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We compute the conformal anomalies for some higher-derivative (nonunitary) 6D Weyl invariant
theories using the heat-kernel expansion in the background-field method. To this aim we obtain the general
expression for the Seeley-DeWitt coefficient b6 for 4-derivative differential operators with background
curved geometry and gauge fields, which was known only in flat space so far. We consider 4-derivative
scalars and Abelian vectors as well as 3-derivative fermions, confirming the result of the literature obtained
via indirect methods. We generalize the vector case by including the curvature coupling FFWeyl.
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I. INTRODUCTION

The calculation of conformal anomalies for six-
dimensional theories has recently been of interest, also
in the higher-derivative case (see [1–8] and references
therein). In the context of conformal field theory, six-
dimensional spacetime plays a very important role, as no
interacting unitary supersymmetric conformal field theory
can exist in more than six dimensions [9] and there is no
known example even in the nonsupersymmetric case. It is
however difficult to study unitary theories in six dimen-
sions due to the lack of perturbative renormalizability for
standard 2-derivative actions. Higher-derivative theories,
despite being nonunitary, can be considered as a formal UV
completion of standard 2-derivative theories [10] and can
therefore help to shed light on the properties of conformal
field theories and of the space of QFTs in higher dimen-
sions, see e.g., [11–14].
The conformal anomaly A in six dimensions takes the

form [15–17]

A · ð4πÞ3 ¼ gmnhTmni · ð4πÞ3
¼ −aE6 þ c1I1 þ c2I2 þ c3I3; ð1:1Þ

where E6 is the Euler density in six dimensions and
the invariants Ii are built from the Weyl tensor (I1,
I2 ∼Weyl3, I3 ∼Weyl∇2Weyl—see Appendix A for

explicit expressions). Equation (1.1) also appears in the
UV divergent part of the effective action, and the anomaly
coefficients a; ci enter in the stress tensor two-, three-
and four-point functions. In (1.1) we ignored scheme-
dependent total-derivative contributions.
An efficient way of determining the UV divergent part

of the effective action, and equivalently the conformal
anomaly coefficients, is the heat-kernel method. By pro-
viding a representation of the determinant of a differential
operator preserving background covariance, the heat kernel
is particularly suited to study one-loop effects. In the
present case the relevant terms are captured by

Γ∞ ¼ −
logΛ
ð4πÞ3

Z ffiffiffi
g

p
b6; A ¼ 1

ð4πÞ3 b6;

b6 ¼ b6ðΔbÞ − b6ðΔfÞ � b6ðΔghÞ; ð1:2Þ

where b6 is a combination of the heat kernel coefficients
b6ðΔÞ of the operators Δ governing the quadratic fluctua-
tions. In writing (1.2) we assume real bosons (b) and Weyl
or Majorana fermions (f) in the gamma-matrix representa-
tion. The last term schematically represents ghost (gh)
contributions. The heat-kernel coefficients for second-order
differential operators have been known for a long time
and have been widely applied to physics [18–21]. The
coefficients for higher powers of the Laplacian and its
deformations have also been considered, albeit with less
completeness, see e.g., [19,22–25].
In particular, for the scope of this paper we need to

consider operators of the form

Δ4 ¼ ∇4 þ Vmn∇m∇n þ 2Nm∇m þ U; ð1:3Þ

where Vmn ¼ Vnm, the covariant derivative contains space-
time as well as gauge connections and the coefficient
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functions V, N, U are generally matrix valued. The
coefficient b6ðΔ4Þ was recently computed in flat spacetime
in [25] (see also [26]) using an argument based on special
factorized cases in terms of 2-derivative operators first
proposed by [23] in the context of four-dimensional
quadratic gravity. Here, we extend the result to include a
geometrical background, thereby providing a direct way to
compute the conformal anomaly coefficients.
We then use the newly obtained coefficient b6ðΔ4Þ to

provide a direct calculation of the anomaly coefficients
of some classically Weyl-invariant scalar, spinor, and
vector models. Most of these have been recently computed
using indirect techniques [3,5,24]; our results provide
an independent confirmation based on a conceptually
straightforward and well-established procedure. In the
case of the vector we furthermore extend the case
studied in the literature by including an extra coupling
with the background geometry with the structure
FFWeyl.
The fields considered in this paper also appear as lower-

spin contributions to six-dimensional (2,0) conformal
supergravity theory, where the graviton kinetic term is a
combination of the Ii’s above. This theory, constructed
in [27] to a level which is sufficient for the one-loop
anomaly calculation, contains however a 6-derivative
operator which therefore escapes the scope of the present
paper. It would be interesting to compute the conformal
anomaly of this theory, for which the a coefficients are
known from holographic considerations [3] and suggest
that (2,0) conformal supergravity coupled to 26 (2,0) tensor
multiplets is anomaly free.
Finally, let us comment on zero modes, which are

ignored in this paper. In general, a differential operators
like the one in (1.3) admits normalizable zero modes, which
have to be treated separately from the rest of the spectrum.
For fourth-order operators that factorize into second-
order ones exhibiting zero modes, these will be naturally
inherited, however there could be additional ones depend-
ing on the interplay between the two factors. These
aspects fall outside the scope of this paper and deserve
further study.
This paper is organized as follows. Section II presents

some relevant facts about the heat kernel expansion
and discusses the derivation of the heat-kernel coefficient
b6ðΔ4Þ using the factorization ansatz. In Sec. III we
apply such newly computed coefficient to the calcula-
tion of conformal anomalies (1.1) to 4-derivative scalar,
4-derivative gauge vector and 3-derivative spinor.
Appendix A summarizes notation. Appendix B presents
some more complete facts on the heat-kernel expansion that
are useful for this paper and provides additional explicit
formulas. Appendix C, for completeness, lists a basis for
b6ðΔ4Þ used in one of the decompositions. Appendix D
discusses some diagrammatic checks for our result
of b6ðΔ4Þ.

II. HEAT-KERNEL COEFFICIENT b6ðΔ4Þ
ON A GEOMETRIC BACKGROUND

A. Preliminary considerations

Here we recall some basic facts about the heat-kernel
expansion relevant for the calculation. Further details are
given in Appendix B.
We consider an elliptic differential operator Δ of even

order 2n defined on a d-dimensional manifold without
boundaries with the schematic structure

Δ ¼ ð−∇2Þn þ lower derivative terms; ð2:1Þ

where ∇ ¼ ∂þ Γþ A is a covariant derivative with geo-
metric and gauge connection. We denote the associated
spacetime and internal curvatures as ½∇;∇� ¼ RþF. One
can express the logarithmically divergent part of detΔ as
(see e.g., [10,19,26] and references therein)

ðlog detΔÞ∞ ¼ −
2 logΛ
ð4πÞd=2

Z ffiffiffi
g

p
bdðΔÞ; ð2:2Þ

where Λ is the UV cutoff and bp is the trace of a local
covariant quantity built using the differential operator as
well as the covariant derivative and it is defined modulo
boundary terms. We shall refer to these coefficients as
Seeley-DeWitt heat-kernel coefficients. Let us now con-
sider two differential operators Δ and Δ0. Using the
factorization property of the determinant for combined
operators we obtain the key relation

bdðΔΔ0Þ ¼ bdðΔÞ þ bdðΔ0Þ; ð2:3Þ

which allows one to relate the heat-kernel coefficients of
operators of different order (again modulo total deriva-
tives). We stress here that the relation (2.3) is valid for the
logarithmic part only and not for power-law divergences.
In the case of the 2-derivative operator

Δ2 ¼ −∇2 þ X; ð2:4Þ

where ∇m has internal and spacetime connections, in 6d
one has the expression (B8) [18–20], which can be
schematically represented as

b6ðΔ2Þ ¼ bg6ðΔ2Þ þ bgc6 ðΔ2Þ þ bm6 ðΔ2Þ; ð2:5Þ

where we distinguished the purely gravitational terms
(“g”), those that originate from the generally-covariantized
flat-spacetime expression (“gc”), and the terms which mix
gravitational and gauge terms (“m”), so that bm6 ðΔ2Þ
vanishes in flat spacetime as well as bg6ðΔ2Þ ¼ E · tr1 (E
is given in (B7) and 1 is the identity in the internal space
where tr acts).
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B. Derivation of b6ðΔ4Þ
We are interested in the coefficient b6ðΔ4Þ, where the

operator Δ4 has the structure (1.3). One can equivalently
present the operator (1.3) in the “symmetric” form (B10).
Following (2.5) we correspondingly decompose

b6ðΔ4Þ ¼ bg6ðΔ4Þ þ bgc6 ðΔ4Þ þ bm6 ðΔ4Þ: ð2:6Þ

The strategy to compute it is the following. First, we make
an ansatz based on dimensional and covariance consid-
erations, taking into account algebraic relations between
different terms due to Bianchi identities, symmetries of

tensors, and boundary terms. Then we consider special
cases for Δ4, where it can be decomposed as the produce of
second-order operators, Δ4 ¼ Δ2Δ0

2. Using (2.3) with the
explicit expression for (2.5) in (B5) allows us to gather
enough information to reconstruct b6ðΔ4Þ.
From these considerations it is immediate to see that

bg6ðΔ4Þ ¼ 2bg6ðΔ2Þ ¼ 2E · tr1: ð2:7Þ

Furthermore, this procedure was already applied to (1.3)
in [25] (see also [26]) to the flat-spacetime case, therefore
bgc6 ðΔ4Þ can be immediately obtained,

bgc6 ðΔ4Þ ¼ tr

�
−

1

30
ð∇mFmnÞ2 þ

1

45
FmnFnrFrm þ 1

360
VmnVnrVrm þ 1

480
VmnVmnV þ 1

2880
VVV þ 1

30
Vmn∇ðn∇rÞVrm

þ 1

120
Vmn∇2Vmn −

1

40
Vmn∇m∇nV þ 1

240
V∇2V −

1

12
VmnVnrFmr þ

1

6
Fmn∇ðm∇rÞVrn þ

1

24
VFmnFmn

−
1

6
VmnFmrFnr −

1

3
Fmn∇mNn −

1

6
Vmn∇mNn þ

1

12
V∇mNm −

1

6
NmNm −

1

12
UV

�
; ð2:8Þ

where V ¼ gmnVmn and F is the internal curvature. What remains to be determined is therefore only bm6 ðΔ4Þ. On
dimensional and covariance grounds we make the ansatz

bm6 ðΔ4Þ ¼ tr½c1RFmnFmn þ c2RVmnVmn þ c3RVV þ c4RU þ c5R∇2V þ c6R∇m∇nVmn þ c7R∇mNm þ c8RmnVnrVrm

þ c9RmnVmnV þ c10Rmn∇2Vmn þ c11RmnVnrFmr þ c12RmnFmrFnr þ c13RmnrqVmrVnq þ c14RmnrqFmnFrq

þ c15RmnrqRmnrqV þ c16RmrqkRnrqkVmn þ c17RmnRmnV þ c18R2V þ c19RmnRmrVrn þ c20RRmnVmn

þ c21RmnrqRmrVnq�: ð2:9Þ

All other combinations vanish or reduce to these by means of the Bianchi identities, integration by parts, and symmetry
properties. As we shall explain, we find

c1 ¼
1

36
; c2 ¼

1

144
; c3 ¼

1

288
; c4 ¼ −

1

6
; c5 ¼

1

60
; c6 ¼ −

1

20
; c7 ¼

1

6
;

c8 ¼ −
1

36
; c9 ¼ −

1

72
; c10 ¼ −

1

60
; c11 ¼ −

1

12
; c12 ¼

1

45
; c13 ¼

1

36
; c14 ¼

1

90
;

c15 ¼
1

360
; c16 ¼ −

1

90
; c17 ¼ −

1

360
; c18 ¼

1

144
; c19 ¼

1

45
; c20 ¼ −

1

36
; c21 ¼ −

1

90
: ð2:10Þ

The full explicit expression of b6ðΔ6Þ is given in (B9).
To fix the values of the coefficients ci’s we resort to the

following two decompositions:
(1) Δ4 ¼ ΔX

2ΔY
2 , where the 2-derivative operators have

the structure (2.4) and the background gauge con-
nection is non-Abelian.

(2) Δ4 ¼ ΔþΔ−, with an Abelian gauge connection
and Δ� ¼ −ð∇m � BmÞ2.

In total we find an overdetermined system of 49 equations
with unique solution (2.10). The following two subsections
provide details of the derivation.

1. Decomposition 1

The fourth-order operators obtained from the
composition

Δ4 ¼ ΔX
2ΔY

2 ð2:11Þ

has the structure (1.3) with Vmn ¼ −δmnðX þ YÞ,
Nm ¼ −∇mY, U ¼ XY −∇2Y, and therefore V ¼
−6ðX þ YÞ.
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From the general expression (2.9) we get

bm6 ðΔ4Þ ¼ tr½c1FmnFmnRþ c12FmrFmnRnr þ c14FmnFrsRmnrs − ð6c18 þ c20ÞR2X − ð6c18 þ c20ÞR2Y

− ð6c17 þ c19 þ c21ÞRmnRmnX − ð6c17 þ c19 þ c21ÞRmnRmnY þ ð6c2 þ 36c3 þ c8 þ 6c9 þ c13ÞRX2

þ ð6c2 þ 36c3 þ c8 þ 6c9 þ c13ÞRY2 − ð6c15 þ c16ÞRmnrsRmnrsY − ð6c15 þ c16ÞRmnrsRmnrsX

− ð6c5 þ c6 þ c10ÞR∇2X − ðc4 þ 6c5 þ c6 þ c7 þ c10ÞR∇2Y

þ ð12c2 þ 72c3 þ c4 þ 2c8 þ 12c9 þ 2c13ÞRXY�; ð2:12Þ

and from the factorization we have

bm6 ðΔ2Þ þ bm6 ðΔ0
2Þ ¼ tr

�
−

1

36
FmnFmnR −

1

45
FmrFmnRnr −

1

90
FmnFrsRmnrs þ

1

72
R2X þ 1

72
R2Y −

1

180
RmnRmnX

−
1

180
RmnRmnY −

1

12
RX2 −

1

12
RY2 þ 1

180
RmnrsRmnrsX þ 1

180
RmnrsRmnrsY

þ 1

30
R∇2X þ 1

30
R∇2Y

�
: ð2:13Þ

Equating the two we obtain 14 linear equations.

2. Decomposition 2

We are considering

Δ4 ¼ ΔþΔ−;

−Δ� ¼ ð∇m � BmÞ2
¼ ∇2 � 2Bm∇m � ð∇mBmÞ þ BmBm; ð2:14Þ

with ∇ ¼ ∂þ Γþ A, A being an Abelian connection. The
field strengths therefore read

F�
mn ≡ ½∇�

m;∇�
n �

¼ Fmn þ ½Bm; Bn� � ð∇mBn −∇nBmÞ: ð2:15Þ

The coefficients for the operator Δ4 (2.14) in the notation
(1.3) read

Vmn ¼ −4∇ðmBnÞ þ 2B2δmn − 4BðmBnÞ;

V ¼ −4∇nBn þ 8B2; ð2:16Þ

Nm ¼−BnRmn−∇2Bm−∇m∇nBnþ∇mB2þBmB2

−B2Bm−2Bn∇nBm−Bm∇nBnþ2BnFnm; ð2:17Þ

U ¼ −∇2∇nBn þ∇2B2 − 2Bm∇m∇nBn þ 2Bm∇mB2

− ð∇nBnÞ2 þ B4 þ ð∇nBnÞB2 − B2∇nBn

− 2∇mBnFmn − 2BmBnFmn þ 2Bm∇nFmn: ð2:18Þ

The only place where the spacetime curvature explicitly
appears is BnRmn in Nm.
In considering the factorization ansatz (2.3), for sim-

plicity we focus on terms of order 1, 2, 4, 5, and 6 in B. It
turns out that this provides us with enough information to
determine bm6 ðΔ4Þ.
To start, we need to determine a basis for the invariants

that can appear in the expression of b6ðΔ4Þ. In doing so one
needs to be careful about the possibility of adding total
derivatives, the symmetries of the objects involved and their
algebraic relations. We identified a basis consisting of 45
elements listed in Appendix C. In such a basis, we can
evaluate (2.9) as

bm6 ðΔ4Þ ¼ c12FanFamRmn þ 4c11FanBaBmRmn − 16ðc13 þ 2c9ÞB2BmBnRmn − 4ð2c13 þ c19ÞBaBmRanRmn

þ 2ð4c17 þ c19 þ c21ÞB2RmnRmn þ c1FamFamRþ ð24c2 þ 64c3 þ c4 þ 4c8 þ 16c9 þ 4c13ÞB2BmBmR

− 8ð2c8 − 3c13ÞBaRmn∇a∇nBm − 2ð2c6 þ c7 − 2c8 þ 2c13 þ 2c20ÞBaBmRamR

− 4ðc10 − 2c17 − c21ÞBaRmn∇aRmn þ 2ð4c18 þ c20ÞB2R2 þ c14FamFncRamnc

− 4ð2c8 − 2c13 þ c21ÞBaBmRncRanmc þ 4ð2c13 − c16ÞBaBmRancrRmncr þ 2ð4c15 þ c16ÞB2RmncrRmncr

þ 2ð4c18 þ c20ÞBaR∇aRþ 2ð4c15 þ c16ÞBaRmncr∇aRmncr − 2ðc4 þ 4c6 þ 2c7 − 2c8 − 4c9 − 2c13ÞBaR∇a∇mBm

þ 4ðc8 − 2c10 − 2c13ÞRan∇mBn∇mBa þ 8c13BaRacmn∇c∇nBm
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þ ð16c3 − c4 − 4c6 − 2c7 þ 8c9 þ 8c13ÞR∇aBa∇mBm þ 2ðc4 þ 8c5 þ 2c6 þ c7 þ c8 þ 2c10ÞBaR∇2Ba

− 8ð2c9 þ 3c13ÞBaRan∇n∇mBm − ðc4 þ 4c5 þ 4c6 þ 2c7 þ 2c10ÞR∇2∇aBa − 8ðc10 þ c13ÞBaRam∇n∇nBm

þ 2ð4c2 − 2c6 − c7 þ 2c8 − 2c13ÞR∇aBm∇mBa þ 2ð4c2 þ c4 þ 8c5 þ 2c6 þ c7 þ c8 þ 2c10ÞR∇mBa∇mBa

− ð2c4 þ 2c7 þ c11ÞFamBa∇mR − 4c8BaRmn∇n∇mBa þ 2ð2c6 þ c7 þ 2c10 þ c19 þ 2c20ÞBaRam∇mR

− 2c11BaRmn∇nFam þ 2c11BaRam∇nFmn þ 4ð2c10 − 2c16 − c21ÞBaRamnc∇cRmn þ 2c11FmnBa∇nRam

þ 4ð2c10 þ c19 − c21ÞBaRmn∇nRam; ð2:19Þ

and from the factorization we have

bm6 ðΔþÞ þ bm6 ðΔ−Þ ¼ −
1

45
FanFamRmn þ

1

3
FanBaBmRmn þ

14

45
BaBmRanRmn −

1

36
FamFamRþ 11

45
BaBmRamR

−
1

90
FamFncRamnc −

22

45
BaBmRncRanmc −

4

15
BaBmRancrRmncr þ

2

45
BaR∇a∇mBm

−
8

9
BaRmn∇a∇nBm −

1

5
R∇aBa∇mBm þ 1

18
BaR∇m∇mBa þ

3

10
R∇aBm∇mBa þ

1

5
Ran∇mBn∇mBa

−
1

12
FamBa∇mR −

1

6
BaRmn∇nFam þ 1

6
BaRam∇nFmn þ

1

6
FmnBa∇nRam þ 4

45
BaRam∇n∇nBm

þ 4

9
BaRan∇n∇mBm −

1

9
BaRmn∇n∇mBa −

2

9
BaRacmn∇c∇nBm: ð2:20Þ

Equating the two expressions we obtain 35 linear equations.

III. APPLICATIONS

A. 4-derivative scalar field

A 4-derivative Weyl-covariant differential operator [3,5]
in d-dimensions was constructed by Paneitz (cf. [28]; the
4D case was first given in [29,30]),

Δ4 ¼∇4 þ∇m½ð4Smn − ðd− 2ÞgmnSÞ∇n�− ðd− 4ÞSmnSmn

þ d
d− 4

4
S2 −

d− 2

2
ð∇2SÞ; ð3:1Þ

where Smn is the Schouten tensor

Smn ¼
1

d − 2

�
Rmn −

1

2ðd − 1ÞRgmn

�
;

S ¼ Smm ¼ 1

2ðd − 1ÞR: ð3:2Þ

Such operator allows one to consider the following Weyl-
invariant action in 6D for a real scalar, from which we can
compute the corresponding effective action and conformal
anomaly via (1.2),

S ¼ 1

2

Z
dx6

ffiffiffi
g

p
ϕΔ4ϕ; b6 ¼ b6ðΔ4Þ: ð3:3Þ

The operator (3.1) is written in the symmetric form (B10).
Direct application of (B9) gives

ða; ciÞ ¼
1

7!

�
4

9
;
224

3
; 8;−10

�
; ð3:4Þ

in agreement with the recent independent analysis of [[24],
(16)–(19) with k ¼ 2].

B. 4-derivative gauge vector

We consider the following Weyl-invariant action for an
Abelian gauge vector Am,

S ¼
Z ffiffiffi

g
p �

∇rFrm∇nFnm −
�
Rmn −

1

5
gmnR

�
FmpFnp

�

þ ξ

Z ffiffiffi
g

p
FmnFrsWmnrs; ð3:5Þ

where Fmn ¼ ∇mAn −∇nAm is the field strength. The first
integral provides a Weyl-invariant kinetic term for Am as
considered in [5]. The second integral is Weyl invariant by
itself (where W is the Weyl tensor) and can therefore be
added with an arbitrary numerical coefficient ξ. In terms of
the gauge field Am the action reads

S¼1

2

Z ffiffiffi
g

p
Am½Δ4A�mnAnþ

1

2

Z ffiffiffi
g

p
Am∇m∇2∇nAn; ð3:6Þ

where the operator Δ4A is a 4-derivative one. It is more
convenient to present it in the symmetrized form (B10) with
coefficients
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½V̂mn�ac ¼ ð1þ ξÞgacRmn − ð1 − ξÞgmnRac

−
2þ ξ

5
gacgmnRþ 2þ ξ

5
RgmðagcÞn

− 2ð1þ ξÞgðmða RnÞ
cÞ þ 4ξRaðmnÞc; ð3:7Þ

½N̂m�ac ¼
1 − 3ξ

2
∇ðaRcÞm þ 1þ 3ξ

20
gmða∇cÞR ð3:8Þ

½Û�ac ¼
1 − ξ

2
RamRcm −

1þ ξ

2
RmsRamcs þ

2þ ξ

10
RacR

−∇2Rac þ 2ξRamrsRcrms: ð3:9Þ

The second term in (3.6) can be gauge fixed away by
choosing the covariant gauge ∇mAm ¼ 0 and averaging
over gauges with the Gaussian weight, −∇2.
The effective action for (3.5) thus constructed reads

Z ¼
�

detΔ4A

½detΔ2;0�3
�
1=2

; Δ2;0 ¼ −∇2; ð3:10Þ

where Δ2;0 acts on scalars and comes from ghost and
gauge-fixing contributions. The divergent part of the
effective action has therefore the structure (1.2) governed
by the coefficient

b6 ¼ b6ðΔ4AÞ − 3b6ð−∇2Þ; ð3:11Þ

where the first term can be evaluated with (B9) and the
second one with (B8). In computing b6ðΔ4Þwe use that 1 is
the identity in the space of six-dimensional vectors and that
the curvature F is given by ½Fmn�ac ¼ Rmnac.
In the form (1.2) we obtain

a¼ 275

8 ·7!
; c1¼

28

7!
ð97−60ξþ4ξ2−4ξ3Þ;

c2¼
1

7!
ð911−840ξþ392ξ2−392ξ3Þ; c3¼−

150

7!
: ð3:12Þ

The case ξ ¼ 0 was considered in [5] via indirect methods;
our result agrees. We notice that ξ does not affect the a
coefficient (as expected) and that c1 and c2 do not exhibit
common zeroes. The fact that ξ does not enter c3 is
probably accidental at one loop.

C. 3-derivative fermion

We consider here a 3-derivative Weyl spinor Ψ with the
kinetic operator given in [5] (see also [27])

S ¼
Z

Ψ̄Δ3Ψ;

−iΔ3 ¼ ∇3 þ 2Smnγm∇n þ γm∇mS; ð3:13Þ

where Smn is the Schouten tensor as in (3.2). In (3.13) and
in the following we consider Dirac gamma matrix notation
with fγm; γng ¼ 2gmn, γm being eight-dimensional.
We have (1.2) with

b6¼−b6ðΔ3Þ≡b6ðΔ1Þ−b6ðΔ3Δ1Þ; Δ1 ¼ i∇; ð3:14Þ

where we evaluate the heat-kernel coefficient b6ðΔ3Þ
considering composition Δ3Δ1 with the first-order Dirac
operator Δ1 (acting on Weyl spinors) and applying (2.3).
The 4-derivative operatorΔ3Δ1 has the structure (1.3) with

1

Vmn ¼ 2γrγðnSmÞr−
1

2
Rgmn; Nm ¼ 1

2
∇aSγaγm−

1

4
∇mR;

U¼ 1

16
R2 −

1

4
∇2Rþ 1

4
SmaRanrsγ

mγnγrγs; ð3:15Þ

which via (B9) results in

b6ðΔ3Δ1Þ¼
1

7!

�
−
10

9
E6−

448

3
I1−

172

3
I2þ4I3

�
: ð3:16Þ

The heat kernel coefficient of the Dirac operator can be
computed by squaring it and using (B9), which gives

b6ðΔ1Þ ¼
1

2
b6

�
ðΔ1Þ2 ≡ −∇2 þ 1

4
R

�

¼ 1

7!

�
191

144
E6 þ

448

3
I1 − 16I2 − 20I3

�
: ð3:17Þ

The expression (3.17) was originally obtained in [17]. In
computing (3.16) and (3.17) we have used ½∇m;∇n� ¼
1
4
Rmnrsγ

rγs and Rmnrsγ
mγnγrγs ¼ −2R. Here 1 of (B9) is

the identity in the eight-dimensional spinor space, where tr
is taken.
In conclusion the conformal anomaly coefficients

derived from (1.2) with (3.14) are

ða; ciÞ ¼
1

7!

�
39

16
;
896

3
;
220

3
;−24

�
: ð3:18Þ

Our result (3.18) coincides with that of [5] obtained via
indirect methods,2 thereby providing an independent direct
confirmation.
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APPENDIX A: NOTATION AND CONVENTIONS

We work in 6 euclidean dimensions and indicate space-
time indices with Latin lowercase letters. The metric is gmn
and we do not distinguish between upper and lower indices.
We write the covariant derivative with Levi-Civita and
gauge connection as ∇ ¼ ∂þ Γþ A. We introduce the
gauge and Riemann curvatures

Fmn ¼ ∂mAn−∂nAmþ½Am;An�;
Rm

nac¼ ∂aΓm
nc���� ; Rmn ¼Ra

man; R¼Rm
m; ðA1Þ

so that ½∇m;∇n�ϕ ¼ Fmnϕ on a spacetime scalar and
½∇m;∇n�Va ¼ RmnacVc on a spacetime vector without
gauge indices. We reserve Fmn for the Maxwell field
strength and keep Fmn in the general case. The Weyl
tensor reads

Wmnrs ¼ Rmnrs þ g½r½nR
s�
m� þ

1

10
gm½rgs�nR: ðA2Þ

We note the following identities that are used in the main
text without mentioning,

2ð∇mFmnÞ2 ¼ ð∇mFrsÞ2 þ 2FmaFnaRmn − RmnrsFmnFrs

þ t:d:;

2RrnacRmacn ¼ −RrnacRmnac ðA3Þ

The basis of the anomaly is

E6 ¼ −εmnrspqεabcdefRmnabRrscdRpqef

¼ −32RmnacRacsrRsrmn þ…;

I1 ¼ WamncWmrsnWracs;

I2 ¼ WacmnWrsacWmnrs;

I3 ¼ Wamnr

�
gac∇2 þ 4Rac −

6

5
gacR

�
Wcmnr: ðA4Þ

APPENDIX B: RELEVANT FACTS
ABOUT THE HEAT KERNEL

In this appendix we provide further details about the
heat-kernel expansion to complete the discussion of
Sec. II A.

1. Generalities

A standard representation for the determinant of a
differential operator of order l is

log detΔl ¼ −
Z

ddx
ffiffiffi
g

p Z∞

ε

dt
t
trhxje−tΔl jxi; ðB1Þ

where tr is the trace over internal indices of the operator and
ε ¼ Λ−l is a UV cutoff. The matrix element in the
integrand is the heat kernel. It has an asymptotic expansion
for t → 0þ that allows us to write (see e.g., [19–21,26])

trhxje−tΔl jxi≡ trKðt; x; x;ΔlÞ

≃
X
p≥0

2

ð4πÞd=2l t
ðp−dÞ=lapðΔl; d; g; xÞ: ðB2Þ

The Seeley-DeWitt coefficients ap are local covariant
expressions of dimension p constructed out of the back-
ground metric and gauge field, exhibiting an explicit
nontrivial dependence on the spacetime dimension d when
l ≠ 2, see e.g., [35] for explicit examples. However, we are
interested in the spacetime integral of the trace of the
Seeley-DeWitt coefficients, which in the present context
acquire the interpretation of a Lagrangian density. We
therefore focus on the simpler invariant quantity

bpðΔl;d;g;xÞ¼ trapðΔl;d;g;xÞ modulototalderivatives;

ðB3Þ

which with abuse of notation we also call heat-kernel
coefficients. Some of the arguments of bp are often omitted.
As a consequence, one can express the divergent part of
(B1) as

ðlog detΔlÞ∞ ¼ −
2

ð4πÞd=2

×
�Xd−1
p¼0

BpðΔlÞ
d − p

Λd−p þ BdðΔlÞ log
Λ
μ

�
;

BpðΔlÞ ¼
Z

ddx
ffiffiffi
g

p
bpðΔlÞ; ðB4Þ

where μ is a renormalization scale and the explicit
dependence on l dropped out. In (B4) we find both
power-law divergences (which we ignore for the scope
of this paper) and the logarithmic term relevant for the
conformal anomalies. In dimensional regularization one
has only the logarithmic term of (B4) with the formal
substitution log Λ

μ →
1

n−d, where n is the original integer
number of dimensions.
Let us now consider two differential operators Δ and Δ0.

Using the factorization property of the determinant for
combined operators we further obtain the key relation

bdðΔΔ0Þ ¼ bdðΔÞ þ bdðΔ0Þ: ðB5Þ
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This factorization ansatz is only true for the coefficient
bp¼d, i.e., with the index p equal to the spacetime
dimension d. Indeed, only the logarithmically divergent
term of the expansion (B4) is universal, while the power-
law divergences are regularization dependent. This implies
that the factorization ansatz (B5) does not capture the
explicit d-dependence of the bps.

2. Explicit formulas

In this section we give some explicit expressions for the
heat kernel coefficients of 2- and 4-derivative elliptic
operators. We consider here operators of the standard forms

Δ2 ¼ −∇2 þ X;

Δ4 ¼ ∇4 þ Vmn∇m∇n þ 2Nm∇m þ U; ðB6Þ

with Vmn ¼ Vnm; X, V, N, U are covariant coefficient
functions, in general matrix valued. In (B6), Δ2 is the
most general second-order operator and Δ4 is the most
general fourth-order operator without 3-derivative term. At
this point, no further restriction is imposed on the coef-
ficient functions, as the operators are not necessarily self-
adjoint.
Let us define the purely geometrical contribution as

E ¼ 1

945
RmnRpqRmpnq þ

1

7560
RmnRmpqrRnpqr −

4

2835
RmnRnpRpm þ 17

45360
Rmn

pqRpq
rsRrs

mn −
1

1620
Rm

p
n
qRp

r
q
sRr

m
s
n

þ 1

840
Rmn∇2Rmn þ 1

1296
R3 þ 1

1080
RRmpqrRmpqr −

1

1080
RRmnRmn þ

1

336
R∇2R: ðB7Þ

For second-order differential operators of the form (B6) we have, following [18,19,36],

b6ðΔ2Þ ¼ tr

�
−

1

60
ð∇mFmnÞ2 þ

1

90
FmnFnrFrm −

1

12
XFmnFmn þ

1

12
X∇2X −

1

6
X3 þ 1

12
RX2 −

1

72
R2X −

1

30
X∇2R

þ 1

180
XRmnRmn −

1

180
XRmnrsRmnrs þ

1

72
RFmnFmn −

1

90
RmnFmrFrn þ 1

180
RmnpqFmnFpq þ E · 1

�
; ðB8Þ

where 1 is the identity in the internal space, where tr acts.
For fourth-order differential operators of the form (B6) we have (with V ¼ Vmm)

bd¼6
6 ðΔ4Þ ¼ tr

�
−

1

30
ð∇mFmnÞ2 þ

1

45
FmnFnpFpm þ 1

360
VmnVnpVpm þ 1

480
VmnVmnV þ 1

2880
VVV þ 1

30
Vmn∇ðn∇pÞVpm

þ 1

120
Vmn∇2Vmn −

1

40
Vmn∇m∇nV þ 1

240
V∇2V −

1

12
VmnVnpFmp þ

1

6
Fmn∇ðm∇pÞVpn þ

1

24
VFmnFmn

−
1

6
VmnFmpFnp −

1

3
Fmn∇mNn −

1

6
Vmn∇mNn þ

1

12
V∇mNm −

1

6
NmNm −

1

12
UV þ 1

36
RFmnFmn

þ 1

144
RVmnVmn þ

1

288
RVV −

1

6
RUþ 1

60
R∇2V −

1

20
R∇m∇nVmn þ

1

6
R∇mNm −

1

36
RmnVnpVpm

−
1

72
RmnVmnV −

1

60
Rmn∇2Vmn −

1

12
RmnVnpFmp þ

1

45
RmnFmpFnp þ

1

36
RmnpqVmpVnq þ

1

90
RmnpqFmnFpq

þ 1

360
RmnpqRmnpqV −

1

90
RmpqkRnpqkVmn −

1

360
RmnRmnV þ 1

144
R2V þ 1

45
RmnRmpVpn −

1

36
RRmnVmn

−
1

90
RmnpqRmpVnq þ 2E · 1

�
: ðB9Þ

The formula (B9) extends the result of [25] with the present
paper.

3. A note on self-adjointness

Often we are interested in the operators of the form (B6)
arising after path integration. This operation typically
projects on self-adjoint part, which imposes restrictions
on the coefficient functions. These conditions are not

automatically taken into account in expression for bp such
as (B8) and (B9), which apply to generic operators, and
have to be imposed by hand when isolating the differential
operator in the quadratic part of the action.
For the second-order operator Δ2 these translate on the

requirement that X ¼ X†, where † is the appropriate con-
jugationonthe internal indexstructure(i.e., it is transpositionor
Hermitian conjugation for real or complex fields respectively).
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The discussion for Δ4 is slightly more subtle. It is
convenient to rewrite the operator in the symmetric form

Δ4 ¼ ∇4 þ∇rV̂rk∇k þ N̂k∇k þ∇kN̂k þ Û;

V̂rk ¼ V̂kr; ðB10Þ

where the derivatives act on everything to their right. The
relation with the nonsymmetric form in (B6) is given by

Vmn ¼ V̂mn; Nm ¼ N̂m þ 1

2
∇mV̂mn;

U ¼ Û þ∇mN̂m: ðB11Þ

The form (B10) is convenient because self-adjointness
amounts to the conditions

V̂mn ¼ V̂†
mn; N̂m ¼ −N̂†

m; Û ¼ Û†; ðB12Þ

where again † is the appropriate conjugation of the internal
indices.

APPENDIX C: BASIS OF THE INVARIANTS
FOR THE DECOMPOSITION Δ4 =Δ+Δ −

In this appendix we list the basis of the invariants used to
study the decomposition (2.14). We consider terms of
OðBnÞ, with n ¼ 1; 2; 4; 5; 6. In total we find 45 elements;
any other combination can be expressed in terms of these
by integration by parts, use of Bianchi identities and other
symmetry properties.

(i) OðB1Þ: 19 elements

∇nFmnRmaBa; Fmn∇nRmaBa; ∇aFmnRmaBn; ∇mFmnRBn;

Fmn∇mRBn; Fmn∇aFmnBa; Fmn∇aFmaBn;

Rmnac∇cFmnBa; RmnacFma∇nBc; RmnacFma∇cBn; Rmnac∇rRmnacBr;

Rmn∇rRmnBr; Rmr∇rRmnBn; Rmn∇nRBm; R∇mRBm;

Rmnac∇cRmaBn; Rmnac∇nRmaBc; ∇2∇mFmnBn; ∇2R∇mBm:

(ii) OðB2Þ: 26 elements

FmnFmnBaBa; FmaFmcBaBc; RmaFmcBaBc; RmnacFmaBnBc;

R2BaBa; RRmnBmBn; RmaRmcBaBc; RmnacRmnacBrBr; RmnacRrnacBmBr;

FmnBm∇2Bn; FmaBm∇a∇nBn; Fma∇aBm∇nBn; FmaBn∇n∇aBm;

RmnacBmBaRnc; Ba∇2∇2Ba; Ba∇a∇2∇mBm RmnBm∇2Bn;

Rmn∇aBm∇aBn; RmnBa∇m∇nBa; RmnBm∇n∇aBa; RmnBa∇a∇nBm;

RBm∇m∇nBn; R∇mBm∇nBn; RBa∇2Ba; R∇aBc∇aBc; RmnacBm∇n∇aBc:

(iii) OðB4Þ: 8 elements

BaBaBr∇2Br; BaBa∇mBr∇mBr; Ba∇m∇nBaBmBn; BaBaBm∇m∇nBn;

BaBa∇mBm∇nBn; BaBa∇nBm∇mBn; RmnBmBnBaBa; RBmBmBaBa:

(iv) OðB5Þ: 1 element

BmBmBaBn∇nBa:

(v) OðB6Þ: 1 element

ðBmBmÞ3:

APPENDIX D: DIAGRAMMATIC CHECKS
OF bm6 ðΔ4Þ

In this appendix we compute diagrammatically some of
the terms in (2.9) and (2.10) as an independent consistency
check. We consider a free scalar in dimensional regulari-
zation (d ¼ 6 − 2ε) with
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S ¼ 1

2

Z ffiffiffi
g

p
ϕΔ4ϕϕ;

Γ∞ ¼ 1

ð4πÞ3ε
Z ffiffiffi

g
p

b6ðΔ4ϕÞ; ðD1Þ

where Δ4ϕ has the structure (1.3) with spacetime con-
nection only and with V, N, U being spacetime-covariant
functions.
To set the perturbative expansion in powers of the

external fields we use hmn ¼ gmn − δmn and for simplicity

we assume hmm ¼ hmnδmn ¼ 0. We construct the diagrams
for the following three correlators: hUhi (giving c4), hNhi
(giving c7), hVhi (giving c5, c6, c10). The results of this
calculation are all in agreement with the solution in (2.10).
To diagrammatically compute the divergent part of the

effective action from (D1) we need the free propagator

hϕðpÞϕð−pÞi ¼ 1

p4
ðD2Þ

and the following vertices,

Sh ¼
1

2

Z
hmnð−p − qÞHmnðp; qÞϕðqÞϕðqÞ; Hmnðp; qÞ ¼ pðmqnÞðp2 þ q2Þ;

SV ¼ 1

2

Z
Vmnðp − qÞWmnðp; qÞϕðqÞϕðqÞ; Wmnðp; qÞ ¼ −

1

2
ðqmqn þ pmpnÞ;

SN ¼ 1

2

Z
Nmðp − qÞMmðp; qÞϕðqÞϕðqÞ; Mmðp; qÞ ¼ iðpm þ qmÞ;

SU ¼ 1

2

Z
Uð−p − qÞϕðpÞϕðqÞ: ðD3Þ

To the terms under considerations only a single two-propagator diagram contributes, and the corresponding terms in the
effective action are found to be

hVrsðqÞhmnð−qÞi ¼ −
1

2

Z
ddp
ð2πÞd

1

p4ðq − pÞ4 Hmnðp; q − pÞWrsðp − q;−pÞ;

hNrðqÞhmnð−qÞi ¼ −
1

2

Z
ddp
ð2πÞd

1

p4ðq − pÞ4 Hmnðp; q − pÞMrðp − q;−pÞ;

hUðqÞhmnð−qÞi ¼ −
1

2

Z
ddp
ð2πÞd

1

p4ðq − pÞ4 Hmnðp; q − pÞ: ðD4Þ

The loop integrals can be evaluated using standard two-propagator technology (see e.g., [26]) and the divergent parts read

hVrsðqÞhmnð−qÞi∞ ¼ 1

240ð4πÞ3ε ½6qrqsqmqn − δrmδsnq4 þ 2δrnqsqmq2 − 2δrsqmqnq2�;

hNrðqÞhmnð−qÞi∞ ¼ i
12ð4πÞ3ε qrqmqn;

hUðqÞhmnð−qÞi∞ ¼ −
1

12ð4πÞ3ε qmqn; ðD5Þ

which correctly reproduce the values for c4, c5, c6, c7, c10.
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