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Abstract

We compute the conformal anomalies for some higher-derivative (non-unitary) 6d Weyl in-

variant theories using the heat-kernel expansion in the background-field method. To this

aim we obtain the general expression for the Seeley-DeWitt coefficient b6 for four-derivative

differential operators with background curved geometry and gauge fields, which was known

only in flat space so far. We consider four-derivative scalars and abelian vectors as well

as three-derivative fermions, confirming the result of the literature obtained via indirect

methods. We generalise the vector case by including the curvature coupling FFWeyl.

1

http://arxiv.org/abs/2306.05944v1


Contents

1 Introduction 2

2 Heat kernel coefficient b6(∆4) on a geometric background 4

2.1 Preliminary considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Derivation of b6(∆4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Decomposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Decomposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Applications 8

3.1 Four-derivative scalar field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Four-derivative gauge vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Three-derivative fermion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

A Notation and conventions 10

B Relevant facts about the heat kernel 11

B.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

B.2 Explicit formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

B.3 A note on self-adjointness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

C Basis of the invariants for the decomposition ∆4 = ∆+∆− 13

D Diagrammatic checks of bm
6 (∆4) 14

References 15

1 Introduction

The calculation of conformal anomalies for six-dimensional theories has recently been of interest,

also in the higher-derivative case (see [1–7] and references therein). In the context of conformal

field theory, six-dimensional spacetime plays a very important role, as no interacting unitary

supersymmetric conformal field theory can exist in more than six dimensions [8] and no example

is known even in the non-supersymmetric case. It is however difficult to study unitary theories in

six dimensions due to the lack of perturbative renormalizability for standard 2-derivative actions.

Higher-derivative theories, despite being non-unitary, can be considered as formal UV completion

of standard 2-derivative theories [9] and can therefore help to shed light on the properties of

conformal field theories and of the space of QFTs in higher dimensions, see e.g. [10].

The conformal anomaly A in 6 dimensions takes the form [11–13]

A · (4π)3 = gmn 〈Tmn〉 · (4π)3 = −aE6 + c1 I1 + c2 I2 + c3 I3 , (1.1)

where E6 is the Euler density in 6 dimensions and the invariants Ii are built from the Weyl

tensor (I1, I2 ∼ Weyl3, I3 ∼ Weyl∇2Weyl – see appendix A for explicit expressions). (1.1) also

appears in the UV divergent part of the effective action, and the anomaly coefficients a, ci enter

in the stress tensor two-, three- and four-point functions. In (1.1) we ignored scheme-dependent

total-derivative contributions.

An efficient way of determining the UV divergent part of the effective action, and equivalently

the conformal anomaly coefficients, is the heat kernel method. By providing a representation
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of the determinant of a differential operator preserving background covariance, the heat kernel

is particularly suited to study 1-loop effects. In the present case the the relevant terms are

captured by

Γ∞ = − log Λ

(4π)3

∫ √
g b6 , A =

1

(4π)3
b6 , b6 = b6(∆b) − b6(∆f) ± b6(∆gh) , (1.2)

where b6 is a combination of the heat kernel coefficients b6(∆) of the operators ∆ governing

the quadratic fluctuations. In writing (1.2) we assumed real bosons (b) and Weyl or Majorana

fermions (f) in gamma-matrix representation. The last term schematically represents ghost

(gh) contributions. The heat-kernel coefficients for second-order differential operators have been

known for a long time and have been widely applied to physics [14–17]. The coefficients for

higher powers of the Laplacian and its deformations have also been considered, albeit with less

completeness, see e.g. [15,18–21].

In particular, for the scope of this paper we need to consider operators of the form

∆4 = ∇4 + V mn∇m∇n + 2Nm∇m + U , (1.3)

where Vmn = Vnm, the covariant derivative contains spacetime as well as gauge connections

and the coefficient functions V, N, U are generally matrix-valued. The coefficient b6(∆4) was

recently computed in flat spacetime in [21] (see also [22]) using an argument based on special

factorised cases in terms of two-derivative operators first proposed by [19] in the context of four-

dimensional quadratic gravity. Here we extend the result to include a geometrical background,

thereby providing a direct way to compute the conformal anomaly coefficients.

We then use the newly obtained coefficient b6(∆4) to provide a direct calculation of the

anomaly coefficients of some classically Weyl-invariant scalar, spinor and vector models. Most

of these have been recently computed using indirect techniques [3, 5, 20]; our results provide

an independent confirmation based on a conceptually straightforward and well-established pro-

cedure. In the case of the vector we furthermore extend the case studied in the literature by

including an extra coupling with the background geometry with the structure FFWeyl.

The fields considered in this paper also appear as lower-spin contributions to six-dimensional

(2, 0) conformal supergravity theory, where the graviton kinetic term is a combination of the Ii’s

above. This theory, constructed in [23] to a level which is sufficient for the one-loop anomaly

calculation, contains however a six-derivative operator which therefore escapes the scope of the

present paper. It would be interesting to compute the conformal anomaly of this theory, for

which the a-coefficients are known from holographic considerations [3] and suggest that (2, 0)

conformal supergravity coupled to 26 (2, 0) tensor multiplets is anomaly free.

This paper is organised as follows. Section 2 presents some relevant facts about the heat

kernel expansion and discusses the derivation of the heat-kernel coefficient b6(∆4) using the

factorisation Ansatz. In section 3 we apply such newly computed coefficient to the calculation

of conformal anomalies (1.1) to four-derivative scalar, four-derivative gauge vector and three-

derivative spinor. Appendix A summarises notation. Appendix B presents some more complete

facts on the heat-kernel expansion that are useful for this paper and provides additional explicit

formulae. Appendix C for completeness lists a basis for b6(∆4) used in one of the decompositions.

Appendix D discusses some diagrammatic checks for our result of b6(∆4).
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2 Heat kernel coefficient b6(∆4) on a geometric background

2.1 Preliminary considerations

Here we recall some basic facts about the heat-kernel expansion relevant for the calculation.

Further detail is given in appendix B.

We consider an elliptic differential operator ∆ of even order 2n defined on a d-dimensional

manifold without boundaries with the schematic structure

∆ = (−∇2)n + lower derivative terms, (2.1)

where ∇ = ∂ + Γ + A is a covariant derivative with geometric and gauge connection. We

denote the associated spacetime and internal curvatures as [∇, ∇] = R +F. One can express the

logarithmically divergent part of det ∆ as (see e.g. [9, 15,22] and references therein)

(log det ∆)∞ = − 2 log Λ

(4π)d/2

∫ √
g bd(∆) , (2.2)

where Λ is the UV cutoff and bp is the trace of a local covariant quantity built using the

differential operator as well as the covariant derivative and it is defined modulo boundary terms.

We shall refer to these coefficients as Seeley-deWitt heat-kernel coefficients. Let us now consider

two differential operators ∆ and ∆′. Using the factorisation property of the determinant for

combined operators we obtain the key relation

bd(∆∆′) = bd(∆) + bd(∆′) , (2.3)

which allows one to relate the heat kernel coefficients of operators of different order (again

modulo total derivatives). We stress here that the relation (2.3) is valid for the logarithmic part

only and not for power-law divergences.

In the case of the 2-derivative operator

∆2 = −∇2 + X , (2.4)

where ∇m has internal and spacetime connections, in 6d one has the expression (B.8) [14–16],

which can be schematically represented as

b6(∆2) = bg
6(∆2) + bgc

6 (∆2) + bm
6 (∆2) , (2.5)

where we distinguished the purely gravitational terms (‘g’), those that originate from the

generally-covariantized flat-spacetime expression (‘gc’), and the terms which mix gravitational

and gauge terms (‘m’), so that bm
6 (∆2) vanishes in flat spacetime as well as bg

6(∆2) = E · tr1 (E

is given in (B.7) and 1 is the identity in the internal space where tr acts).

2.2 Derivation of b6(∆4)

We are interested in the coefficient b6(∆4), where the operator ∆4 has the structure (1.3). One

can equivalently present the operator (1.3) in the ‘symmetric’ form (B.10). Following (2.5) we

correspondingly decompose

b6(∆4) = bg
6(∆4) + bgc

6 (∆4) + bm
6 (∆4) . (2.6)

The strategy to compute it is the following. First, we make an Ansatz based on dimensional and

covariance considerations, taking into account algebraic relations between different terms due to
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Bianchi identities, symmetries of tensors and boundary terms. Then we consider special cases

for ∆4, where it can be decomposed as the produce of second-order operators, ∆4 = ∆2 ∆′
2.

Using (2.3) with the explicit expression for (2.5) in (B.5) allows us to gather enough information

to reconstruct b6(∆4).

From these considerations it is immediate to see that

bg
6(∆4) = 2 bg

6(∆2) = 2E · tr1 . (2.7)

Furthermore, this procedure was already applied to (1.3) in [21] (see also [22]) to the flat-

spacetime case, therefore bgc
6 (∆4) can be immediately obtained,

bgc
6 (∆4) = tr

[

− 1

30
(∇mFmn)2 +

1

45
FmnFnrFrm

+
1

360
VmnVnrVrm +

1

480
VmnVmnV +

1

2 880
V V V +

1

30
Vmn∇(n∇r)Vrm

+
1

120
Vmn∇2Vmn − 1

40
Vmn∇m∇nV +

1

240
V ∇2V − 1

12
VmnVnrFmr

+
1

6
Fmn∇(m∇r)Vrn +

1

24
V FmnFmn − 1

6
VmnFmrFnr

− 1

3
Fmn∇mNn − 1

6
Vmn∇mNn +

1

12
V ∇mNm − 1

6
NmNm − 1

12
UV

]

,

(2.8)

where V = gmnVmn and F is the internal curvature. What remains to be determined is therefore

only bm
6 (∆4). On dimensional and covariance grounds we make the Ansatz

bm
6 (∆4) = tr

[

c1RFmnFmn + c2RVmnVmn + c3RV V + c4RU + c5R∇2V + c6R∇m∇nVmn

+ c7R∇mNm + c8RmnVnrVrm + c9RmnVmnV + c10Rmn∇2Vmn + c11RmnVnrFmr

+ c12RmnFmrFnr + c13RmnrqVmrVnq + c14RmnrqFmnFrq + c15RmnrqRmnrqV

+ c16RmrqkRnrqkVmn + c17RmnRmnV + c18R2V + c19RmnRmrVrn

+ c20RRmnVmn + c21RmnrqRmrVnq
]

.

(2.9)

All other combinations vanish or reduce to these by means of the Bianchi identities, integration

by parts and symmetry properties. As we shall explain, we find

c1 =
1

36
, c2 =

1

144
, c3 =

1

288
, c4 = −1

6
, c5 =

1

60
, c6 = − 1

20
, c7 =

1

6
,

c8 = − 1

36
, c9 = − 1

72
, c10 = − 1

60
, c11 = − 1

12
, c12 =

1

45
, c13 =

1

36
, c14 =

1

90
,

c15 =
1

360
, c16 = − 1

90
, c17 = − 1

360
, c18 =

1

144
, c19 =

1

45
, c20 = − 1

36
, c21 = − 1

90
.

(2.10)

The full explicit expression of b6(∆6) is given in (B.9).

To fix the values of the coefficients ci’s we resort to the following two decompositions.

1. ∆4 = ∆X
2 ∆Y

2 , where the 2-derivative operators have the structure (2.4) and the background

gauge connection is non-abelian.

2. ∆4 = ∆+∆−, with an abelian gauge connection and ∆± = −(∇m ± Bm)2.

In total we find an overdetermined system of 49 equations with unique solution (2.10). The

following two subsections provide details ion the derivation.
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2.2.1 Decomposition 1

The fourth-order operators obtained from the composition

∆4 = ∆X
2 ∆Y

2 (2.11)

has the structure (1.3) with Vmn = −δmn(X +Y ), Nm = −∇mY , U = XY −∇2Y , and therefore

V = −6(X + Y ).

From the general expression (2.9) we get

bm
6 (∆4) = tr

[

c1FmnFmnR + c12FmrFmnRnr + c14FmnFrsRmnrs

− (6c18 + c20)R2X − (6c18 + c20)R2Y

− (6c17 + c19 + c21)RmnRmnX − (6c17 + c19 + c21)RmnRmnY

+ (6c2 + 36c3 + c8 + 6c9 + c13)RX2 + (6c2 + 36c3 + c8 + 6c9 + c13)RY 2

− (6c15 + c16)RmnrsRmnrsY − (6c15 + c16)RmnrsRmnrsX

− (6c5 + c6 + c10)R∇2X − (c4 + 6c5 + c6 + c7 + c10)R∇2Y

+ (12c2 + 72c3 + c4 + 2c8 + 12c9 + 2c13)RXY
]

.

(2.12)

and from the factorisation we have

bm
6 (∆2) + bm

6 (∆′
2)

= tr
[

− 1

36
FmnFmnR − 1

45
FmrFmnRnr − 1

90
FmnFrsRmnrs +

1

72
R2X +

1

72
R2Y

− 1

180
RmnRmnX − 1

180
RmnRmnY − 1

12
RX2 − 1

12
RY 2

+
1

180
RmnrsRmnrsX +

1

180
RmnrsRmnrsY +

1

30
R∇2X +

1

30
R∇2Y

]

.

(2.13)

Equating the two we obtain 14 linear equations.

2.2.2 Decomposition 2

We are considering

∆4 = ∆+∆−, −∆± = (∇m ± Bm)2 = ∇2 ± 2Bm∇m ± (∇mBm) + BmBm (2.14)

with ∇ = ∂ + Γ + A, A being an abelian connection. The field strengths therefore read

F±
mn ≡ [∇±

m, ∇±
n ] = Fmn + [Bm, Bn] ± (∇mBn − ∇nBm) . (2.15)

The coefficients for the operator ∆4 (2.14) in the notation (1.3) read

Vmn = −4∇(mBn) + 2B2δmn − 4B(mBn) , V = −4∇nBn + 8B2 , (2.16)

Nm = −BnRmn − ∇2Bm − ∇m∇nBn + ∇mB2 + BmB2 (2.17)

− B2Bm − 2Bn∇nBm − Bm∇nBn + 2BnFnm ,

U = −∇2∇nBn + ∇2B2 − 2Bm∇m∇nBn + 2Bm∇mB2 − (∇nBn)2 + B4 (2.18)

+ (∇nBn)B2 − B2∇nBn − 2∇mBnFmn − 2BmBnFmn + 2Bm∇nFmn .

The only place where the spacetime curvature explicitly appears is BnRmn in Nm.
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In considering the factorisation Ansatz (2.3), for simplicity we focus on terms of order 1,

2, 4, 5 and 6 in B. It turns out that this provides us with enough information to determine

bm
6 (∆4).

To start, we need to determine a basis for the invariants that can appear in the expression of

b6(∆4). In doing so one needs to be careful about the possibility of adding total derivatives, the

symmetries of the objects involved and their algebraic relations. We identified a basis consisting

of 45 elements listed in appendix C. In such a basis, we can evaluate (2.9) as

bm
6 (∆4) = c12FanFamRmn + 4c11FanBaBmRmn − 16(c13 + 2c9)B2BmBnRmn

− 4(2c13 + c19)BaBmRanRmn + 2(4c17 + c19 + c21)B2RmnRmn + c1FamFamR

+ (24c2 + 64c3 + c4 + 4c8 + 16c9 + 4c13)B2BmBmR − 8(2c8 − 3c13)BaRmn∇a∇nBm

− 2(2c6 + c7 − 2c8 + 2c13 + 2c20)BaBmRamR − 4(c10 − 2c17 − c21)BaRmn∇aRmn

+ 2(4c18 + c20)B2R2 + c14FamFncRamnc − 4(2c8 − 2c13 + c21)BaBmRncRanmc

+ 4(2c13 − c16)BaBmRancrRmncr + 2(4c15 + c16)B2RmncrRmncr

+ 2(4c18 + c20)BaR∇aR + 2(4c15 + c16)BaRmncr∇aRmncr

− 2(c4 + 4c6 + 2c7 − 2c8 − 4c9 − 2c13)BaR∇a∇mBm

+ 4(c8 − 2c10 − 2c13)Ran∇mBn∇mBa + 8c13BaRacmn∇c∇nBm

+ (16c3 − c4 − 4c6 − 2c7 + 8c9 + 8c13)R∇aBa∇mBm

+ 2(c4 + 8c5 + 2c6 + c7 + c8 + 2c10)BaR∇2Ba − 8(2c9 + 3c13)BaRan∇n∇mBm

− (c4 + 4c5 + 4c6 + 2c7 + 2c10)R∇2∇aBa − 8(c10 + c13)BaRam∇n∇nBm

+ 2(4c2 − 2c6 − c7 + 2c8 − 2c13)R∇aBm∇mBa

+ 2(4c2 + c4 + 8c5 + 2c6 + c7 + c8 + 2c10)R∇mBa∇mBa

− (2c4 + 2c7 + c11)FamBa∇mR − 4c8BaRmn∇n∇mBa

+ 2(2c6 + c7 + 2c10 + c19 + 2c20)BaRam∇mR − 2c11BaRmn∇nFam

+ 2c11BaRam∇nFmn + 4(2c10 − 2c16 − c21)BaRamnc∇cRmn

+ 2c11FmnBa∇nRam + 4(2c10 + c19 − c21)BaRmn∇nRam

(2.19)

and from the factorisation we have

bm
6 (∆+) + bm

6 (∆−)

= − 1

45
FanFamRmn +

1

3
FanBaBmRmn +

14

45
BaBmRanRmn − 1

36
FamFamR

+
11

45
BaBmRamR − 1

90
FamFncRamnc − 22

45
BaBmRncRanmc

− 4

15
BaBmRancrRmncr +

2

45
BaR∇a∇mBm − 8

9
BaRmn∇a∇nBm − 1

5
R∇aBa∇mBm

+
1

18
BaR∇m∇mBa +

3

10
R∇aBm∇mBa +

1

5
Ran∇mBn∇mBa − 1

12
FamBa∇mR

− 1

6
BaRmn∇nFam +

1

6
BaRam∇nFmn +

1

6
FmnBa∇nRam +

4

45
BaRam∇n∇nBm

+
4

9
BaRan∇n∇mBm − 1

9
BaRmn∇n∇mBa − 2

9
BaRacmn∇c∇nBm .

(2.20)

Equating the two expressions we obtain 35 linear equations.
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3 Applications

3.1 Four-derivative scalar field

A four-derivative Weyl-covariant differential operator [3, 5] in d-dimensions was constructed by

Paneitz (cf. [24]; the 4d case was first given in [25] and [26]),

∆4 = ∇4 + ∇m[(4Smn − (d − 2)gmnS)∇n] − (d − 4)SmnSmn + d
d − 4

4
S2 − d − 2

2
(∇2S) (3.1)

where Smn is the Schouten tensor

Smn =
1

d − 2

[

Rmn − 1

2(d − 1)
Rgmn

]

, S = Smm =
1

2(d − 1)
R . (3.2)

Such operator allows one to consider the following Weyl-invariant action in 6d for a real scalar,

from which we can compute the corresponding effective action and conformal anomaly via (1.2),

S =
1

2

∫

d6x
√

g φ∆4φ , b6 = b6(∆4) . (3.3)

The operator (3.1) is written in the symmetric form (B.10). Direct application of (B.9) gives

(a, ci) =
1

7!

(

4

9
,

224

3
, 8, −10

)

, (3.4)

in agreement with the recent independent analysis of [20, (16)-(19) with k = 2].

3.2 Four-derivative gauge vector

We consider the following Weyl-invariant action for an abelian gauge vector Am,

S =

∫ √
g

[

∇rFrm∇nFnm −
(

Rmn − 1

5
gmnR

)

FmpFnp

]

+ ξ

∫ √
gFmnFrsWmnrs (3.5)

where Fmn = ∇mAn − ∇nAm is the field strength. The first integral provides a Weyl-invariant

kinetic term for Am as considered in [5]. The second integral is Weyl-invariant by itself (W····

being the Weyl tensor) and can therefore be added with an arbitrary numerical coefficient ξ. In

terms of the gauge field Am the action reads

S =
1

2

∫ √
g Am[∆4A]mnAn +

1

2

∫ √
g Am∇m∇2∇nAn , (3.6)

where the operator ∆4A is a four-derivative one. It is more convenient to present it in the

symmetrised form (B.10) with coefficients

[V̂mn]ac = (1 + ξ)gacRmn − (1 − ξ)gmnRac − 2 + ξ

5
gacgmnR

+
2 + ξ

5
Rgm(agc)n − 2(1 + ξ)g

(m
(a R

n)
c) + 4ξRa(mn)c , (3.7)

[N̂m]ac =
1 − 3ξ

2
∇(aRc)m +

1 + 3ξ

20
gm(a∇c)R (3.8)

[Û ]ac =
1 − ξ

2
RamRcm − 1 + ξ

2
RmsRamcs +

2 + ξ

10
RacR − ∇2Rac + 2ξRamrsRcrms . (3.9)

The second term in (3.6) can be gauge-fixed away by choosing the covariant gauge ∇mAm = 0

and averaging over gauges with the Gaußian weight −∇2.
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The effective action for (3.5) thus constructed reads

Z =

[

det ∆4A

[det ∆2,0]3

]1/2

, ∆2,0 = −∇2 , (3.10)

where ∆2,0 acts on scalars and comes from ghost and gauge fixing contributions. The divergent

part of the effective action has therefore the structure (1.2) governed by the coefficient

b6 = b6(∆4A) − 3b6(−∇2) , (3.11)

where the first term can be evaluated with (B.9) and the second one with (B.8). In computing

b6(∆4) we use that 1 is the identity in the space of 6 dimensional vectors and that the curvature

F is given by [Fmn]ac = Rmnac.

In the form (1.2) we obtain

a =
275

8 · 7!
, c1 =

28

7!
(97 − 60ξ + 4ξ2 − 4ξ3) ,

c2 =
1

7!
(911 − 840ξ + 392ξ2 − 392ξ3) , c3 = −150

7!
.

(3.12)

The case ξ = 0 was considered in [5] via indirect methods; our result agrees. We notice that ξ

does not affect the a coefficient (as expected) and that c1 and c2 do not exhibit common zeroes.

The fact that ξ does not enter c3 is probably accidental at one-loop.

3.3 Three-derivative fermion

We consider here a three-derivative Weyl spinor Ψ with the kinetic operator given in [5] (see

also [23])

S =

∫

Ψ̄∆3Ψ , −i∆3 = /∇3
+ 2Smnγm∇n + γm∇mS , (3.13)

where Smn is the Schouten tensor as in (3.2). In (3.13) and in the following we consider Dirac

gamma matrix notation with {γm, γn} = 2gmn, γm being 8-dimensional.

We have (1.2) with

b6 = −b6(∆3) ≡ b6(∆1) − b6(∆3∆1) , ∆1 = i /∇ , (3.14)

where we evaluate the heat kernel coefficient b6(∆3) considering composition ∆3∆1 with the

first order Dirac operator ∆1 (acting on Weyl spinors) and applying (2.3). The four-derivative

operator ∆3∆1 has the structure (1.3) with1

Vmn = 2γrγ(nSm)r − 1

2
Rgmn , Nm =

1

2
∇aS γaγm − 1

4
∇mR ,

U =
1

16
R2 − 1

4
∇2R +

1

4
SmaRanrsγmγnγrγs ,

(3.15)

which via (B.9) results in

b6(∆3∆1) =
1

7!

[

−10

9
E6 − 448

3
I1 − 172

3
I2 + 4I3

]

. (3.16)

1The self-adjoint requirements discussed in section B.3 are not to be imposed, as the operator ∆3+1 does not

come from functional integration.
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The heat kernel coefficient of the Dirac operator can be computed by squaring it and using

(B.9), which gives

b6(∆1) =
1

2
b6

[

(∆1)2 ≡ −∇2 +
1

4
R

]

=
1

7!

[

191

144
E6 +

448

3
I1 − 16I2 − 20I3

]

.
(3.17)

The expression (3.17) was originally obtained in [13]. In computing (3.16) and (3.17) we have

used [∇m, ∇n] = 1
4Rmnrsγrγs and Rmnrsγmγnγrγs = −2R. Here 1 of (B.9) is the identity in

the 8-dimensional spinor space, where tr is taken.

In conclusion the conformal anomaly coefficients derived from (1.2) with (3.14) are

(a, ci) =
1

7!

(

39

16
,
896

3
,

220

3
, −24

)

. (3.18)

Our result (3.18) coincides with that of [5] obtained via indirect methods,2 thereby providing

an independent direct confirmation.
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A Notation and conventions

We work in 6 euclidean dimensions and indicate spacetime indices with Latin lowercase letters.

The metric is gmn and we do not distinguish between upper and lower indices. We write the

covariant derivative with Levi-Civita and gauge connection as ∇ = ∂ + Γ + A. We introduce the

gauge and Riemann curvatures

Fmn = ∂mAn − ∂nAm + [Am, An] ,

Rm
nac = ∂aΓm

nc ± · · · , Rmn = Ra
man , R = Rm

m ,
(A.1)

so that [∇m, ∇n]φ = Fmnφ on a spacetime scalar and [∇m, ∇n]Va = RmnacV
c on a spacetime

vector without gauge indices. We reserve Fmn for the Maxwell field-strength and keep Fmn in

the general case. The Weyl tensor reads

Wmnrs = Rmnrs + g
[r
[nR

s]
m] +

1

10
gm[rgs]nR . (A.2)

We note the following identities that are used in the main text without mentioning,

2(∇mFmn)2 = (∇mFrs)2 + 2FmaFnaRmn − RmnrsF mnF rs + t.d.,

2RrnacRmacn = −RrnacRmnac

(A.3)

Basis of the anomaly:

E6 = −εmnrspqεabcdef RmnabRrscdRpqef = −32RmnacRacsrRsrmn + . . . ,

I1 = WamncWmrsnWracs ,

I2 = W acmnW rsacW mnrs ,

I3 = Wamnr

[

gac∇2 + 4Rac − 6

5
gacR

]

Wcmnr .

(A.4)

2Our values (3.18) are double those given in (6.3) of [5], since formal Majorana-Weyl spinors are used there
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B Relevant facts about the heat kernel

In this appendix we provide further details about the heat-kernel expansion to complete the

discussion of section 2.1.

B.1 Generalities

A standard representation for the determinant of a differential operator of order ℓ is

log det ∆ℓ = −
∫

ddx
√

g

∞
∫

ε

dt

t
tr 〈x|e−t∆ℓ |x〉 , (B.1)

where tr is the trace over internal indices of the operator and ε = Λ−ℓ is a UV cutoff. The

matrix element in the integrand is the heat kernel. It has an asymptotic expansion for t → 0+

that allows us to write (see e.g. [15–17,22])

tr 〈x|e−t∆ℓ |x〉 ≡ tr K(t; x, x; ∆ℓ) ≃
∑

p≥0

2

(4π)d/2 ℓ
t(p−d)/ℓ ap(∆ℓ, d, g; x) . (B.2)

The Seeley-DeWitt coefficients ap are local covariant expressions of dimension p constructed

out of the background metric and gauge field, exhibiting an explicit nontrivial dependence on

the spacetime dimension d when ℓ 6= 2, see e.g. [31] for explicit examples. However, we are

interested in the spacetime integral of the trace of the Seeley-DeWitt coefficients, which in the

present context acquire the interpretation of a Lagrangian density. We therefore focus on the

simpler invariant quantity

bp(∆ℓ, d, g; x) = tr ap(∆ℓ, d, g; x) modulo total derivatives, (B.3)

which with abuse of notation we also call heat-kernel coefficients. Some of the arguments of bp

are often omitted. As a consequence, one can express the divergent part of (B.1) as

(log det ∆ℓ)∞ = − 2

(4π)d/2

[

d−1
∑

p=0

Bp(∆ℓ)

d − p
Λd−p + Bd(∆ℓ) log

Λ

µ

]

,

Bp(∆ℓ) =

∫

ddx
√

g bp(∆ℓ) .

(B.4)

where µ is a renormalization scale and the explicit dependence on ℓ dropped out. In (B.4)

we find both power-law divergences (which we ignore for the scope of this paper) and the

logarithmic term relevant for the conformal anomalies. In dimensional regularisation one has

only the logarithmic term of (B.4) with the formal substitution log Λ
µ → 1

n−d , where n is the

original integer number of dimensions.

Let us now consider two differential operators ∆ and ∆′. Using the factorisation property

of the determinant for combined operators we further obtain the key relation

bd(∆∆′) = bd(∆) + bd(∆′) . (B.5)

This factorization Ansatz is only true for the coefficient bp=d, i.e. with the index p equal to the

spacetime dimension d. Indeed, only the logarithmically divergent term of the expansion (B.4)

is universal, while the power-law divergences are regularization-dependent. This implies that

the factorisation Ansatz (B.5) does not capture the explicit d-dependence of the bp’s.
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B.2 Explicit formulae

In this section we give some explicit expressions for the heat kernel coefficients of two- and

four-derivative elliptic operators. We consider here operators of the standard forms

∆2 = −∇2 + X , ∆4 = ∇4 + Vmn∇m∇n + 2Nm∇m + U , (B.6)

with Vmn = Vnm; X, V, N, U are covariant coefficient functions, in general matrix-valued. In

(B.6), ∆2 is the most general second order operator and ∆4 is the most general fourth-order

operator without 3-derivative term. At this point, no further restriction is imposed on the

coefficient functions, as the operators are not necessarily self-adjoint.

Let us define the purely geometrical contribution as

E =
1

945
RmnRpqRmpnq +

1

7 560
RmnRmpqrRnpqr − 4

2 835
RmnRnpRpm

+
17

45 360
R pq

mn R rs
pq R mn

rs − 1

1 620
R p q

m n R r s
p q R m n

r s +
1

840
Rmn∇2Rmn

+
1

1 296
R3 +

1

1 080
RRmpqrRmpqr − 1

1 080
RRmnRmn +

1

336
R∇2R .

(B.7)

For second-order differential operators of the form (B.6) we have, following [14,15,32],

b6(∆2) = tr
[

− 1

60
(∇mFmn)2 +

1

90
FmnFnrFrm − 1

12
XFmnFmn +

1

12
X∇2X − 1

6
X3

+
1

12
RX2 − 1

72
R2X − 1

30
X∇2R +

1

180
XRmnRmn − 1

180
XRmnrsRmnrs

+
1

72
RFmnF

mn − 1

90
RmnF

mrFrn +
1

180
RmnpqFmnFpq + E · 1

]

,

(B.8)

where 1 is the identity in the internal space, where tr acts.

For fourth-order differential operators of the form (B.6) we have (with V = Vmm)

bd=6
6 (∆4) = tr

[

− 1

30
(∇mFmn)2 +

1

45
FmnFnpFpm +

1

360
VmnVnpVpm +

1

480
VmnVmnV

+
1

2 880
V V V +

1

30
Vmn∇(n∇p)Vpm +

1

120
Vmn∇2Vmn − 1

40
Vmn∇m∇nV

+
1

240
V ∇2V − 1

12
VmnVnpFmp +

1

6
Fmn∇(m∇p)Vpn +

1

24
V FmnFmn

− 1

6
VmnFmpFnp − 1

3
Fmn∇mNn − 1

6
Vmn∇mNn +

1

12
V ∇mNm − 1

6
NmNm

− 1

12
UV +

1

36
RFmnFmn +

1

144
RVmnVmn +

1

288
RV V − 1

6
RU +

1

60
R∇2V

− 1

20
R∇m∇nVmn +

1

6
R∇mNm − 1

36
RmnVnpVpm − 1

72
RmnVmnV

− 1

60
Rmn∇2Vmn − 1

12
RmnVnpFmp +

1

45
RmnFmpFnp +

1

36
RmnpqVmpVnq

+
1

90
RmnpqFmnFpq +

1

360
RmnpqRmnpqV − 1

90
RmpqkRnpqkVmn

− 1

360
RmnRmnV +

1

144
R2V +

1

45
RmnRmpVpn − 1

36
RRmnVmn

− 1

90
RmnpqRmpVnq + 2E · 1

]

.

(B.9)

The formula (B.9) extends the result of [21] with the present paper.
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B.3 A note on self-adjointness

Often we are interested in the operators of the form (B.6) arising after path integration. This

operation typically projects on self-adjoint part, which imposes restrictions on the coefficient

functions. These conditions are not automatically taken into account in expression for bp such

as (B.8) and (B.9), which apply to generic operators, and have to be imposed by hand when

isolating the differential operator in the quadratic part of the action.

For the second order operator ∆2 these translate on the requirement that X = X†, where † is

the appropriate conjugation on the internal index structure (i.e. it is transposition or hermitian

conjugation for real or complex fields respectively).

The discussion for ∆4 is slightly more subtle. It is convenient to rewrite the operator in the

symmetric form

∆4 = ∇4 + ∇rV̂rk∇k + N̂k∇k + ∇kN̂k + Û , V̂rk = V̂kr , (B.10)

where the derivatives act on everything to their right. The relation with the non-symmetric

form in (B.6) is given by

Vmn = V̂mn , Nm = N̂m +
1

2
∇mV̂mn , U = Û + ∇mN̂m . (B.11)

The form (B.10) is convenient because self-adjointness amounts to the conditions

V̂mn = V̂ †
mn , N̂m = −N̂ †

m , Û = Û † , (B.12)

where again † is the appropriate conjugation of the internal indices.

C Basis of the invariants for the decomposition ∆4 = ∆+∆−

In this appendix we list the basis of the invariants used to study the decomposition (2.14).

We consider terms of O(Bn), with n = 1, 2, 4, 5, 6. In total we find 45 elements; any other

combination can be expressed in terms of these by integration by parts, use of Bianchi identities

and other symmetry properties.

• O(B1): 19 elements

∇nFmnRmaBa , Fmn∇nRmaBa , ∇aFmnRmaBn , ∇mFmnRBn ,

Fmn∇mRBn , Fmn∇aFmnBa , Fmn∇aFmaBn ,

Rmnac∇cFmnBa , RmnacFma∇nBc , RmnacFma∇cBn , Rmnac∇rRmnacBr ,

Rmn∇rRmnBr , Rmr∇rRmnBn , Rmn∇nRBm , R∇mRBm ,

Rmnac∇cRmaBn , Rmnac∇nRmaBc , ∇2∇mFmnBn , ∇2R∇mBm .

• O(B2): 26 elements

FmnFmnBaBa , FmaFmcBaBc , RmaFmcBaBc , RmnacFmaBnBc ,

R2BaBa , RRmnBmBn , RmaRmcBaBc , RmnacRmnacBrBr , RmnacRrnacBmBr ,

FmnBm∇2Bn , FmaBm∇a∇nBn , Fma∇aBm∇nBn , FmaBn∇n∇aBm ,

RmnacBmBaRnc , Ba∇2∇2Ba , Ba∇a∇2∇mBm RmnBm∇2Bn ,

Rmn∇aBm∇aBn , RmnBa∇m∇nBa , RmnBm∇n∇aBa , RmnBa∇a∇nBm ,

RBm∇m∇nBn , R∇mBm∇nBn , RBa∇2Ba , R∇aBc∇aBc , RmnacBm∇n∇aBc .
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• O(B4): 8 elements

BaBaBr∇2Br , BaBa∇mBr∇mBr , Ba∇m∇nBaBmBn , BaBaBm∇m∇nBn ,

BaBa∇mBm∇nBn , BaBa∇nBm∇mBn , RmnBmBnBaBa , RBmBmBaBa .

• O(B5): 1 element

BmBmBaBn∇nBa

• O(B6): 1 element

(BmBm)3

D Diagrammatic checks of b
m
6 (∆4)

In this appendix we compute diagrammatically some of the terms in (2.9)-(2.10) as an indepen-

dent consistency check. We consider a free scalar in dimensional regularisation (d = 6 − 2ε)

with

S =
1

2

∫ √
g φ ∆4φ φ , Γ∞ =

1

(4π)3ε

∫ √
g b6(∆4φ) , (D.1)

where ∆4φ has the structure (1.3) with spacetime connection only and with V, N, U being space-

time covariant functions.

To set the perturbative expansion in powers of the external fields we use hmn = gmn − δmn

and for simplicity we assume hmm = hmnδmn = 0. We construct the diagrams for the following

three correlators: 〈Uh〉 (giving c4), 〈Nh〉 (giving c7), 〈V h〉 (giving c5, c6, c10). The results of

this calculation are all in agreement with the solution in (2.10).

To diagrammatically compute the divergent part of the effective action from (D.1) we need

the free propagator

〈φ(p) φ(−p)〉 =
1

p4
(D.2)

and the following vertices,

Sh =
1

2

∫

hmn(−p − q)Hmn(p, q)φ(q)φ(q) , Hmn(p, q) = p(mqn)(p
2 + q2) ;

SV =
1

2

∫

Vmn(p − q)Wmn(p, q)φ(q)φ(q) , Wmn(p, q) = −1

2
(qmqn + pmpn) ;

SN =
1

2

∫

Nm(p − q)Mm(p, q)φ(q)φ(q) , Mm(p, q) = i(pm + qm) ;

SU =
1

2

∫

U(−p − q)φ(p)φ(q) .

(D.3)

To the terms under considerations only a single two-propagator diagram contributes, and

the corresponding terms in the effective action are found to be

〈Vrs(q) hmn(−q)〉 = −1

2

∫

ddp

(2π)d

1

p4(q − p)4
Hmn(p, q − p)Wrs(p − q, −p) ,

〈Nr(q) hmn(−q)〉 = −1

2

∫

ddp

(2π)d

1

p4(q − p)4
Hmn(p, q − p)Mr(p − q, −p) ,

〈U(q) hmn(−q)〉 = −1

2

∫

ddp

(2π)d

1

p4(q − p)4
Hmn(p, q − p) .

(D.4)
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The loop integrals can be evaluated using standard two-propagator technology (see e.g. [22])

and the divergent parts read

〈Vrs(q) hmn(−q)〉∞ =
1

240(4π)3ε

[

6qrqsqmqn − δrmδsnq4 + 2δrnqsqmq2 − 2δrsqmqn q2
]

,

〈Nr(q) hmn(−q)〉∞ =
i

12(4π)3 ε
qrqmqn , (D.5)

〈U(q) hmn(−q)〉∞ = − 1

12(4π)3ε
qmqn ,

which correctly reproduce the values for c4, c5, c6, c7, c10.

References

[1] C. Cordova, T. T. Dumitrescu and K. Intriligator, Anomalies, renormalization group

flows, and the a-theorem in six-dimensional (1, 0) theories, JHEP 10 (2016) 080,

[1506.03807].

[2] C. Cordova, T. T. Dumitrescu and X. Yin, Higher derivative terms, toroidal

compactification, and Weyl anomalies in six-dimensional (2, 0) theories,

JHEP 10 (2019) 128, [1505.03850].

[3] M. Beccaria and A. A. Tseytlin, Conformal a-anomaly of some non-unitary 6d

superconformal theories, JHEP 09 (2015) 017, [1506.08727].

[4] M. Beccaria and A. A. Tseytlin, Conformal anomaly c-coefficients of superconformal 6d

theories, JHEP 01 (2016) 001, [1510.02685].

[5] M. Beccaria and A. A. Tseytlin, CT for higher derivative conformal fields and anomalies

of (1, 0) superconformal 6d theories, JHEP 06 (2017) 002, [1705.00305].

[6] A. A. Tseytlin, Weyl anomaly of conformal higher spins on six-sphere,

Nucl. Phys. B 877 (2013) 632–646, [1310.1795].

[7] C. P. Herzog and K.-W. Huang, Stress Tensors from Trace Anomalies in Conformal Field

Theories, Phys. Rev. D 87 (2013) 081901, [1301.5002].

[8] W. Nahm, Supersymmetries and their Representations, Nucl. Phys. B 135 (1978) 149.

[9] E. S. Fradkin and A. A. Tseytlin, Quantum Properties of Higher Dimensional and

Dimensionally Reduced Supersymmetric Theories, Nucl. Phys. B 227 (1983) 252.

[10] E. A. Ivanov, A. V. Smilga and B. M. Zupnik, Renormalizable supersymmetric gauge

theory in six dimensions, Nucl. Phys. B 726 (2005) 131–148, [hep-th/0505082].

[11] L. Bonora, P. Pasti and M. Bregola, WEYL COCYCLES,

Class. Quant. Grav. 3 (1986) 635.

[12] S. Deser and A. Schwimmer, Geometric classification of conformal anomalies in arbitrary

dimensions, Phys. Lett. B 309 (1993) 279–284, [hep-th/9302047].

[13] F. Bastianelli, S. Frolov and A. A. Tseytlin, Conformal anomaly of (2,0) tensor multiplet

in six-dimensions and AdS / CFT correspondence, JHEP 02 (2000) 013,

[hep-th/0001041].

15

http://dx.doi.org/10.1007/JHEP10(2016)080
http://arxiv.org/abs/1506.03807
http://dx.doi.org/10.1007/JHEP10(2019)128
http://arxiv.org/abs/1505.03850
http://dx.doi.org/10.1007/JHEP09(2015)017
http://arxiv.org/abs/1506.08727
http://dx.doi.org/10.1007/JHEP01(2016)001
http://arxiv.org/abs/1510.02685
http://dx.doi.org/10.1007/JHEP06(2017)002
http://arxiv.org/abs/1705.00305
http://dx.doi.org/10.1016/j.nuclphysb.2013.10.008
http://arxiv.org/abs/1310.1795
http://dx.doi.org/10.1103/PhysRevD.87.081901
http://arxiv.org/abs/1301.5002
http://dx.doi.org/10.1016/0550-3213(78)90218-3
http://dx.doi.org/10.1016/0550-3213(83)90022-6
http://dx.doi.org/10.1016/j.nuclphysb.2005.08.014
http://arxiv.org/abs/hep-th/0505082
http://dx.doi.org/10.1088/0264-9381/3/4/018
http://dx.doi.org/10.1016/0370-2693(93)90934-A
http://arxiv.org/abs/hep-th/9302047
http://dx.doi.org/10.1088/1126-6708/2000/02/013
http://arxiv.org/abs/hep-th/0001041


[14] P. B. Gilkey, The Spectral geometry of a Riemannian manifold,

J. Diff. Geom. 10 (1975) 601–618.

[15] I. G. Avramidi, Heat kernel and quantum gravity,

Lect. Notes Phys. Monogr. 64 (2000) 1–149.

[16] D. V. Vassilevich, Heat kernel expansion: User’s manual, Phys. Rept. 388 (2003) 279–360,

[hep-th/0306138].

[17] A. O. Barvinsky and G. A. Vilkovisky, The Generalized Schwinger-Dewitt Technique in

Gauge Theories and Quantum Gravity, Phys. Rept. 119 (1985) 1–74.

[18] P. B. Gilkey, The spectral geometry of the higher order Laplacian,

Duke Math. J. 47 (1980) 511–528 [Err: 48 (1981) 887].

[19] E. S. Fradkin and A. A. Tseytlin, Renormalizable asymptotically free quantum theory of

gravity, Nucl. Phys. B201 (1982) 469–491.

[20] F. Bugini and D. E. D́ıaz, Holographic Weyl anomaly for GJMS operators: one Laplacian

to rule them all, JHEP 02 (2019) 188, [1811.10380].

[21] L. Casarin and A. A. Tseytlin, One-loop β-functions in 4-derivative gauge theory in 6

dimensions, JHEP 08 (2019) 159, [1907.02501].

[22] L. Casarin, Quantum aspects of classically conformal theories in four and six dimensions.

PhD thesis, Humboldt U., Berlin, 2021. Available at https://doi.org/10.18452/23043.

10.18452/23043.

[23] D. Butter, J. Novak and G. Tartaglino-Mazzucchelli, The component structure of

conformal supergravity invariants in six dimensions, JHEP 05 (2017) 133, [1701.08163].

[24] S. Paneitz, A quartic conformally covariant differential operator for arbitrary

pseudo-riemannian manifolds (summary),

Symmetry, Integrability and Geometry: Methods and Applications (mar, 2008) .

[25] E. S. Fradkin and A. A. Tseytlin, One Loop Beta Function in Conformal Supergravities,

Nucl. Phys. B 203 (1982) 157–178.

[26] R. J. Riegert, A Nonlocal Action for the Trace Anomaly, Phys. Lett. B 134 (1984) 56–60.
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