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Abstract

We study energy conditions for non-timelike massive thin shells in arbitrary
n(≥ 3) dimensions. It is shown that the induced energy-momentum tensor tµν
on a shell Σ is of the Hawking-Ellis type I if Σ is spacelike and either of type
I, II, or III if Σ is null. Then, we derive simple equivalent representations of
the standard energy conditions for tµν . In particular, on a spacelike shell or
on a null shell with non-vanishing surface current, tµν inevitably violates the
dominant energy condition. Those fully general results are obtained without
imposing a spacetime symmetry and can be used in any theory of gravity.
Lastly, several applications of the main results are presented in general relativity
in four dimensions.
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1 Introduction

In gravitation physics, a massive thin shell Σ is a junction hypersurface of two spacetimes on
which there is a non-vanishing induced energy-momentum tensor tµν . Possible embeddings
of Σ in a given set of bulk spacetimes and the resulting tµν are determined by the junction
conditions. The first junction conditions require that the induced metrics on both sides
of Σ are the same. Then, the second junction conditions relate tµν and the jump of the
extrinsic curvature (transverse curvature) of Σ if Σ is non-null (null). In general relativity,
the second junction conditions are derived from the Einstein equations and referred to as
the Israel junction conditions for non-null Σ [1] and the Barrabès-Israel junction conditions
for null Σ [2]. The Barrabès-Israel junction conditions have been reformulated by Poisson
to provide a simple characterization of the thin-shell energy-momentum tensor tµν [3]. (The
junction conditions in general relativity are summarized in Sec. 3 in the textbook [4].)

In fact, in order to grasp the essence of general relativistic gravitational phenomena,
massive thin shells have been used to construct simple models in a very wide variety of
contexts. It is not possible to list all the papers, but examples of such phenomena are
gravitational collapse [5–8], growth of cosmic voids [9–11] and bubbles [12–18], and brane
cosmology [19–23]. An exact model for the mass-inflation instability of the inner horizon
of a charged black hole has also been constructed using a null shell [24]. The junction
conditions have also been established in a large class of scalar-tensor theories of gravity
for non-null Σ [25–27] as well as for general Σ [28] and in Einstein-Gauss-Bonnet higher
curvature gravity for non-null Σ [29, 30]. (See [31] for recent developments in the research
of junction conditions.)

For such a shell model to be physically reasonable, tµν induced on the shell should
satisfy at least some of the standard energy conditions [32, 33]. (See [34] for a nice review
of the energy conditions.) In arbitrary n(≥ 3) dimensions, an energy-momentum tensor
Tµν is classified into the four Hawking-Ellis types (three types for n = 2) [33, 35–38] and
equivalent representations of the standard energy conditions in terms of the orthonormal
components of Tµν in the canonical frame are available for each type [33, 39]. Even so,
finding the canonical orthonormal frame by local Lorentz transformations is often not easy.
Accordingly, we derived equivalent representations of the standard energy conditions in the
case where the orthonormal components of Tµν admit only a single off-diagonal “space-time”
component [40]. Relations between the first junction conditions and the energy conditions
were discussed in [41] for a timelike Σ. If a shell Σ is timelike, due to the Lorentzian
signature on Σ, the energy conditions for tµν induced on the shell have to be examined
in each case individually using those results. In contrast, if a shell is non-timelike, the
situation is drastically simplified. In this paper, we will present simple representations
of the standard energy conditions for tµν on a non-timelike Σ embedding in an n(≥ 2)-
dimensional spacetime.
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The present article is organized as follows. In the next section, after reviewing the
standard energy conditions, the Hawking-Ellis classification of an energy-momentum tensor,
and the junction conditions, we will present our main results. In Sec. 3, we will apply
the main results in several physical situations in general relativity in four dimensions.
Throughout this article, the signature of the Minkowski spacetime is (−,+, . . . ,+), and
Greek indices run over all spacetime indices. Other types of indices will be specified in
the main text. We adopt the units such that c = 1 and use κn := 8πGn instead of the
n-dimensional gravitational constant Gn. The conventions of curvature tensors such as
[∇ρ,∇σ]V

µ = Rµ
νρσV

ν and Rµν = Rρ
µρν .

2 Energy conditions for massive thin-shells

We follow the definitions and notations adopted in [33] for the energy conditions and the
Hawking-Ellis types. In n(≥ 2) dimensions, the standard energy conditions for an energy-
momentum tensor Tµν are stated as follows:

• Null energy condition (NEC): Tµνk
µkν ≥ 0 for any null vector kµ.

• Weak energy condition (WEC): Tµνv
µvν ≥ 0 for any timelike vector vµ.

• Dominant energy condition (DEC): Tµνv
µvν ≥ 0 and JµJ

µ ≤ 0 hold for any timelike
vector vµ, where Jµ := −T µνvν is an energy-flux vector for an observer with its
tangent vector vµ.

• Strong energy condition (SEC):
(

Tµν − 1
n−2

Tgµν
)

vµvν ≥ 0 for any timelike vector vµ.

The SEC is defined only for n ≥ 3 and it is equivalent to the timelike convergence condition
Rµνv

µvν ≥ 0 for any timelike vector in general relativity without a cosmological constant.
We note that, although n ≥ 3 is assumed in [33], the results there for the NEC, WEC, and
DEC are also valid for n = 2.

2.1 Hawking-Ellis types

An orthonormal frame is defined by a set of n orthonormal basis vectors {Eµ
(α)} (α =

0, 1, · · · , n− 1) that satisfy

Eµ
(α)E(β)µ = η(α)(β) = diag(−1, 1, · · · , 1), (2.1)

which is equivalent to gµν = η(α)(β)E
(α)
µ E

(β)
ν . The Minkowski metric η(α)(β) in the or-

thonormal frame and its inverse η(α)(β) are respectively used to lower and raise the indices
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(α). Components of Tµν in the orthonormal frame are given by T(α)(β) = TµνE
µ
(α)E

ν
(β).

Orthonormal frame has a degree of freedom provided by local Lorentz transformations
Eµ

(α) → Ẽµ
(α) := L

(β)
(α) Eµ

(β), where L
(β)

(α) satisfies L
(γ)

(α) L
(δ)

(β) η(γ)(δ) = η(α)(β). T(α)(β) behaves
as a scalar under a diffeomorphism and as a two-tensor under a local Lorentz transforma-
tion. We refer to such a mathematical object as a Lorentz-covariant tensor. According to
this terminology, a basis vector Eµ

(α) is a Lorentz-covariant vector.

The Hawking-Ellis classification of Tµν is performed according to the properties of
the Lorentz-invariant eigenvalues λ and eigenvectors nµ (or Lorentz-covariant eigenvectors

n(α) = E
(α)
µ nµ) that are determined by the following eigenvalue equations [32, 33]:

T (α)(β)n(β) = λη(α)(β)n(β) ⇔ T µνnν = λgµνnν . (2.2)

The characteristic equation to determine λ is

det
(

T (α)(β) − λη(α)(β)
)

= 0. (2.3)

Since n(α)n
(α) = nµn

µ holds, a Lorentz-covariant vector n(α) is referred to as timelike,
spacelike, and null if n(α)n

(α) is negative, positive, and zero, respectively.

In three or higher dimensions (n ≥ 3), Tµν is classified into four types as summarized in
Table 1 [32,33]. In two dimensions (n = 2), Tµν is classified into type I, II, or IV. By local
Lorentz transformations, we can write each type of T (α)(β) in a canonical form and then
equivalent representations of the standard energy conditions are available [33].

Table 1: Eigenvectors of type-I–IV energy-momentum tensors.
Type Eigenvectors

I 1 timelike, n− 1 spacelike
II 1 null (doubly degenerated), n− 2 spacelike
III 1 null (triply degenerated), n− 3 spacelike
IV 2 complex, n− 2 spacelike

Type I

The canonical form of type I is

T (α)(β) = diag(ρ, p1, p2, · · · , pn−1) (2.4)

for which the characteristic equation (2.3) gives

(λ+ ρ)(λ− p1) · · · (λ− pn−1) = 0, (2.5)
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so that the eigenvalues are λ = {−ρ, p1, p2, · · · , pn−1}. The eigenvector of λ = −ρ is timelike
and other eigenvectors are spacelike. The standard energy conditions are equivalent to the
following inequalities:

NEC : ρ+ pi ≥ 0 for i = 1, 2, · · · , n− 1, (2.6)

WEC : ρ ≥ 0 in addition to NEC, (2.7)

DEC : ρ− pi ≥ 0 for i = 1, 2, · · · , n− 1 in addition to WEC, (2.8)

SEC : (n− 3)ρ+
∑n−1

j=1pj ≥ 0 in addition to NEC. (2.9)

Type II

The canonical form of type II is

T (α)(β) =



















ρ+ ν ν 0 0 · · · 0
ν −ρ+ ν 0 0 · · · 0
0 0 p2 0 · · · 0

0 0 0
. . .

...
...

...
...

... · · · . . . 0
0 0 0 · · · 0 pn−1



















(2.10)

with ν 6= 0, for which the characteristic equation (2.3) gives

(λ+ ρ)2(λ− p2) · · · (λ− pn−1) = 0, (2.11)

so that the eigenvalues are λ = {−ρ, p2, · · · , pn−1}. The Lorentz-covariant eigenvector
n(α) = k̄(α) of the doubly degenerate eigenvalue λ = −ρ is null, while the Lorentz-covariant
eigenvectors n(α) = wi(α) (i = 2, 3, · · · , n− 1) of the eigenvalues λ = pi are spacelike. k̄(α)
and wi(α) are given by

k̄(α) =



















−1
1
0
0
...
0



















, w2(α) =



















0
0
1
0
...
0



















, · · · , wn−1(α) =



















0
0
0
0
...
1



















, (2.12)

with which T (α)(β) can be written as

T (α)(β) = νk̄(α)k̄(β) − ρ η
(α)(β)
2 +

n−1
∑

i=2

piw
(α)
i w

(β)
i , (2.13)
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where η
(α)(β)
2 := diag(−1, 1, 0, · · · , 0). The standard energy conditions are equivalent to the

following inequalities:

NEC : ν ≥ 0 and ρ+ pi ≥ 0 for i = 2, 3, · · · , n− 1, (2.14)

WEC : ρ ≥ 0 in addition to NEC, (2.15)

DEC : ρ− pi ≥ 0 for i = 2, 3, · · · , n− 1 in addition to WEC, (2.16)

SEC : (n− 4)ρ+
∑n−1

j=2pj ≥ 0 in addition to NEC. (2.17)

Type III

The canonical form of type III is

T (α)(β) =























ρ+ ν ν ζ 0 0 · · · 0
ν −ρ+ ν ζ 0 0 · · · 0
ζ ζ −ρ 0 0 · · · 0
0 0 0 p3 0 · · · 0

0 0 0 0
. . .

...
...

...
...

...
... · · · . . . 0

0 0 0 0 · · · 0 pn−1























(2.18)

with ζ 6= 0, for which the characteristic equation (2.3) gives

(λ+ ρ)3(λ− p3) · · · (λ− pn−1) = 0, (2.19)

so that the eigenvalues are λ = {−ρ, p3, · · · , pn−1}. The eigenvector of the triply degenerate
eigenvalue λ = −ρ is null and other eigenvectors are spacelike. Any type-III energy-
momentum tensor violates all the standard energy conditions.

We note that ν in Eq. (2.18) can be set to zero by local Lorentz transformations if and
only if ζ is non-zero [39]. Nevertheless, the expression (2.18) with non-vanishing ν admits
a limit ζ → 0 to type II and may be useful to identify a type-III energy-momentum tensor
in a given spacetime.

Type IV

The canonical form of type IV is

T (α)(β) =



















ρ ν 0 0 · · · 0
ν −ρ 0 0 · · · 0
0 0 p2 0 · · · 0

0 0 0
. . .

...
...

...
...

... · · · . . . 0
0 0 0 · · · 0 pn−1



















(2.20)
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with ν 6= 0, for which the characteristic equation (2.3) gives

[(λ + ρ)2 + ν2](λ− p2) · · · (λ− pn−1) = 0, (2.21)

so that the eigenvalues are λ = {−ρ + iν,−ρ − iν, p2, · · · , pn−1}. The eigenvectors of the
complex eigenvalues λ = −ρ ± iν are complex and other eigenvectors are spacelike. Any
type-IV energy-momentum tensor violates all the standard energy conditions.

We note that a canonical form of T (α)(β) in the textbook [32] is different from Eq. (2.20).
However, the expression (2.20) may be more useful as pointed out in [39].

2.2 Energy-momentum tensor of massive thin-shells

For junction conditions, we follow the definitions and notations adopted in [28]. We consider
an (n−1)-dimensional junction hypersurface Σ between two n(≥ 2)-dimensional spacetime
regions (M+, g

+
µν) and (M−, g

−

µν). The metric g±µν is expressed in the coordinates xµ± on
(M±, g

±

µν). In the following subsections, we identify an n-dimensional spacetime (M, gµν)
with the line element

ds2n =gµν(x)dx
µdxν (2.22)

as (M+, g
+
µν) or (M−, g

−

µν) and its boundary as Σ. Suppose that Σ is described by
Φ(x) =constant in the bulk spacetime (2.22). We set the same intrinsic coordinates ya

on both sides of Σ and introduce the standard notation [X ] defined by

[X ] := X+ −X−, (2.23)

where X± are X ’s evaluated either on the + or − side of Σ.

2.2.1 Non-null shell

Here we consider the case where Σ is non-null as shown in Fig. 1. A unit normal vector nµ

to Σ is given by

nµ :=
ε∇µΦ

(εgρσ∇ρΦ∇σΦ)1/2
(2.24)

and satisfies nµnµ = ε, where ε = 1 (−1) corresponds to the case where Σ is a timelike
(spacelike) hypersurface. We choose nµ to point from M− to M+.

In the bulk spacetime (M, gµν), Σ is described by xµ = xµ(y) and the line element on
Σ is given by

ds2Σ =hab(y)dy
adyb, (2.25)
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Figure 1: A non-null hypersurface Σ partitions a spacetime into two regions M+ and M−.

where the induced metric hab on Σ is defined by

hab(y) :=gµνe
µ
ae
ν
b , eµa :=

∂xµ

∂ya
. (2.26)

hab and its inverse hab are used to raise or lower Latin indices, respectively. A projection
tensor is defined by hµν := gµν − εnµnν which satisfies hµνn

ν = 0 and hab = hµνe
µ
ae
ν
b (and

therefore hµν = habe
a
µe
b
ν). The extrinsic curvature (or the second fundamental form) Kµν

of Σ and its trace are defined by

Kµν :=h
ρ
µ h

σ
ν ∇ρnσ

(

≡ 1

2
Lnhµν

)

, (2.27)

K :=gµνKµν = ∇µn
µ, (2.28)

where Ln is the Lie derivative with respect to nµ. Kµν is symmetric and tangent to Σ, so
that Kµνn

ν = 0 holds.

The first junction conditions at Σ are given by

[hab] = 0, (2.29)

which means that the induced metric on Σ is the same on both sides of Σ. Under the
first junction conditions, one obtains the second junction conditions from the gravitational
field equations1 that determine the induced energy-momentum tensor tµν on Σ. tµν is
symmetric and tangent to Σ, so that tµνn

ν = 0 holds. In general relativity, the second
junction conditions are obtained from the Einstein equations Gµν + Λgµν = κnTµν and
referred to as the Israel junction conditions [1], which are given by

− ε ([Kµν ]− hµν [K]) = κntµν ⇔ − ε ([Kab]− hab[K]) = κntab, (2.30)

1Independent second junction conditions may also be obtained from the field equations for matter fields
in the bulk spacetime M. (See [28] in the case of a scalar field.)
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where Kab := Kµνe
µ
ae
ν
b , K ≡ Kabh

ab, and tab := tµνe
µ
ae
ν
b . We wil use the following expression

Kab =(∇µnν)e
µ
ae
ν
b

=− nµe
µ
a,b − Γκµνnκe

µ
ae
ν
b , (2.31)

where we have used nµe
µ
a = 0 at the last equality.

2.2.2 Null shell

Figure 2: A null hypersurface Σ partitions a spacetime into two regions M+ and M−.

In the case where Σ is null, our convention is such that M− is in the past of Σ and M+

is in the future as shown in Fig. 2. Since the unit normal vector (2.24) cannot be used for
null Σ, we introduce a null vector kµ defined by

kµ = −∇µΦ, (2.32)

which is tangent to the generators of Σ. (See Sec. 3.1 in the textbook [4] for the proof.)
Here the minus sign is chosen so that kµ is future-directed when Φ increases toward the
future. We install intrinsic coordinates ya = (λ, θA) (A = 2, 3, · · · , n − 1) on Σ, where λ
is an arbitrary parameter on the null generators of Σ and the other n − 2 coordinates θA

label the generators. λ can be an affine parameter on one side of Σ but it is in general not
possible on both sides of Σ.
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The tangent vectors eµa := ∂xµ/∂ya on each side of Σ are naturally segregated into a
null vector kµ that is tangent to the generators and spacelike vectors eµA that point in the
directions transverse to the generators. kµ and eµA are explicitly written as

kµ ≡ eµλ =

(

∂xµ

∂λ

)

θA
, eµA =

(

∂xµ

∂θA

)

λ

, (2.33)

which satisfy kµkµ = 0 = kµe
µ
A. The line element on Σ is

ds2Σ = gµνe
µ
ae
ν
bdy

adyb = σABdθ
AdθB, (2.34)

where the induced metric σAB on Σ is defined by

σAB := gµνe
µ
Ae

ν
B. (2.35)

A basis is completed by adding a transverse null vector Nµ which satisfies

NµN
µ = 0, Nµk

µ = −1, Nµe
µ
A = 0. (2.36)

The completeness relations of the basis are given as

gµν = −kµNν −Nµkν + σABeµAe
ν
B, (2.37)

where σAB is the inverse of σAB. The first junction conditions at Σ are given by

[σAB] = 0, (2.38)

which means that the induced metric on Σ is the same on both sides of Σ.

Since kµ is not normal but tangent to the generators of Σ, we introduce the transverse
curvature Cab that properly represents the transverse derivative of the metric:

Cab :=
1

2
(LNgµν)eµaeνb = (∇µNν)e

µ
ae
ν
b , (2.39)

where we have used that ∇ν(Nµe
µ
a) = 0 and an identity (∇νe

µ
a)e

ν
b ≡ (∇νe

µ
b )e

ν
a at the last

equality. The jump in the transverse curvature [Cab] is directly related to the induced
energy-momentum tensor tµν on Σ.

In the reformulation by Poisson [3], one needs to introduce an arbitrary congruence of
timelike geodesics γ that arbitrarily intersect Σ, of which unit tangent vector is uµ, in
order to derive the expression of tµν . Each member of the congruence corresponds to the
world line of a geodesic observer that intersects Σ and performs measurements there. The
congruence corresponds to a whole family of such observers and gives operational meaning
to the distributional character of tµν . We parametrize γ by the proper time τ such that
τ = 0 at Σ, τ < 0 in M−, and τ > 0 in M+. Then, a displacement along a member of the
congruence is described by dxµ = uµdτ . Continuity of uµ across Σ requires

[−uµkµ] = 0, [uµe
µ
A] = 0, (2.40)
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while uµN
µ may be discontinuous across Σ.

Then, under the first junction conditions (2.38), one obtains the second junction condi-
tions from the gravitational field equations, which determine the induced energy-momentum
tensor tµν on Σ. Generally, tµν is obtained in the following form:

tµν = (−kηuη)−1Sµν , (2.41)

where

Sµν := µkµkν + jA(kµe
A
ν + eAµkν) + pσABe

A
µ e

B
ν . (2.42)

Here µ, jA, and p are respectively interpreted as the shell’s surface density, surface current,
and isotropic surface pressure. Those quantities multiplied by (−kηuη)−1 are the quantities
that the geodesic observer corresponding to γ measures. tµν is symmetric and tangent to Σ,
so that tµνk

ν = 0 holds. In general relativity, the second junction conditions are obtained
from the Einstein equations Gµν + Λgµν = κnTµν and referred to as the Barrabès-Israel
junction conditions [2, 3], which are given by

κnµ = −σAB[CAB], κnj
A = σAB[CλB], κnp = −[Cλλ]. (2.43)

2.3 Main results

Now we are ready to present our main results. If Σ is timelike (ε = 1), hab has the Lorentzian
signature and consequently the induced energy-momentum tensor tµν(= tabeµae

ν
b ) can be

any of the Hawking-Ellis types I through IV. In contrast, on a spacelike Σ (ε = −1), as
shown below, tµν is of type I and simple equivalent representations of the standard energy
conditions for tµν are available.

Proposition 1 An induced energy-momentum tensor tµν on a spacelike hypersurface Σ is
of the Hawking-Ellis type I and a non-vanishing tµν violates the DEC. The NEC, WEC,
and SEC are all equivalent to that pi ≥ 0 are satisfied for all i(= 1, 2, · · · , n− 1), where pi
are eigenvalues of the eigenvalue equations tabv

b = λhabv
b.

Proof: For ε = −1, we can choose Eµ
(0) = nµ and set t(a)(b) = tµνE

µ
(a)E

ν
(b) (a, b = 1, 2, · · · , n−

1) be diagonal without loss of generality by using degrees of freedom to rotate the spacelike
basis vectors Eµ

(a). In this orthonormal frame, t(α)(β) is given in the form of the Hawking-Ellis

type I as t(α)(β) = diag(0, p1, p2, · · · , pn−1) and the proposition follows from Eqs. (2.6)–
(2.9) because pi are eigenvalues of the eigenvalue equations t(a)(b)v

(b) = λδ(a)(b)v
(b). By

identifications Eµ
(a) ≡ eµa/|eµa |, the eigenvalue equations are written as tabv

b = λhabv
b, where

vb = vµebµ is a vector on Σ.
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Next, we consider the case where Σ is null. The Hawking-Ellis type of tµν and equivalent
representations of the standard energy conditions for tµν are given as follows.

Proposition 2 Define J2 for an induced energy-momentum tensor tµν in the most general
form (2.41) on a null hypersurface Σ by

J2 := jAjBσ
AB. (2.44)

For tµν , the Hawking-Ellis type and equivalent representations of the standard energy con-
ditions are as shown in the following table.

Hawking-Ellis type NEC, WEC, SEC DEC
J = 0 II µ ≥ 0, p ≥ 0 µ ≥ 0, p = 0

J 6= 0, p = 0 III violated violated
Jp 6= 0, J2 6= µp II µp > J2, p > 0 violated
Jp 6= 0, J2 = µp I p > 0 violated

Proof. We introduce orthonormal basis vectors Eµ
(α) at the location of Σ such that a timelike

basis vector Eµ
(0) and a spacelike basis vector Eµ

(1) are given by

{

Eµ
(0) = (kµ +Nµ)/

√
2

Eµ
(1) = (−kµ +Nµ)/

√
2

⇔
{

kµ = (Eµ
(0) − Eµ

(1))/
√
2

Nµ = (Eµ
(0) + Eµ

(1))/
√
2
. (2.45)

If jAe
A
µ is non-vanishing, using degrees of freedom to rotate the spacelike basis vectors Eµ

(i)

(i = 2, 3, · · · , n−1), we can set Eµ(2) point the direction of jAe
A
µ such that jAe

A
µ = −JEµ(2)

without loss of generality, where J satisfies Eq. (2.44). If jAe
A
µ is vanishing (and then

J2 = 0), we don’t specify the direction of Eµ(2). Now Eq. (2.42) is written as

Sµν =
1

2
µ(Eµ

(0) − Eµ
(1))(E

ν
(0) −Eν

(1))−
1√
2
J
[

(Eµ
(0) −Eµ

(1))E
ν
(2) + Eµ

(2)(E
ν
(0) −Eν

(1))
]

+ p

[

gµν +
1

2
(Eµ

(0) −Eµ
(1))(E

ν
(0) + Eν

(1)) +
1

2
(Eµ

(0) + Eµ
(1))(E

ν
(0) − Eν

(1))

]

, (2.46)

where we have used Eq. (2.37). Then, we obtain orthonormal components of the induced
energy-momentum tensor (2.41) as t(α)(β) = (−kηuη)−1S(α)(β), where

S(α)(β) :=

























µ/2 µ/2 J/
√
2 0 0 · · · 0

µ/2 µ/2 J/
√
2 0 0 · · · 0

J/
√
2 J/

√
2 p 0 0 · · · 0

0 0 0 p 0 · · · 0

0 0 0 0
. . .

...
...

...
...

...
... · · · . . . 0

0 0 0 0 · · · 0 p

























. (2.47)
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Since the factor (−kηuη)−1 is positive, the Hawking-Ellis types and the energy conditions
for t(α)(β) and S(α)(β) are the same.

For J = 0, S(α)(β) is in the canonical type II form (2.10) with ν = µ/2, ρ = 0, and
p2 = p3 = · · · = pn−1 = p. Then, the standard energy conditions are equivalent to

NEC, WEC, SEC : µ ≥ 0 and p ≥ 0, (2.48)

DEC : µ ≥ 0 and p = 0 (2.49)

by Eqs. (2.14)–(2.17). For J 6= 0 with p = 0, S(α)(β) is in the canonical type-III form (2.18)
with ν = µ/2, ρ = 0, and ζ = J/

√
2, and then all the standard energy conditions are

violated. Hereafter we assume Jp 6= 0.

The characteristic equation of the eigenvalue equations gives λ2(λ − p)n−2 = 0 and
hence the eigenvalues are λ = {0, p}. For the eigenvalue λ = p( 6= 0), the corresponding
n− 2 Lorentz-covariant eigenvectors are spacelike and their normalized forms are given by
n(α) = {wi(α)} (i = 2, 3, · · · , n− 1), where

w2(α) =



















J/(
√
2p)

−J/(
√
2p)

−1
0
...
0



















, w3(α) =



















0
0
0
1
...
0



















, · · · , wn−1(α) =



















0
0
0
0
...
1



















. (2.50)

Comparing

S(α)(β) −
n−1
∑

i=2

pw
(α)
i w

(β)
i

=























(µp− J2)/(2p) (µp− J2)/(2p) 0 0 0 · · · 0
(µp− J2)/(2p) (µp− J2)/(2p) 0 0 0 · · · 0

0 0 0 0 0 · · · 0
0 0 0 0 0 · · · 0

0 0 0 0
. . .

...
...

...
...

...
... · · · . . . 0

0 0 0 0 · · · 0 0























(2.51)

with Eqs. (2.10) and (2.13), we find that S(α)(β) is of type II for µp 6= J2 and of type
I for µp = J2. For µp 6= J2, the canonical form of S(α)(β) is given by Eq. (2.10) with
ν = (µp − J2)/(2p), ρ = 0, and p2 = p3 = · · · = pn−1 = p. Then, by Eqs. (2.14)–(2.17),
the NEC, WEC, and SEC are equivalent to µp > J2 and p > 0, while the DEC is violated.
For µp = J2, the canonical form of S(α)(β) is given by Eq. (2.4) with ρ = 0, p1 = 0, and
p2 = p3 = · · · = pn−1 = p. Then, by Eqs. (2.6)–(2.9), the NEC, WEC, and SEC are
equivalent to p > 0, while the DEC is violated.
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3 Applications in general relativity in four dimensions

Propositions 1 and 2 in the previous section are the main results in the present paper. With-
out imposing a spacetime symmetry, we have shown that the induced energy-momentum
tensor tµν on a shell Σ is of the Hawking-Ellis type I if Σ is spacelike and either of type
I, II, or III if Σ is null. Then, we have derived equivalent representations of the standard
energy conditions for tµν . In particular, on a spacelike shell or on a null shell with non-
vanishing surface current, tµν inevitably violates the DEC. Those fully general results have
been obtained without imposing a spacetime symmetry and can be used in any theory
of gravity. In this section, as a demonstration, we apply Propositions 1 and 2 to several
physical situations in general relativity in four dimensions (n = 4).

3.1 Shells in the Schwarzschild spacetime

3.1.1 Black bounce with a spacelike shell

As the first application, we consider a spacelike massive thin shell constructed by gluing
two Schwarzschild bulk spacetimes. We write the bulk metric in the diagonal coordinates
xµ = (t, r, θ, φ) as

ds2 = gµνdx
µdxν = −f(r)dt2 + f(r)−1dr2 + r2γABdz

AdzB , (3.1)

f(r) := 1− 2M

r
, γABdz

AdzB = dθ2 + sin2 θdφ2, (3.2)

where M is a positive mass parameter and zA(A = 2, 3) are coordinates on the unit two-
sphere S2. Let r0 be a constant satisfying 0 < r0 < 2M and consider two spacetimes
which are described by the metric (3.1) with the same positive mass M and defined in the
domain r ≥ r0. We glue them at a spacelike hypersurface Σ described by r = r0. In the
resulting spacetime, the big bounce occurs at a spacelike bounce hypersurface Σ inside the
event horizon of a black hole as shown in Fig. 3. Such a spacetime is referred to as a black
bounce. Our model is a thin-shell version of the Simpson-Visser black-bounce model [42],
in which the metric is analytic everywhere. We will show that all the standard energy
conditions are violated on Σ.

As seen from M+, the unit normal one-form to Σ is given by

n+
µ dx

µ = − 1
√

−f(r0)
dr . (3.3)

Note that the timelike vector nµ = (0,
√

−f(r0), 0, 0) points an increasing direction of r,
which is consistent with the assumption in Sec. 2.2.1 that nµ points from M− to M+. The
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Figure 3: A Penrose diagram of the thin-shell black-bounce spacetime constructed by gluing
two identical Schwarzschild spacetimes at a spacelike hypersurface r = r0(< 2M).

induced metric hab on the spacelike Σ is given by

ds2Σ = hab(y)dy
adyb = −f(r0)dt2 + r20γABdz

AdzB , (3.4)

where a = 1, 2, 3 and we have identified y1 ≡ t and yA ≡ zA. Since r0 = 2M is the same
on both sides of Σ, the first junction conditions [hab] = 0 are satisfied.

Using Eq. (2.31) with Eq. (3.3) and

eµt
∂

∂xµ
=

∂

∂t
, eµA

∂

∂xµ
=

∂

∂zA
, (3.5)

we obtain non-zero components of Kab as seen from M+ as

K+
tt =− 1

2

√

−ff ′|r=r0 , K+
AB = r

√

−fγAB|r=r0 , (3.6)

which give

K+ = K+
abh

ab =

(

− f ′

2
√
−f +

2
√
−f
r

)∣

∣

∣

∣

r=r0

, (3.7)

where a prime denotes differentiation with respect to r. As seen from M−, the unit normal
is given by

n−

µ dx
µ =

1
√

−f(r0)
dr (3.8)

15



instead of Eq. (3.3), which points a decreasing direction of r. As a result, Kab as seen from
M− is given by K−

ab = −K+
ab.

Then, the Israel junction conditions (2.30) with ε = −1 give

κ4tab = 2(K+
ab − habK

+), (3.9)

of which non-zero components are given by

ttt =− 4(−f)3/2
κ4r

∣

∣

∣

∣

r=r0

=: λ1, tAB =
r(rf ′ + 2f)

κ4
√
−f γAB

∣

∣

∣

∣

r=r0

=: λ2γAB. (3.10)

Eigenvalues of tabv
b = λhabv

b are given by λ = {p1, p2}, where

p1 := −4
√
−f

κ4r

∣

∣

∣

∣

r=r0

, p2 :=
rf ′ + 2f

κ4r
√
−f

∣

∣

∣

∣

r=r0

. (3.11)

Since p1 is negative, all the standard energy conditions are violated on Σ by Proposition 1.

3.1.2 Lightlike impulse as a null shell

Next, we study the energy conditions of a lightlike impulse in the Schwarzschild spacetime
as a null shell, which has been studied in [2,3]. We write the bulk metric in the single-null
coordinates (v, r, zA) as

ds2 =gµνdx
µdxν = −f(r)dv2 + 2ǫdvdr + r2γABdz

AdzB , (3.12)

where f(r) and γAB are defined by Eq. (3.2) and ǫ = ±1. Non-zero components of the
inverse metric are given by

gvv = 0, gvr = ǫ, grr = f, gAB = r−2γAB, (3.13)

where γAB is the inverse of γAB. For a given ǫ, we consider a spacetime described by the
metric (3.12) with M =M+(M−) defined in the domain v ≥ (≤)v0 as M+(M−), where v0
is a constant. We glue them at a null hypersurface Σ defined by v = v0 and the resulting
spacetime describes a lightlike impulse in the Schwarzschild spacetime as shown in Fig. 4.
We will derive the equivalent inequalities to the standard energy conditions on Σ.

The null vector kµ = −gµν∇νv tangent to the null generators of Σ is given by

kµ
∂

∂xµ
= −ǫ ∂

∂r
, (3.14)

which satisfies kµk
µ = 0 and kν∇νk

µ = 0. Hence, kµ is parametrized by an affine parameter
λ. By kr = dr/dλ = −ǫ, we identify −ǫr with λ. Since zA are constant along the
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Figure 4: Penrose diagrams of the Schwarzschild spacetime with a lightlike impulse as a
null shell for (a) ǫ = 1 with M+ > M− and (b) ǫ = −1 with M+ < M−. These shells satisfy
all the standard energy conditions.
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generators, we install coordinates ya = (λ, θA) on Σ such that λ = −ǫr and θA = zA. Now
the parametric equations xµ = xµ(λ, θA) describing Σ are v = v0, r = −ǫλ, and zA = θA,
where θA label the generators of Σ. eµa := ∂xµ/∂ya are given by

eµλ
∂

∂xµ
= kµ

∂

∂xµ
, eµA

∂

∂xµ
=

∂

∂zA
. (3.15)

By Eq. (2.34), the induced metric on Σ is given by

ds2Σ = σABdθ
AdθB = λ2γABdz

AdzB . (3.16)

Since σAB is independent from M±, the first junction conditions [σAB] = 0 are satisfied.

The transverse null vector Nµ completing the basis is given by

Nµ ∂

∂xµ
=

∂

∂v
+

1

2
ǫf

∂

∂r
. (3.17)

The expression Nµdx
µ = −(f/2)dv + ǫdr shows NµN

µ = 0, Nµe
µ
λ = −1, and Nµe

µ
A =

0. Then, by Eq. (2.39), nonvanishing components of the transverse curvature of Σ are
computed to give

CAB =
1

2
ǫrfγAB

∣

∣

∣

∣

r=−ǫλ

. (3.18)

Now we have [Cλλ] = [CλA] = 0 and

[CAB] =
1

2
ǫr(f+ − f−)γAB

∣

∣

∣

∣

r=−ǫλ

= −ǫ(M+ −M−)γAB. (3.19)

Then, the Barrabès-Israel junction conditions (2.43) give p = 0, jA = 0, and

µ =
2ǫ(M+ −M−)

κ4λ2
. (3.20)

As p = 0 and J = 0 are satisfied, tµν on Σ is of the Hawking-Ellis type II and all the standard
energy conditions are satisfied (violated) for ǫ(M+ −M−) ≥ (<)0 by Proposition 2.

3.1.3 Accretion of a slowly-rotating null shell

As the third application, we consider a situation that a slowly-rotating null shell is collaps-
ing in the Schwarzschild spacetime with its mass M − m. This system has been studied
in [3]. The past (or interior) spacetime M− of the shell is described by the Schwarzschild
spacetime metric

ds2
−
= −F (r)dt̄2 + F (r)−1dr2 + r2(dθ2 + sin2 θdϕ2), (3.21)

F (r) := 1− 2(M −m)

r
(3.22)
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in the coordinates xµ− = (t̄, r, θ, ϕ), where M and m are constant. The future (or exterior)
spacetime M+ is described by the slowly rotating Kerr metric:

ds2+ = −f(r)dt2 + f(r)−1dr2 + r2(dθ2 + sin2 θdφ2)− 4Ma

r
sin2 θdtdφ,

f(r) := 1− 2M

r

(3.23)

in the coordinates xµ+ = (t, r, θ, φ), where a is a rotation parameter. Non-zero components
of the inverse metric on M+ are

gtt = − r4

r4f + 4M2a2 sin2 θ
, gtφ = − 2Mar

r4f + 4M2a2 sin2 θ
, (3.24)

grr = f, gθθ = r−2, gφφ =
r2f

sin2 θ(r4f + 4M2a2 sin2 θ)
. (3.25)

The metric (3.23) is a solution to the vacuum Einstein equations in the slow-rotation
approximation, in which we consider up to the linear order of a. We will show that,
due to the ambiguity to define a null vector, one cannot obtain a definite conclusion on
the Hawking-Ellis type of the shell and the energy conditions for the null shell in this
approximation.

On M+, we define v = v(t, r) and r∗ = r∗(r) by

v := t + r∗, (3.26)

r∗ := r + 2M ln

∣

∣

∣

∣

r

2M
− 1

∣

∣

∣

∣

(

=

∫

f(r)−1dr

)

(3.27)

and let Σ be a hypersurface described by v = v0 =constant. A vector kµ = −gµν∇νv is
given by

kµ
∂

∂xµ
=− gtt

∂

∂t
− ∂

∂r
− gtφ

∂

∂φ

≃f−1 ∂

∂t
− ∂

∂r
+

2Ma

r3f

∂

∂φ
, (3.28)

which satisfies

kµk
µ =

4M2a2 sin2 θ

f(r4f + 4M2a2 sin2 θ)
≃ 0, (3.29)

kν∇νk
µ ∂

∂xµ
=− 4M2a2 sin2 θ[2r3f 2 + f ′(r4f + 2M2a2 sin2 θ)]

f(r4f + 4M2a2 sin2 θ)2
∂

∂r

+
4M2a2r2 sin θ cos θ

(r4f + 4M2a2 sin2 θ)2
∂

∂θ
≃ 0. (3.30)
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Hence, kµ is null and affinely parametrized in the slow-rotation approximation. In this
approximation, Σ is a null hypersurface and kµ is tangent to the null generators of Σ. By
kr = −1 and kθ = 0, the generators are affinely parametrized by λ = −r and θ is constant
on each generator.

On M+, we also define ψ = ψ(r, φ) by

ψ := φ+
a

r

(

1 +
r

2M
ln f

)

. (3.31)

Along generators of Σ, we have

dφ

dr
=
kφ

kr
≃ −2Ma

r3f
, (3.32)

which is integrated to give

φ− φ0 ≃ −a
r

(

1 +
r

2M
ln f

)

, (3.33)

where φ0 is an integration constant. Therefore, ψ defined by Eq. (3.31) is constant on
the generators of Σ in the slow-rotation approximation. Thus, we install coordinates ya =
(λ, θA) on Σ, where θA = (θ, ψ). Now the parametric equations xµ = xµ(λ, θA) describing
Σ as seen from M+ are

t = −r∗(−λ) + v0, r = −λ, θ = θ, φ = ψ +
a

λ

(

1− λ

2M
ln f(−λ)

)

. (3.34)

Then, eµa := ∂xµ/∂ya are given by

eµλ
∂

∂xµ
= kµ

∂

∂xµ
, eµθ

∂

∂xµ
=

∂

∂θ
, eµψ

∂

∂xµ
=

∂

∂φ
, (3.35)

which satisfy kµk
µ ≃ 0 and kµe

µ
A = 0. By Eq. (2.34), the induced metric on Σ is given by

ds2Σ = σABdθ
AdθB = λ2(dθ2 + sin2 θdψ2). (3.36)

The transverse vector Nµ completing the basis in the slow-rotation approximation is given
by

Nµdx
µ =

1

2
(−fdt+ dr), (3.37)

which satisfy Nµk
µ = −1, Nµe

µ
A = 0, and

NµN
µ =

fM2a2 sin2 θ

r4f + 4M2a2 sin2 θ
≃ 0. (3.38)
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From Eq. (2.39), the transverse curvature of Σ is computed to give

C+
λλ =

4M2a2 sin2 θ[3r3f 2 + f ′(r4f +M2a2 sin2 θ)]

f(r4f + 4M2a2 sin2 θ)2

∣

∣

∣

∣

r=−λ

≃ 0, (3.39)

C+
λθ =

2M2a2r4f sin θ cos θ

(r4f + 4M2a2 sin2 θ)2

∣

∣

∣

∣

r=−λ

≃ 0, (3.40)

C+
λψ =

3Mar2f sin2 θ

r4f + 4M2a2 sin2 θ

∣

∣

∣

∣

r=−λ

≃ 3Ma sin2 θ

r2

∣

∣

∣

∣

r=−λ

, (3.41)

C+
θθ =

1

2
rf

∣

∣

∣

∣

r=−λ

, C+
ψψ =

1

2
rf sin2 θ

∣

∣

∣

∣

r=−λ

. (3.42)

We can obtain the results on M− by replacing such that M → M − m, a → 0, and
(t, φ) → (t̄, ϕ). Thus, as seen from M−, we have ds2Σ−

= σABdθ
AdθB and

C−

λλ =0, C−

λθ = 0, C−

λψ = 0, C−

AB =
F

2r
σAB

∣

∣

∣

∣

r=−λ

, (3.43)

where σAB is given by Eq. (3.36), so that the first junction conditions [σAB] = 0 are satisfied.
Then, using the Barrabès-Israel junction conditions (2.43) and

[Cλλ] = [Cλθ] = 0, [Cλψ] =
3Ma sin2 θ

r2

∣

∣

∣

∣

r=−λ

, [CAB] = −m
r2
σAB

∣

∣

∣

∣

r=−λ

, (3.44)

we obtain

µ =
2m

κ4λ2
, jθ = 0, jψ =

3Ma

κ4λ4
, p = 0. (3.45)

Since we have p = 0 and J 6= 0, the energy-momentum tensor tµν on the shell Σ is of the
Hawking-Ellis type III and violates all the standard energy conditions by Proposition 2.

However, this conclusion under the slow-rotation approximation cannot be definite as
shown below. Now tµν on the shell Σ is given by

tµν =(−kηuη)−1[µkµkν + jψ(kµeνψ + eµψk
ν)]. (3.46)

This tµν can be written in the slow-rotation approximation as

tµν =(−kηuη)−1µℓµℓν , (3.47)

ℓµ :=kµ +
jψ

µ
eµψ, (3.48)

where components of ℓµ in the coordinates (t, r, θ, φ) are given by

ℓµ ≃
(

f−1,−1, 0,
2Ma

r3f
+

3Ma

2mr2

)∣

∣

∣

∣

r=−λ

. (3.49)
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Since ℓµℓ
µ ≃ 0 is satisfied, ℓµ is null in the slow-rotation approximation. As a consequence,

tµν in the form of Eq. (3.47) is of the Hawking-Ellis type II and all the standard energy
conditions are satisfied (violated) for µ ≥ (<)0 by Proposition 2 in spite that tµν in the form
of Eq. (3.46) is of type III and all the standard energy conditions are inevitably violated.
Hence, due to the ambiguity to define a null vector, one cannot obtain a definite conclusion
on the Hawking-Ellis type of tµν and the energy conditions on Σ. To avoid this problem,
higher-order effects of the rotation parameter a must be taken into account. We will see
in the next subsection how the result in the full-order analysis is different from the one in
the slow-rotation approximation.

3.2 Cylindrically symmetric rotating null shell

As the fourth application, we consider a rotating cylindrically symmetric null shell col-
lapsing in the Minkowski spacetime. The past (or interior) spacetime M− of the shell is
described by the Minkowski metric

ds2
−
= −dt2 + dρ2 + ρ2dϕ2 + dz2 (3.50)

in the cylindrical coordinates xµ− = (t, ρ, ϕ, z). The future (or exterior) spacetime M+ of
the shell is described by the following locally flat metric

ds2+ = −(dT +mdΦ)2 + C2dr2 + r2dΦ2 + dz2 (3.51)

in the coordinates xµ+ = (T, r,Φ, z), where C(> 0) and m are constants. Non-vanishing
components of the inverse metric on M+ are

gTT = −r
2 −m2

r2
, gTψ = −m

r2
, grr = C−2, gΦΦ = r−2, gzz = 1. (3.52)

Non-vanishing components of the Levi-Civitá connection on M+ are

ΓTrΦ = −m
r
, ΓΦ

rΦ =
1

r
, ΓrΦΦ = − r

C2
. (3.53)

The exterior metric (3.51) describes a spinning cosmic string [43, 44] and admits a closed
timelike curve in the region r < |m| where vµ(∂/∂xµ) = ∂/∂Φ is timelike.

The dynamics of a massive thin-shell Σ as a matching hypersurface between M− and
M+ has been investigated for timelike Σ in [45] and for null Σ in [46]. Here we follow the
argument in [46] in more detail.

In order to identify the description of the null shell Σ, we first study the most general
affinely parametrized ingoing null geodesic γ described by xµ+ = xµ+(λ) with an affine
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parameter λ in the exterior spacetime M+, of which tangent vector is given by kµ(=
dxµ+/dλ). Since the exterior spacetime (3.51) admits the following Killing vectors

ξµ1
∂

∂xµ
=

∂

∂T
, ξµ2

∂

∂xµ
=

∂

∂Φ
, ξµ3

∂

∂xµ
=

∂

∂z
, (3.54)

there are three conserved quantities E := −kµξµ1 , K := kµξ
µ
2 , and Vz := kµξ

µ
3 along γ,

which give

kT =
E(r2 −m2)−mK

r2
, kΦ =

mE +K

r2
, kz = Vz. (3.55)

We assume E > 0 so that γ is future directed in a far region r → ∞. Then, the null
condition ds2+ = 0 along γ with Eq. (3.55) gives the following master equation for r(λ):

(

dr

dλ

)2

=
(E2 − V 2

z )(r
2 − b2)

C2r2
→ kr =

dr

dλ
= −

√

(E2 − V 2
z )(r

2 − b2)

Cr , (3.56)

where the minus sign is taken for ingoing γ and b is defined by

b :=
K +mE
√

E2 − V 2
z

(3.57)

for E2 6= V 2
z . The master equation (3.56) requires E2 − V 2

z ≥ 0 and shows that r = |b| is
the turning radius. The general solution of the master equation for E2 6= V 2

z is given by

λ− λ0 = −C
√

r2 − b2

E2 − V 2
z

→ r(λ)2 =
E2 − V 2

z

C2
(λ− λ0)

2 + b2, (3.58)

where λ0 is an integration constant and λ = λ0 corresponds to the turning radius r = b. The
null geodesic γ enters the region with closed timelike curves for |b| < |m|, or equivalently
|K +mE| < |m|

√

E2 − V 2
z .

Using Eqs. (3.55) and (3.56), we obtain

dT

dr
= −C(Er2 −mb

√

E2 − V 2
z )

r
√

(E2 − V 2
z )(r

2 − b2)
, (3.59)

dΦ

dr
= − bC

r
√
r2 − b2

, (3.60)

dz

dr
= − VzCr

√

(E2 − V 2
z )(r

2 − b2)
(3.61)

along γ. We define three functions as

v(T, r) := T + r∗(r), ψ(Φ, r) := Φ + rΦ(r), Z(z, r) := z + rz(r), (3.62)
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where

r∗(r) :=

∫ C(Er2 −mb
√

E2 − V 2
z )

r
√

(E2 − V 2
z )(r

2 − b2)
dr, (3.63)

rΦ(r) :=

∫

bC
r
√
r2 − b2

dr, (3.64)

rz(r) :=

∫

VzCr
√

(E2 − V 2
z )(r

2 − b2)
dr, (3.65)

and then v, ψ, and Z are constant along γ by Eqs. (3.59)–(3.61). By coordinate trans-
formations T = v − r∗(r), Φ = ψ − rΦ(r), and z = Z − rz(r), the exterior metric (3.51)
becomes

ds2+ =− dv

(

dv − 2CEr
√

(E2 − V 2
z )(r

2 − b2)
dr + 2mdψ

)

− 2CKr
√

(E2 − V 2
z )(r

2 − b2)
drdψ − 2VzCr

√

(E2 − V 2
z )(r

2 − b2)
drdZ

+ (r2 −m2)dψ2 + dZ2 (3.66)

in the coordinates (v, r, ψ, Z). Now we consider a hypersurface given by v = v0 =constant.
Its normal vector lµdx

µ = −(∇µv)dx
µ = −dv satisfies

lµl
µ = gvv = − V 2

z (r
2 −m2) +K2

(K +mE)2 − (E2 − V 2
z )r

2
(3.67)

and therefore v = v0 is a null hypersurface for K = Vz = 0.

Hence, we identify kµ with K = 0 and Vz = 0 (and then b = m and Z = z) as the
tangent vector to the generators of the null shell Σ described by v = v0. Then, the exterior
metric (3.51) and kµ are given in the coordinates (v, r, ψ, z) as

ds2+ = −dv

(

dv − 2Cr√
r2 −m2

dr + 2mdψ

)

+(r2 −m2)dψ2 + dz2, (3.68)

kµ
∂

∂xµ
= −E

√
r2 −m2

Cr
∂

∂r
. (3.69)

Since ψ and z(= Z) are constant along the generators, we shall install intrinsic coordinates
ya = (λ, θA) on Σ as θA ≡ (ψ, z), where λ = λ(r) is given by Eq. (3.58) with Vz = 0 and
b = m. Then, eµa := dxµ/dya are given by

eµλ
∂

∂xµ
= kµ

∂

∂xµ
, eµψ

∂

∂xµ
=

∂

∂ψ
, eµz

∂

∂xµ
=

∂

∂z
, (3.70)

which satisfy kµk
µ = 0 and kµe

µ
A = 0. The induced metric on Σ is given by

ds2Σ+ = σ+
ABdθ

AdθB =(r2 −m2)|Σdψ2 + dz2 =
E2

C2
(λ− λ0)

2dψ2 + dz2. (3.71)
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The transverse null vector completing the basis is given by

Nµdx
µ = − r2

2E(r2 −m2)
dv +

Cr
E
√
r2 −m2

dr, (3.72)

which satisfies NµN
µ = 0, Nµk

µ = −1, and Nµe
µ
A = 0. Then, from Eq. (2.39), non-

vanishing components of the transverse curvature of Σ are computed to give

C+
λψ =C+

ψλ =
m

C
√
r2 −m2

∣

∣

∣

∣

Σ

= − m

E(λ− λ0)
,

C+
ψψ =

r2

2EC
√
r2 −m2

∣

∣

∣

∣

Σ

= − 1

2E2(λ− λ0)

{

E2

C2
(λ− λ0)

2 +m2

}

.

(3.73)

By setting m = 0 and C = 1 and replacing (T, r,Φ) by (t, ρ, ϕ), we can obtain the results
on M− described by the flat metric (3.50). Equation (3.58) with Vz = 0 and b = 0 gives

ρ = −Ē(λ− λ0), (3.74)

where we have used the same λ and λ0 as those in M+ without loss of generality by an
affine transformation λ→ aλ+ b. Ē is a constant related to the conserved quantity along
a null generator of Σ associated with the Killing vector ξµ(∂/∂xµ) = ∂/∂t. As seen from
M−, λ = λ0 corresponds to the axis of symmetry ρ = 0. From Eqs. (3.71), we obtain the
induced metric on Σ as

ds2Σ−
= σ−

ABdθ
AdθB =ρ2|Σdψ2 + dz2 = Ē2(λ− λ0)

2dψ2 + dz2. (3.75)

From Eq. (3.73), we obtain the transverse curvature of Σ as

C−

λψ = C−

ψλ = 0, C−

ψψ =
ρ

2Ē

∣

∣

∣

∣

Σ

= −1

2
(λ− λ0). (3.76)

By the first junction conditions [σAB] = 0, we obtain

Ē =
E

C . (3.77)

Then, using the Barrabès-Israel junction conditions (2.43) and

[Cλλ] = 0, [Cλψ] = [Cψλ] = − m

E(λ− λ0)
, (3.78)

[Cψψ] = − 1

2E2(λ− λ0)

{

E2(1− C2)

C2
(λ− λ0)

2 +m2

}

, (3.79)

we obtain

µ =
E2(1− C2)(λ− λ0)

2 +m2C2

2κ4E4(λ− λ0)3
, jψ = − mC2

κ4E3(λ− λ0)3
, jz = 0, p = 0. (3.80)
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Using λ− λ0 = −C
√
r2 −m2/E from Eq. (3.58), we can write those quantities in terms of

r as

µ =
(C2 − 1)r2 − C2m2

2κ4EC(r2 −m2)3/2

∣

∣

∣

∣

Σ

, jψ =
m

κ4C(r2 −m2)3/2

∣

∣

∣

∣

Σ

, jz = 0, p = 0. (3.81)

This result is consistent with the one in [46], in which Ē = 1 is assumed. Since we have
p = 0 and J 6= 0, the induced energy-momentum tensor tµν on the null shell is of the
Hawking-Ellis type III and violates all the standard energy conditions by Proposition 2.

Our result is conclusive because we have not used any approximation. tµν on the shell
is now given by

tµν =(−kηuη)−1[µkµkν + jψ(kµeνψ + eµψk
ν)]. (3.82)

For our interest, let us see what happens in the slow-rotation approximation up to the
linear order of m/r. In this approximation, Eq. (3.82) can be written as

tµν ≃ (−kηuη)−1µℓµℓν , (3.83)

ℓµ := kµ +
jψ

µ
eµψ. (3.84)

The components of ℓµ in the coordinates (v, r, ψ, z) are

ℓµ
∂

∂xµ
=− E

√
r2 −m2

Cr
∂

∂r
+

2mE

(C2 − 1)r2 − C2m2

∂

∂ψ
(3.85)

and its squared norm is given by

ℓµℓ
µ =

4m2E2(r2 −m2)

[(C2 − 1)r2 − C2m2]2
≃ 0. (3.86)

Since ℓµ is null in the slow-rotation approximation, one could misunderstand from Eq. (3.83)
that tµν is of the Hawking-Ellis type II and all the standard energy conditions are satisfied
(violated) for µ ≥ (<)0. Of course, it is a wrong conclusion caused by the approximation.

3.3 Cosmological phase transition

As the last application, this subsection considers a sudden transition of the universe from
the anisotropic Bianchi I expansion to the isotropic flat Friedmann-Lemâıtre-Robertson-
Walker (FLRW) expansion. We consider the past spacetime M− described by the following
Bianchi-I metric

ds2
−
= −dt2 + a(t)2(dx2 + dy2) + dz2

−
(3.87)
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in the coordinates xµ− = (t, x, y, z−) and the future spacetime M+ described by the flat
FLRW metric

ds2+ = −dt2 + a(t)2(dx2 + dy2 + dz2+) (3.88)

in the coordinates xµ+ = (t, x, y, z+) with the same scale factor a(t). We assume that the
scale factor a(t) is the same both in M− and M+ as a solution to the Einstein equations
Gµν + Λgµν = κ4Tµν . As the Einstein tensor in M− and M+ are given by

Gµ
ν |− = diag

(

− ȧ
2

a2
,− ä

a
,− ä

a
,− ȧ

2 + 2aä

a2

)

, (3.89)

Gµ
ν |+ = diag

(

−3ȧ2

a2
,− ȧ

2 + 2aä

a2
,− ȧ

2 + 2aä

a2
,− ȧ

2 + 2aä

a2

)

, (3.90)

the matter fields in M− and M+ are different. In [3], the author assumed a(t) = (t/t0)
1/2

and Λ = 0, where t0 is a constant. Then, we have

Gµ
ν |− = diag

(

− 1

4t2
,
1

4t2
,
1

4t2
,
1

4t2

)

, (3.91)

Gµ
ν |+ = diag

(

− 3

4t2
,
1

4t2
,
1

4t2
,
1

4t2

)

. (3.92)

In this case, a matter field in M− may be a stiff fluid, namely a perfect fluid obeying an
equation of state p = ρ, while a matter field in M+ may be a radiation fluid, namely a
perfect fluid obeying an equation of state p = ρ/3. Hereafter we keep a(t) arbitrary.

3.3.1 Transition at spacelike Σ

First, we consider the case where the transition occurs at a spacelike hypersurface Σ given
by t = t0 =constant both on M− and M+ and then the first junction conditions require
a(t0)

2 = 1. The induced metric on Σ is given by

ds2Σ = habdy
adyb = dx2 + dy2 + dz2, (3.93)

where we have installed intrinsic coordinates ya = (x, y, z) on Σ and the parametric equa-
tions xµ = xµ(ya) describing Σ are given by

t = t0, x = x, y = y, z− = z on M−, (3.94)

t = t0, x = x, y = y, z+ = z on M+. (3.95)

The unit normal vector nµ to Σ is given by

nµ
∂

∂xµ
=

∂

∂t
(3.96)

27



both on M− and M+. Note that the timelike vector nµ points in an increasing direction
of t, which is consistent with the assumption in Sec. 2.2.1 that nµ points from M− to M+.

Using eµa = δµa in Eq. (2.31), we obtain Kab = Γ0
ab and therefore non-zero components of

Kab on M− and M+ are given by

K−

xx = K−

yy = aȧ|t=t0 , (3.97)

K+
xx = K+

yy = K+
zz = aȧ|t=t0 , (3.98)

which give

K− = K−

abh
ab =

2ȧ

a

∣

∣

∣

∣

t=t0

, K+ = K+
abh

ab =
3ȧ

a

∣

∣

∣

∣

t=t0

. (3.99)

Thus, [Kab] admits only a single non-zero component [Kzz] = aȧ|t=t0 . From the Israel
junction conditions (2.30) with ε = −1 and [K] = ȧ/a|t=t0 , we obtain non-zero components
of tab as

κ4txx = κ4tyy = −aȧ|t=t0 . (3.100)

Since eigenvalues of tabv
b = λhabv

b are given by λ = {0,−ȧ/(κ4a)|t=t0}, the DEC is violated
and the NEC, WEC, and SEC are satisfied (violated) for ȧ ≤ (>)0 by Proposition 1.

3.3.2 Transition at null Σ

Next, we consider the case where the transition occurs at a null hypersurface Σ. The
system with a(t) = (t/t0)

1/2 and Λ = 0 has been studied in [3] as a simplified version of
the example in [47], however, it contains an error that changes the conclusion.

As seen from M−, we describe the transition null hypersurface Σ by t− z− =constant.
The null vector kµ = −gµν∇ν(t− z−) is computed to give

kµ
∂

∂xµ
=

∂

∂t
+

∂

∂z−
, (3.101)

which satisfies kν∇νk
µ = 0. Hence, kµ is tangent to the null generators of Σ which are

parametrized by an affine parameter λ. By kt = 1, t is an affine parameter on this side of Σ.
Since x and y are constant on the generators, we install intrinsic coordinates ya = (λ, θA)
on Σ as λ = t and θA = (x, y), and then eµa := ∂xµ/∂ya are given by

eµλ = kµ, eµA = δµA, (3.102)

which satisfies kµe
µ
A = 0 and gµνe

µ
Ae

µ
B = a2δAB. From Eq. (2.34), we obtain the induced

metric on Σ as

ds2Σ−
= σ−

ABdθ
AdθB = a(λ)2(dx2 + dy2). (3.103)
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The transverse null vector completing the basis is given by

Nµdx
µ = −1

2
(dt+ dz−), (3.104)

which satisfies NµN
µ = 0, Nµk

µ = −1, and Nµe
µ
A = 0. From Eq. (2.39), non-vanishing

components of the transverse curvature of Σ are computed to give

C−

AB =
ȧ

2a
σ−

AB

∣

∣

∣

∣

t=λ

, (3.105)

where a dot denotes differentiation with respect to t.

As seen from M+, we describe Σ by
∫

a−1dt − z+ =constant, which is obtained by
integrating dt = a(t)dz+. The null vector kµ = −gµν∇ν(

∫

a−1dt− z+) tangent to the null
generators of Σ is given by2

kµ
∂

∂xµ
= a−1 ∂

∂t
+ a−2 ∂

∂z+
, (3.106)

which satisfies kν∇νk
µ = 0. Hence, the null generators of Σ are parametrized by an affine

parameter λ also on this side of Σ. However, t is not an affine parameter on this side and
kt = dt/dλ = a(t)−1 is integrated to give λ =

∫

adt. We write the inverse function of
λ =

∫

adt as t = t+(λ). Since x and y are constant on the generators, we install intrinsic
coordinates ya = (λ, θA) on Σ as λ =

∫

adt and θA = (x, y), and then eµa := ∂xµ/∂ya are
given by

eµλ = kµ, eµA = δµA, (3.107)

which satisfies kµe
µ
A = 0 and gµνe

µ
Ae

µ
B = a2δAB. From Eq. (2.34), we obtain the induced

metric on Σ as

ds2Σ+ = σ+
ABdθ

AdθB = a(t)2|t=t+(λ)(dx
2 + dy2). (3.108)

Since the coordinate t is the same on M− and M+, the first junction conditions [σAB] = 0
are satisfied. The transverse vector completing the basis is

Nµdx
µ = −1

2
(adt+ a2dz+), (3.109)

which satisfies NµN
µ = 0, Nµk

µ = −1, and Nµe
µ
A = 0. From Eq. (2.39), non-vanishing

components of the transverse curvature of Σ are computed to give

C+
AB =

1

2
ȧσ+

AB

∣

∣

∣

∣

t=t+(λ)

. (3.110)

2In [3], kµ is erroneously identified as kµ∂/∂xµ = ∂/∂t+a−1∂/∂z+, which affects the following argument.
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The jump of the transverse curvature at Σ is obtained in terms of t as

[Cλλ] = [CλB] = 0, [CAB] =
1

2

(

ȧ|t=t+(λ) −
ȧ

a

∣

∣

∣

∣

t=λ

)

σAB =
ȧ

2

(

1− 1

a

)

σAB, (3.111)

where σAB ≡ σ+
AB(= σ−

AB). Then, the Barrabès-Israel junction conditions (2.43) give

κ4µ =− ȧ

(

1− 1

a

)

, jA = 0, p = 0. (3.112)

As we have µ 6= 0, p = J = 0, the induced energy-momentum tensor tµν on the null shell is
of the Hawking-Ellis type II and all the standard energy conditions are satisfied (violated)
for ȧ(1− a−1) ≤ (>)0 by Proposition 2. Thus, in the expanding universe with ȧ > 0, such
a phase transition of the cosmic expansion at null Σ is possible without violating any of
the standard energy conditions if it occurs in the early stages of the universe where a ≤ 1
holds.
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