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Abstract: We continue to investigate correspondences between, on the one hand, scattering
amplitudes for massive higher-spin particles and gravitons in appropriate quantum-to-
classical limits, and on the other hand, classical gravitational interactions of spinning
black holes according to general relativity. We first construct an ansatz for a gravitational
Compton amplitude, at tree level, constrained only by locality, crossing symmetry, unitarity
and consistency with the linearized-Kerr 3-point amplitude, to all orders in the black hole’s
spin. We then explore the extent to which a unique classical Compton amplitude can be
identified by comparing with the results of the classical process of scattering long-wavelength
gravitational waves off an exact Kerr black hole, determined by appropriate solutions of
the Teukolsky equation. Up to fourth order in spin, we find complete agreement with a
previously conjectured exponential form of the tree-level Compton amplitude. At higher

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP05(2023)211

mailto:yilber-fabian.bautista-chivata@ipht.fr
mailto:aguevaragonzalez@fas.harvard.edu
mailto:chris.kavanagh1@ucd.ie
mailto:justin.vines@aei.mpg.de
https://doi.org/10.1007/JHEP05(2023)211


J
H
E
P
0
5
(
2
0
2
3
)
2
1
1

orders, we extract tree-level contributions from the Teukolsky amplitude by an analytic
continuation from a physical (a/GM < 1) to a particle-like (a/GM > 1) regime. Up to
the sixth order in spin, we identify a unique conservative part of the amplitude which is
insensitive both to the choice of boundary conditions at the black hole horizon and to branch
choices in the analytic continuation. The remainder of the amplitude is determined modulo
an overall sign from a branch choice, with the sign flipping under exchanging purely ingoing
and purely outgoing boundary conditions at the horizon. Along the way, we make contact
with novel applications of massive spinor-helicity variables pertaining to their relation to
EFT operators and (spinning) partial amplitudes.
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1 Introduction

Progress in the study of relativistic celestial mechanics, especially of systems of black holes
(BHs) in classical general relativity (GR), continues to be enriched by novel applications
of the principles of on-shell relativistic quantum scattering amplitudes. In turn, there is
arguably great untapped potential for further advances in the understanding of amplitudes
arising from work in classical GR, particularly in exploiting the nonperturbative results
provided by the exact stationary black hole (Schwarzschild and Kerr) spacetimes, and their
linear perturbations.
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In unitarity-based approaches to perturbative amplitudes for the two-spinning-BH
problem, key roles are played by the classical limits of the tree-level, n-point amplitudes An:
these involve one massive spinning matter line (representing a single BH, both incoming and
outgoing) meeting n− 2 gravitons. The simplest building blocks, the 3-point amplitude A3
and the Compton amplitude A4, completely determine the classical dynamics of spinning
binary BH systems up to the second post-Minkowskian (PM) order [1–22].

The appropriate classical 3-point amplitude has been argued to be fixed to all orders
in the BH spin at tree level [6, 7, 11, 23] by its correspondence with a linearized Kerr
solution [24–27]. Remarkably, the same 3-point amplitude A3 arose in [28], independently
of any consideration of BHs, (in the large-S limit for massive spin-S particles meeting a
graviton) as the unique amplitude with a well behaved high-energy limit smoothly connecting
to the corresponding massless amplitude, the latter fixed from kinematics considerations
alone [29]. This link has sparked significant interest in exploring the space of amplitudes,
chiefly 4-point Compton amplitudes A4, which may effectively describe classical gravitational
interactions of spinning black holes, in search of certain strongly constraining properties of
the amplitudes which may single out the appropriate black-hole solutions.

The tree-level gravitational Compton amplitude A4 has been argued to be fixed for spin-
ning massive particles up to S = 3/2, by only unitarity and consistency with the established
3-point amplitude [7, 28]. Its classical limit has been well studied [6–8, 30], providing an am-
plitude that is consistent with the linearized BH metric. The classical Compton amplitude
has also been computed from effective worldline theory, finding agreement for the case of
BHs up to cubic order in spin [31]. For spin S = 2 matter, contact deformations are allowed,
for both the quantum [7] and classical amplitude [20], then forbidding uniquely fixing the
Compton amplitude from unitarity considerations only. For higher spin orders (S > 2), the
conjectural extrapolation of the BCFW Compton amplitude is well known to suffer from
unphysical singularities, which can nevertheless be cured by contact deformations. In refer-
ence [32], a well-behaved S = 5/2 quantum Compton amplitude was computed by requiring
consistent higher-spin current factorization. More recently, the authors of [20, 21, 33] have
shown the remaining freedom of the classical higher-spin Compton amplitude to be strongly
constrained by additional properties, concerning the high-energy limit and a conjectured
spin-shift-symmetry, which are well-motivated by lower spin orders, but which have not yet
been fully shown to correspond to BHs in GR. Additional constraints from higher spin
gauge symmetry have been considered in [34].

In order to fully establish a correspondence between the spinning An amplitudes —
or equivalent specifications of couplings in effective worldline theories in the PM [35–41]
and post-Newtonian (PN) [42–59] approaches — and classical spinning BHs, matching
computations that go beyond the stationary limit need to be done. A first step has been
taken along these lines by the authors of [60], where, up to the third order in the BH’s
spin, results for the 2PM aligned spin scattering angle — computed in [6] from the minimal
coupling A3 and A4 — were shown to be consistent with the general-relativistic “self-force”
calculations of the linear perturbations of a Kerr spacetime sourced by a small orbiting
body [61, 62]; in particular, the gravitational observables, Detweiler redshift [63], and the
circular orbit precession frequency were considered for the matching computation in [60].
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However, the aforementioned observables depend on particular pieces of A4, and their
matching does not fully characterize the amplitudes for BHs.

In this paper we remove these obstructions by studying the classical Compton amplitude
in the context of the scattering of a gravitational plane wave off a Kerr BH. This classical
process, like the aforementioned self-force calculations, is approached using the tools of
black hole perturbation theory (BHPT) [64]. Considering only one massive object allows
us to remove the difficulties associated with the inclusion of the second body, therefore
providing cleaner connections between the An amplitudes and their classical counterparts.

The problem of the scattering of plane waves off BHs has been approached from a
variety of perspectives [65–72]. In a modern on-shell language, in Part I of this work [73],
we have argued that the low-energy content of plane wave perturbations of the Kerr BH, is
entirely captured by the classical limit of 4-point amplitudes for the scattering of a massive
particle of infinite spin and massless particles of helicity h < 2, interchanging gravitons.
For scalar wave perturbations (h = 0), we showed that the Born amplitude (presented to
all orders in the BH’s spin) exactly matches the conservative part of the Teukolsky result
up to second order in the BH’s spin. (We consider as usual a BH of mass M and spin J ,
and define the ring-radius a = J/M , counting orders in spin as orders in a.) Starting at
order a3, the Born amplitude receives contact deformations that can be uniquely fixed from
the Teukolsky solution; we showed explicit results up to order a5. Our extraction of the
scattering amplitudes from a BHPT computation relies on analytically extending results for
a? := a/GM < 1 (where the tools of BHPT are well defined) to the a? � 1 region, where the
BH ceases to have a horizon, exposing a naked singularity. However, this analytic extension
has to be performed in a careful manner since horizon dissipation effects (present at order a1!
for the scalar case), get mixed with conservative contributions by the analytic continuation.
In Part I we presented a prescription for extracting the conservative contribution to the
amplitude, by removing dissipative effects before the analytic continuation. As a further
complication, the BHPT results are discontinuous at a? = 1, then, a choice of branch
for doing the extension through this discontinuity in the complex a? domain, needs to be
taken. This choice of branch is however irrelevant for the extraction of the conservative
contribution, whereas, as we will show in this paper for the h = 2 case, the dissipative parts
(kept if desired) come with an additional η = ± sign, fixed by the branch choice.

This paper is organized as follows. In section 2 we study the problem of the scattering
of a gravitational wave off a Kerr BH from a covariant Compton amplitude, warming
up through quadratic order in spin. This is obtained through the spin-multipole double
copy of [8, 16], which we review and extend in appendix E. In this section, we set some
notation and clarify previously raised tensions between the BHPT [74] and a Feynman
diagramatic [72, 75] approach to the gravitational wave scattering problem, at linear order
in the BH’s spin. In order to provide an amplitude extendible to all orders in spin, in
section 3 we switch to the spinor-helicity construction of the An amplitudes. In section 3.1
we present spin-exponentiated formulas for the quantum amplitudes valid to all orders in
spin for the n = 3 case, and up to S = 2 for n = 4. For the latter case, we further study
the factorization properties of the amplitudes. In section 3.2 we show how to extract the
classical contributions from these amplitudes, and argue that by imposing that the same
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classical amplitude is extracted for quantum amplitudes written in the chiral or anti-chiral
spinor bases, the classical amplitude is constrained by a classical version of the QFT crossing
symmetry (see also appendix A and appendix B). In section 3.3 we present an ansatz for the
(classical) Compton amplitude for generic spins, based on physical assumptions: unitarity
and locality together with classical crossing symmetry. In appendix D we briefly discuss on
the recently conjectured spin-shift-symmetry [20, 21, 33], and show our ansatz can be made
consistent with previous analyses. In section 3.4 we summarize the results from matching to
a full BHPT computation. We provide explicitly a unique, conservative Compton amplitude
up to order a6, and furthermore identify dissipative contributions, encapsulated by special
operators in the Compton ansatz, proportional to |a|ω. The resulting amplitudes are not
invariant under the spin-shift-symmetry. In section 4 (see also appendix F) we discuss
the classical (BHPT) computation, showing explicit examples to illustrate the partial
wave decomposition, and the analytic extension to the a? � 1 region, together with the
identification of the conservative and dissipative contributions. In section 4.2 we discuss the
matching of the BHPT solutions to the Compton ansatz (see also appendix C, where this
matching is done by using massive spinor-helicity variables to represent the harmonics).
We conclude with a discussion in section 5.

2 Gravitational wave scattering from the a2-covariant amplitude

It is illustrative to study the problem of scattering gravitational waves off the Kerr metric
by comparing known results in GR to the tree-level gravitational Compton amplitude A4,
written in vector notation. In this section we will do so up to quadratic order in the BH spin,
which will be useful to layout the general approach to the classical limit, while establishing
notation/conventions.

Amplitudes written covariantly in terms of tensors have the characteristic of encoding
graviton helicity states (h = ±2), in symmetric and traceless polarization tensors ε(±)µν ,
which in 4-dimensions can be written as the outer product of two photon-polarization vectors,
ε(±)µν = ε(±)µε(±)ν . Up to quadratic order in the spin parameter (O(a2)), the classical
piece of the gravitational Compton amplitude was given in a spin multipole expansion
in [8, 16], and whose double-copy derivation was further expanded in [76] (see appendix E
for a review). In this section, we will make use of such amplitude and connect it to the
classical process of the scattering of a gravitational plane wave off the Kerr BH. Before
going into the main computation, we introduce some notation and kinematics conventions.

2.1 Kinematic conventions and classical variables

Let us start by introducing the kinematic variables we will use when writing amplitudes
explicitly in terms of the scattering angle. The classical process we have in mind is the
scattering of a gravitational plane wave off a Kerr BH which is initially at rest and has a spin
vector arbitrarily orientated, ~a = (ax, ay, az), see figure 1. From a QFT setup, this classical
process can be treated by thinking of the classical compact object as a massive, spinning
point particle, whereas the waves can be thought of as the incoming/outgoing massless
particles of helicity ±2 composing the gravitational Compton amplitude (See figure 2).
We label the incoming/outgoing massless momenta entering in the gravitational Compton
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Figure 1. Gravitational wave scattering setup. An incoming plane wave traveling along the z-axis
hits a Kerr BH whose spin has an arbitrary orientation ~a, and is initially at rest; the wave gets
scattered with outgoing momentum lying in the x− z plane.

amplitude as k2/k3, whereas the spinning massive particle has initial/final momenta p1/p4,
mass M , and spin parameter aµ = sµ/M , the later corresponding then to the radius of
the ring singularity of the Kerr BH, in a classical setup, whereas the massless particles are
identified as gravitational waves of a given helicity (circular polarization states).

The classical observable relevant to this scattering process is the differential cross-
section, which we choose to evaluate in the reference frame for which the initial BH is at
rest, and the scattering process happens in the x− z plane. This then leads us to choose
the explicit representation for the kinematic variables (see [73] for more details).

pµ1 = (M, 0, 0, 0),

kµ2 = ~ω(1, 0, 0, 1),

kµ3 = ~ω(1, sin θ, 0, cos θ)
1 + 2~ω

M sin2(θ/2)
,

pµ4 = pµ1 + kµ2 − k
µ
3 .

(2.1)

Here the form of the energy of the outgoing wave, k3, is fixed by the on-shell condition
for the outgoing massive momentum. The independent kinematic invariants can be put in
terms of these variables as follows:

s = (p1 + k2)2 = M2
(

1 + 2~ω
M

)
,

t = (k3 − k2)2 = − 4~2ω2 sin2 (θ/2)
1 + 2~ω

M sin2(θ/2)
.

(2.2)

When writing the Compton amplitude in a spinor-helicity basis, it will also be useful to
introduce the optical parameter

ξ−1 := − M2t

(s−M2)(u−M2) = − sin2(θ/2) +O(~) . (2.3)

– 5 –
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Figure 2. Kinematic conventions for the scattering of a gravitational wave (h = ±2) off the
Kerr BH.

The optical parameter will help us to infer the behavior of the classical amplitude for certain
limit values of the scattering angle θ. In particular, the so-called eikonal limit is obtained
as ξ →∞.

Let us also write the 4-dimensional graviton polarization tensors from the product of
photon polarization vectors in a given circular polarization states. In terms of the scattering
angle θ, we choose the explicit basis for the incoming states

ε+2 = 1√
2

(0, 1, i, 0) ,

ε−2 = − 1√
2

(0, 1,−i, 0) .
(2.4)

Analogously, for the outgoing states we have

ε+3 = = 1√
2

(0, cos θ, i,− sin θ) ,

ε−3 = = − 1√
2

(0, cos θ,−i,− sin θ) .
(2.5)

It was deeply discussed in [73] how taking the classical limit of the QFT amplitude
reduces to take ~ω/M � 1, and the spin of the black hole a/~ � 1, while keeping the
product ωa fixed. With this in mind, the classical differential cross-section can be computed
from the formula

d〈σ〉
dΩ =

∑
h′

|〈A4(h→ h′)〉|2

64π2M2 , (2.6)

where the angle brackets, 〈〉, indicate only the classical piece of the amplitude is to be
included in the previous formula.

It will also be convenient to introduce a basis of spinor helicity variables for the massless
legs of figure 2 in terms of the scattering angle θ. We fix the little group freedom in such a
way that using the massless spinors

|µ〉=
(
e−iφ/2 cosθ/2,eiφ/2 sinθ/2

)
, |λ〉=

√
2ω
(
−e−iφ/2 sinθ/2,eiφ/2 cosθ/2

)
,

[µ|=
(
eiφ/2 cosθ/2,e−iφ/2 sinθ/2

)
, [λ|=

√
2ω
(
−eiφ/2 sinθ/2,e−iφ/2 cosθ/2

)
,

(2.7)
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to construct massless momentum and polarization matrices, via

kαα̇ = |λ〉α[λ|α̇ , (2.8)

ε+αα̇ =
√

2 |µ〉α[λ|α̇
〈λµ〉

, ε−αα̇ = −
√

2 |λ〉α[µ|α̇
[µλ] , (2.9)

the states associated to k3, k2 are recovered by setting φ = 0 for the former, and additionally
θ = 0 for the latter. These spinor-helicity variables will play a crucial role in appendix C as
we will use them to construct spinning spherical harmonics.

2.2 Classical scattering cross section

With previous notation at hand, as well as the ground rules for the extraction of the classical
limit of the required QFT amplitudes, we are ready to tackle the low energy regime for
the problem of scattering of a gravitational wave off the Kerr BH and at low orders in the
spinning multipole expansion, from a modern on-shell perspective. Our aim is to compute
the classical differential cross section (2.6). For that, we need the classical piece of the
Compton amplitude. In [76] (see also appendix E), it was showed that up to order a2, and
on the support of the Spin supplementary condition (SSC) p·a = 0, this amplitude takes
the following form

〈AGR
4 〉 = κ2

8
〈ω(0)〉

k2·k3(p1·k2)2

[
〈ω(0)〉+ 〈ω(1)µν〉εµνρσpρ1a

σ + 〈ω(2)
αβ 〉a

αaβ
]

+O(a3) . (2.10)

The multipole coefficients ω(i) are given explicitly in (E.2), (E.3), and (E.18), and the
angular bracket notation indicates we have to take the classical limit of the corresponding
spin multipole coefficients. Notice remarkably, amplitude (2.10) written in this fashion has
the factorization form AGR = K4〈AQED

0 〉×〈AQED
s 〉, as suggested by the authors in [11]. This

is a manifestation of the equivalence principle; that is, in [76], the gravitational amplitude
was derived from the double copy of two spin 1

2 QED Compton amplitudes; in the classical
limit, however, this product can be rearranged into the separation of the scalar piece and
the spin pieces.

The next task is to use the kinematics (2.1)–(2.5) into (2.10) and show that the different
helicity configurations for the wave scattering process results into the following amplitudes

〈A++
4 〉 = κ2M2 cos4(θ/2)

4 sin2(θ/2)
[
1 + F(ω, a, θ) + 1

2!F(ω, a, θ)2 +O(a3)
]
, , (2.11)

〈A−−4 〉 =
[
〈A++

4 〉
∗
]
ω→−ω

, (2.12)

〈A+−
4 〉 = κ2M2 sin4(θ/2)

4 sin2(θ/2)
[
1 + G(ω, a, θ) + 1

2!G(ω, a, θ)2 +O(a3)
]
, (2.13)

〈A−+
4 〉 =

[
〈A+−

4 〉
∗
]
ω→−ω

, (2.14)

where the super-scripts label the helicity of the incoming/outgoing waves, and we have used

F(ω, a, θ) = −2azω sin2(θ/2) + axω sin θ − 2(ax − iay)ω tan(θ/2) , (2.15)

G(ω, a, θ) = 2azω sin2(θ/2)− axω sin θ . (2.16)

– 7 –
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The structure of these amplitudes is nothing by the quadratic in spin truncation of the
exponential functions eF(ω,a,θ) and eG(ω,a,θ), which appear naturally from a spinor-helicity
rewriting of the different helicity configuration of the Compton amplitude, as we will discuss
in section 3. Notice extrapolation of the previous formulas up to O(a4) provides perfectly
well-defined amplitudes for all values of the scattering angle.1 However, extrapolation to
O(a5), results into the unphysical backwards scattering singularity (θ → π) of 〈A++

4 〉 due
to the tan θ/2 term in (2.15). Removal of such singularity will be the topic of study of
section 3.

Using the amplitudes (2.11)–(2.14) into (2.6), we can compute the unpolarized classical
differential cross section for the scattering of GW off the Kerr BH, which up to quadratic
order in spin takes the form2

d 〈σ〉
dΩ = G2M2

sin4(θ/2)

[
cos8(θ/2)

(
1 + 2F̃ + 2F̃2

)
+ sin8(θ/2)

(
1 + 2G + 2G2

)]
+O(a3) ,

(2.17)

with F̃ = F
∣∣
ay=0. Interestingly, the only spin components contributing to the actual

observables are those with non-zero projection on the scattering plane, whereas the off-plane
components are just phases of the amplitude.

It is illustrative to consider for instance the differential cross section for the polar
scattering configuration,3 let us for simplicity print here the linear in-spin contribution

d〈σ〉
dΩ

∣∣∣
polar

= G2M2

sin4(θ/2)

[
cos8(θ/2)

(
1−4azω sin2(θ/2)

)
+sin8(θ/2)

(
1+4azω sin2(θ/2)

)]
+O(a2).

(2.18)
This recoveres the black hole perturbation theory (BHPT) result derived by Dolan in [74],
from totally different arguments. Our result however disagrees with the Feynman dia-
grammatic derivation of Barbieri and Guadagnini provided in [72, 75]. The solution of the
tension raised in [74], at this order in spin from the classical and the Feynman diagrammatic
approach is solved — as already announced in [73] — by including all of the Feynman
diagrams contributing to the gravitational Compton amplitude, and not just the graviton
exchange diagram, as considered by the authors of [72, 75]. This agreement of the QFT
derivation of the classical differential cross section and the BHPT results goes in fact beyond
the leading in-spin order or the polar scattering configuration. As we will show below,
extrapolation of (2.17) to O(a4) indeed agrees with the BHPT derivation, and in section 3
we will expand on the amplitudes computations to arbitrary spin, with a final unique
conservative answer fixed up to the sixth power in the spin of the BH.

The fact that the Compton amplitude computation recovers the result from BHPT is
non-trivial. In fact, as we will thoroughly expand in section 4, but also observed for the
scalar case [73], in order to obtain the differential cross section from BHPT one needs to
deal with very complex intermediate steps, starting from the expansion of the scattering

1Of course as θ → 0, we hit the usual t-channel divergence.
2The differential cross section can be easily extended up to O(a4) as discussed above.
3In this configuration, the incoming wave has momentum aligned with the direction of the spin of the

BH, which we choose to be aµ = (0, 0, 0, az).
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amplitudes into infinite sums of harmonics, to the change of basis from the spin weighted
spheroidal harmonics into the spin weighted spherical harmonics, in which case, at a given
order in spin the infinite sum truncates only in the polar scattering case. Then, the QFT
computation efficiently resumes these infinite series of harmonics in a very simple expression.
On the other hand, we have obtained the result for the generic orientation of the spin of
the black hole, which to the best of our knowledge has not been obtained from BHPT.
The reason for this is that setting the off-axis problem makes the computation much more
complicated since now the infinite sums have two running indices, as well as the complicated
additions of expanding gravitational plane waves in a basis of spheroidal harmonics as
discussed in appendix F.

3 Compton amplitude for arbitrary spins

We have seen how the Compton amplitude matches previous results obtained in [74] for GW
scattering off a Kerr BH, at linear order in spin in the polar scattering configuration, hence
solving the disagreement with previous Feynman diagrammatic approaches [72, 75]. The
matching suggests that the GW cross-section studied in [74] carries much of the information
of the classical limit of the Compton amplitude. In section 4 we will study the classical
scattering amplitude for a non-polar incident wave by solving the h = −2 Teukolsky equation
and argue that in the low energy regime and up to a phase (unimportant for the physical
observable (2.6)), the Compton amplitude indeed captures the same information obtained
from the classical computation. However, as the non-polar amplitude will be given in terms
of an (infinite) partial wave expansion, additional input from QFT is needed in order to
extract the relevant information, as we extensively discussed in [73] for the scalar case.

In this section, we will write the most general form of the tree-level Compton amplitude
for any spin S as allowed by locality and unitarity, under the classical limit. This in turn
will fix the unphysical (θ → π) singularity for S ≥ 5/2 of the naive BCFW exponential form
of the amplitude [6, 30]. At each order in spin, we will see there are only a few effective
operators that survive the limit, hence only a few free coefficients will have to be fixed from
the Teukolsky computation. The resulting amplitude will effectively resum the full partial
wave expansion as we shall show in section 4.

In the previous section, we studied the quadratic in-spin amplitude in vector notation
as obtained from the spin-multipole double copy. However, this double-copy prescription is
not easy to implement for higher-spinning scenarios. Therefore, to study general arbitrary
spins it is more convenient to work with the massive spinor-helicity variables of [28].4 We
start by reformulating the classical limit in terms of massive spinors, more precisely in terms
of SU(2) operators. For S ≤ 2 our construction will match the classical limit obtained by
Aoude et al. for three and four-point amplitudes [30] employing a Heavy Particle Effective
Theory (HPET). For S > 2, after studying the classical limit we will directly construct the
ansatz at the strict ~→ 0 limit, although an analytic continuation to ~ 6= 0 is trivial to find.

4These were first implemented in this context in [5], see also more recent developments in [6, 7, 10, 23].
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To start, consider again massive particles with momenta p1, p4. Let σµ (σ̃µ) be the
chiral (antichiral) set of Pauli matrices, so that we have, for instance

P1 := pµ1σµ = |1a1〉[1a2 |εa1a2 , P̃1 := pµ1 σ̃µ = |1a1 ]〈1a2 |εa1a2 , (3.1)

where a1, a2 = 1, 2, which transform under the massive little group so(3) ∼ su(2). Indices
are raised and lowered via the 2-dimensional antisymmetric tensor εab. The 2-component
spinors |1a〉 are normalized by −[1112]=〈1112〉=M and hence solve the Dirac equation in
momentum space:

P̃1|1a〉 = M |1a] , P1|1a] = M |1a〉 . (3.2)

Spin-S polarization states can be represented as totally-symmetric tensor products:

|ε1〉 = 1
MS
|1(a1〉 ⊗ . . .⊗ |1a2S)〉 , (3.3)

|ε1] = 1
MS
|1(a1 ]⊗ . . .⊗ |1a2S)] , (3.4)

which are two different choices for a basis of 2S + 1 states. They can be mapped to each
other using the operator (3.2). In these bases, we can define the ‘scattering matrix’ Achir

n

and its conjugate operator Aantichir.
n by

Ah=2,S
n = 〈εn|Achir.

n |ε1〉 = [εn|Aantichir.
n |ε1] , (3.5)

where pn is the final massive momentum.

3.1 Exponentiated amplitude for n = 3, 4

Before studying the classical limit we perform a multipole decomposition of the amplitudes
for n = 3, 4 [6]. The (quantum, tree-level) minimal coupling amplitudes were there given in
terms of the angular momentum operator Jµν as

AS3 = A0
3 × 〈ε3| exp

(
F2µνJµν

2iε2 · p1

)
|ε1〉 , AS4 = A0

4 × 〈ε4| exp
(
F2,µνJµν

2iε2 · p1

)
|ε1〉 . (3.6)

Recall that the graviton polarization tensors are given by εµνi = εµi ε
ν
i and we have de-

fined the momentum-space field strength tensors Fµνi = 2k[µ
i ε

ν]
i . Momentum conservation

reads, respectively,

p3 = p1 + k2

p4 = p1 + k2 + k3 .
(3.7)

In both cases we assume the graviton associated to k2 to have negative helicity, and for
n = 4 the graviton k3 has positive helicity.5 (The same-helicity configuration will be also
discussed momentarily) In this case it is convenient to fix the gauge, in spinor-helicity
variables, as [6]

ε2 =
√

2|3]〈2|
[32] ∝ ε̃3 =

√
2|3]〈2|
〈32〉 . (3.8)

5In section 2.1 the k3 graviton had opposite momentum as compared to conventions here. To connect to
previous section, we simply take k3 → −k3 here, which also flips its helicity from positive to negative. We
stick to such prescription here as it will be more convenient to express crossing symmetry.
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The operator Jµν in (3.6) the spin-S Lorentz generator. In this case, we will realize it as a
fully quantum operator acting linearly on the representation |ε〉. The exponential series
truncates at order 2S in the expansion of the exponential. The pole ε2 · p1 will cancel in the
cases treated here from the scalar amplitude A0

n. As anticipated, this effectively restricts
S ≤ 2 in the Compton amplitude A4.

Before we proceed with the computation, it is illustrative to make some comments
on minimal coupling. Recall minimal coupling in the sense of [28], is defined by requiring
scattering amplitudes involving massive particles to have a well-defined high energy limit
(free of mass-divergences). This means, massive spin-S spinors turn into their massless
helicity h = S analogs under such a limit, which in turn implies massive spin-S amplitudes
reduce to their massless helicity−S counterparts. While this can be shown to be true at
3-points for generic S, where the massless 3-point amplitude is fully fixed from little group
arguments [29], at 4-points the statement is satisfied only up to S = 2. For instance, in
the high energy limit, AS=2

4 reduces to the 4-graviton scattering amplitude in Einstein
Gravity. For S > 2, amplitude AS4 in (3.6) suffers from mass divergences [7], which make
the amplitude have an ill-defined high energy limit, therefore corresponding to interactions
involving non-elementary particles. These divergences, manifest themselves as the unphysical
poles, (ε2·p1)l with l > 2, appearing in the amplitude when the exponential is expanded
at O(Jl). These unphysical poles can be removed by adding a series of contact terms
in the amplitude with arbitrary coefficients. Since no massless 4-point amplitude can be
uniquely fixed from little group arguments for S > 2, the strict high energy limit cannot
be used to fix these free coefficients.6 Therefore, alternative ways need to be found in
order to fully fix the S > 2 amplitude at 4-pts. The matching of the classical 4-point
amplitude to the GW scattering process in General Relativity, as shown in the previous
section, suggests that in the classical limit those free coefficients can be uniquely fixed from
solutions of the Teukolsky equations. In this work, we will follow this intuition and find
a unique conservative7 Compton amplitude up to sixth order in spin. As we will see in
detail, at S = 2 the 4-point amplitude in (3.6) admits non-minimal coupling deformations
that preserve unitarity properties of the Compton amplitude [7], therefore corresponding
to contact operators entering in the amplitude (See section 3.3). These S = 2 contact
operators can also be fixed from the Teukolsky computation.

Let us now introduce a four-velocity vector uµ together with a generic mass scale
m. They will be mapped to the four-velocity and rest frame mass of the classical object,
respectively. However, the identification with the kinematic momenta in the Compton
amplitude is ambiguous, some choices are u = p1

m ,
p4
m ,

p
m (with m = M in the former cases,

and m2 = p2, p = p1+p4
2 in the latter), which will all coincide after we take the classical

limit. Now, in order to parametrize the degrees of freedom associated with spin in four
dimensions, we introduce the Pauli-Lubanski operator

Wµ := 1
2mεµνρσuνJρσ (3.9)

6Although a relaxed version thereof has been recently addressed in [32].
7In following sections we will also keep track of dissipative effects whose matching to a Compton ansatz

is unique up to a sign dependent of the prescription taken to analytically extend the BHPT solutions into
the point particle regime of the Kerr BH.
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In the classical limit, this will play the role of the spin vector aµ ≡ 〈Wµ〉, introduced in
the previous section. Using spinor-helicity variables we can find additional exact quantum
relations between operators. For this, note that in (3.6) the field strength Fµν2 is self-dual
since the graviton k2 has negative helicity. Consequently, the generator Jµν is also self-dual
and it is associated with the chiral basis (3.3), i.e. Jµν = i

2ε
µνρσJρσ.8 We use this property

to rewrite the exponents of (3.6) in terms of the Pauli-Lubanski operator (3.9) as follows.
Following [77], for a given 4-velocity uµ we decompose the full Lorentz generator Jµν into a
spin and a boost operator:

Bµ := Jµνuν , Sµν := Jµν − 2u[µBν] . (3.10)

One can easily check that uµSµν = 0, hence Sµν generates little group transformations on
states |ε〉 and shall be related to the Pauli-Lubanski operator Wµ. Indeed, from (3.9) one
easily finds

Wµ = 1
2mεµνρσuνSρσ ⇔ Sµν = −mεµνρσuρWσ . (3.11)

Furthermore, due to the self-dual condition on Jµν , it turns out that the boost and spin
parts are indeed related. From (3.9) and (3.10) we find:

Bµ = imWµ . (3.12)

We can now decompose the exponent of (3.6). We proceed for both n = 3, 4 at the same
time, introducing the generic field strength Fµν = 2k[µεν]. Using (3.11) and (3.12) we have

FµνJµν = FµνSµν + 2uµFµνBν
= −mεµνρσFµνuρWσ + 2imuµF

µνWν . (3.13)

Regarding Fµν as self dual, which follows from the contraction with Jµν on the l.h.s., we
finally get

FµνJµν = ±4imuµF
µνWν . (3.14)

The ± sign accounts for self-duality or anti self-duality of the Lorentz generator Jµν , or
equivalently, the helicity associated to Fµν . We remark that the classical limit has not
yet been applied as we have explicitly used the operator notation. Note that the l.h.s.
of (3.14) does not depend on the four-vector uµ, which we are free to choose. In any case,
for u = p1

M ,
p4
M ,

p
m we can now rewrite (3.6) as

AS3 = A0
3 × 〈ε3| exp

(
2u · F2 ·W

u · ε2

)
|ε1〉 , AS4 = A0

4 × 〈ε4| exp
(

2u · F2 ·W
u · ε2

)
|ε1〉 (3.15)

For n = 3, the on-shell condition for the outgoing massive momenta imposes u · k2 = 0.
This automatically implies that the pole u · ε2 cancels and we have

AS3 = A0
3 × 〈ε3|e−2k2·W|ε1〉 . (3.16)

8More precisely, we have [6]

〈ε4| exp
(
F2,µνJµν

2iε2 · p1

)
|ε1〉 = [ε4| exp

(
F3,µν J̃µν

2iε3 · p1

)
|ε1] ,

i.e. using the negative helicity graviton also changes the chirality of the Lorentz generator.

– 12 –



J
H
E
P
0
5
(
2
0
2
3
)
2
1
1

For n = 4, the pole does not cancel in the exponential, as u · k2 6= 0 generically. Since the
prefactor A0

4 contains a term (u · ε2)4, the form (3.15) is valid only up to quartic order in
the expansion of the exponential, i.e. up to spin S = 2. A convenient way to encode the
unphysical pole is introducing the vector [30]

wµ := u · k2
u · ε2

εµ2 , (3.17)

so that
AS4 = A0

4 × 〈ε4|e2(w·W−k2·W)|ε1〉 . (3.18)

Let us comment briefly on the factorization properties in this formula. Note that
s-channel factorization follows from the fact that w ·W→ 0, which together with the usual
argument for A0

4 yields

AS4 →
1

2p1 · k2
A0,L

3 A0,R
3 〈ε4|εI〉〈εI |e−2k2·W|ε1〉 (3.19)

where the polarizations εI correspond to the internal particle of spin S.9 We can identify
the factor A0,L

3 〈ε4|εI〉 = AS,L3 as the three-point amplitude for negative helicity [6] thus
making factorization explicit. The u-channel factorization follows analogously from crossing
symmetry. Now, for the t = 〈23〉[23] channel pole we need the following observation:
from (3.8) and (3.17) it follows that

wµ → kµ2 as 〈23〉 → 0
wµ → −kµ3 as [23]→ 0 . (3.20)

Thus we find

AS4 →
1
t


A0

3A
G
3 〈ε4|e−2(k3+k2)·W|ε1〉 as [23]→ 0,

A0
3Ā

G
3 〈ε4|ε1〉 as 〈23〉 → 0 ,

(3.21)

where AG3 (ĀG3 ) corresponds to the MHV (anti-MHV) graviton amplitude. We see that
the spin factor deforms as expected for each chirality. Thus we have shown that the
expression (3.18) is consistent with factorization (unitarity) to all orders in the spin W.
However, the 4-pt itself is non-local starting at S = 2 and hence needs to be corrected using
contact terms. In the following we will deal with those in the classical limit, where the
above factorization can also be realized explicitly.

Boosted basis. The polarization states |ε1〉, 〈ε4| are associated with initial and final
momentum, p1, p4 respectively. It will be convenient to rewrite them as associated to the
4-velocity uµ [77]. For instance, taking u = p1

M , we can write

p4 = eiµM(k2+k3)·Bp1 = e−µM
2(k2+k3)·Wp1 . (3.22)

9The usual projection of the propagator into spin S states is not needed since the operator e−2k2·W

preserves the spin S of the external particle. In other words we can replace |εI〉〈εI | ↔ I.
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Here µ is a scalar which explicit expression we do not need, but which is given explicitly
in [78]. The analogous formula holds for n = 3; in this case three-particle kinematics yields
µM2 = 1, hence

p3 = e−k2·Wp1 . (3.23)

This implies that we can write

|ε3〉 = e−k2·W|ε′1〉 , n = 3 (3.24)

|ε4〉 = e−µM
2(k2+k3)·W|ε′1〉 , n = 4 (3.25)

where |ε′1〉 is a polarization state associated to p1 = Mu. Thus we have the following
QFT amplitudes

AS3 = A0
3 × 〈ε′1|ek2·We−2k2·W|ε1〉 = A0

3 × 〈ε′1|e−k2·W|ε1〉 , (3.26)

and
AS4 = A0

4 × 〈ε′1|eµM
2(k2+k3)·We2(w−k2)·W|ε1〉 . (3.27)

The constraint u ·W = 0 implies that the Pauli-Lubanski operator Wµ only yields three in-
dependent operators. In the rest frame of uµ they satisfy [Wi,Wj ] = iεijkWk, or covariantly

[Wµ,Wν ] = M−1Sµν = iεµνρσWρuσ . (3.28)

In eq. (3.26) only the combination k2·W appears. Furthermore, note that in this case the
boost component ek2·W commutes with the amplitude e−2k2·W. This is not the case for
eq. (3.27) where indeed all three combinations k2·W, k3·W, w·W appear and do not commute
among each other. As the spin is the only quantum number available, we assume that in
general, these combinations span a basis of operators in the space of states associated with
uµ, namely |ε1〉, 〈ε′1|.

3.2 Classical limit and crossing symmetry

As argued in the previous section, the operator O in the contraction 〈ε′1|O|ε1〉 can be
attributed a classical nature, that is O ≡ 〈O〉. This requires the classical limit briefly
mentioned in section 2.1 and extensively studied in [73]. We note that the three-point
amplitude (3.26) is invariant under such limit

〈AS3 〉 = 〈A0
3〉e−k2·a, (3.29)

where we have used aµ = 〈Wµ〉. For the four-point case, from (3.27) we obtain

wµ, kµ2 , k
µ
3 ∼ ~ , Wµ ∼ 1/~ , (3.30)

where the scaling of wµ follows from its definition (3.17). Together (3.28) this implies

[(k2 + k3) ·W, (w − k2) ·W] ∼ ~ (3.31)

i.e. the exponents of (3.27) commute in the classical limit. Furthermore, from the explicit
expression in [78] we see that µM2 = 1 +O(~), hence the limit of (3.27) becomes

AS4 = A0
4 × 〈ε′1|e(2w+k3−k2)·W|ε1〉+O(~) =⇒ 〈AS4 〉 = 〈A0

4〉 × e(2w+k3−k2)·a . (3.32)

– 14 –



J
H
E
P
0
5
(
2
0
2
3
)
2
1
1

The result for the classical amplitude agrees with the one obtained in [30] from Heavy
Particle EFT. This is expected since as we have argued in [73], the limits ~ → 0 and
M →∞ are equivalent.

Note that in the last step of (3.32) we have stripped off the polarization states |ε1〉, |ε′1〉.
As a consistency check, one may ask if the same result is obtained if we start from the
antichiral amplitude Aantichir.

n as defined in (3.5). This was observed in [78] for n = 3 but
now we show it holds in general. To see this we need the following identity, which we derive
in appendix A:

Aantichir.
n = e2K·W̃A

chir.|W→W̃
n +O(~) (3.33)

Here W̃µ corresponds to the Pauli-Lubanski operator acting on antichiral states |εi]:

W̃µ := 1
2mεµνρσuν J̃ρσ (3.34)

Consequently, the superscript W → W̃ means that the operator Wµ in Achir.
n must be

formally replaced by W̃µ. We shall omit the superscript in the classical limit and assume
that both aµ = 〈Wµ〉 and ãµ = 〈W̃µ〉 yield the same interpretation as classical spin vector.
The momentum K is the total momentum transfer, i.e. K = k2 for n = 3 and K = k2 + k3
for n = 4. Now, applying the classical prescription on the chiral basis gives

ASn = 〈εn|Achir.
n |ε1〉

= 〈ε′1|eK·WAchir.
n |ε1〉+O(~) −→ 〈ASn〉 = eK·a〈Achir.

n 〉 , (3.35)

whereas on the antichiral basis, we obtain

ASn = [εn|Aantichir.
n |ε1]

= [εn|e2K·W̃A
chir.|W→W̃
n |ε1] +O(~)

= [ε′1|e−K·W̃e2K·W̃A
chir.|W→W̃
n |ε1] +O(~) , (3.36)

which after stripping off the antichiral states becomes

〈ASn〉 = eK·a〈Achir.
n 〉 . (3.37)

Crucially, the same result as (3.35) is obtained due to the fact that the exponent K ·W has
different sign in the chiral and antichiral boosts. This reflects that e±K·W is indeed a boost
and not a little group transformation.

We can use (3.33) to derive a new classical constraint for n = 4 that follows essentially
from Crossing symmetry of the two gravitons. For this, we first introduce some notation.
Let us recall definition (3.5) and further introduce the polynomial function Pξ, via

Achir.
4 = A0

4 × Pξ(k2 · a, k3 · a,w · a) , (3.38)

i.e. for any spin the amplitude operator can be expanded in terms of k2 · a, k3 · a,w · a,
as observed in the previous subsection. As all helicity dependence of the gravitons is
encoded in A0

4, the function Pξ can only further depend on kinematic invariants. The
only combination with a non-vanishing classical limit is the optical parameter ξ of (2.3),
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which has the advantage of exhibiting Crossing symmetry. In appendix B we show that the
classical amplitude should satisfy the following constraint

〈AS4 〉= 〈A0
4〉e(k2+k3)·aPξ(k2 ·a,k3 ·a,w ·a) = 〈A0

4〉e−(k2+k3)·aPξ(−k3 ·a,−k2 ·a,w ·a) , (3.39)

which is the statement that the classical amplitude 〈AS4 〉 is symmetric under the exchange
of k2 · a↔ −k3 · a. Note that this is trivially fulfilled by the exponentiated form (3.32). In
general, this will place a strong constraint on the general spin amplitude.

In the remaining part of the section, our aim will be to provide the function Pξ for
arbitrary spins. We constrain only its classical limit, i.e. we can always add (Crossing
symmetric) combinations of kinematic invariants that vanish as ~→ 0. However, assuming
Pξ only depends on ξ provides a trivial quantum completion of the scattering amplitude.

3.3 General Compton amplitudes

Our objective here is to provide a generic form of AS4 for arbitrary spins. Our approach
will be based on imposing three-point factorization as given by the minimal coupling
amplitudes (3.16). Working in the strict classical limit we seek an ansatz of the form

〈AS4 〉 = 〈A0
4〉 ×

(
e(2w+k3−k2)·a + Pξ(k2 · a,−k3 · a,w · a)

)
2S
. (3.40)

On the right-hand side, we have written the subscript 2S to simply emphasize that both
functions will be truncated at order a2S , being effectively polynomials for finite spin quantum
number. Furthermore, it follows from (3.39) that the polynomial Pξ must be symmetric in
its first two entries Pξ(α, β, γ) = Pξ(β, α, γ).

Locality and unitarity constraints are implemented as follows: as it turns out, the
exponential form (3.18), which yields the first term in (3.40), contains the right three-point
factorization for arbitrary spin. This is easy to see following the same arguments made
below (3.18), which persist even after the classical limit. For instance, in the s- or u-
channels we have e(2w+k3−k2)·a → ek3·ae−k2·a, etc. . .

Because of the above, we impose 〈A0
4〉×Pξ not to have a pole in the physical factorization

channels. Additionally, starting at order a5 we require 〈A0
4〉 × Pξ to cancel the unphysical

pole 1/(u · ε2) which appears from the exponential term due to the w vector.10 More
precisely, our strategy is to Laurent-expand in ξ:

Pξ(k2 · a,−k3 · a,w · a) =
∑
m

ξmp(m)(k2 · a,−k3 · a,w · a) . (3.41)

This can be thought of as a perturbative expansion away from the Eikonal ξ →∞. Now
the polynomials p(m) only depend on spin operators. We then implement the following
considerations:

1. From definitions (3.17) and (2.3), a pole in ξ must be canceled via the spin operator
(w ·a)2 (away from the strict classical limit, the Crossing symmetry constraint requires
us to replace (w ·a)2 → −w ·aw′ ·a, see definition (B.4)). Note also that 〈A0

4〉 contains
a simple pole in ξ, as given explicitly in (B.1). This yields

p(m) ∝ (w · a)2−2m for m ≤ 1 . (3.42)
10It follows from eqs. (3.44), (2.3) that such singularity corresponds to backward scattering ξ−1 → −1 or

θ → π, as argued in section 2.2. The fact that the amplitude is expected to be finite in this limit has been
emphasized in [65, 74] from classical considerations.
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2. A pole in t = 〈23〉[23] yields two different factorization channels 〈23〉 → 0 and
[23]→ 0. To cancel such pole we will again employ the observation (3.20) for each
of these branches. Hence, each power of 1/t must be cancelled by the combination
(w · a − k2 · a)(w · a + k3 · a), which trivially fulfills the crossing constraint (3.39).
From (2.3) we note that each power of ξ contains a pole in t. Moreover, recall that
〈A0

4〉 also contains one such pole. Hence,

p(m) ∝ (w · a− k2 · a)m+1(w · a+ k3 · a)m+1 for m ≥ −1 , (3.43)

3. The unphysical pole u · ε2 ∝ 〈2|u|3] is contained in w · a. To cancel this pole we invoke
the following useful identity

〈2|u|3]〈3|u|2]
t

= 1 + ξ , (3.44)

as well as (using the definition in (B.3))

w · a+ w̃ · a = ξ

1 + ξ
(k2 · a− k3 · a) , . (3.45)

The latter relation reflects that the conjugate operator w̃ ·a indeed can be expressed in
terms of the basis {w · a, k2 · a, k3 · a}. Since w̃ contains 〈3|u|2] in the denominator, in
principle both terms on the l.h.s. contribute to the pole as ξ → −1. However, we will
take 〈3|u|2] and ξ to be independent variables (we can solve for 〈2|u|3] from (3.44)).
The relation (3.45) then reveals that as ξ → −1 the term w̃ · a drops and our basis
{w · a, k2 · a, k3 · a} becomes degenerate!
The strategy is then to use (3.45) to solve for w · a in terms of a new (non-degenerate)
basis {w̃ · a, k2 · a, k3 · a}. Only then we demand the cancellation of the pole in (1 + ξ).
Recall that 〈A0

4〉, eq. (B.1), has a fourth order zero in 〈2|u|3] ∝ 1 + ξ. Note further
that since we start with an ansatz that does not contain w̃ · a, we are guaranteed
that the pole in 〈3|u|2] is spurious, even though it may appear explicitly in some of
the terms.

4. There is a final caveat to the above construction, which stems from the following
identity in the classical limit

− (s−M2)(u−M2)
4M2 a2≈ω2a2≈ ξ(w ·a−k2 ·a)(w ·a+k3 ·a)+(w ·a)2 (3.46)

(recall ω was defined in (2.2)). As expected, this shows that the operator −a2 can
indeed be expanded in the basis. However, one can check that when acting on the
states (3.3) −a2 is positive-definite: in fact, it corresponds to the quadratic Casimir
of su(2), as argued in appendix C. Thus, it is natural to introduce the operator
|a| =

√
−a2 by defining its action on spin-s states. Now, because of the quadratic

nature of the relation (3.46), we find that ω|a| is indeed linearly independent from
{w · a, k2 · a, k3 · a}. This means it can be included in our polynomial expansion, but
only at the linear order.11

11In principle one can introduce (a crossing-symmetric version of) the combination (s−M2)|a|(w · a) to
cancel a pole in ξ, which would modify Constraint 1. For instance, at O(a4,5), one could add the extra
contact terms ct4 ∼ 〈A0

4〉ω|a|w·a(w·a− k2·a)(w·a+ k3·a) and ct5 ∼ ct4(k2·a− k3·a) respectively. However,
we find that this is not required for the classical matching and does not change the conclusions below, so we
will ignore them and stick to the prescription given by Constraint 1 above.
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Inclusion of the |a| operator is what allows us to match the full classical computation
including both conservative and dissipative contributions. However, in 4.2 we will present
an alternative in which the spin norm |a| is treated as a c-number rather than an operator.
Nicely, allowing the coefficients of the ansatz to be non-polynomial functions of |a| yields also
an exact matching for each monomial in {w ·a, k2 ·a, k3 ·a}. Furthermore, we will argue that
while conservative contributions are captured entirely by operators in the {w ·a, k2 ·a, k3 ·a}
basis, dynamical effects at the BH horizon (see e.g. [79, 80]) can be accounted for by allowing
|a| terms, as we will see in section 4.2.

Continuing with our discussion, constraints 1 and 2 can be imposed right away, leading
to the expansion

Pξ =
2∑

m=0
ξm−1(w ·a)4−2m(w ·a−k2 ·a)m(w ·a+k3 ·a)mr(m)

|a| (k2 ·a,−k3 ·a,w ·a)

+
∞∑
m=0

[(w ·a)2m+6

ξm+2 p
(m)
|a| (k2 ·a,−k3 ·a,w ·a)

+ξm+2(w ·a−k2 ·a)m+3(w ·a+k3 ·a)m+3 q
(m)
|a| (k2 ·a,−k3 ·a,w ·a)

]
(3.47)

where p(m)
|a| , q

(m)
|a| , r

(m)
|a| are multivariable polynomials symmetric in their first two arguments,

which also include a linear correction in ω|a|. Note that the infinite sum is O(a6). Let us
for the moment focus here on the first line. Crucially, this is O(a4): This means that there
are no effective operators that survive the classical limit up to order a3, or equivalently,
for particles of spin s < 2. If we assume that the Kerr background can be effectively
matched to a certain Compton amplitude, we can already conclude that the minimal
coupling amplitudes (3.6) will indeed match up to order a3. We have seen this is the case
for polar scattering at linear order in the previous section and will confirm it in the general
(non-polar) case in the next section up to a6 order.

After using constraints 1–4, we can easily parametrize the polynomials r(m)
|a| , p

(m)
|a| , and

q
(m)
|a| , leading to the complete result for Pξ up to order a6:12

r
(m)
|a| = c

(m)
1 + c

(m)
2 (k2·a− k3·a) + c

(m)
3 w·a+ c

(m)
4 |a|ω

+ c
(m)
5 (w·a− k2·a)(w·a+ k3·a)

+ c
(m)
6 (2w·a− k2·a+ k3·a)w·a (3.48)

+ c
(m)
7 (2w·a− k2·a+ k3·a)2 + c

(m)
8 (w·a)2

+ c
(m)
9 (k2·a− k3·a)|a|ω + c

(m)
10 w·a|a|ω +O(a3)

p
(m)
|a| = d

(m)
1 +O(a) , q

(m)
|a| = f

(m)
1 +O(a) . (3.49)

Constraint 3 imposes the relation shown in the second column of table 1, at the indi-
cated order in spin. The remaining free coefficients will be fixed from solutions to the
Teukolsky equation.

12In a crossing-symmetric fashion, ω ≈
√

(s−M2)(M2 − u)/4M2 ≈ (s−M2)/2M . Extensions to higher
orders in spin follow analogously.
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3.4 Matching to Teukolsky computation

After imposing constraints 1.–4. above, the remaining free coefficients of the Compton
ansatz can be fixed by matching to the full non-polar GW scattering off a Kerr background.
However, before we can implement such matching we need to rewrite our ansatz in a suitable
language: the spinning partial-wave basis, as we did for the lower helicity cases in [73]. This
is a technical task whose details we postpone to be discussed in section 4 together with
appendix appendix C, using massive spinor-helicity. For the moment in table 1 we just
summarize our findings from the matching procedure.

We notice up to a4, no contact terms are allowed by the Kerr BH, and the minimal
coupling exponential from (3.32) is enough to capture the spin dynamics. At orders, a5,6,
we encounter three sets of solutions given by η = 0,±1. The first set (η = 0) corresponds
to the extraction of the conservative piece of the amplitude, where BH horizon absorption
is removed before analytically continuing the BHPT results from a? = a

GM ≤ 1 to a? � 1
(details are provided in section 4). In this case, the result is independent of the prescription
taken when analytically extending Teukolsky solutions through the singular point a? = 1 in
the complex a? plane. The other two sets (η = ±1) keep track of dissipative contributions in
the scattering problem, where the sign is dictated by the prescription taken for the analytic
continuation; the positive sign corresponds to extending the BHPT solutions by going above
the singular point in the complex a? domain, whereas the negative sign corresponds to
extensions by going below the singular point. We will extend on this in section 4. As a final
remark of this subsection, notice that in the conservative sector dropping the non-rational
contributions (α = 0) sets to zero all the contact terms of the Compton ansatz, except
those strictly needed to cancel the unphysical pole of the BCFW exponential. For the
case of scattering of scalar waves off Kerr [73], removal of the non-rational terms provided
Teukolsky solutions that matched precisely the Born amplitudes (see eq. (3.8) in [73]),
independent of contact term contributions. The amplitude with no contact terms after the
unphysical pole is removed is then the gravitational analog of the Born amplitudes of the
lower helicity cases. Let us however remark even for the conservative case, α-contributions
should be kept in order for the amplitude to correctly describe the interaction of the wave
with the Kerr BH (this includes the contact term contributions matching the digamma
functions for the scalar case discussed in Part I).

3.5 Polar scattering revisited

In light of the above reformulation, we can revisit the polar scattering scenario introduced
in section 2.1. Because the spin is aligned with incoming momenta the spin basis {w · a, k2 ·
a, k3 · a, |a|} becomes essentially one-dimensional. In fact, replacing aµ by its classical value
in polar scattering, aµ = (0, 0, 0, az), we can easily show (see also (C.23))

k2 · a = w · a = − ξ

ξ + 2k3 · a = ωaz , |a| = az . (3.50)

Then the general ansatz (3.40) takes the following form

〈As4〉polar = 〈A0
4〉 ×

[
e−2ωaz/ξ + Pξ

(
ωaz,

(ξ + 2)ωaz
ξ

, ωaz

)]
(3.51)
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Spin Spurious-pole Free Coeffs. Teukolsky Solutions

a4 c
(i)
1 , i = 0, 1, 2 c

(i)
1 = 0, i = 0, 1, 2

a5 c
(2)
3 = 4/15− c(0)

3 + c
(1)
3

c
(i)
2 , i = 0, 1, 2

c
(i)
3 , i = 0, 1

c
(i)
4 , i = 0, 1, 2

c
(i)
2 = 0, i = 0, 1, 2

c
(0)
3 = α

64
15 , c

(1)
3 = α

16
3 ,

c
(2)
3 = 4

15(1 + 4α) ,

c
(0)
4 = ηα

64
15 ,

c
(1)
4 = ηα

16
5 , c

(2)
4 = η

4
15

a6

c
(2)
10 = c

(1)
10 − c

(0)
10

d
(0)
1 =− 8

45

+
7∑
j=5

2∑
i=0

(−1)ic(i)
j

f
(0)
1 = 4

45 + c
(0)
6 − c

(1)
6

+
2∑
i=0

(−1)ic(i)
8

c
(i)
5 , i = 0, 1, 2

c
(i)
6 , i = 0, 1, 3

c
(i)
7 , i = 0, 1, 2

c
(i)
8 , i = 0, 1, 3

c
(i)
9 , i = 0, 1, 2
ci10, i = 0, 1

c
(i)
j = 0, i = 0, 1, 2, j = 5, 7

c
(0)
6 = α

128
45 , c

(1)
6 = α

32
9 ,

c
(2)
6 = 8

45(1+4α) , c(0)
8 = −α512

45 ,

c
(1)
8 = −α160

9 , c
(2)
8 = −16

45(1+19α),

c
(0)
9 = −ηα128

45 , c
(1)
9 = −ηα32

15 ,

c
(2)
9 = −η 8

45 ,

c
(0)
10 = −ηα256

45 ,

c
(1)
10 = −ηα352

45 , c
(2)
10 = −ηα32

15

d
(0)
1 = 0 , f (0)

1 = − 4
45(1 + 4α)

Table 1. Second column:. Spurious pole cancellation constraints on the Compton ansatz at the
given order in spin. The third column indicates the number of free contact terms after imposing the
constraint of the second column. Operators |a| were not considered previously in [20]. Up to spin
a5, the remaining number of free coefficients coincide with the counting in this reference. At a6 the
authors mention there are 19 free parameters, out of which, only 12 are linearly independent. The last
column shows the values for the free coefficients that match the full Teukolsky solutions. Here α = 1,
is a coefficient tracking non-rational (digamma functions) contributions in the Teukolsky solutions,
and η = 0,±1, is a parameter that keeps track of the conservative (η = 0), and absorptive (η = ±1)
pieces of the scattering amplitude (see section 4 for a detail explanation of the matching procedure).
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The crucial observation is that the exponent in the first term is now regular as ξ → 1,
which previously corresponded to the backward (θ = π) unphysical singularity; hence, the
exponential form of the Compton amplitude gives a sensible result for polar scattering as
already discussed in section 2.2. Using the solution above up to order a6, we can explicitly
check that for the Kerr Black Hole

Pξ

(
ωaz,

(ξ + 2)ωaz
ξ

, ωaz

)
= −64

15α(η − 1) sin2(θ/2)a5
zω

5
[
1 + 2

3azω(3 + cos θ)
]

+O(a7) .
(3.52)

This means that — up to a6 — dropping the digamma contact contributions (setting α→ 0)
makes the polar scattering amplitude coincide with the BCFW exponential e−2ωaz sin2(θ/2).
As already mentioned, this exponential is the gravitational analog of the Born amplitudes
for the h < 2 cases. On the other hand, if the digamma contributions are kept, in the
conservative case (η = 0), the exponential receives a modification caused by the digamma
terms. (For the h = 0 case, no contact modifications survive under the polar limit for the
conservative amplitude.) This extra contribution could be removed by including dissipative
terms with η = 1.

In appendix C.2 we elaborate on polar scattering. In particular, using massive spinor-
helicity variables, it is shown that the expansion in spinning spherical harmonics truncates
at each order in spin. This expansion is the topic of the next section.

4 Classical wave scattering in Kerr spacetime

In this section we first recap the tools of Black Hole Perturbation Theory (BHPT) for the
Kerr metric, and then proceed to compute a classical wave scattering amplitude to match
the QFT ansatz as promised. This calculation of the BHPT amplitude is based on the
one already presented in Part I [73] for a scalar wave, but involves several new ingredients
associated to the helicities carried by Gravitational Waves (GW).

In Kerr spacetime, the differential cross-section for the scattering of a plane gravitational
wave can be expressed as

dσ

dΩ = |f(ϑ, ϕ)|2 + |g(ϑ, ϕ)|2, (4.1)

where f and g are respectively the complex helicity-preserving and helicity-reversing
scattering amplitudes. Using a partial wave decomposition, they are given by the expressions

f(ϑ, ϕ) =
∞∑
l=2

∞∑
m=−∞

−2Slm(γ, 0; aω)−2Slm(ϑ, ϕ; aω)flm, (4.2)

g(ϑ, ϕ) =
∞∑
l=2

∞∑
m=−∞

−2Slm(γ, 0; aω)−2Slm(π − ϑ, ϕ; aω)glm (4.3)

where sSlm are the spin-weighted spheroidal harmonics, γ is the angle between the incoming
wave vector and the axis of rotation of the Kerr BH, which we consider non-zero in
general [74, 81–83]. The first copy of the harmonics in these expressions follows from
the harmonic decomposition of the plane wave into the basis of spin-weighted spheroidal
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harmonics, whereas the second copy is the usual separation of variables ansatz for the
Teukolsky scalar. The amplitude modes are given by

flm = 2π
iω

∑
P=±1

(
e2iδPlm − 1

)
, (4.4)

glm = 2π
iω

∑
P=±1

P (−1)l+m+2
(
e2iδPlm − 1

)
, (4.5)

where δPlm are the phase shifts, which for the gravitational case have the explicit form

e2iδPlm = (−1)l+1Clm + 12iMωP

16ω4
Bref
lmω

Binc
lmω

(4.6)

where Clm is the Teukolsky-Starobinsky constant given explicitly in (F.25), and the Blmω
coefficients are extracted from the asymptotic solutions to the radial Teukolsky equation [84].
Computing the phase shifts is standardly done by solving the radial Teukolsky equation,
as discussed in Part I [73], and e.g. [74], which we shall not discuss here. The main
remaining point to be mentioned is that the imposition of the physical boundary condition
that the modes for the scattering problem are purely transmitting into the horizon (and
nothing coming out) fully determines the phase shifts given by (4.6). We refer the reader
to appendix F for the discussion of the subtleties involved in decomposing a plane wave
metric perturbation onto a harmonic basis.

For the purposes of matching the gravitational Compton amplitude of previous sections,
we calculate the partial wave amplitudes in a long wavelength limit ε = 2GMω � 1.13 As
discussed in Part I, for our computation it is crucially important that 0 ≤ a? < 1 when
constructing the long wavelength expansion, so that we can use the tools of black hole
perturbation theory. When a? > 1 the BH ceases to have a horizon and standard methods
for solving the Teukolsky equation are not clearly defined. In this regime, we are effectively
left with a naked singularity. We expect however an analytic continuation to the a? � 1
region to provide sensitive results that can match the effective point particle description of
the BH given by the classical limit of the QFT scattering amplitude.

Before proceeding to discuss explicit BHPT results, let us do the following observation:
the explicit matching of the BHPT to the QFT results carries with it a set of technical
steps as we observed for the scalar case in Part I [73]. The reason is that in general, doing
the infinite sums of the previous partial waves is an almost impossible task. The strategy
is then to expand the QFT and BHPT amplitudes into a suitable basis of partial waves
that makes simple the comparison between the two. For our purpose, we find it simpler to
do such a comparison on the basis of spin-weighted spherical harmonics −2Ylm(θ, φ′). Here
(θ, φ′) is an intermediate basis between the QFT basis (θ, φ) (2.1), and the BHPT basis
(ϑ, ϕ) (4.2). Then, additional work has to be done in order to align the two results into the
(θ, φ′) basis. Although at this stage this might seem like an unnecessary step to take, we will
see writing the amplitudes in this basis provides some advantages over the spin-weighted

13The factor of 2 in the definition of the dimensionless expansion parameter ε is essentially historical and
matches what is commonly used in the BHPT literature.
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spheroidal basis (4.2), especially when it comes to studying the analytic continuation of the
BHPT results to the a? � 1 region. In order to avoid unnecessary details of this procedure,
we refer the reader to section 4.3 of [73] where we extensively explained how to do this
bases alignment and show the relationship among the different coordinate system, so that
in this work we limit ourselves to provide the final results.

In the basis of spin-weighted spherical harmonics −2Ylm(θ, φ′), scattering amplitudes
can be written as

f(θ, φ′) =
∞∑
l=2

∞∑
m=−∞

−2Ylm(θ, φ′)f ′lm(γ) . (4.7)

For the BHPT amplitudes, the mode functions f ′(BHPT)
lm (γ) ≡ f ′lm(γ) no longer have

completely factorized out the dependence on γ. Rather, these functions take the form

f
′(BHPT)
lm (γ) =

∑
m′

Dl∗
m′m(γ) flm′ , (4.8)

where flm′ are the functions entering in (4.2). Here Dl∗
mm′ is the (complex conjugate) Wigner

D-matrix with Euler angles (0, γ, 0),

Dl∗
mm′(γ) = Dl∗

mm′(0, γ, 0) = (−1)m′
√

4π
2l + 1−m

′Ylm(γ, 0) . (4.9)

Analogously, for the QFT amplitude the mode functions f ′QFT
lm (γ) ≡ f ′lm(γ) can be

computed in two ways starting from the Compton ansatz (3.40). A straightforward way is
by employing integrals over the 2-sphere,

f ′QFT
lm (γ) =

∫
dΩ′ −2Y

∗
lm(θ, φ′)〈A4(γ, θ, φ′)〉, (4.10)

where in this basis, the components of the spin vector entering the amplitude need to be
taken as

az = a cos γ, ax = −a sin γ cosφ′, ay = −a sin γ sinφ′ . (4.11)

This projection however does not provide much intuition on the relation between the partial
amplitudes f ′lm and the contact operators {k2 · a, k3 · a,w · a} in our ansatz. As both carry
the full angular dependence of the amplitude a direct correspondence is expected. This
correspondence is established in appendix C, by exploiting a novel construction of harmonics
using the spinor-helicity variables of the previous section.

In any case, agreement of the QFT and BHPT results means then that the equality

f ′QFT
lm (γ) = f ′BHPTlm (γ) , (4.12)

is satisfied for all values of l,m. In what follows we will focus our attention to analyze these
mode functions, both in the BHPT and QFT approaches.
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4.1 Analytic extension and anomalous behaviour

Following the notation of Part I, the BHPT amplitude modes can be decomposed into a
piece containing the Newtonian term, an overall phase, and functions coefficients containing
the dependence on the BH spin, the PM parameter ε, and the inclination angle γ

f ′BHPTlm (γ) = eiΦ
Γ(l + 1− iε)
Γ(l + 1 + iε)βlm(a?, ε, γ) . (4.13)

The key observation is that the mode functions have a low-energy decomposition14

βlm(a?, ε, γ) = 1 + β
(2)
lm (γ)ε2 + β

(3)
lm (γ)ε3 + β

(4)
lm (γ)ε4 + · · · (4.14)

At each order i, in ε, the mode coefficients are then exact functions of a? (and γ). We
explicitly obtained results up to i = 7. Naively it might seem as if higher ε terms are
also higher PM contributions. However, we need to recall a? = a/GM entering in the
mode coefficients also carries negative powers of G, therefore making the combination
zn = (εa?)n = (2aω)n, of order O(G0), indeed contributing to the tree-level amplitude.
This was observed at linear order in spin in [74], and we have extended to all spin orders in
Part I, and up to the sixth order in spin in this paper.

To compare with QFT results, we need values for the mode coefficients for a? � 1. We
achieve this by analytically extending our BHPT results into this domain. This extension,
however, needs to be carried out in a careful way; the reason is the following: in general,
the mode coefficients contain both a conservative and an absorptive piece, given by the
real and imaginary contributions respectively.15 The a? � 1 extension mixes the two
contributions, therefore, giving us a result containing both of them. To avoid this we have
two options: if on the one hand one is interested in extracting the purely conservative
contribution of the classical amplitude, one can remove the absorptive contributions before
analytic continuation, as we will explain below. On the other hand, if we want to keep
these absorptive pieces and match them to the certain operators in the Compton ansatz,
we need to carefully keep track of them while doing the a? � 1 extension; we will show an
explicit example below.

The explicit expressions of the β(i)
lm(γ) coefficients, for all l,m, and for i ≤ 5, are

polynomials of a? and have a unique analytic extension. Importantly, (a?)4 is the highest
power of the spin that appears in these cases and the functions are purely real, therefore
containing only conservative contributions, which perfectly match up to the fourth order of
the expansion of the exponential in (3.40). This in turn fixes to zero the contact deformations
at a4, as indicated in table 1. These features remain true for i = 6, 7 when l > 3, matching
as well the exponential part of the Compton amplitude (3.40), once the unphysical pole is
removed. Therefore, we expect the remaining contact terms in (3.40) to contribute only to
the lower l = 2, 3 harmonics; indeed the higher harmonics coefficients come mostly from the
harmonic expansion of the t-channel pole.

In analogy to the analysis for the case of scalar waves presented in Part I, for the
gravitational case we also find anomalous behavior for the expansion coefficients (4.14),

14Note that there is no first-order term in ε as it cancels exactly, as first observed in [74].
15It should be clear the angle γ is real and therefore trigonometric functions of γ are always real.
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for certain low values of l, namely for l = 2, 3, as expected, in β(6,7)
lm . This anomaly comes

from the presence of non-rational functions of a? in the mode coefficients, together with
the presence of absorptive pieces. For instance, for l,m = 2,−1, at a5, for the helicity
preserving amplitude, flm, the function coefficients have the explicit form

β
(6)
2,−1(γ) =

√
π/5 sin3 γ

42247941120
[
− 43659(12017 + 17775 cos(2γ))a?5 − 1408264704 cos(γ) ia?4κ̂

− 704132352
(
(1− 2 cos γ)ψ(0)(−ia?/κ̂) + (1 + 2 cos γ)ψ(0)(ia?/κ̂)

)
a?3

− 5633058816
(

sin2(γ/2)ψ(0)(−2ia?/κ̂) + cos2(γ/2)ψ(0)(2ia?/κ̂)
)
a?3
]
, (4.15)

where κ̂ =
√

1− a?2 and ψ(0)(z) = Γ′(z)/Γ(z) is the digamma function. Here we have
discarded terms irrelevant for the a? � 1 expansion. Notably, these functions are complex
for sub-extremal (a? < 1) Kerr BHs and have a singular point at extremality a? = 1.
As already mentioned, the finding of imaginary modes in the amplitude signals that the
interaction with the Kerr BH is in general not conservative. Following [74], we interpret
these imaginary contributions as horizon absorption effects. Our prescription to extract the
conservative part of the amplitude is the same we used in Part I for the scattering of scalar
waves, where absorption was removed by taking the real part of the phase shifts before
extending the BHPT results to the a? � 1 region. In practice, this is achieved by averaging
the mode coefficients (4.15), with their respective complex conjugate. After this is done,
the a? � 1 extension is performed. In this paper, however, we aim more generally to match
the full Teukolsky solutions to the Compton ansatz, keeping track of the non-conservative
contributions, the latter of which, if desired, can be removed from the final answer to obtain
the purely conservative result.

The presence of the singular point in the mode amplitudes means we need to distinguish
two separate analytic extensions, which we label with a η = ±1 superscript, e.g. βηlm,
corresponding to respectively whether we continue by going above or below the singular
point in the complex a? domain. Notice these extensions are conjugate with each other.
The non-rational functions in the mode coefficients are very sensitive to the choice of branch,
fortunately, they are presented in certain combinations that make it easy to track the effects
of their contributions to one branch or the other. As one might expect, such a branch choice
is irrelevant for extracting the conservative part of the amplitude, whereas, for the dissipative
piece, it comes with an extra sign in some terms of the mode expansion. Explicitly in our
mode example above, the two choices of branch lead to the a? � 1 expressions

β
(6)η
2,−1(γ) = −

√
π/5

967680a
5 sin3 γ

[
12017 + 96768α− η32256(1 + 4α) cos γ + 17775 cos(2γ)

]
.

(4.16)

Here η = ±1 keeps track of the prescription for doing the analytic continuation, whereas
α = 1, keeps track of the contributions from the digamma functions. One can check explicitly
that removing absorption before analytic continuation (with the procedure outlined above),
leads to the conservative amplitude which agrees with the above expression for η = 0, or
equivalently, averaging the ± results, then making irrelevant the branch choice. This was
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expected since as we mentioned already, the two choices for the analytic extension are
conjugate with each other, having effectively the same effect of averaging the mode (4.15)
with its complex conjugate and then taking a? � 1. This feature continues to be true for
the l = 2, 3 mode coefficients for i = 6, 7. Furthermore, notice in general that absorptive
pieces of the amplitude (η 6= 0) will have contributions from both, the

√
1− a?2 function,

as well as from the digamma functions.
In summary, we have learned that the dissipative contribution to the classical amplitude

comes with a non-zero η contribution, whereas the conservative result follows from averaging
the η = ±1 solutions (or equivalently setting η = 0). In table 1 we summarize the three sets
of solutions labeled by η = 0,±1, which match the gravitational Compton ansatz in (3.40).
Note that, as advertised in the previous section, the dissipative contributions are captured
purely by operators proportional to |a|.

4.2 Matching to the Compton ansatz

BHPT modes of the form (4.16) can now be matched to the Compton modes computed
from (4.10). For instance, for our l,m = 2,−1 example, and at order a5, the explicit form
of the Compton mode is given by

β
(6)QFT
2,−1 (γ) =−

√
π/5

967680a
5 sin3 γ

[
12017+17775cos(2γ)+20160(4+3cos(2γ))c(0)

2 +60480c(0)
3

−10080(7+6cos(2γ))c(1)
2 −30240c(1)

3 +120960cosγ
(
c

(2)
2 cosγ−c(0+1+2)

4
)]
,

(4.17)

where we have used the notation c(0+1+2)
4 = c

(0)
4 − c

(1)
4 + c

(2)
4 . Analogous expressions follow

for the different l,m modes, at different orders in spin. Comparison to the BHPT modes,
and requiring condition (4.12) to be satisfying for all l,m, results in linear systems of
equations for the Compton coefficients c(i)

j . Up to a6, the explicit solutions are shown in
the last column of table 1.

Outgoing boundary conditions. In section 4.1 we have identified the η = 0 solution
as the conservative (horizon independent) part of the amplitude. However, consistency
checks that support this identification need to be done. A first check is given by solving
the scattering problem assuming that the boundary condition on the black hole horizon
is outgoing rather than ingoing. Fortunately, the relevant analytic information for the
asymptotic amplitudes for this problem can also be gleaned from the work of Mano, Suzuki
and Tagasugi [85] (their solution Rout). Upon investigating this boundary condition, which
alters the appropriate reflection and incidence coefficients of (4.6), we find that the solutions
table 1 that match the higher spin Compton ansatz are identical, modulo η → −η. This
therefore shows that the η = 0 solution is indeed insensitive to the boundary conditions at
the BH horizon.

Helicity reversing amplitude. In an analogous way, BHPT solutions for the helicity
reversing amplitude (4.5) can be matched to the minimal coupling amplitude (D.2). Running
similar analysis, we find that for Teukolsky solutions with boundary conditions of purely
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Spin Kerr Solution

a5

c
(i)
2 = 0 , i = 0, 1, 2

c
(0)
3 = 128

45a?4 (1 + 3a?2)<
(
ψ(0)(2ia

?

κ̂
)
)

c
(1)
3 = 16

45a?4
(

(4− 3a?2)<
(
ψ(0)(ia

?

κ̂
)
)

+ 12(1 + 3a?2)<
(
ψ(0)(2ia

?

κ̂
)
))

c
(0)
4 = 32(1 + 3a?2)

45a?5 i

(
κ̂− 4=

(
ψ(0)(2ia

?

κ̂
)
))

c
(1)
4 = 8

45a?5 i
(
(8 + 9a?2)κ̂− 2a?(4− 3a?2)=

(
ψ(0)(ia

?

κ̂
)
)

− 16a?(1 + 3a?2)=
(
ψ(0)(2ia

?

κ̂
)
))

c
(2)
4 = 4

45a?5 i
(
(2 + 6a?2 − 3a?4)κ̂− 2a?(4− 3a?2)=

(
ψ(0)(ia

?

κ̂
)
)

− 2a?(2 + 3a?2)=
(
ψ(0)(2ia

?

κ̂
)
))

Table 2. Exact matching to spin operators, where coefficients are relaxed to functions of the spin
norm “a”. Here a5 refers to quintic monomials in {k2 · a, k3 · a,w · a} but to all orders in the norm.
In the large a limit, they reduce to the coefficients of table 1.

ingoing waves at the BH horizon, the exponential (D.2) does not receive any modification
at up to the sixth order in spin. Remarkably, BHPT solutions in this case are independent
of the branch choice used for the analitic continuation from a? < 1 to a? � 1.

Full series in a?. As anticipated in the previous section, by allowing the coefficients c(i)
j

of our ansatz to depend on the parameter a, one can alternatively obtain an exact matching
to BHPT, see table 2. This is a non-trivial match since all the angular dependence on the
vector ~a, which is carried by the spherical harmonics in BHPT, is still captured by the EFT
operators {k2 · a, k3 · a,w · a} in the ansatz. In turn, this eliminates the necessity to include
an additional operator |a| in our expansion, at the same time exhibiting a resumation of
the BHPT result where all branch cuts are explicit in the polygamma functions.

Near zone/far zone splitting. It has been suggested recently by the authors of [86]
to consider the following factorization of the ratio of the linear perturbation coefficients
entering in the phase shift (4.6),16

B
(refl)
`mω

B
(inc)
`mω

= 1
ω2s

1 + ieiπν K−ν−1
Kν

1 + ie−iπν sin(π(ν−s+iε))
sin(π(ν+s−iε))

K−ν−1
Kν︸ ︷︷ ︸

near zone

×
Aν−
Aν+

eiε(2 ln ε−(1−κ))

︸ ︷︷ ︸
far zone

. (4.18)

They indicate that finite-size effects should be encapsulated in the first “near zone” factor,
whereas the second factor contains non-linearity effects of the gravitational field. Using

16The explicit form for the functions entering this ratio can be found e.g. in [84] and in appendix A in
Part I [73].
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Spin “Far zone” solutions

a4 c
(0)
1 = −189056

103041 , c
(1)
1 = −86044

34347 , , c
(2)
1 = −10402

34347 ,

a5

c
(0)
2 = 114208

148837 , c
(1)
2 = 1130912

744185 , c
(2)
2 = 435488

2232555

c
(0)
3 = 286064608

1157665635 , c
(1)
3 = − 2531080196

15049653255 , c
(2)
3 = − 745559744

5016551085

c
(i)
4 = 0, i = 0, 1, 2, e(0)

1 = 64
195 , e

(1)
1 = 32

117 , e
(2)
1 = 8

195

Table 3. Spin 4 and 5, “Far zone” Teukolsky solutions.

this separation and keeping the contributions coming from the “near zone” term only, the
authors demonstrated in a gauge invariant way the vanishing of the static Love numbers
for a Kerr BH. In the context of gravitational wave scattering treated in this work, it is
natural then to wonder to what extent the “far zone” factor leads to a scattering amplitude
which can, on the one hand, be compared to the minimal coupling expressions of section 3,
and on the other hand, be used to fix the free coefficients of the Compton ansatz for the
higher spin amplitude (3.40).

Running an analysis analogous to the one used in section 4, up to order ε6 in (4.14),
“far zone” solutions produce scattering amplitudes that are purely polynomial in a?,17 and
have therefore a unique (trivial) a? � 1 extension. Up to order a3, the “far zone” solutions
produce an amplitude that matches precisely up to the third order in the a?-expansion
of the exponential in (3.40). At the fourth order in spin, the “far zone” solution does not
match exactly the exponential amplitude; however, the resulting amplitude can still be
accommodated in the Compton ansatz (3.40), with contact terms modifications summarized
in table 3. This solution breaks explicitly the spin-shift symmetry.

In order to match the “far zone” solution at the fifth order in spin, we find the
ansatz (3.40) needs to be enlarged by the non-contact terms

∆Pξ = e
(0)
1

(w·a)5

ξ2 + e
(1)
1

(w·a)5(k2·a)(−k3·a)
ξ

+ (w·a− k2·a)(w·a+ k3·a)w·a
(
e

(2)
1 (k2·a)(−k3·a)− e(0)

1 (w·a)2
)
,

(4.19)

with the values of the coefficients given in table 3. Interestingly, it is easily checked that
these extra terms preserve the t-channel residue but modify the s- and u- channel exchanges.
This signals that the far-zone amplitude proposed in (4.18) produces the effect of additional
massive states (different to Kerr) propagating in the s channel. It would be interesting to
explore this modification further.18

17This is expected as polygamma contributions are present only in the Kν and K−ν−1 functions in (4.18).
18From the QFT point of view, one can expect that they correspond to 3-pt amplitudes of a spin S particle

decaying into a spin S′, where both S, S′ →∞.
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5 Discussion

In this paper, we showed how to extract a tree-level gravitational Compton amplitude from
solutions of the Teukolsky equation, up to the sixth order in the BH’s spin, for both the
helicity preserving (f) and helicity reversing (g) cases. We showed by explicit computation
that up to the considered order in spin, there is a contribution (η = 0) to the helicity
preserving amplitude that does not depend on the boundary conditions at the horizon,
which we therefore identify with the conservative part of the amplitude. On the other
hand, for the same amplitude, we have seen that BH horizon dissipative effects can easily
be encapsulated by operators in the gravitational Compton amplitude proportional to |a|,
therefore enlarging the usual 3-dimensional BH spin basis. Investigation of the effect of this
spin basis enlargement on the spin supplementary condition needs to be further investigated.
For the helicity reversing scenario, a unique conservative (only real contributions) amplitude
has been extracted from low energy Teukolsky solutions up to sixth order in BH spin, whose
spin structure coincides exactly with the truncation of the exponential ek2·a+k3·a up to sixth
order in a.

Although the conservative solutions have a unique identification, dissipative effects
(η = ±1) are sensitive to the choice of branch made when doing the continuation of Teukolsky
solutions from a? < 1 to a? � 1. This is a consequence of erasing the BH horizon by
the analytic continuation, therefore obscuring the uniqueness of the interpretation of the
physical behavior of gravitational waves at the BH horizon. Further investigation regarding
this non-uniqueness of the imaginary contributions to the amplitude is left for future work.
Notice however, the issues with identifying a unique dissipative contribution to the Compton
amplitude have origin in the analytic continuation. This issue could be avoided by looking
for low energy amplitudes from the solution to the Teukolsky equation, but keeping all
orders in a/GM , as we have done in table 2. Further research in this direction is left for
future work.

It is important to note, however, that the complications of analytic continuation and
related issues affect our extraction of the tree-level Compton amplitude starting only from
the fifth order in spin. Up to fourth order in spin, we have found that the unambiguously
unique tree-level part of the Teukolsky amplitude coincides precisely with the previously
conjectured exponential form of the classical Compton amplitude [6, 7, 30] arising from a
classical or heavy-particle limit from the “minimally coupled” Compton amplitude originally
presented in [28]. This provides a significantly more complete justification that the results for
the 2PM (or next-to-leading-order PN) conservative dynamics of two-BH systems presented
in [6, 14, 20, 33, 59] do indeed fully correspond to predictions of GR through fourth order
in spin. Concerning the recent predictions at the fifth order in spin (and beyond) for our
Compton amplitude, it is left for future work to further use it in the two-BH problem at
higher orders in spins and with generic spin orientations.

Finally, it would be interesting to study the double copy structure of the gravitational
Compton amplitude obtained from Teukolsky solutions. The ansatz for the higher spin
Compton amplitude (3.40) was built by factorizing the scalar amplitude, therefore intrinsi-
cally introducing a double copy structure in the amplitude. The single copy amplitude to
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study in the context of wave perturbations will be spin s = −1 perturbations of
√
Kerr [23].

Since in the static configuration,
√
Kerr is obtained from the Kerr-Newman solution in the

GM → 0 limit, a wave equation analog to the Teukolsky equation may be derivable from
electromagnetic perturbations on a Kerr-Newman background, setting GM → 0 at the end
of the computation. Exploration of this idea is left for future work.
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A Chiral conjugate amplitude

In this appendix we derive the following relation between conjugate amplitudes, de-
fined in (3.5):

Aantichir.
n = e2K·W̃A

chir.|W→W̃
n +O(~) (A.1)

Recall W is an operator acting on spin-S representations. More formally, we should use the
notation WS , but we chose to omit the spin-subscript in order to simplify the notation. As
both amplitudes are functions of operators qi ·W, for a certain set of momentum transfer
variables {qi} ∼ ~, it suffices to show the following

〈εn|
j∏
i=1

qi ·W|ε1〉 = [εn|e2K·W̃
j∏
i=1

qi · W̃|ε1] +O(~) . (A.2)

We identify K = pn−p1 as one of the momentum transfer variables, e.g. K = qj+1. In order
to proceed we introduce the spin-1/2 chiral representation of the Pauli-Lubanski operator,
denoted by aµ ≡W 1

2
. According to eqs. (3.10), (3.12) we have

Jµν = i

4(σµσ̃ν − σν σ̃µ) =⇒ aµ = uνJνµ
iM

= 1
4M (Uσ̃µ − σµŨ) , (A.3)
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where we are using uµ = pµ1
M , and U = uµσ

µ, Ũ = uµσ̃
µ. Defining the antichiral conjugate

ãµ we note that
aµU = U ãµ , (A.4)

which is the infinitesimal version of U = e−q·aUeq·ã, manifesting the fact that aµ is a little
group generator. Furthermore, the operators aµ are a covariant version of the Pauli matrices
and hence lead to the algebra.

Maµaν = M−1(ηµν − uµuν)I + Sµν . (A.5)

Now we introduce the notation ai := qi · a. Note that according to the scaling rules ai ∼ ~0,
i.e. they are classical variables. Nevertheless, their product satisfies

Maiaj = M−1 (qi · qj − (qi · u)(qj · u)) I + qi · S · qj , (A.6)

which scales as O(~) and hence we can drop it as a quantum contribution.19 This reflects
the absence of quadrupole operator for spin-1/2 states. In the following, we will also need
the identity

Uq̃i = uµqνσ
µσ̃ν = 2Mai + (u · qi)I (A.7)

q̃iU = 2M ãi + (u · qi)I , (A.8)

which easily follows from (A.3) together with σ(µσ̃ν) = ηµνI.
We are now ready to provide a derivation of (A.2). From the construction of the tensor

product states (3.3), we know that the spin-S generator Wµ in (A.2) is the direct sum of
spin-1/2 generators. Then, we have

Wi := qi ·W = ai ⊗ I⊗2S−1 + I⊗ ai ⊗ I⊗2S−2 + . . . . (A.9)

Inserting this in the l.h.s. of (A.2) leads to

〈εn|
j∏
i=1

Wi|ε1〉 = j!
(

2S
j

)
〈εn|a1 ⊗ a2 ⊗ . . .⊗ aj ⊗ I⊗2S−j |ε1〉+O(~) . (A.10)

(we used that states |ε1〉, |εn〉 are constructed as symmetrized tensor products, together
with the nilpotent condition aiaj ∼ ~, which forces the operators ai to occupy one slot each
in the tensor product). Note that this formula imposes j ≤ 2S, which shows that a spin-S
particle does not lead to classical contributions beyond a2S .

To change the basis of states we use

〈εn| = [εn|
(
Ũ + 1

M
K̃

)⊗2S
(A.11)

|ε1〉 = U⊗2S |ε1] (A.12)

19In certain cases the r.h.s. of (A.6) actually vanishes identically, for example for the combination
qi = qj = w − k2 appearing in A4 for low spins.
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because pµn = Muµ +Kµ. Further dropping K̃ai ∼ ~, and using (A.4) and (A.8) for q̃i = K̃

we obtain

〈εn|
j∏
i=1

Wi|ε1〉= j!
(

2S
j

)
[εn|(Ũa1U)⊗(Ũa2U)⊗. . .⊗(ŨajU)⊗(I+ 1

M
K̃U)⊗2S−j |ε1]+O(~)

= j!
(

2S
j

)
[εn|ã1⊗ã2⊗. . .⊗ãj⊗(I+2ã·K)⊗2S−j |ε1]+O(~)

=
2S−j∑
l=0

j!
(

2S
j

)(
2S−j
l

)
[εn|ã1⊗ã2⊗. . .⊗ãj⊗(2ã·K)⊗l⊗I⊗2S−j−l|ε1]+O(~)

=
∞∑
l=0

j!
(j+l)!

(
2S
j+l

)−1(2S
j

)(
2S−j
l

)
︸ ︷︷ ︸

(l+jj )

[εn|(2K ·W̃)l
j∏
i=1

W̃i|ε1]+O(~) .

(A.13)

In the last line, we have applied again the identity (A.10), this time for the antichiral
state basis. The sum can be extended to the infinite series since, as we argued, it leads to
quantum corrections for l + j > 2S. Thus we obtain a formal exponentiation, which ends
the proof of (A.1).

B Classical crossing symmetry

In this appendix, we derive the classical constraint (3.39) arising from Crossing sym-
metry. Using the definition (2.3) we can write the scalar component of the Compton
amplitude (3.40), simply as

A0
4 = 32πGM2 × (ε2 · u)2(ε̃3 · u)2

ξ
. (B.1)

Notice that because of our gauge fixing (3.8), the product of polarization vectors also
generates an overall pole in t.

We now introduce the chiral conjugate amplitude ÂS4 by flipping the helicity of the two
gravitons: we turn k2 into negative helicity and k3 into positive helicity. It reads

ÂS4 = [ε4|Âantichir.
4 |ε1] (B.2)

Due to parity conservation, we note that ÂS4 is obtained from AS4 = 〈ε4|Achir.
4 |ε1〉 by

formally swapping σµ ↔ σ̃µ, including the exchange of angle and square brackets. If Achir.
4

is expanded in spin operators aµ, chiral conjugation implies that we must take aµ → −ãµ

(the minus sign coming from (3.34), from which J̃µν is now anti self-dual20). In other words,
from the form (3.38) we have

Âantichir.
4 = Â0

4 × Pξ(−k2 · ã,−k3 · ã,−w̃ · ã) , w̃µ = u · k2
u · ε̃2

ε̃µ2 . (B.3)

20Chiral conjugation can also be formulated as a PT transformation, for which the spin pseudovector will
flip sign.
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Crossing symmetry is the fact that AS4 can also be obtained from ÂS4 by swapping particle
labels 2 ↔ 3, which physically swaps the channels s and u (even though at this point
we are working with the analytically continued both-incoming amplitude). Using defini-
tions (3.5) and (B.2), this implies that Aantichir.

4 can be obtained from Âantichir.
4 via the same

procedure. Thus,

Aantichir.
4 = A0

4 × Pξ(−k3 · ã,−k2 · ã,−w′ · ã) , w′µ = u · k3
u · ε̃3

ε̃µ3 , (B.4)

where we used that the ratio ξ is invariant under the exchange. We can now finally use (3.33)
to compare (B.4) with (3.38) as ~→ 0. We obtain

Pξ(−k3 · ã,−k2 · ã, w · ã) = e2(k2+k3)·ãPξ(k2 · ã, k3 · ã, w · ã) +O(~) , (B.5)

where we used that in the classical limit w′ = u·k3
u·ε̃3 ε̃3 → −

u·k2
u·ε2 ε2 = −w. Another way to

phrase this result is, from (3.37), given by (3.39).

C Spinning spherical harmonics as EFT spin operators

In the main text we have constructed an ansatz for the Compton amplitude in terms of
the spin operators {k2 · a, k3 · a,w · a}. In contrast, the results from BHPT are given in
terms of spinning spherical harmonics hYlm(θ, φ). The matching can be done for instance
by projection of the ansatz into harmonics, cf. (4.10). In this appendix we provide an
alternative: we outline a direct construction to rewrite each combination of hYlm(θ, φ)
explicitly in terms of spin operators, without the need of performing the projection integrals.

C.1 Harmonics from massive spinors

First, we provide a representation of the spinning spherical harmonics [87] using the spinor
variables of section 3. This representation allow us to translate the Compton amplitude
written in the latter variables as a sum of partial waves.

Spherical harmonics are irreducible representations of the massive little group su(2),
see appendix III in [88] for a more detailed discussion. This requires specifying a time
direction, breaking Lorentz symmetry into su(2), which here we take as

U = 1
M
σµp

µ
1 = |1a〉[1a| = |1+〉[1−| − |1−〉[1+| . (C.1)

To define spherical harmonics we construct functions on the celestial sphere CP1 on which
su(2) acts via rotations. Furthermore, we refer to the harmonics as spinning if the functions
carry helicity weight h under the massless little group SO(2). Recall we have associated the
null direction with the massless momenta of the outgoing gravitational wave, namely

k3 = |λ〉[λ| . (C.2)

To introduce the projective variables defined on the sphere we remove an overall energy
scale: define

k̂ := k3
2u · k3

= |λ〉[λ|
〈λ|U |λ] , (C.3)
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which indeed is invariant under projective rescalings of |λ〉, [λ|,

|λ〉 → t|λ〉 , |λ]→ t̃|λ] , (C.4)

and hence carries no helicity weight. We then introduce, extending the discussion of e.g. [88],

hYlm(θ, φ) = 1
〈λ|U |λ]l 〈λ1(a1〉 · · · 〈λ1al−h〉︸ ︷︷ ︸

l−h

[λ1al−h+1 ] · · · [λ1a2l) ]︸ ︷︷ ︸
l+h

, l ≥ h , (C.5)

such that
(a1, . . . , a2l) = (+, . . . ,+︸ ︷︷ ︸

l+m

,−, . . . ,−︸ ︷︷ ︸
l−m

) . (C.6)

This transforms as hYlm → (t/t̃)h hYlm and hence carries helicity, or spin-weight, h. We
will make the su(2) indices ai = 1, 2, together with its complete symmetrization, implicit in
the following. It is easy to show that this agrees with the definition of the harmonics given
in [87] by introducing stereographic coordinates in CP1, via |λ〉 = (1 z) and |λ] = (1 z̄).

For our purposes, we will parametrize the outgoing massless momenta in terms of the
two angles of the celestial sphere,

kµ3 = ω(1, n̂(θ, φ)) , (C.7)

for the energy scale ω, and a unit vector n̂. Then, the spinors give the natural embedding
from the Bloch sphere

|λ〉 =
√

2ω
(
−e−iφ/2 sin(θ/2)|1+〉+ eiφ/2 cos(θ/2)|1−〉

)
, (C.8)

[λ| =
√

2ω
(
−eiφ/2 sin(θ/2)[1−|+ e−iφ/2 cos(θ/2)[1+|

)
, (C.9)

which correspond to the spinors introduced in (2.7). In these coordinates, the incoming kµ2
is obtained by setting θ = 0 and hence

k̂2 = k2
2u · k2

= |1−〉[1+| . (C.10)

In this notation we find that the main text t-channel is

ξ = 1
k̂2 · k̂

= 〈λ|U |λ]
〈λ−〉[λ+] = 〈λ+〉[λ−]

〈λ−〉[λ+] − 1 . (C.11)

More generally, for any function of |λ〉, |λ] ∈ CP1 we can introduce the helicity h as the
weight of |λ〉 minus the weight of |λ] (here a spinor is weight 1/2). We can also introduce
its ‘azimuthal weight’ m as the weight in |±〉, |±]. For instance (C.10) has azimuthal weight
m = 0 (and h = 0), which means it is aligned with the z axis. One can then think of the
polarizations (3.8)

ε−2 · u = [λ|U |−〉
[λ+] = [λ−]

[λ+] , ε+3 · u = [λ|U |−〉
〈λ−〉

= [λ−]
〈λ−〉

, (C.12)
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as having, respectively, (h,m) = (0,−1) and (h,m) = (1, 0). Thus, in aligning k2 with the
z axis we have effectively turned its corresponding helicity into azimuthal weight. Indeed,
using this we see that the scalar amplitude

A0
4 = 32πGM2 × (ε2 · u)2(ε̃3 · u)2

ξ
, (C.13)

has (h,m) = (2,−2) (it follows from (C.11) that ξ has weight (0, 0)). As a consequence it
can be expanded into all harmonics consistent with those quantum numbers, in the form

A0
4 =

`max=∞∑
`≥2

2Y`,−2(θ, φ)c` = 2Y2,−2(θ, φ)f(ξ) , (C.14)

where c` are numerical constants (independent of ξ). The upper limit `max can be obtained
by expanding in powers of 〈λ|U |λ], in this case the series does not truncate. The second
equality, involving a scalar function f(ξ), follows from a simple lemma: any function with
(h,m) = 0 in CP1 can be written solely as a function of (C.11). Explicitly in this case
f(ξ) = 32GM2ξ.

C.2 Relation to spin operators

We are now in position to rewrite spherical harmonics in terms of the spin operators of
section 3.3. The main ingredient is the relation

u · F−2 · a
ε2 · u

= w · a− k2 · a , (C.15)

where we have emphasized the helicity −2 of k2. We should temporarily also consider
the other helicity configuration as well. This is simply the chiral conjugate of the above.
Using (B.3) this is

u · F+
2 · a

ε2 · u
= w̃ · a− k2 · a . (C.16)

Using (C.12) we can rewrite this as

[λ+]
[λ−]a++ = (w − k2) · a , 〈λ−〉

〈λ+〉a−− = (w̃ − k2) · a , (C.17)

where a±± = ω[±|a|±〉. Furthermore

k2 · a = a+− . (C.18)

Thus we have identified three operators, each with either m = −1, 0, 1 and h = 0.21 (The
relation to the basis {k2 · a, k3 · a,w · a} is obtained from (3.45).) Products of them span
the spherical harmonics of the previous section, modulo functions f(ξ). For instance, for
m ≥ −2, at order (aω)j , we can use the ansatz

(aω)j 2Y`,m = f`(ξ, γ)(ε−2 · u)2(ε+3 · u)2(w̃ · a− k2 · a)m+2(k2 · a)j−m−2 , (C.19)
21They span a SL(2,R) algebra Lm+n

2
= am,n.
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and easily solve for the function f`(ξ, γ) at each `. Let us explain the dependence on γ,
defined by (4.11). Since in our frame k3 = k3(θ, φ), we can perform a z-rotation to align aµ

to the x− z plane, setting φ′ = 0 in by (4.11). This yields

a++ = −a−− = aω

2 sin γ , a+− = aω

2 cos γ . (C.20)

Now, note that the coefficients β`m (4.14) in the harmonic expansion also carry factors of
cos γ and sin γ. Factors of cos γ can be exchanged by the operators k2 · a/|a|ω introduced
in section 3. Furthermore, factors of sin2 γ can be exchanged by the m = 0 combination

4[(w − k2) · a][(w̃ − k2) · a]
(|a|ω)2 = − 1

ξ + 1 sin2 γ . (C.21)

By rewriting all the harmonics in the series (4.7) in terms of spin operators we expect
spurious poles to cancel at each order in aω. Note that (3.46) is equivalent to the identity

a2ω2

4 = a++a−− − a2
+− , (C.22)

which can be used to eliminate the operator |a|. As our final example, consider the
exponential part of the Compton amplitude. It can be written as a combination of
m = −1, 0, 1 terms:

〈AS4 〉 = 2Y2,−2(θ, φ)× 32GM2ξ

(
e
ξ−1
ξ

(k2−w)·a− ξ+1
ξ

(k2−w̃)·a+ 2
ξ
k2·a + . . .

)
. (C.23)

Let us consider the polar setup γ = 0, meaning a++ = a−− = 0. In this case the first two
terms in the exponent vanish due to (C.17), as well as the contact terms given by (. . .). By
expanding in powers of a we are left with the series

〈AS4 〉γ→0 = 2Y2,−2(θ, φ)× 32GM2ξ
∑
k

1
k!

(2
ξ
k2 · a

)k
. (C.24)

Since k2 · a = aω/2, we see that at order (aω)k we obtain a divergence ξ1−k ∼ 1
〈λ|U |λ]k−1 .

Together with the fact that k2 · a has m = 0, this means that at this order the amplitude
can be expanded in the form (C.14) with `max = k − 1. We have explicitly checked this in
the polar BHPT computation, in contrast with the non-polar case in which the series does
not truncate.

D Spin-shift symmetry

Inspired by lower spin results, recently, it has been proposed by the authors of [20, 33], the
higher-spin (O(al>4)) 2PM amplitude for the Eikonal scattering of two Kerr BHs, should
respect certain symmetry associated with the shift of the spins of the bodies by an amount
proportional to the momentum transfer of the massive 2→ 2 scattering process.

The aforementioned 2PM amplitude can be computed for instance from the unitary
gluing of two gravitational Compton amplitudes 〈A4〉. Up to the fourth order in spin,
only the opposite helicity configuration for the Compton amplitude contributes to the final
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Spin Shift-Sym. Free Coeffs. Relation to [20]

a4 c
(i)
1 = 0, i = 1, 2 c

(0)
1 c

(0)
1 = −d

(4)
0
4!

a5
c

(i)
j = 0, i = 1, 2, j = 2, 3

c
(0)
3 = 4

15 , c
(i)
4 = 0 , i = 0, 1, 2

c
(0)
2 c

(0)
2 = 32+5d(4)

0 −d
(5)
0

5!

a6

c
(i)
j = 0, i = 0, 1, 2, j = 5, 9, 10

c
(i)
j = 0, i = 1, 2, j = 6, 7, 8

c
(0)
8 = − 4

45 − c
(0)
6

f
(0)
1 = 0

d
(0)
1 = − 8

45 + c
(0)
6 + 4c(0)

7

c
(0)
6 , c

(0)
7

c
(0)
6 =176 + d

(4+5+6)
0 + d

(6)
1

180

c
(0)
7 =− 128 + d

(4+5+6)
0

6!

Table 4. Constraints on the free coefficients of the up to a6, gravitational Compton ansatz (3.40)
if the Spin-shift-symmetry was imposed. The last column shows the relation to [20], where the
symmetry was imposed directly on the 2 PM amplitude. Operators c(i)

4,9,10 are proportional to |a|,
and are not invariant under such symmetry; this is the reason they did not show up in the analysis
of [20, 33].

result [14]. In the aligned spin scenario, it was checked by explicit computation in [6], the
same helicity Compton amplitude does not contribute to the 2PM scattering angle.

As it turns out, at lower orders in spin, the spin-shift symmetry can be traced to
be a symmetry of the opposite-helicity gravitational Compton amplitude. The symmetry
transformation is given by [21]:

aµ → aµ + ςbq
µ/q2 , (D.1)

where q = kµ2 +kµ3 , and ςb is an arbitrary parameter.22 It can be easily checked the exponential
in (3.32) is indeed invariant under such transformation. However, one must notice this is a
symmetry only of the classical amplitude, namely after the boost operation (3.25), followed
by the merging of the two exponentiated quantum operators, are performed. In other words,
the quantum amplitude (3.18) does not possess such symmetry.

Given its emergence in the classical limit, one could ask if such symmetry is a feature
of the BHPT analysis and can be traced back to the Teukolsky equation. To address this,
we observe how such transformation acts on the same helicity Compton amplitude. In this
case, the classical amplitude is given by an analog exponential [30]

A = 〈A0〉e−(k2+k3)·a , (D.2)

which does not remain invariant under the transformation (D.1). It is a short exercise to
further check directly that the covariant amplitude (2.10) does not possess the symmetry

22The analog symmetry transformation ∆aµαkµ2 leaves invariant the 3-point amplitude (3.29).
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except in the opposite helicity case. As this general helicity setup is captured universally
by the Teukolsky equation (in particular (D.2) is consistent with BHPT at least up to a6)
this suggests that the symmetry is not a property of the equation but rather a property of
the 2PM amplitude. Indeed, as the same-helicity setup does not contribute to the 2PM
amplitude, this explains why the latter enjoys shift symmetry.23

At this point, we could also inquire how such a symmetry constrains our ansatz (3.40)
for the higher-spin amplitude. Indeed, after imposing the constraint for cancellation of the
spurious pole (see column 2 of table 1), invariance under the transformation (3.40), fixes
the free coefficients as summarized in table 4. This is in agreement with the analysis of [20].
In this work, however, we have kept free the coefficients of the opposite helicity Compton
ansatz and instead, asked whether the shift-symmetry arises from the BHPT analysis. As
it turns out, solutions of the Teukolsky equation, at the given order in spin an, do not
preserve such symmetry for n > 4.

E Covariant spin multipole double copy

In this appendix, we show how to obtain the classical gravitational Compton amplitude (2.10)
up to quadratic order in spin, from the covariant spin multipole double copy introduced
in [8, 16]. We first proceed by introducing the formalism in general dimensions, and then
specialize to the D = 4 case, in order to make contact with the BHPT results.

Let us start by recalling the spin multipole decomposition of the QED Compton
amplitude for matter of spin s− 0, 1/2, and 1, with the kinematic conventions outlined in
figure 2, as given in [8]

AQED
s,4 = e2

(p1·k2) (p1·k3) 〈εs,f | ·
[
ω(0)J (0)

s +ω(1)
µν J

(1)µν
s +ω(2)

µνρσJ
(2)µνρσ
s

]
· |εs,i〉 . (E.1)

The multipole coefficients ω(i) are universal and read explicitly

ω(0) = 2p1·F2·F3·p1, (E.2)

ω(1)µν = p1·F2·p4F
µν
3 +p1·F3·p4F

µν
2 +p1·(k2+k3)

2
[
Fµ2,ρF

ρν
3 −F

ν
2,ρF

ρµ
3

]
(E.3)

ω(2)µνρσ = k2·k3
8

[
Fµν2 F ρσ3 + Fµν3 F ρσ2

]
, (E.4)

with Fµνi = 2k[µ
i ε

ν]
i . The spin multipole operators are denoted by J (0)

s = Is, J (1)µν
s = Jµνs

and J (2)µνρσ
s = {Jµνs , Jρσs }, where Jµνs corresponds to the Lorentz generator in the spin-s

representation, acting on the corresponding spin-s polarizations |εs,i〉. Note that while
J

(0)
s and J

(1)µν
s are irreducible representations of the Lorentz group SO(D − 1, 1), the

operator J (2)µνρσ
s has the symmetries of the Riemann tensor and can be further decomposed

into irreducible SO(D − 1, 1) representations. This decomposition goes by the name of
Ricci decomposition.24 When further decomposing the quadratic in J contribution to the

23This was explicitly checked in [20], up to eighth order in spin for generic spin orientation.
24See for instance the Wikipedia article https://en.wikipedia.org/wiki/Ricci_decomposition.
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Compton amplitude into irreps., it follows

ω(2)
µνρσJ

(2)µνρσ
s =

{
1̂s[ω(2)] + [ω(2)]µνQµνs , s = 1,

1̂s[ω(2)] + [ω(2)]µνρσ`µνρσ, s = 1
2 ,

(E.5)

where `µνρσs = J
(2)[µνρσ]
s = , and

1̂s = Js,µνJ
µν
s

2 , Qµνs = = {Jµρs , J ν
s,ρ}+ 4

D
ηµν 1̂s . (E.6)

We identify Qµνs with the traceless Ricci tensor, whereas 1̂s corresponds to the scalar
curvature. Notice remarkably, (E.1) does not possess a Weyl contribution. This will
be important when we discuss the double copy below. In addition, for spin 1/2 we get
a totally antisymmetric contribution due to the non-commutativity nature of the Dirac
gamma matrices.

In (E.5), we have further introduced the notation [ω(2)], [ω(2)]µν and [ω(2)]µνρσ for the
corresponding projections of the multipole coefficient ω(2)µνρσ. The explicit form for the
two first read

[ω(2)] = 4
D(D − 1)ω

(2)
µνρση

µ[ρησ]ν = k2·k3
D(D − 1)F2,µνF

µν
3 (E.7)

[ω(2)]µν = k2·k3
D − 2F2 (µ|ρF

ρ
3 |ν) , (E.8)

whereas for the latter we simply have [ω(2)]µνρσ = ω(2) [µνρσ]. We refer to the irreducible
operators of SO(D − 1, 1) as the covariant spin multipole moments. This then allows us
to identify the covariant traceless spin quadrupole moment Qµνs , existing only for spin 1
particles in QED. This is the reason, electrons do not possess spin quadrupole moment.

Covariant 1
2 ⊗

1
2 double copy: let us now compute the gravitational Compton amplitude

up to quadratic order in spin. It is given simply by the KLT double copy formula via

〈ε̃s̃,f , εs,f |AGR
4 (Js+s̃) |ε̃s̃,i, εs,i〉 = K4 〈εs,f |AQED

4

(
J (s)

)
|εs,i〉 � 〈ε̃s̃,i| ÃQED

4

(
J̃ (s̃)

)
|ε̃s̃,f 〉 ,

(E.9)
where the KLT kernel at four-points is

K4 = κ2

8e4
(p1·k2) (p1·k3)

k2·k3
. (E.10)

Taking each copy of the QED amplitude in this expression to be the spin s = 1/2
amplitude, allows us to define the symmetric double copy product � for the SO(D − 1, 1)
spin-multipoles as follows:

I 1
2
� I 1

2
= I1, 1̂ 1

2
� I 1

2
= 1

21̂1, I 1
2
� Jµν1

2
= 1

2J
µν
1 ,

Jµν1
2
� Jρσ1

2
=1

4Σµνρσ
1 + 1

D−2η
[σ[νQ

µ]ρ]
1 + 1

2D(D−1)η
σ[νηµ]ρ1̂1

(E.11)

Notice the double copy rule of the second line corresponds to nothing but the Ricci
decomposition of the product of two Lorentz generators into irreducible representations

– 39 –



J
H
E
P
0
5
(
2
0
2
3
)
2
1
1

of SO(D − 1, 1). Spin multipoles in the right-hand side of eq. (E.11) corresponds to
operators acting the gravitational theory, whereas the one in the left-hand side acts on their
corresponding single copy.

Let us provide several explicit examples that follow from double copy rules (E.11): at
spin zero, the double copy recovers the usual scalar gravitational Compton amplitude

A
(0)GR
4 = κ2

8
ω(0)ω(0)

k2·k3 (p1·k2) (p1·k3) (E.12)

Next, at linear order in spin we simply have

A
( 1

2 )GR
4 = κ2

8
ω(0)ω

(1)
µν 〈ε̃1/2,f , ε1/2,f | J

µν
1 |ε̃1/2,i, ε1/2,i〉

k2·k3 (p1·k1) (p1·k2) , (E.13)

and finally at quadratic order in spin

A
(1)GR
4 =κ2

8

1
2ω

(0)[ω(2)] 〈ε̃1,f , ε1,f | 1̂1 |ε̃1,i, ε1,i〉
k2·k3 (p1·k2) (p1·k3)

+ κ2

8
ω

(1)
µν ω

(1)
ρσ

k2·k3 (p1·k2) (p1·k3) 〈ε̃1,f , ε1,f |
[1
4Σµνρσ

1 + 1
D−2η

[σ[νQ
µ]ρ]
1

+ 1
2D(D−1)η

σ[νηµ]ρ1̂1
]
|ε̃1,i, ε1,i〉 .

(E.14)

Here we have omitted the contribution form , since it does not contribute to the classi-
cal amplitude.

Classical limit: as explained in appendix A of [77], in order to interpret the results for
the previously computed amplitude as those for the scattering of a gravitational wave off
a spinning BHs, we need to choose a reference frame — which can be fixed by choosing
a time-like vector uµ satisfying the Spin Supplementary Condition (SSC) — so that the
massive polarization states are aligned towards the same canonical polarization states.
When doing so, the SO(D − 1, 1) generator Jµν1 , which consists of a SO(D − 1) Wigner
rotation plus a boost, Jµν1 = Sµν − 2u[µKν], can be interpreted as a classical spin tensor
for the rotating object, once the boost component is removed away. The SSC to satisfy is
then simply given by uµSµν = 0. After this is done, the polarization states can be removed
from the gravitational amplitude, leaving us with a classical object, which we will interpret
as the classical amplitude for the gravitational wave scattering process. The alignment
of the polarization states of the incoming/outgoing massive particle effectively induces a
map of the SO(D − 1, 1) multipoles towards the SO(D − 1) multipoles. We refer to the
multipole moments of the rotation subgroup as rotation multipole moments. For a detailed
explanation of how to do the map, the reader can consult the aforementioned appendix. In
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here we restrict ourselves to simply summarize the map as follows:

Jµν1 → Sµν

Qµν1 → Q̄µν + 1
D − 1 η̄

µν 1̂1 −
1
D

1̂1

Σµνρσ → 4
D − 3u

νQ̄µρuσ

1̂1 →
1
2SµνS

µν ,

(E.15)

where η̄µν = ηµν −uµuν , and Q̄µν is the SO(D−1) spin quadrupole moment, which satisfies
the traceless condition Q̄µν η̄µν = 0.

Spin-multipoles for D=4. Now, since we are interested in making contact with the
BHPT computations, we specify the spin multipoles for the D = 4 scenario. In such case, we
can write the rotation spin dipole moment in terms of the Pauli-Lubanski vector sµ = Maµ,
via Sµν = εµνρσp1ρaσ, whereas the rotation spin quadrupole moment reads

Q̄µν = m2
(
aµaν − 1

3 η̄
µνa2

)
. (E.16)

In this notation, the SSC is satisfied by the spin vector, p1µa
µ = 0. Finally, to extract

the classical limit of the double copy amplitude we have to do the usual ~ scaling of the
massless momenta, ki → ~k1, and in an analogous way for the spin vector we do aµ → aµ/~.
Notice we have identified uµ with the incoming massive object’s four-velocity; in principle
one could had identified uµ with either pµ1 or pµ4 , or the average (p1 + p4)µ/2; however, in
the classical limit all of the choices are equivalent to each other, as we widely explained in
the paragraph above (3.9). With all this in mind, one can explicitly check that the final
classical amplitude up to quadratic order in spin can be written as:

〈AGR
4 〉 = κ2

8
〈ω(0)〉

k2·k3(p1·k2)2

[
〈ω(0)〉+ 〈ω(1)µν〉εµνρσpρ1a

σ + 〈ω(2)
αβ 〉a

αaβ
]

+O(a3) , (E.17)

which corresponds exactly to (2.10). In here the angular brackets indicate the classical limit
of the corresponding multipole coefficients given in (E.2) and (E.3). We have also identify
the classical multipole coefficient for the quadratic in spin contribution in classical E&M as

〈ω(2)αβ〉 =
[
p1·F2·F3·p1qµPµναβqν+2k2·k3m

2
(
Pµναβ+ηµνηαβ

2
)
F

(µ|δ
2 F

γ|ν)
3 ηγδ

]
, (E.18)

Pµναβ = ηµαηνβ + ηµβηνα

2 − ηµνηαβ , (E.19)

where qµ = kµ3 − k
µ
2 . Notice remarkably that after combining the different contributions

to the rotation spin multiple moments, the Classical GR amplitude has the factorization
form AGR = 〈AQED

0 〉 × 〈AQED
s 〉. The quadratic in spin contribution was originally given in

the ancillary files of [16], whose unitarity gluing with the 3-point amplitude, recovers the
quadratic in spin two-body radiation amplitude obtained in [38].

Let us finalize this appendix commenting on the spin-shift-symmetry of (D.1). For
arbitrary helicity configurations of the massless legs, (E.17) does not possess such a symmetry.
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We can however show for the opposite helicity configuration, such symmetry is manifested
when starting from the amplitude written in vector notation. For that, let us recall for this
configuration we can choose the gauge (3.8), in which the polarization vectors of the massless
particles are proportional, say ε+2 = ε+3 = ε+. Using this into (E.17), 〈AGR

4 〉++ becomes

〈AGR
4 〉++ = κ2

8
〈ω(0)〉++

k2·k3(p1·k2)2

[
〈ω(0)〉++ + 〈ω(1)µν〉++εµνρσp

ρ
1a
σ + 〈ω(2)

αβ 〉
++aαaβ

]
+O(a3) ,

(E.20)
where the multipole coefficients are 〈ω(0)〉++ = −2k2·k3(p1·ε+)2 for the scalar part, the dipole
piece is 〈ω(1)µν〉++ = k2·k3p1·ε+F+µν

q , with F+µν
q = 2ε+ [µqν], and finally the quadrupole

coefficients is 〈ω(2)
αβ 〉++aαaβ = k2·k3

[(
(q·a)2 − q2a2) (p1·ε+)2 − 2m2(a·ε+)2]. The dipole

coefficient is manifestly invariant under the transformation (D.1) since it is proportional
to εµνρσqµaν . For the quadrupole coefficient, one can explicitly check that after using the
identity (3.46) for the quadratic Casimir,25 the quadrupole coefficient is left invariant under
the transformation (D.1), therefore we conclude (E.20) is spin-shift-symmetric.

F Plane waves in Kerr space-time

In this appendix, we will review the construction of plane wave solutions on a Kerr
background.

F.1 Polar scattering

We first focus on the simpler case of the scattering of a plane wave moving parallel to the
axis of rotation of the BH. Since we work in Boyer-Lindquist coordinates this is a plane
wave moving up the z-axis. This construction follows closely the descriptions in sections
III and IV of [70]. The strategy is to first work in flat spacetime, as a representation of
asymptotic infinity in the black hole spacetime. After constructing the harmonic modes of
ψ4 for a flat space plane wave, we then make the replacement r → r∗, to account for the
long range nature of the black hole potential, see e.g. [69].

In flat spacetime, the metric perturbation for a plane wave moving up the z-axis is
given by

hµν = H<
(
εµενe

ik·x
)

= H


0 0 0 0
0 cos(ωχ0) sin(ωχ0) 0
0 sin(ωχ0) − cos(ωχ0) 0
0 0 0 0

 , (F.1)

where χ0 = t − z and kµ = (ω, 0, 0, ω), εµ = (0, 1,−i, 0). With this, we can construct
the perturbed Riemann tensor. Projecting then onto the flat spacetime limit of the

25Recall here we have to change the sign of k3 to follow the conventions of GW scattering introduced
in (2.2).
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Kinnersley tetrad

lα = 1
∆(r2 + a2,∆, 0, a), (F.2)

nα = 1
2Σ

(
r2 + a2,−∆, 0, a

)
, (F.3)

mα = − %̄√
2

(
ia sin θ, 0, 1, i

sin θ

)
, (F.4)

m̄α = − %√
2

(
−ia sin θ, 0, 1, −isin θ

)
, (F.5)

the Weyl scalars

ψ0 = −Cαβγδlαmβlγmδ, (F.6)
ψ4 = −Cαβγδnαm̄βnγm̄δ, (F.7)

are readily computed to be

ψPW
0 = −1

2Hω
2(1− cos θ)2e−iω(t−z)e2iφ, (F.8)

ψPW
4 = −1

8Hω
2(1 + cos θ)2e−iω(t−z)e2iφ. (F.9)

We now wish to project onto the spin-weighted spheroidal harmonics, to obtain the modes.
Writing z = r cos θ, the angular integrals can be evaluated using the stationary phase
approximation (see for instance [73]). We arrive at the leading order behavior

ψPW
0 ≈ −4iπHω

∞∑
l=2

1
r
e−iω(r+t)

2S`2(π, 0, aω)2S`2(θ, φ, aω), (F.10)

ψPW
4 ≈ iπHω

∞∑
l=2

1
r
eiω(r−t)

−2S`2(0, 0, aω)−2S`2(θ, φ, aω). (F.11)

Obtaining the subdominant (r−5) terms here is somewhat subtle. Since we have been
using a flat space approximation, constructing higher order terms from the stationary phase
approximation to the integrals gives incorrect asymptotic behavior.

However, it turns out that the flat spacetime approximation is nonetheless sufficient to
obtain the subdominant pieces by making use of the Teukolsky-Starobinsky (TS) identities.
The TS identities are most succinctly written using the Geroch-Held-Penrose (GHP) notation
as (see e.g. [64]):

Þ4ζ4ψ4 = ð′4ζ4ψ0 − 3MLtψ̄0, (F.12)
Þ′4ζ4ψ0 = ð4ζ4ψ4 + 3MLtψ̄4. (F.13)

Here, ζ = (r − ia cos θ), Lt is the Lie derivative along the timelike killing vector, and the
differential operators Þ, said ‘thorn’, and ð, said ‘edth’, and their primes are given by

Þχ = (lµ∂µ − pε− qε̄)χ, (F.14)
Þ′χ = (nµ∂µ + pε′ + qε̄′)χ, (F.15)
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ðχ = (mµ∂µ − pβ + qβ̄′)χ, (F.16)
ðχ = (m̄µ∂µ + pβ′ − qβ̄)χ. (F.17)

The set of integers {p, q} is the GHP weights of the function χ being acted upon. In the
Kinnersley tetrad ε = ε′ = 0, β = cot θ

2
√

2(r+ia cos θ) , β
′ = r cot θ−ia sin θ(csc2 θ+1)

2
√

2(r−ia cos θ) . The weightings
of the relevant quantities are

Þ : {1, 1}, (F.18)
ð : {1,−1}, (F.19)
ψ4 : {−4, 0}, (F.20)
ψ0 : {4, 0}, (F.21)
ζ : {0, 0}, (F.22)

and χ̄ has weight {q, p}, whereas χ′ has {−p,−q}. For ψ4 we find that

Þ4ζ4
[
r−5e−iω(t+r)

−2Slm(θ, φ)
]

= 16ω4r−1e−iω(t+r)
−2Slm(θ, φ) +O(r−2), (F.23)

and for ψ0 that

ð′4ζ4
[
r−1e−iω(t+r)

2Slm(θ, φ)
]

= 1
4Clmr

−1e−iω(t+r)
−2Slm(θ, φ) (F.24)

where the TS constant is

C2
lm =[(λ+ 2)2 + 4amω − 4a2ω2][λ2 + 36amω − 36a2ω2]

+ (2λ+ 3)(96a2ω2 − 48amω)− 144a2ω2 ,
(F.25)

where λ = −2λlm is the s = −2 spheroidal eigenvalue. Using (F.10) in (F.12) determines
the subleading term for ψ4, giving the asymptotic form

ψPW
4 ≈ H

∞∑
l=2

[
iπω

r
eiω(r−t)

2S`2(0, 0, aω)−2S`2(θ, φ, aω) +A+
4

1
r5 e

iω(r+t)
−2S`2(θ, φ, aω)

+A−4
1
r5 e
−iω(r+t)

−2S`−2(θ, φ,−aω)
]
, (F.26)

where

A+
4 = − i

32ω3C`mω −2S`2(0, 0, aω), (F.27)

A−4 = 3
8ω2 −2S`2(0, 0, aω). (F.28)

F.2 Off axis scattering

We now consider a plane wave approaching the Kerr black hole from an arbitrary angle γ
off the axis of rotation. For simplicity, we assume it moves in a plane with the x-axis as a
normal when γ = π.
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We begin by rotating the flat space z-axis plane wave by an angle γ about the y-axis.
This gives the metric perturbation

hµν = H


0 0 0 0
0 cos2(γ) cos(χω) cos(γ) sin(χω) − sin(γ) cos(γ) cos(χω)
0 cos(γ) sin(χω) − cos(χω) − sin(γ) sin(χω)
0 − sin(γ) cos(γ) cos(χω) − sin(γ) sin(χω) sin2(γ) cos(χω)

 (F.29)

where after the active rotation χ0 is replaced by χ = t−r sin(γ) sin(θ) cos(φ)−r cos(γ) cos(θ).
The Weyl scalars are then

ψPW
0 = 2He−iωχ−2iφω2

(
sin
(
γ

2

)
cos

(
θ

2

)
− eiφ cos

(
γ

2

)
sin
(
θ

2

))4
, (F.30)

ψPW
4 = 1

2He
−iωχ−2iφω2

(
eiφ cos

(
γ

2

)
cos

(
θ

2

)
+ sin

(
γ

2

)
sin
(
θ

2

))4
. (F.31)

Projecting these onto spheroidal harmonics is more complicated in this situation. Each of
the Weyl scalars take the general form

ψ = e−i(ωt−β)
4∑

k=0
Ak(θ, γ)ei(α cosφ+(k−2)φ) (F.32)

with α = ωr sin γ sin θ, β = ωr cos γ cos θ. We will need to compute integrals of the form

ψlm =
∫ 1

−1
e−i(ωt−β)

4∑
k=0

Ak

[∫ 2π

0
ei(α cosφ+(k−2−m)φ)dφ

]
sSlm(x, 0)dx (F.33)

with x = cos θ. Using the identity

Jν(α) = 1
2πiν

∫ 2π

0
ei(α cosφ−νφ)dφ (F.34)

where Jν(α) is the Bessel function of the 1st kind, the integral in the square brackets is
immediate. Employing the asymptotic form

Jν(α) ∼ 1√
2πα

(
−ei(α+ 3π

4 −
πν
2 ) + e−i(α−

π
4−

πν
2 )
)

(F.35)

as |α| → ∞, the remaining integrals are

ψlm = e−iωt
√

2π
α

[ 4∑
k=0

A′k

∫ 1

−1
ei(α+β)

sSlm(x, 0)dx+
4∑

k=0
A′′k

∫ 1

−1
ei(β−α)

sSlm(x, 0)dx
]
,

(F.36)

where we have made the redefinitions A′k = −e
3iπ

4 Ak and A′′k = ei(
π
4 +πν)Ak. It is east to

see that α + β = ωr cos(θ − γ) and β − α = ωr cos(θ + γ). Thus we need to compute
the integrals

I1 =
∫ π

0
eiωr cos(θ−γ)f(θ) sin θdθ, (F.37)

I2 =
∫ π

0
eiωr cos(θ+γ)f(θ) sin θdθ. (F.38)

– 45 –



J
H
E
P
0
5
(
2
0
2
3
)
2
1
1

Using a stationary phase approximation these are

I1 =
√

2π
ωr
e−iπ/4f(γ) sin γ eiωr, (F.39)

I2 =
√

2π
ωr
eiπ/4f(π − γ) sin γ e−iωr. (F.40)

Using the explicit results for the Weyl scalars we find

ψPW
0,lm = H

4iπω
r

(−1)m2Slm(π − γ, 0, aω)e−iω(t+r), (F.41)

ψPW
4,lm = −H iπω

r
−2Slm(γ, 0, aω)e−iω(t−r). (F.42)

Once again, upon using the Teukolsky-Starobinsky identities we find

ψPW
4 ≈H

∞∑
l=2

l∑
m=−l

[
iπω

r
eiω(r−t)

2S`m(γ,0,aω)−2S`m(θ,φ,aω)

+A+
4,lm

1
r5 e

iω(r+t)
−2S`m(θ,φ,aω)+A−4,lm

1
r5 e
−iω(r+t)

−2S`m(θ,φ,−aω)
]
,

(F.43)

where

A+
4,lm = iπ

16ω3 (−1)l+mC`mω −2S`m(γ, 0, aω), (F.44)

A−4,lm = 3π
4ω2 (−1)m−2S`m(π − γ, 0,−aω). (F.45)
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