 (ref. 66) or the 
cytosolic kinase SymCRK67 (Fig. 4b, and Supplementary Tables 4 and 7). 
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Fig. 3 | Genes recruited along the experimental evolution of RNS. a, Symbiotic 
phenotypes of R. solanacearum (GMI1000)-derived strains and C. taiwanensis 
symbionts. M. pudica plants were inoculated with lacZ-tagged strains and 
nodules were harvested at 10 dpi for Ralstonia and C. taiwanensis nifH mutants 
and at 14 dpi for C. taiwanensis wild-type (WT) strain. Roots and nodule sections 
were stained with X-gal. The C. taiwanensis WT picture is from ref. 83. Nod, 
nodule formation; Hac, root hair curling; Extra-cell-inf, extracellular infection 
of nodules; Intra-cell-inf, intracellular infection of nodules; Intra-cell-pers, 

intracellular persistence; Fix, nitrogen fixation. b, Number of genes up- and 
downregulated in nodules formed by the different R. solanacearum and  
C. taiwanensis mutants and shared with the symbiotic response obtained with the 
C. taiwanensis WT strain. The distribution of these genes in the NFN and Fabales 
nodes and in the M. pudica specific gene set is indicated. Pink dots and numbers 
above the bars indicate the total number of DEGs in each condition. C.tai.,  
C. taiwanensis.

http://www.nature.com/natureplants


Nature Plants | Volume 9 | July 2023 | 1067–1080 1072

Article https://doi.org/10.1038/s41477-023-01441-w

The chitinase CHIT5 known to play a role in NF turnover in the Fabales L. 
japonicus68 was also found as part of this shared NF response, indicating 
that modulating NF levels was part of the ancestral RNS.

Organogenesis has been scrutinized in model legumes, revealing 
genes, in particular transcription factors, essential for the formation 
and maintenance of nodule identity69. Many of these transcription fac-
tors were recovered in the inferred ancestral transcriptomic signature 
of ‘organogenesis and infection’ (Fig. 4c, and Supplementary Tables 4 
and 7). Expectedly, genes involved in this module partially overlap with 
the NF-responsive genes, including the master regulator NIN and its 

direct or indirect targets RPG, NF-YA1, NF-YA2 and ERN1/2, while other 
NIN targets, such as the transcription factors of the NF-YB family, LBD11 
or STY1/2 involved in the production of auxin maxima required for nod-
ule primordium emergence27,70, specifically belong to the organogen-
esis and infection module (Fig. 4c). Another well-known transcription 
factor, KNOX3, regulating nodule development through activation of 
cytokinin biosynthesis but acting upstream of NIN, was found as part 
of this ancestral ‘organogenesis and infection’ programme71. Finally, 
NOOT1 and NOOT2, which are known to maintain nodule identity in 
diverse legumes, were also detected72. Besides the known genes, 31 
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orthogroups annotated as transcription factors and so far not analysed 
in the context of RNS were detected. Their function during nodule 
organogenesis and infection remains to be determined.

Nitrogen fixation is a unifying feature of RNS. However, it has been 
predicted to be a trait that experienced important refinement during 
the diversification of the NFN. Indeed, mechanisms providing condi-
tions for nitrogen fixation by the diverse symbionts in the nodules 
(Frankia, alpha- and beta-proteobacteria) vary notably13. Despite this 
diversification, our analysis revealed an over-representation of DEOGs 
associated with N2 fixation and linked with the ancestral RNS gene 
set for M. pudica and less species-specific DEOGs identified in both  
M. pudica ‘N2 fixation’ and the nodule ‘ZIII’ of M. truncatula (Fig. 4f and 
Supplementary Table 9). Most of these genes encode enzymes that have 
not been characterized yet (Supplementary Table 4).

Although symbiosome release, inferred from the M. truncatula 
(‘FIId’) and M. pudica (‘Release’) datasets, displays a peculiar evolution-
ary pattern (see below and Fig. 4d), this symbiotic stage also involved 
genes that are part of the ancestral transcriptomic response. Sup-
pressors of plant defence in nodules, SymCRK67 and RSD73, as well as 
the transcription regulator EFD required for both plant and bacte-
roid differentiation in M. truncatula74,75 participate in this ancestral 
response. Looking specifically at the M. pudica data, we found VAPYRIN, 
RPG, some flotillin and remorin genes and the syntaxin SYN, which are 
well-known infection-associated genes41,76–78. We thus hypothesize that 
a proportion of genes linked with the ancestral RNS transcriptome 
and associated with ‘symbiosome release’ reflects infection (Fig. 4d).

As mentioned for the response to ‘Nod-factors’ and ‘infection and 
organogenesis’, DEOGs identified for the different traits often overlap, 
suggesting that genes such as transcription factors may act at different 
symbiotic stages69.

We identified the gene modules associated with ancient symbiotic 
processes including genes whose position in the symbiotic pathway 
remains to be characterized. Altogether, this indicates that the core 
mechanisms governing the response to ‘Nod factors’, nodule ‘infection 
and organogenesis’ and ‘nitrogen fixation’ in extant RNS-forming spe-
cies have probably been conserved since their most recent common 
ancestor.

Convergent evolution for symbiosome formation in legumes
By contrast with symbiont perception, nodule ‘infection and organo-
genesis’, and ‘nitrogen fixation’, the evolutionary pattern of ‘symbio-
some release and persistence’ of rhizobia showed a decreased link 
with ancestral genes and an enrichment in species-specific DEOGs in 
both M. pudica (Caesalpinioideae) and M. truncatula (Papilionoideae,  
Fig. 4d,e and Supplementary Table 9). Compared to other orders of 
the NFN clade, RNS is evolutionarily stable in the Papilionoideae and 
the Mimosoid clade which is nested in the largely non-nodulating 
Caesalpinioideae subfamily10. It has been hypothesized that this sta-
bility is linked with the occurrence of symbiosome formation, which 
is almost exclusively found in these two clades10 and some species of 
the non-Mimosoid Caesalpinioideae genus Chamaecrista. Such a trait 
distribution might either reflect an ancestral gain in the Fabales and 
multiple subsequent losses or be the result of convergent evolution. 
The fact that the transcriptomic signature associated with that stage 
depends much more on genes regulated in a species-specific manner in 
both M. truncatula and M. pudica than the other ancestral traits strongly 
supports the hypothesis of convergent gains of symbiosome formation 
in the two lineages (Fig. 4d,e). This species-specific transcriptomic 
change may be the result of either the recruitment of existing genes 
into the symbiotic transcriptomic response or the de novo evolution 
of new genes in each lineage. To address this question, we analysed the 
nature of the upregulated genes associated with ‘symbiosome release’ 
and ‘FIId’ in a species-specific manner in M. pudica and M. truncatula.

First, we identified an over-representation of proteins with 
a predicted signal peptide in the ‘symbiosome release’ gene set 

(‘Release’ and ‘FIId’) compared with the ‘whole symbiotic response’ 
(without the genes tagged as related to ‘symbiosome release’) in both  
M. pudica (oddsRatioMimpud_signalP = 3.9; Supplementary Table 9) and 
M. truncatula (oddsRatioMedtru_signalP = 4.2; Supplementary Table 9). 
Second, we wondered whether the proteins associated with ‘symbio-
some release’ were different in size and/or amino acid composition 
from the proteins expressed during the whole symbiotic response. 
We observed that proteins associated with ‘symbiosome release’ 
were significantly shorter for both M. pudica (meanRelease = 156.9 vs  
meanMimpud = 401.3, t-test P = 2.78 × 10−61; Fig. 5 and Supplementary 
Table 9) and M. truncatula (meanFIId = 55.4 vs meanMedtru = 306.6, t-test 
P = 1.8 × 10−141; Fig. 5 and Supplementary Table 9). In addition, we 
found that these proteins showed more proline residues in M. pudica  
(ratiomean_Pro_prop = 2, t-test P = 1.67 × 10−19) and more cysteine residues in 
M. truncatula (ratiomean_Cys_prop = 1.9, t-test P = 1.0 × 10−39; Fig. 5a,b, and 
Supplementary Tables 9 and 10). Following these trends, we observed an 
enrichment in species-specific orthogroups (that is, only the sequence 
of the given species is present in the orthogroup) for cysteine-rich and 
small proteins in M. truncatula, but not for M. pudica (Fig. 5a and Sup-
plementary Table 9). In M. truncatula, ‘symbiosome release’ is partly 
mediated by small proteins with a signal peptide and containing a high 
proportion of cysteine known as ‘nodule cysteine-rich’ (NCR) peptides  
(Fig. 5a). In inverted repeat-lacking clade (IRLC) and some dalbergioid 
legumes, these small secreted peptides have been shown to trigger 
the terminal differentiation of the nitrogen-fixing symbionts via anti-
microbial activities preventing bacteroid proliferation outside the 
plant79,80. These NCRs correspond to the species-specific genes iden-
tified here for M. truncatula. Reversely, we observed an enrichment 
in species-specific orthogroups for proline-rich and small proteins 
in M. pudica, but not for M. truncatula (Fig. 5b and Supplementary 
Table 9). Proline-rich peptides have been found in insects, mammals 
and plants where they play a role as antimicrobial compounds81,82. 
Although M. pudica symbionts are not terminally differentiated, the 
revivability of C. taiwanensis bacteroids outside the plant is limited 
to 20%, indicating a possible intermediary state of differentiation83. 
The actual function of these proline-rich short proteins remains to be 
determined. Additionally, we looked at the evolutionary pattern of 
the Arachis hypogaea cysteine-rich secretory protein, antigen 5, and 
pathogenesis-related 1 proteins (AhCAPs) identified recently24. Of a 
total of 48 identified AhCAPs, 44 belong to A. hypogaea species-specific 
HOGs, suggesting another convergent evolution of secreted peptides 
linked to symbiosomes. Altogether, the presented data support the 
idea that convergence in the symbiosome release of symbionts evolved 
by at least two independent but analogous molecular processes: the 
de novo evolution of nodule-induced small proteins already proposed 
in dalbergioid24 and IRLC80.

Conclusion
From the distribution of the trait and phylogenomic analyses, the lead-
ing hypothesis for the origin of RNS is that it was gained before the 
radiation of the NFN clade more than 90 million years ago13,16. Here we 
propose that RNS in the most recent common ancestor looked very 
similar to RNS in extant species. With the ancestral RNS transcriptomic 
signature now defined, future studies will have to decipher how this 
state evolved from a non-RNS-forming state. A role for the common 
symbiosis pathway in that process can be anticipated given its phylo-
genetic link with all the intracellular plant symbioses84 and the reverse 
genetic data obtained in diverse RNS-forming species9. The gain of 
a regulatory link between the common symbiosis pathway and the 
central RNS-regulator NIN at the base of the NFN clade represents 
one of the events that have played a role in the transition from the 
non-NFN-forming to the NFN-forming state85. For millions of years, 
RNS has been maintained in diverse lineages of the Fagales, Fabales, 
Cucurbitales and Rosales, with presumably very high rates of symbiosis 
loss. RNS has become evolutionarily stable in only two lineages: the 
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Papillionideae subfamily and the Mimosoid clade in the Fabales order10. 
Our results support the hypothesis that evolutionary stability was 
acquired through the convergent evolution of symbiosome release and 
enhanced control of the bacterial symbiont gained by the expansion 
of putative antimicrobial peptide gene families. Besides providing 
an evolutionary perspective linked to multiple symbiotic traits and 
reconstructing a shared RNS transcriptomic response, our comparative 
transcriptomic approach has determined a list of conserved ortho-
groups that can be considered as targets for further spatial, temporal 
and biological characterization in multiple species. We believe that our 
dataset will help the community to integrate evolutionary perspectives 
in future studies. Candidate gene validation in multiple species would 
help in prioritizing key regulator genes for engineering nitrogen-fixing 
symbiosis in crops86–88.

Methods
M. pudica high molecular weight DNA extraction
High molecular weight (HMW) DNA was isolated from frozen young 
leaves using QIAGEN genomic-tips 100/G kit (10243) following the tis-
sue extraction protocol. Briefly, 1 g of young leaf material was ground in 
liquid nitrogen with a mortar and pestle. After 3 h of lysis at 50 °C with 
proteinase K and one centrifugation step, the DNA was immobilized 
on the column. After several washing steps, DNA was eluted from the 
column, desalted and then concentrated by alcohol precipitation. The 
DNA was resuspended in TE buffer.

M. pudica genome PacBio library preparation
A standard PacBio SMRTbell library was constructed from HMW DNA 
samples using the SMRTbell template prep kit 1.0 (Pacific Biosciences) 
according to PacBio recommendations (PN 100-938-400-03).

HMW DNA was sheared using a Megaruptor 2 system (Diagenode) 
to obtain a 40 Kb average size. Following an enzymatic treatment on 
7.5 µg of sheared DNA sample for DNA damage repair, ligation with 
hairpin adapters to both ends of the targeted double-stranded DNA 
(dsDNA) molecule was performed to create a closed single-stranded 
circular DNA. A nuclease treatment was performed using a SMRT-
bell enzyme clean-up kit (Pacific Biosciences). Size selection with 
Blue-Pippin system (Sage Science) to remove fragments less than 15 Kb 
was done on purified sample with 0.45X AMPure PB beads (Pacific 
Biosciences). The size and concentration of the final library were 
assessed using the Fragment Analyzer system (Agilent) and the Qubit 
fluorometer and Qubit dsDNA HS reagents assay kit (Thermo Fisher), 
respectively.

Sequencing primer v3 and Sequel DNA Polymerase 3.0 were 
respectively annealed and bound to the SMRTbell library. The library 
was loaded on 8 SMRTcells 1M and sequencing was performed on the 
Sequel I system with Sequel sequencing kit 3.0, a run movie time of 
600 min and Software v6.0 (PacBio).

M. pudica genome assembly
The genome was assembled in three steps from PacBio reads. In 
Step 1, Canu v1.8 (ref. 89) was used to trim, correct and assemble the 
5,815,198 subreads for a total size of 85 Gb, that is, an estimated cover-
age of 94X. Programme parameters were corOutCoverage=40, min-
ReadLength=1000 and input genome size estimate=900 Mb. In Step 
2, the raw data from PacBio Sequel bam files were aligned on the draft 
assembly. For this step, we used the wrapper of minimap2 (ref. 90), 
pbmm2, included in the SMRT Analysis Software v7.0.0 (https://www.
pacb.com/products-and-services/analytical-software/smrt-analysis/). 
Programme parameters were « pbmm2 align–preset ‘SUBREAD’ -c 70 
-l 500 ». In the final step (Step 3), we used this mapping result to polish 
the draft assembly and generate a high-quality final assembly. For this 
step, we used the variantCaller command included in the SMRT Analysis 
Software v7.0.0, with the arrow algorithm. Programme parameters 
were –algorithm arrow -minConfidence 40 -minCoverage 70 -coverage 

100 -minReadScore 0.65. The final polished assembly produced had 
a total of 1,343 contigs with a total length of 842,189,795 bp, a largest 
contig of 24,170,175 bp and an N50 contig of 13,257,064 bp.

Preparation of M. pudica ultra-high molecular weight
Bionano optical mapping was then used to further improve this assem-
bly. Nuclei were purified from 0.5 g of dark treated young leaves accord-
ing to the Bionano plant tissue DNA isolation base protocol (30068, 
Bionano Genomics), followed by ultra-high molecular weight (uHMW) 
DNA extraction based on the Bionano prep SP kit (80030, Bionano 
Genomics) adapted by our laboratory for plant samples. Briefly, 
plant leaves were flash frozen in liquid nitrogen and disrupted with a 
rotor-stator homogenizer (Qiagen). Nuclei were pelleted, washed and 
digested with proteinase K in lysis buffer. After phenylmethylsulfonyl 
fluoride treatment, a centrifugation step was added to eliminate cell 
wall debris. The supernatant was precipitated with isopropanol and 
captured with magnetic disk (Nanobind disk). After several washes, 
the uHMW DNA was eluted in elution buffer. Labelling and staining of 
the uHMW DNA were performed according to the Bionano prep direct 
label and stain protocol (30206, Bionano Genomics). Briefly, label-
ling was performed by incubating 750 ng of genomic DNA with DLE-1 
enzyme (Bionano Genomics) for 2 h in the presence of DL-Green dye 
(Bionano Genomics). The DLE-1 enzyme recognizes the motif CTTAAG. 
Following proteinase K (Qiagen) digestion and non-fixed dye clean-up 
by membrane adsorption, the DNA backbone was stained with DNA 
Stain solution (Bionano Genomics) and incubated overnight at room 
temperature. The labelled DNA concentration was measured using 
Qubit dsDNA HS assay (Invitrogen).

Data collection, optical mapping and genome scaffolding
Labelled DNA was loaded on a Saphyr G1 chip according to the Saphyr 
System user guide (30247, Bionano Genomics). Data processing was 
performed using the Bionano Genomics Access software (https://
bionanogenomics.com/support-page/bionano-access-software/). 
Molecules (480 Gb) larger than 150 Kb with an N50 of 199 kbp were 
produced and represented 533X. This corresponded to 533X cover-
age of the 900 Mb estimated size of the M. pudica genome. These 
molecules were assembled using RefAligner with default parameters, 
producing 110 genome maps with an N50 of 16.1 Mbp for a total genome 
map length of 833 Mbp. Finally, hybrid scaffolding was performed 
between the polished PacBio assembly and the optical genome maps 
using hybridScaffold pipeline with default parameters. We obtained 
74 hybrid scaffolds ranging from 128 kbp to 25.5 Mbp (total length 
797 Mbp with N50 = 16.1 Mbp).

M. pudica genome structural annotation
The M. pudica gene models were predicted by the eukaryotic genome 
annotation pipeline egn-ep (http://eugene.toulouse.inra.fr/Down-
loads/egnep-Linux-x86_64.1.5.1.tar.gz) using trained statistical mod-
els adapted for plants (http://eugene.toulouse.inra.fr/Downloads/
WAM_plant.20180615.tar.gz). This pipeline manages automatically 
probabilistic sequence model training, genome masking, transcript 
and protein alignments computation, alternative splice sites detec-
tion and integrative gene modelling by the EuGene software (release 
4.2a91; http://eugene.toulouse.inra.fr/Downloads/eugene-4.2a.tar.gz).

Four protein databases were used to detect translated regions: (1) 
the proteome of M. truncatula A17 (v5 annotation release 1.6; https://
medicago.toulouse.inra.fr/MtrunA17r5.0-ANR/), (2) the proteome 
of the previous M. pudica Illumina genome16, (3) Swiss-Prot, October 
2016 and (4) the proteome of A. thaliana TAIR10 version. Proteins 
similar to REPBASE were removed from the three datasets (to avoid 
the integration of transposable element related proteins in the train-
ing steps). Chained alignments spanning less than 50% of the length 
of the database protein were removed. The proteome of M. truncatula 
(release 1.6) was used as a training proteome by EuGene.
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Three input transcripts for EuGene were used. One transcrip-
tome was predicted on the basis of the mapping of reads from the 136 
RNA-seq samples generated in this study (Supplementary Table 1).

To obtain these transcripts, the raw fastq paired-end reads were 
cleaned by removing the adapters and the low-quality sequences using cut-
adapt92 (v2.1) and TrimGalore (v0.6.5, https://github.com/FelixKrueger/ 
TrimGalore) with the -q 30–length 20 options. The cleaned reads were 
mapped against the M. pudica genome assembly using HISAT2 (ref. 93)  
(v2.1.0) with the –score-min L,-0.6,-0.6–max-intronlen 10000–dta–
rna-strandness RF options. Duplicated reads were removed using the 
SAMtools94,95 (v1.9) markdup command. Transcripts were predicted using 
Stringtie96 (v2.1.4) with –fr -f 0.8 on each sample. All 80 gtf sample files 
were merged using stringtie–merge with standard options. Transcript 
fasta files were generated using gffread96,97 (v0.11.6) with the -w option.

We also de novo predicted two transcriptomes from two batches 
of ten samples (one sample per condition) of our same RNA-seq data 
using DRAP pipeline98 (v1.92, http://www.sigenae.org/drap). runDrap 
was used on the 20 samples, applying the Oases RNA-seq assembly 
software99. runMeta was used to merge assemblies without redundancy 
on the basis of predicted transcripts with fpkm 1. These transcriptomes 
were employed as a training transcriptome by EuGene. Finally, 73,541 
protein-coding genes, 1,107 transfer RNAs, 114 ribosomal RNAs and 
3,913 ncRNAs were annotated.

Genome assembly, annotation file and gene models are publicly 
available through myGenomeBrowser100 and through NCBI under 
BioProject PRJNA787464.

M. pudica RNA isolation and sequencing
M. pudica seedlings of Australian origin (B&T World Seeds, France) were 
grown in Gibson tubes containing nitrogen-free synthetic medium 
composed of a Fahraeus slant agar101 and liquid Jensen 1/4th medium102 
at 28 °C and under a 16 h photoperiod as described previously47.  
M. pudica tissue samples were harvested at 1, 3 and 5 d post-inoculation 
(dpi) for non-inoculated plants, at 1 and 3 dpi for plants inoculated 
with non-nodulating R. solanacearum strains, at 1, 3, 5, 7 and 10 dpi for 
plants inoculated with R. solanacearum strains and at 1, 3, 5, 7, 14 and 
21 dpi for plants inoculated with C. taiwanensis strains (Supplementary 
Table 1). Samples from four independent biological replicates were 
harvested at each time point. Samples from roots, nodule primor-
dia and nodules were ground using a pestle and mortar before RNA 
extraction. Total RNA was isolated using the NucleoSpin RNA Plus kit 
(Macherey-Nagel) according to manufacturer’s instructions, treated 
with rDNase (Macherey-Nagel) for 10 min at 37 °C and then cleaned up 
with the NucleoSpin RNA clean-up kit (Macherey-Nagel). RNA quality 
was verified on a 2100 Bioanalyzer instrument (Agilent) and quantified 
on a QubitTM fluorometer (Thermo Fisher). RNA sequencing was per-
formed at the GeT-PlaGe core facility, INRAE Toulouse. Polyadenylated 
messenger RNA and RNA-seq libraries were prepared according to 
Illumina’s protocols using the Illumina TruSeq Stranded mRNA sample 
prep kit to analyse mRNA. Briefly, mRNAs were selected using poly-T 
beads. Then, RNAs were fragmented to generate double-stranded 
complementary DNA and adaptors were ligated for sequencing. Eleven 
cycles of PCR were applied to amplify libraries. Library quality was 
assessed using a Fragment Analyser and libraries were quantified by 
qPCR using the Kapa library quantification kit. RNA-seq experiments 
were performed on an Illumina NovaSeq 6000 using a paired-end read 
length of 2 × 150 bp with the Illumina NovaSeq 6000 sequencing kits.

L. albus RNA isolation and sequencing
For each biological replicate, Bradyrhizobium sp. 1AE200 (Ledermann 
and Couzigou, unpublished) strain was grown for 8 d on PSY medium 
agar plates (15 g l−1 bacto agar, DifcoTM, Becton Dickinson Bioscience) 
supplemented with erythromycin (200 µg ml−1) and 0.1% arabinose 
(w/v). Several independent colonies were used to inoculate a 20 ml 
PSY103 liquid culture supplemented with erythromycin (200 µg ml−1) 

and 0.1% arabinose (w/v) and grown in 100 ml Erlenmeyer flasks for 
5 d at 28 °C under agitation (220 r.p.m.). Liquid culture was washed 
twice with 0.9% NaCl sterile solution (w/v) after centrifugation (10 min, 
4,000 g). Bacterial suspension (1 ml, optical density (OD)600 = 0.05) was 
used to inoculate each seed.

L. albus cv. amiga seeds were sterilized using 4X diluted commer-
cial bleach (9° Chl) for 2 min. Seeds were washed five times using sterile 
deionized water and spotted on 12-cm-diameter round petri dishes 
(nine seeds per dish) containing soft water agar medium (4.5 g l−1 bacto 
agar, DifcoTM, Becton Dickinson Bioscience) for 3 d at 28 °C. Seeds with 
approximately 1-cm-long rootlets were planted in 200 ml glass jars 
containing sterile vermiculite and 100 ml of modified Jensen medium104 
(in which no CaHPO4 was added and K2HPO4 was raised to 381 mg l−1). 
Seedlings were inoculated with Bradyrhizobium sp. 1AE200 or mock 
solution right after planting.

Plants were grown in a walk-in growth chamber illuminated with 
high-pressure sodium lamps (16 h photoperiod, 80% humidity, 26 °C 
and 22 °C day and night temperatures). For each biological replicate, at 
least eight independent root systems were used for collecting nodules 
or mock-inoculated root systems at 21 d after planting.

L. albus isolated nodules and root samples were harvested at 
21 dpi for non-inoculated plants and inoculated plants with Bradyrhizo-
bium sp. 1AE200 strain. Three biological replicates of inoculated and 
non-inoculated Lupinus root samples were used for RNA sequencing. 
Samples were ground using a pestle and mortar. RNA extraction and 
DNase treatment were performed respectively using E.Z.N.A. RNA 
extraction kit (Omega-Biotek) and TURBO DNA-free kit (Invitrogen) 
according to manufacturers’ instructions. Quality of RNAs was assessed 
using the Agilent 2100 Bioanalyzer system. RNA sequencing was per-
formed by the Eurofins genomics facility. Polyadenylated mRNA and 
RNA-seq libraries were prepared according to Illumina’s protocols 
using the Illumina TruSeq Stranded mRNA sample prep kit to analyse 
mRNA. RNA-seq experiments were performed on an Illumina NovaSeq 
6000 using a paired-end read length of 2 × 150 bp with the Illumina 
NovaSeq 6000 sequencing kits.

Differential gene expression analysis
All RNA-seq libraries were mapped against their representative genome 
(Supplementary Table 1) using nextflow105 (v20.11.0-edge) and run on 
nf-core/rnaseq106 (v3.0, 10.5281/zenodo.1400710) using the ‘-profile 
debug,genotoul–skip_qc–aligner star_salmon’ options. The workflow 
used bedtools107 (v2.29.2), bioconductor-summarizedexperiment 
(v1.20.0), bioconductor-tximeta (v1.8.0), gffread97 (v0.12.1), picard 
(v2.23.9), salmon108 (v1.4.0), samtools94 (v1.10), star109 (v2.6.1d), string-
tie96 (v2.1.4), Trimgalore (v0.6.6) and ucsc (v377). DEGs for the different 
species and experiments were estimated using ‘edgeR’110 in R111 (v4.1.2). 
Template script to estimate and identify DEGs is stored in GitHub at 
https://github.com/CyrilLibourel/Universal_nodulation_transcrip-
tomic_response. Briefly, low-expressed genes with less than ten reads 
across each class of samples were removed. Then, gene counts were 
normalized by library size and using the trimmed mean of M-values 
normalization method112. We estimated DEGs by comparing symbiotic 
states to non-inoculated roots for the different species. M. pudica sym-
biotic traits (NF response, nodule organogenesis, symbiosome release 
and persistence and nitrogen fixation) DEGs were analysed with the 
DicoExpress tool113 that relies on the R packages ‘FactoMineR’114 and 
‘edgeR’110 to identify genes that are differentially expressed between 
experimental conditions using generalized linear models. The lists 
of DEGs responsive genes as well as genes associated with the dif-
ferent symbiotic traits were determined by combining lists of DEGs 
originating from multiple comparisons between two samples as indi-
cated in Supplementary Table 3. Genes were considered differentially  
expressed when the false discovery rate (FDR) was below 0.05  
(Benjamini–Hochberg correction) and at a specific log fold-change (FC)  
(see Supplementary Table 3).

http://www.nature.com/natureplants
https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/TrimGalore
http://www.sigenae.org/drap
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA787464
https://github.com/CyrilLibourel/Universal_nodulation_transcriptomic_response
https://github.com/CyrilLibourel/Universal_nodulation_transcriptomic_response
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Orthogroups reconstruction
To cross-reference expression data among species, we reconstructed 
orthogroups including the nine species for which RNA-seq data dur-
ing symbiosis are available, as well as 16 representative species of 
each NFN clade and A. thaliana as outgroup (Supplementary Table 6). 
Orthogroups reconstruction was performed with OrthoFinder v2.5.2  
(ref. 115) using the ultra-sensitive Diamond mode (-S diamond_ultra_
sens option). The tree inferred by OrthoFinder was then checked for 
consistent reconstruction with known species trees and OrthoFinder 
reran on the basis of the species tree with the alignment and phylog-
eny methods using mafft v7.313 (ref. 116) and fasttree v2.1.10 (ref. 117), 
respectively, to infer hierarchical orthologous groups (HOG).

Statistical analyses
The different scripts used to cross-reference orthogroups and DEGs 
to estimate differentially expressed orthogroups (DEOGs), recon-
struct the ancestral transcriptomic symbiotic response, identify 
symbiosome accommodation proteins and all statistical related 
analyses are freely available at the dedicated GitHub repository 
‘Universal_nodulation_transcriptomic_response’.

Briefly, to determine at which evolutionary node each orthogroup 
was probably transcriptionally recruited for RNS, we used the process 
described below:

 (1) DEGs to DEOGs: if at least one gene was up/downregulated in an 
orthogroup (HOG), the orthogroup was coded as 1 for the spe-
cies in which the gene was differentially regulated. This process 
was done for the nine species in the 56,508 orthogroups.

 (2) On the basis of a simplified tree with only the nine species, we 
used the ‘asr_mk_model’ function from ‘castor’ package in R 
with the following options: ‘Nstates = 2, include_ancestral_likeli-
hoods = TRUE, rate_model = ‘ER’’, giving a likelihood between  
0 and 1 at each node.

 (3) To consider a DEOG to be recruited for RNS at a specific node, 
the likelihood had to be >0.6 to increase robustness for ances-
tral recruitment.

 (4) For each node ‘recruited’, we kept only the most ancient paren-
tal node. For example, if all nodes were ‘recruited’, the DEOG 
was considered as recruited in the common ancestor of NFN 
species (that is, NFN node). This method allowed us to accept 
ancestrally recruited HOGs that (1) were subsequently lost, (2) 
lost the deregulation during symbiosis or (3) for which informa-
tion was missing because of heterogeneity of the sampling 
effort among species.

 (5) This process was conducted on all HOGs.

To estimate the null distribution of the number of DEOGs for each 
node, we first determined to which evolutionary node each orthogroup 
belongs using a maximum parsimony ancestral state reconstruction for 
discrete traits118 (that is, presence/absence of species genes in orthogroup). 
For each species, we randomly selected genes according to (1) the number 
of DEGs estimated in the species and (2) the node to which the orthogroup 
containing DEGs belongs. We repeated this process for the nine species 
and determined to which evolutionary node each orthogroup belongs 
using the same maximum parsimony ancestral state reconstruction (that 
is, presence/absence of species DEGs in orthogroup). We repeated this 
process 1,000 times to get the null expectation (Supplementary Table 5).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Mimosa pudica annotated genome assembly is available in myGenom-
eBrowser and raw sequenced data are available in NCBI under BioPro-
ject PRJNA787464 and SRP349803.

All the repositories of RNA-seq used in this study are detailed in  
Supplementary Table 1.
The orthogroups file generated is this study and raw gene count for 
the RNA-seq listed in Supplementary Table 2 are stored in figshare 
at https://figshare.com/projects/Comparative_phylotranscriptom-
ics_reveals_ancestral_and_derived_root_nodule_symbiosis_pro-
grams/166196.

Code availability
Scripts used to cross-reference orthogroups and RNA-seq data are 
publicly available in GitHub at https://github.com/CyrilLibourel/
Universal_nodulation_transcriptomic_response
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Extended Data Fig. 1 | Simplified phylogeny to highlight node labels and species clades used in this study.
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