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We study the evolution of the eccentricity of an eccentric orbit with spinning components. We
develop a prescription to express the evolving eccentricity in terms of initial eccentricity and fre-
quency. For that purpose we considered the spins to be perpendicular to the orbital plane. Using
this we found an analytical result for the contribution of spin in eccentricity evolution. As a result,
we expressed orbital eccentricity in a series of initial eccentricity and gravitational wave frequency.
The prescription developed here can easily be used to find arbitrarily higher-order contributions of
initial eccentricity. With the eccentricity evolution at hand, we computed the evolving energy and
angular momentum fluxes for eccentric orbit with spinning components. This result can be used to
construct the waveforms of spinning compact objects in an eccentric orbit.

I. INTRODUCTION

In recent times, the detection of gravitational waves
(GWs) from the coalescence of compact binaries with
ground-based detectors [1, 2] has opened up a new era
of astronomy [3, 4]. Most of the sources are believed to
be black hole (BH) binaries. The merger of two neutron
stars (NSs) was also observed in the event GW170817 [5],
and possibly also GW190425 [6]. More recently, detec-
tions of GW200105 and GW200115 [7] were also made
where it is believed that it is BH-NS binary. Currently,
the existing detectors are continuously being upgraded.
Alongside, there are proposals for several next-generation
ground-based detectors such as the Einstein telescope [8]
and cosmic explorer [9]. These detectors will be signifi-
cantly more sensitive compared to the current detectors.
As a result, it will be possible to measure very small fea-
tures in the signals. Similarly, space-based detectors such
as Laser Interferometer Space Antenna (LISA) [10] are
also being built. LISA will observe binaries comprising
supermassive bodies. These sources will be either very
loud or will last very long in the detector for the detector
to measure very small features in the signal. Therefore
modeling the signals as accurately as possible has become
a necessity.

In the context of GW astronomy, primarily the focus
has been on the circular orbits. This is reasonable as
we expect the stellar mass binaries to have low eccen-
tricities [11, 12]. However, compact binaries that formed
via the dynamical interactions in dense stellar environ-
ments or through the Kozai-Lidov processes [13, 14], are
expected to retain residual eccentricities e0 & .1 during
observation with ground-based detectors [15]. Therefore,
the measurement of nonzero eccentricities of the binaries
may shed light on our understanding of the formation
channels. On the other hand extreme mass ratio inspi-
rals are also expected to have large eccentricities in the
observable band [16]. Hence, it is crucial to understand
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and model the effects of eccentricity on a binary.

Interestingly, some of the recent analyses [17–21] sup-
port the presence of eccentricity in the observed binary
black hole (BBH) events. Alongside, it was argued in
Ref. [22], that the presence of even smaller eccentrici-
ties e0 ∼ .01 − .05 may induce systematic biases in pa-
rameter estimation analyses. Since the next generation
ground-based detectors will have improved low-frequency
sensitivity compared to the current generation detectors,
these detectors can make confident observations of eccen-
tric systems [23].

There have been efforts in the past to model the in-
spiral waveforms from compact binary mergers [24–32].
Although the effect of spins has been modeled within
the post-Newtonian formalism [33–43], a combined treat-
ment including spins and eccentricity is largely absent.
There have been efforts such as those of Ref. [44–53] that
attempt to address this concern to some extent. However,
we still lack waveforms as per the requirement.

Although there are some works on eccentric waveforms,
mostly they do not consider the effect of the interaction
between spin and eccentricity. Keeping this in mind, we
will try to find the eccentricity evolution and fluxes due
to such interaction. In Ref. [47] the equations governing
the time evolution of the orbital parameters, and in par-
ticular the eccentricity, including the spin-orbit and the
spin-spin couplings were computed. These are needed
to accurately compute the post-Newtonian approxima-
tion up to 2PN accuracy. However, these results are not
sufficient to compute GW waveforms. The computed re-
sults depend on the “instantaneous” eccentricity of the
orbit. However, in the inspiral time scale, the eccentric-
ity of an orbit evolves. Hence, it is important to express
the instantaneous eccentricity in terms of some “initial
eccentricity” and GW frequency. In the leading order
of initial eccentricity for nonspinning orbit this was ex-
plored in a few works [25, 30, 54]. Some, higher order
terms of initial eccentricity were computed in ref. [55],
albeit for non-spinning binaries. However, in ref. [32] a
more comprehensive prescription was developed for non-
spinning binaries, that can be used to iteratively find the
arbitrarily higher order terms in initial eccentricities and
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GW frequency.
In the current work we extend the results of Ref. [32] to

spinning binaries. Therefore, it will be for the first time
that the eccentricity evolution of spinning binaries will be
analytically expressed in terms of initial eccentricity and
GW frequency. This as a result provides eccentricity-spin
coupling terms in fluxes. We develop the prescription for
spins perpendicular to the orbital plane. The prescrip-
tion discussed here can be extended to arbitrarily high
order in eccentricity, in principle. With the newly found
expressions, we also compute the leading order shifts in
the fluxes due to the eccentricity-spin coupling terms.
Therefore these results can be directly used to model the
GW waveforms for spinning bodies in an eccentric orbit.

II. EQUATIONS OF ECCENTRIC ORBITS

Our purpose in the current work is to formulate a
method that can be used to analytically compute the
eccentricity of an orbit with spinning components with
respect to the emitted GW frequency. As a result, this
can be used to compute frequency-dependent fluxes and
consequently the GW waveform. For this purpose we
will primarily follow the notations and discussions in Ref.
[47]. The spin-orbit couplings appear at 1.5PN order and
spin-spin couplings appear at 2PN order. For this rea-
son Ref. [47] considered only the Newtonian and spin-
coupling terms in the equations of motion. For simplic-
ity, we will use a system of units where G = c =M = 1,
where M is the total mass of the system. The boldface
represents a 3−vector and a hat above represents a unit
vector. The Lagrangian of the system in the center of
mass frame used in Ref. [44, 56]:

L =
ν

2
v2 +

ν

r
+
ν

2
(v × a).ξ − 2ν

r3
(x× v).(ζ + ξ)

+
1

r3
S1.S2 − 3

r5
(x.S1)(x.S2),

(1)

where ν = m1m2 and

ζ = S1 + S2 (2)

ξ = m2

m1
S1 + m1

m2
S2. (3)

A quasi-Keplerian solution to the equation of motion
derived from the Lagrangian in Eq. (1) was found in Ref.
[47]

r = a(1− er cosu) + fr cos 2(v − ψ) (4)

φ = (1 + k)v + fφ,1 sin (v − 2ψ) + fφ,2 sin 2(v − ψ) (5)

v = 2 arctan
(√

1+eφ
1−eφ

tan u
2

)

(6)

l = n(t− t0) = u− et sinu, (7)

where (r, φ) is a polar coordinate system in the plane
of motion, n is the mean motion, u, v, and l are the

eccentric, true, and mean anomalies, a is the semi-major
axis, et, er, and eφ are eccentricities, k is the perihelion
precession, and the fi are constants [47].
In the current work, we will compute only leading or-

der shifts in energy and angular momentum fluxes due
to spin-eccentricity couplings. Therefore, we only re-
quire the following leading order results of reduced en-
ergy (E) and angular averaged reduced angular momen-
tum (L)[47],

E = −x
2 (8)

L =

√
1−e2t
x1/2

[

1− x3/2β(4,3−e2t )

2(1−e2t )
3/2 − x2γ1

2(1−e2t )
2

]

, (9)

where,

β(a, b) = aβa + bβb (10)

βa = Ĵ.ζ (11)

βb = Ĵ.ξ (12)

γ1 = 1
ν

[

S1.S2 − 3(Ĵ.S1)(Ĵ.S2)
]

(13)

γ2 = 1
ν |Ĵ× S1||Ĵ× S2|, (14)

where Si are the individual spins and J is the reduced
orbital angular momentum discussed in Ref. [47]. J

helps encapsulate the effects of spin precession. It can
be checked from Eq. (10) in Ref. [47], when the spins of
the bodies are either aligned or antialigned with the di-
rection perpendicular to the orbital plane, say L̂, J is also
aligned or antialigned with L̂. In such a case therefore,
Ĵ||L̂.
Spin and eccentricity dependence of several orbital

quantities were found in Ref. [47]. These can also be
expressed in a similar manner as follows,

k = −x3/2β(4,3)
(1−e2t )

3/2 − 3x2γ1

2(1−e2t )
2 (15)

er = et

[

1− x3/2β(2,1)√
1−e2t

− x2γ1

2(1−e2t )

]

(16)

eφ = et

[

1− x3/2β(2,2)√
1−e2t

− x2γ1

(1−e2t )

]

(17)

fr = − x
2(1−e2t )

γ2 (18)

fφ,1 = − etx
2

(1−e2t )
2 γ2 (19)

fφ,2 = − x2

4(1−e2t )
2 γ2. (20)

In the quasi-Keplerian formalism, PN expansions of
elliptical orbit quantities are performed most naturally
in terms of the radial orbit angular frequency ωr ≡ n.
This frequency is the mean motion or periastron-to-
periastron angular frequency. However, the limitation of
this frequency is that correspondence with the circular
orbit limit is not straightforward. Unlike the eccentric
case, the circular orbit quantities are more naturally ex-
panded in terms of the azimuthal or φ−angular frequency
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ωφ ≡ ξφ/M . For this purpose we use the variable x, de-

fined as ξφ = x3/2 [25]. The relationship between these
two frequencies is as follows,

n

ξφ
=1− 3x

1− e2t
−
[

18− 28ν +
(

51− 26ν
)

e2t

] x2

4(1− e2t )
2

≡F(x, et(x)).
(21)

III. ECCENTRICITY EVOLUTION

In this section, our focus will be on computing the ec-
centricity of a binary in terms of binary frequency. Cur-
rently, these results are available for non-spinning bina-
ries [25, 32]. In this section, we will construct a prescrip-

tion that can be used to find the eccentricity in the power
of initial eccentricity and frequency to an arbitrary power
for a spinning binary.

In Sec. II we discussed the parametric solution in the
quasi-Keplerian approach. This is done using the con-
stants of the motions considering only the conservative
part. However, during orbital motion, the system emits
GWs that carry away energy and angular momentum.
As a result, the conserved quantities start to change in
the inspiral time scale. This corresponds to the dissipa-
tive part of the equation of motion. Conventionally it
is tackled by solving the evolution equation of the con-
served quantities in the inspiral time scale. For the cur-
rent work, we only require the evolution equation of the
et and n. Their evolution equation can be expressed as
[47, 54],

dn

dt
=

νx11/2

(1 − e2t )
7/2

(

Nn + xN1 + x3/2Nhered − x3/2Nβ − x2Nσ + x2Nτ

)

2et
det
dt

=
−νx4

(1 − e2t )
5/2

(

2e2tEn + 2e2txE1 + 2e2tx
3/2Ehered − x3/2Eβ − x2Eσ + x2Eτ

)

.

(22)

To find an expression of det/dx it is required to find
dx/dt. With the result at hand, we can compute using,

det/dx = (det/dt)/(dx/dt). To find dx/dt we used Eq.
(22) along with Eq. (21). We find,

dn

dt
=
dx

dt

(

3

2
x1/2F(x, et) + x3/2

(∂F(x, et)

∂x
+
∂F(x, et)

∂et

det
dx

)

)

. (23)

Once an expression of det/dx is found, the right-hand
side of the equation can be expressed in a series expansion
of et where the coefficients of each term depend on x.
This equation then is solved to find the expression of et
in terms of an initial eccentricity e0 and x. In this section,
we will develop a prescription that can be used to find
very high-order powers in e0.

To demonstrate the prescription, we will keep up to
power e3t . Then the eccentricity evolution can be ex-
pressed as follows,

det
dx

= e−1
t f−1(x) + etf1(x) + e3tf3(x) +O(e4t ). (24)

It will be demonstrated later that for aligned or an-
tialigned spins f−1(x) = 0. Hence, we will fix f−1(x) = 0
from here on. In such case, the equation simplifies to,

det
dx

= etf1(x) + e3tf3(x) +O(e4t ). (25)

Note, we have not explicitly specified the functional
expression of f1(x) and f3(x). Once the prescription is
described, we will substitute them with the required PN
accuracy.

From Eq. (25) the resulting solution can be found by
integrating the equation on both sides. During the pro-
cess, we identify that et → e0, i.e. the initial eccentricity,
when x→ x0, i.e. the reference frequency. we find,
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∫ et

e0

det
et

=

∫ x

x0

dx
(

f1(x) + e2tf3(x) +O(e3t )
)

ln(
et
e0

) =

∫ x

x0

dxf1(x) +

∫ x

x0

dxe2tf3(x) +O(e3t )

et =e0e
∫ x
x0

dxf1(x)e
∫ x
x0

dxe2tf3(x)+O(e3t ).

(26)

Note, that the first integral on the right-hand side is
independent of the eccentricity while the second one de-
pends on it. Therefore although the second integral can
not be computed without the explicit knowledge of et,
the first integral can be computed. Hence the expression
can be rearranged as,

et = e0
eF1(x)

eF1(x0)
e
∫

x
x0

dxe2tf3(x)+O(e3t ). (27)

The second integral has et inside the integral. There-
fore, without the exact knowledge of et in terms of x,
this integral can not be computed exactly. However, the
eccentricity et inside the second integral can be replaced
with the above equation and as a result, a leading or-
der term of the integral can be computed. Therefore,
although an exact integral is not computable, an approx-
imate result can be found which is exact to a particular
order. This as a result can be used to find the next order
term. This can be continued for arbitrary powers of e0.
In this work, we will only compute up to e30 term as Eq.
(24) keeps only up to e3t . But in principle, this can be
continued iteratively by considering higher order terms
in Eq. (24). After rearranging the expressions they can
be expressed as,

ete
F1(x0)

e0eF1(x)
=e

e20
∫

x
x0

dx e2F1(x)

e2F1(x0)

(

e
2
∫x
x0

dx̄e2t f3(x̄)+O(e3t )

)

f3(x)+O(e3t )

ete
F1(x0)

e0eF1(x)
=
(

1 + e20

∫ x

x0

dx
e2F1(x)

e2F1(x0)

(

e
2
∫ x
x0

dx̄e2tf3(x̄)+O(e3t )
)

f3(x) +O(e30)
)

ete
F1(x0)

e0eF1(x)
=
(

1 + e20

∫ x

x0

dx
e2F1(x)

e2F1(x0)

(

1 +O(e20)
)

f3(x) +O(e30)
)

.

(28)

This as a result boils down to a series of e0, where
the coefficients of the expansions are integrals in x. This
approach can be used consecutively after deriving indi-
vidual coefficients of a particular order. Interestingly, to
find the schematic structure of the coefficients in inte-
gral form of an arbitrary power of e0 it is not required to
know fi(x). The expression can be derived in terms of
the integrals of fi(x)s.
The above results can be expressed in a further sim-

plified and compact form as,

et =
eF1(x)

eF1(x0)
(e0 + e30

∫ x

x0

dx
e2F1(x)

e2F1(x0)
f3(x) +O(e40))

et =e0
A(x)

A(x0)
+ e30

( A(x)B(x)
A(x0)A2(x0)

− A(x)B(x0)
A(x0)A2(x0)

)

≡ǫ1e0 + ǫ3e
3
0,

(29)

where,

A(x) = eF1(x)

A2(x) = e2F1(x) (30)

B(x)− B(x0) =
∫ x

x0
dxe2F1(x)f3(x).

These expressions provide us with the eccentricity evo-
lution with respect to the frequency. These can be used
for further computations for fluxes and waveforms. In the
later sections, we will derive equations for the fis. Using
the derived expression finally, we will find the explicit
expressions for the evolving eccentricity. Once the eccen-
tricity in terms of x is known we will use it to compute
the shifts in the fluxes.

IV. ALIGNED AND ANTIALIGNED ORBITS

In the last section, we constructed a prescription that
can be used to compute eccentricity evolution in terms
of initial eccentricity and x. Using this we have found
the general expression for et up to e30. Although, we
limited ourselves to order e30, in principle this can be
easily extended further.

In this work, we want to compute the leading order
shifts due to spin-eccentricity coupling. Hence we will
use 2PN order expressions of f1 and f3. However, in
2PN order we will keep only the spin-dependent terms.
The required expressions are as follows [47, 54]:
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Nn = 1
5 (96 + 292e2t + 37e4t ) (31)

N1 = 1
(1−e2t )

(− 4846
35 − 264ν

5 + e2t (
5001
35 − 570ν) + e4t (

2489
4 − 5061ν

10 ) + e6t (
11717
280 − 148ν

5 ) (32)

Nhered = 4π
96(1−e2t )

7/2

5 (1 + 2335
192 e

2
t +

42955
768 e4t ) (33)

Nβ = 1
10(1−e2t )

3/2β(3088 + 15528e2t + 7026e4t + 195e6t , 2160 + 11720e2t + 5982e4t + 207e6t ) (34)

Nσ = 1
160(1−e2t )

2 σ(21952 + 128544e2t + 73752e4t + 3084e6t , 64576+ 373472e2t + 210216e4t

+8532e6t , 131344e
2
t + 127888e4t + 7593e6t ) (35)

Nτ = 1
320(1−e2t )

2 τ(448 + 4256e2t + 3864e4t + 252e6t , 64 + 608e2t + 552e4t + 36e6t , 16e
2
t + 80e4t + 9e6t ). (36)

En = (30415 + 121
15 e

2
t ) (37)

E1 = 1
(1−e2t )

(− 939
35 − 4084ν

45 + e2t (
29917
105 − 7753

30 ν) + e4t (
13929
280 − 1664ν

45 ) (38)

Ehered = 32
5

985(1−e2t )
5/2

48 π(1 + 21729
3940 e

2
t − 7007

788 e
4
t ) (39)

Eβ =
e2t

15(1−e2t )
3/2β(13048 + 12000e2t + 789e4t , 9208 + 10026e2t + 835e4t ) (40)

Eσ = 1
240(1−e2t )

2σ(−320 + 101664e2t + 116568e4t + 9420e6t ,−320 + 296672e2t + 333624e4t

+26820e6t , 88432e
2
t + 161872e4t + 16521e6t) (41)

Eτ = 1
480(1−e2t )

2 τ(−320 + 2720e2t + 5880e4t + 540e6t ,−320− 160e2t + 1560e4t + 180e6t , 16e
2
t + 80e4t + 9e6t ). (42)

σ(a, b, c) and τ(a, b, c) are spin dependent functions de-
fined as follows,

σ(a, b, c) = aσa + bσb + cσc, (43)

τ(a, b, c) = aτa + bτb + cτc. (44)

The functions defined above σi and τi, where i = a, b, c,
depend on the spin magnitude of both of the bodies in
the binary and their directions. The expressions of these
functions in terms of individual spins and their compo-
nents can be expressed as follows,

σa = 1
νS1.S2 (45)

σb = − 1
ν (Ĵ.S1)(Ĵ.S2) (46)

σc =
1
ν |Ĵ× S1||Ĵ× S2| cos 2ψ (47)

τa =
∑2

i=1
1
m2

i
S
2

i
(48)

τb = −∑2
i=1

1
m2

i
(Ĵ.Si)

2 (49)

τc =
∑2

i=1
1
m2

i
|Ĵ× Si|2 cos 2ψi, (50)

where, ψi is the angle subtended of Si in the plane
of motion and the periastron line. When the spins of
the bodies are aligned or antialigned with L̂, Ĵ||L̂. As a
result, σc = τc = 0, σa = −σb = S1S2/ν, τa = −τb =
∑2

i=1
S2
i

m2
i
, and γ2 = 0, where Si = Si.L̂. Using the above

expressions it is straightforward to compute f1(x) and
f3(x). Then using Eq. (30) further computation can be
done. We find that f−1 contributes at 2-PN order for the
spinning case. For non-spinning cases, it vanishes. The
expression is as follows,

f−1(x) =− 5

192
x(2σa + 2σb − τa − τb). (51)

This behaviour of f−1 arises because e−1
t comes pri-

marily due to Eσ and Eτ . Note in the above expression
f−1(x) vanishes if σa = −σb and τa = −τb. Therefore,
this term does not contribute when the spins of the bod-
ies are aligned or antialigned with L̂. In such a case we
can apply the prescription constructed in the last section,
and eccentricity evolution can be found. We find,

f1(x) =− 19

12x

(

1 +
(2833− 5516ν)x

3192
+

1

456
x3/2(−2452βa − 1776βb + 1131π) +

x2 (6618528σa + 91728τa)

1072512

)

f3(x) =
3323

576x

(

1 +
(472943− 653228ν)x

159504
+
x3/2(−353345βa − 270423βb + 159321π)

39876
+
x2 (3432250080σa + 39238416τa)

375153408

)

.

(52)
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With this, we can compute the eccentricity evolution as follows,

x19/12A(x) =1 +
(5516ν − 2833)x

2016
+
x3/2

432
(2452βa + 1776βb − 1131π) +

x2(−39711168σa − 550368τa)

8128512
. (53)

x19/6A2(x) =1 +
(5516ν − 2833)x

1008
+ x3/2

(613βa
54

+
74βb
9

− 377π

72

)

+
x2(−19855584σa − 275184τa)

2032128
. (54)

B(x) =− 3323

1824x19/6

(

1 +
19(576485ν + 64718)x

5443074
− 19x3/2(890535π − 2(893893βa + 517017βb))

7177680

+
19x2(−1049901048σa − 52036236τa)

11817332352

)

.

(55)

A(x)B(x) =− 3323

1824x19/4

(

1 +
(137845708ν− 34236165)x

29029728
+
x3/2(12451319βa + 8192481βb − 5951955π)

1196280

+
x2(−3(598429191360σa+ 13780542048τa))

273111681024

)

.

(56)

V. ORBITAL QUANTITIES

In the previous section, we formulated a prescription
to compute eccentricity evolution. We expressed eccen-
tricity in a series expansion of e0. This result considers
the spins of the components to be (anti)aligned with L̂.
As discussed in Sec. II, several conservative quantities
of an eccentric orbit can be expressed in terms of the

PN parameter x and eccentricity et. These quantities
also evolve as the orbit evolves in the inspiral time scale.
With the knowledge of et in a PN expansion, it is pos-
sible to find expressions for these quantities also. Since,
fr, fφ,1, fφ,2 are proportional to γ2, they all vanish. By
using Eq. (29) in Eq. (15) and simplifying we find the
eccentricity and spin-dependent shifts as follows,

δχ,e0k = − 3
2e

2
0

{

ǫ21x
3/2
(

4βa + 3βb) + 2ǫ21x
2γ1

}

+ e40

{

− 3
8x

3/2(4βa + 3βb)
(

5ǫ41 + 8ǫ1ǫ3
)

− 3
2γ1x

2
(

3ǫ41 + 4ǫ1ǫ3
)

}

(57)

δχ,e0er = − e0ǫ1
2

(

− 2 + 4βax
3/2 + 2βbx

3/2 + γ1x
2
)

− e30
2

(

− 2ǫ3 + 2βaǫ
3
1x

3/2 + βbǫ
3
1x

3/2 + 4βaǫ3x
3/2 + 2βbǫ3x

3/2 + ǫ31γ1x
2 + ǫ3γ1x

2
)

(58)

δχ,e0eφ = −e0ǫ1
(

− 1 + 2βax
3/2 + 2βbx

3/2 + γ1x
2
)

−e30
(

− ǫ3 + βaǫ
3
1x

3/2 + βbǫ
3
1x

3/2 + 2βaǫ3x
3/2 + 2βbǫ3x

3/2 + ǫ31γ1x
2 + ǫ3γ1x

2
)

. (59)

VI. ENERGY AND ANGULAR MOMENTUM

FLUXES

In the context of GW astronomy, the most crucial
thing is to model the GW waveform emitted by a sys-
tem. This boils down to modeling both the amplitude
and the phase of the waveform as these quantities evolve.
These results are usually computed from the knowledge
of the energy flux (Ė) and the angular momentum flux
(L̇) from the GW sources. These fluxes can be separated

into explicit spin-independent and spin-dependent parts.

Ė = ν(ĖN + ĖSO + ĖSS) (60)

L̇ = ν(L̇N + L̇SO + L̇SS), (61)

where SO and SS represent the spin-orbit and spin-
spin coupling respectively. These expressions depend on
orbital energy and angular momentum as follows,
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ĖN = − (−2E)3/2

15L7 (96 + 292A2 + 37A4) (62)

ĖSO = (−2E)3/2

10L10 β(2704 + 7320A2 + 2490A4 + 65A6, 1976 + 5096A2 + 1569A4 + 32A6) (63)

ĖSS = (−2E)3/2

960L11

[

2σ(42048 + 154272A2 + 75528A4 + 3084A6, 124864+ 450656A2 + 215544A4 + 8532A6,

131344A2 + 127888A4 + 7593A6)− τ(448 + 4256A2 + 3864A4 + 252A6, 64 + 608A2 + 552A4 + 36A6,

16A2 + 80A4 + 9A6)
]

, (64)

L̇N = − 4(−2E)3/2

5L4 (8 + 7A2) (65)

L̇SO = (−2E)3/2

15L7 β(2264 + 2784A2 + 297A4, 1620 + 1852A2 + 193A4) (66)

L̇SS = (−2E)3/2

20L8

[

2σ(552 + 996A2 + 132A4, 1616 + 2868A2 + 381A4, 894A2 + 186A4)

−(8 + 24A2 + 3A4)τ(2, 1, 0)
]

, (67)

where A =
√
1 + 2EL2.

Using Eq. (8) and the expression of A it is possible to
find a PN expression for the fluxes. We use δχ,e0 to repre-

sent the sift of Ė and L̇ due to both the nonzero spin and
eccentricity. We compute the leading order eccentricity-
spin coupling terms arising from spin-orbit and spin-spin
coupling.

δχ,e0ĖN = EN,χ,2e
2
0 + EN,χ,4e

4
0 (68)

δχ,e0 L̇N = LN,χ,2e
2
0 + LN,χ,4e

4
0 (69)

δχ,e0ĖSO = ESO,2e
2
0 + ESO,4e

4
0 (70)

δχ,e0ĖSS = ESS,2e
2
0 + ESS,4e

4
0 (71)

δχ,e0 L̇SO = LSO,2e
2
0 + LSO,4e

4
0 (72)

δχ,e0 L̇SS = LSS,2e
2
0 + LSS,4e

4
0. (73)

In the above expression, we have decomposed the en-

ergy and angular momentum fluxes in a series expansion
with respect to initial eccentricity. We have kept only up
to e40. With more computation of eccentricity evolution,
this can be extended further. The coefficients of these
expansions are themselves series expansion in PN param-
eter x. The corresponding expressions are computed and
demonstrated in the following,

ESO,2 = 4x10/3(2605βa+1872βb)
5A2

0
(74)

LSO,2 = 2x11/6(5354βa+3761βb)
15A2

0
(75)

ESS,2 = − 2x23/6(3916σa+15τa)
5A2

0
(76)

LSS,2 = − 2x7/3(1532σa+7τa)
5A2

0
. (77)

EN,χ,2 =− x11/6

1905120A2
0

(

− 2352x3/2(−1236868βa − 883848βb) + x2(540800064γ1 + 157(−4963896σa − 68796τa))
)

.

(78)

LN,χ,2 =− x1/3

635040A2
0

(

− 2352x3/2(−131996βa − 92580βb) + x2(50295168γ1 − 23 (4963896σa + 68796τa))
)

. (79)

ESO,4 = x1/6

1140A4
0A2(x0)

(

− 8656415A2
0βa − 6220656A2

0βb + 9080100A2(x0)βa + 6462546A2(x0)βb

)

(80)

LSO,4 = 1
6840A4

0A2(x0)x4/3

(

− 17791342A2
0βa − 12497803A2

0βb + 12708720A2(x0)βa + 8861220A2(x0)βb

)

(81)

ESS,4 =
x2/3

2280A4
0A2(x0)

(

13012868A2
0σa + 49845A2

0τa − 15439704A2(x0)σa − 71820A2(x0)τa

)

(82)

LSS,4 = 1
2280A4

0A2(x0)x5/6

(

5090836A2
0σa + 23261A2

0τa − 4189956A2(x0)σa − 20406A2(x0)τa

)

. (83)
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x4/3EN,χ,4 =
1

3162194380800A4
0A2(x0)

[

A2
0

[

428064x3/2(46434089278βa + 32454792462βb) + 40x2
{

81767076876576γ1

− 157
(

880186480992σa+ 16828189560τa

)}]

+ 4357080A2(x0)
[

1344x3/2(−3426812βa − 2390010βb)

− x2
{

759773952γ1 − 605
(

2836512σa + 39312τa

)}]

]

.

(84)

x17/6LN,χ,4 =
336x3/2(−364012βa − 249321βb) + x2

{

19
(

2836512σa + 39312τa

)

− 18724608γ1

}

90720A4
0

+
1

131758099200A2
0A2(x0)

[

53508x3/2(5167489562βa + 3528306258βb) + 5x2
{

7604453368512γ1

− 23
(

880186480992σa+ 16828189560τa

)}

]

,

(85)

where A0 = A(x = x0). Here we have computed the
shift in fluxes only due to the leading order spin-orbit and
spin-spin interaction. These fluxes can further be used to
compute the shift in the emitted GWs. Therefore these
expressions will be necessary to construct GW waveforms
for spinning bodies in an eccentric orbit.

VII. DISCUSSION

The main result of the paper is the formulation of the
prescription that can be used to compute the eccentric-
ity evolution of a spinning binary to very high order. To
our knowledge, this is for the first time where spin and
e0 couplings have been computed in the expression of
eccentricity evolution. It provides us with a frequency-
dependent evolution of eccentricity in terms of initial ec-
centricity. We also discussed how it can be extended to
higher orders iteratively. We considered the spins to be
(anti)aligned to simplify the calculations. As a result in
the current case f−1(x) = 0. With the computed PN
expansion of eccentricity, we added several orbital quan-
tities and the fluxes of energy and angular momentum.
These fluxes are crucial for the computation of the GW
waveform. Hence, these results can be used to model GW
waveforms considering eccentricity-spin coupling.

In general f−1(x) 6= 0. Considering such cases, need
more studies which we will pursue in the future. In such
a case different approaches combining analytical and nu-
merical fitting may be required. In the presence of nonva-
nishing f−1(x) integrating the equation analytically be-
comes challenging. To address this a semi-analytical ap-
proach can be constructed. By multiplying both side
with 2et in Eq. (24) it can be found,

de2t
dx

=2f−1(x) + 2e2tf1(x) + 2e4tf3(x) +O(e5t )

≡f0(x) + e2tf2(x) + e4tf4(x) +O(e5t )

(86)

The semi-analytic approach can be constructed by
defining ẽ2t = ē2t + ∆e2t . Then rather than solving the
exact differential equation satisfied by et, we can solve
for two approximated differential equations such as

d∆e2t
dx

= f0(x) (87)

dē2t
dx

=

∞
∑

n=2

ēnt fn(x). (88)

Eq. (87) can be solved analytically. Similarly, Eq. (88)
can be solved analytically in an iterative manner as dis-
cussed in the current paper. This will provide us with
an analytical expression for ẽt. Note, ẽt 6= et in general.
However, as long as ẽt−et

et
is lesser than the observable

statistical error, this systematic error can be ignored. In
such a case by comparing a numerically found solution for
et from the differential equation and comparing it with
ẽt we can estimate the systematic error and its signifi-
cance compared to the statistical error. This needs to be
explored in detail.
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