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Every signal propagating through the universe is at least weakly lensed by the intervening gravi-
tational field. In some situations, wave-optics phenomena (diffraction, interference) can be observed
as frequency-dependent modulations of the waveform of gravitational waves (GWs). We will denote
these signatures as Wave-Optics Features (WOFs) and analyze them in detail. Our framework can
efficiently and accurately compute WOF in the single-image regime, of which weak lensing is a limit.
The phenomenology of WOF is rich and offers valuable information: the dense cusps of individual
halos appear as peaks in Green’s function for lensing. If resolved, these features probe the number,
effective masses, spatial distribution and inner profiles of substructures. High signal-to-noise GW
signals reveal WOFs well beyond the Einstein radius, leading to a fair probability of observation by
upcoming detectors such as LISA. Potential applications of WOF include reconstruction of the lens’
projected density, delensing standard sirens and inferring large-scale structure morphology and the
halo mass function. Because WOF are sourced by light halos with negligible baryonic content, their
detection (or lack thereof) holds promise to test dark matter scenarios.
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I. INTRODUCTION

Gravitational lensing, the effect of gravitational fields
on the propagation of signals through the universe, pre-
dicts a plethora of observable effects [1, 2]. Many
gravitational lensing phenomena have been observed us-
ing light and other electromagnetic (EM) signals, lead-
ing to a wide-range of applications in astrophysics,
cosmology and fundamental physics. Now, the ad-
vent of gravitational-wave (GW) astronomy provides the
prospect of observing novel lensing phenomena.
Lensed GW signals stand out as highly complementary

to EM observations. GWs can be detected at very high
redshift and are free from many of the systematic un-
certainties present in EM probes. For this reason, GWs
have been proposed as an alternative tool to test the
cosmological model, e.g. studying the cross-correlation
of GW observations and galaxy surveys [3–5]. Moreover,
the low frequency and phase-coherence of observable GW
sources make them ideal ground to probe the wave-optics
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(WO) regime [6]. WO encompasses phenomena such
as diffraction and interference, which imprint frequency-
dependent signatures on GW waveforms. They can hence
be used to identify a signal as lensed [7–12] and even in-
fer the lens properties accurately [13–16], at least in the
strong-lensing regime. In contrast, identifying lensing in
the geometric-optics (GO) limit, i.e. the high-frequency
limit, requires associating multiple images from the same
event, a method prone to false alarm [17], or identifying
subtle waveform differences [18], which requires sources
with large mass ratios [19, 20].

WO signatures require lenses in a restricted mass
range, set by the frequency range of the observed sig-
nal. For observable GWs, this limitation implies that
only relatively light structures can be detected. This dra-
matically reduces the probability of detecting WO im-
prints, at least for strongly-lensed signals in which the
most likely lenses are massive galaxies [21]. This led to
a pessimistic prospect to detect WO imprints in strongly
lensed signals, e.g. by LISA [22].

WO features can also be searched for in weakly-lensed
signals, which do not require a close alignment of source-
lens and observer and thus have a higher probability
of occurring. It was estimated that LISA may detect
WO effects at ∼ 50× the strong-lensing impact parame-
ter, corresponding to O(1%) of massive BH binaries [23].
While the above study was based purely on a mismatch
analysis between lensed and unlensed waveforms, a more
detailed estimate (accounting for waveform and lens pa-
rameter correlations) yields comparable values [14]. The
trade-off between strong and weak lensing is that of rare
and dramatic versus frequent but subtle signatures.

The lens distribution can be probed in a rather trans-
parent way via weakly-lensed GWs that contain WO
features. Reference [24] showed that the frequency-
dependent amplification factor is determined by the shear
of the Fermat potential at distances from the source given
by the Fresnel radius ∝ 1/

√
f . In this way, weakly-lensed

GWs probe entire regions of a lens as the source inspirals
towards merger. In contrast, signals in the GO regime
are sensitive to a very small portion of the lens plane
where the image forms. Thus, WO provides a unique
opportunity to test the structure of gravitational lenses.

The purpose of this paper is two-fold: first, we ad-
dress the problem of computing WO signatures. Focusing
on the single-image regime, we develop a framework to
compute lensed waveforms of arbitrary lenses, efficiently
and accurately. Second, we use these tools to explore
the phenomenology of weakly lensed gravitational waves,
the possibility of inferring structural features of lenses
and the prospect of detection. The paper is organized
as follows. Section II summarizes the WO regime of
gravitational lensing and introduces two frameworks for
the single-image regime: a general numerical computa-
tion and an expansion suitable for the weak-lensing (WL)
limit. In Section III we discuss WO phenomenology, us-
ing a Green’s function approach to analyze symmetric
lenses, before addressing the case of a lens with substruc-

ture. Section IV discusses the prospects of observation
by future detectors. Possible future applications of our
formalism are presented in Sec. V. We conclude by dis-
cussing our results in Sec. VI.

II. GRAVITATIONAL LENSING IN THE
SINGLE-IMAGE REGIME

In this section, we develop a framework to compute
diffraction effects in the single-image regime. We will
first summarize the WO formalism in the frequency and
time domain (Sec. II A). We will then present a method
to numerically evaluate single-image signals in the time
domain (Sec. II B). Finally, we will develop a perturbative
WL expansion in the time domain (Sec. II C).

A. Wave optics formalism

In the frequency domain, the effect of lensing is char-
acterized by a multiplicative factor F (f), called amplifi-
cation factor :

F (f) ≡ h̃(f)

h̃0(f)
, (1)

where h̃0(f) and h̃(f) are respectively the Fourier trans-
forms of the unlensed and lensed strain amplitude. The
frequency-domain amplification factor is obtained as

F (w) =
w

2πi

∫
d2x exp (iwϕ(x,y)) , (2)

(see Ref. [1] for a derivation assuming the weak-field
limit, the thin-lens approximation and a static config-
uration). The integration is over the lens plane, with
the coordinates rescaled by an arbitrary dimensionful
scale ξ0 (e.g. a characteristic scale of the lens), so x is
dimensionless. The impact parameter y is rescaled by
η0 ≡ DSξ0/DL, where DS , DL are the angular diameter
distances to the lens and the source, respectively.
Here we introduced the dimensionless frequency

w ≡ 8πGMLzf , (3)

which is given in terms of a redshifted effective lens mass:

MLz =
ξ20

4Gdeff
. (4)

The factor deff ≡ DLDLS

(1+zL)DS
also depends on the angular

diameter distance between the observer and the source
DLS . For a point lens, MLz is equal to the total mass of
the lens times (1 + zL) if ξ0 is set to the Einstein radius.
However, this is not true for extended lenses (e.g. Eq. (46)
below).
The integral in Eq. (2) depends on the Fermat poten-

tial :

ϕ(x,y) =
1

2
|x− y|2 − ψ(x)− ϕm(y) , (5)
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which is a dimensionless version of the time delay. Here
ψ(x) is the lensing potential, which depends on the mat-
ter distribution projected on the lens plane and whose
derivative gives the deflection angle. In particular, it is
obtained as the solution of ∇2

xψ(x) = 2Σ(ξ0x)/Σcr, with
∇2

x being the 2D Laplacian, Σ(ξ0x) the projected mat-
ter density of the lens, and Σcr ≡ (4πG(1 + zL)deff)

−1

the critical density. We shift the Fermat potential by a
constant ϕm(y), defined in such a way as to make the
minimum time delay equal to zero.

An important case of WO lensing is the GO limit, cor-
responding to the w → ∞ limit of the diffraction integral
Eq. (2):

F (w) =
∑

J

√
|µJ | eiwϕJ−iπnJ . (6)

Here the index J labels the GO images, located at sta-
tionary points of the Fermat potential xJ such that
ϕ,i(xJ ,y) = 0, where a comma subscript indicates
derivative with respect to lens-plane coordinates. The
magnification µ−1 ≡ det (ϕ,ij(xJ)) and the time delay
ϕJ ≡ ϕ(xJ ,y) are evaluated on the image positions. The
Morse phase is nJ = 0, π/2 or π depending on whether
xJ corresponds to a minimum, saddle point or maximum
of ϕ, respectively. In the single-image regime, GO is sim-
ply a rescaling of the waveform, F (w) =

√
|µ|.

We will now compute the amplification factor in time
domain. We define the time-domain signal as the Fourier
transform of iF (w)/w:

I(τ) ≡
∫ +∞

−∞
dw

iF (w)

w
e−iwτ

=

∫
d2x

∫ +∞

−∞

dw

2π
exp (iw (ϕ(x,y)− τ))

=

∫
d2x δ (ϕ(x,y)− τ) , (7)

where δ(x) is the Dirac-delta function. The expres-
sion above reduces the computation of I(τ) to a one-
dimensional integral over contours of equal time delay
ϕ(x,y) = τ , see [25]. The amplification factor (2) follows
from Fourier-transforming back to the frequency domain.

By choosing coordinates that follow the contours, the
equation above reduces to

I(τ) =
∑

k

∫
dtds

|∇ϕ|δ (t− τ) , (8)

where the coordinate t ≡ ϕ(x,y) and s is the arc-length
distance along contours of equal time delay. The summa-
tion is over distinct contours with same time delay. We
give a detailed derivation of this expression in App. A.

We will consider the Green’s function, defined as

G(τ) ≡ 1

2π

d

dτ
I(τ) , (9)

(also the Fourier transform of the amplification factor).
The time-domain lensed waveform is given as a convolu-
tion of the unlensed waveform h0 with Green’s function

h(t) =

∫ +∞

−∞
dt′G(t′ − t)h0(t

′) , (10)

where t ≡ 4GMLzτ . The GO image in G(τ) appears as
a singular contribution, stemming form the discontinuity
of I at τI (a Dirac delta function in the single-image
regime). We will hereafter use the term Green’s function
when referring to the regular part, defined as

G(τ) = G(τ)−
√

|µ| δ(τ − τI) , (11)

When necessary, we will refer to G(τ) as the full Green’s
function.
Figure 1 shows the procedure to compute WO predic-

tions in the single-image regime. The lens is a Singular
Isothermal Sphere (SIS), see Appendix B. Panels show
the countours of constant Fermat potential for an exam-
ple lens, the time-domain integral (8), Green’s function
(11) and the amplification factor (2). Colored points in
I(τ) and G(τ) correspond to the contours in ϕ(x). Most
discussions on WO lensing have focused on the ampli-
fication factor F (w). However, Green’s function offers
complementary insights into WO phenomena and their
relation to lens properties, making certain features par-
ticularly transparent. Unlike F (w), G(τ) is real-valued
and thus easier to display.

B. Non-perturbative single-image framework

In this work, we focus on the single-image regime, in
which only one GO image forms. The WL limit emerges
as a particular case, in which deflections are small. While
the WL regime is amenable to a perturbative treatment,
which we will develop in Sec. II C, in this section we will
first present the full framework needed to compute the
amplification factor, in the single-image regime, without
additional approximations.
The starting point for the full computation of the time-

domain amplification factor will be Eq. (7), but expressed
in polar coordinates

x1 = xm,1 +R cos θ , (12a)

x2 = xm,2 +R sin θ , (12b)

where xm is the location of the minimum time delay,
i.e. ϕ(xm) = 0. With this change of coordinates we get

I(τ) =
∫

dR dθ R δ (ϕ(R, θ)− τ) . (13)

Our main assumption to solve this integral will be that
we are in the single-image regime, so that the global min-
imum is the only critical point of the Fermat potential.
Furthermore, if ∂Rϕ ̸= 0, we can invert

ϕ(R, θ) = τ , (14)
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FIG. 1: Computation of the amplification factor in the single-image regime for an SIS with impact parameter y = 3. Each
contour of constant Fermat potential, ϕ(x) = τ , contributes to a point in I(τ), see Eq. (13). Green’s function G(τ) is then
computed as the derivative of I(τ), see Eqs. (9) and (11). Finally, the amplification factor F (w) is the (inverse) Fourier
transform of the full Green’s function G(τ). The sharp peak in Green’s function is associated with the center of the lens, which
features a cusp in the SIS. In our case, the lens is located at (0, 0) and the corresponding contour is represented with a dotted
line.

to obtain R(θ, τ). Once this solution is found, we can
plug it back and compute the integral as

I(τ) =
∫ 2π

0

dθ
R(θ, τ)

|∂Rϕ|
. (15)

In practice, what we will do is to solve the system of
differential equations

dI
dθ

=
R

|∂Rϕ|
, (16)

dR

dθ
= − ∂θϕ

∂Rϕ
. (17)

In this way, the curve will be sampled with the precision
needed to achieve a given tolerance in I. The system
is integrated from θ = 0 to 2π and with initial con-
ditions I(θ = 0, τ) = 0 and R(θ = 0, τ) chosen such
that ϕ(R(0, τ), 0) = τ . The previous derivation relied
on the fact that ∂Rϕ ̸= 0, which is always the case for
axisymmetric lenses when there are no critical points.
Even though we will not need it in this work, the previ-
ous framework only needs to be slightly modified if this
is not the case and ∂Rϕ = 0. The main change to be
made is that, instead of parameterizing the curve (14) as
R(θ, τ), one must use a parametric representation R(σ, τ)
and θ(σ, τ). In this case, one should also keep track of
the values of R and θ and finish the integration once the
contour closes.

C. Perturbative weak lensing expansion

We can understand how to set up a perturbative cal-
culation in WL in the following way. Let us consider the
image to be at xm in the lens plane, as in Fig. 2, and
let us assume that ψ(x) grows less than the quadratic
part of ϕ(x,y) at large x. Then, at sufficiently large xs

from the image, the contours of constant ϕ(x,y) = τ ap-
proach circles centered at y and are weakly influenced by
ψ(x). One can then take into account the effect of ψ(x)
perturbatively. On the other hand, at radii comparable
with the distance |y − xm| or smaller, the contours are
still weakly affected by ψ(x), but cannot be parametrized
at the lowest order as circles centered in y. Indeed, the
correct parametrization here is with ellipses centered at
xm. This can be understood as the GO limit for I(τ)
since regions of small time delay correspond to the high-
frequency limit for F (w) (see [25, 26]). The two calcu-
lations for small and intermediate/large time delays can
then be matched in an intermediate region.

1. Large time delays

The first step of the perturbative approach is to split
the Fermat potential into a lens contribution and a “free”
part, ϕ(x) = ϕ0(x)− ψ(x), where the free piece

ϕ0(x) ≡
1

2
|x− y| − ϕm , (18)

still contains non-perturbative information about the lens
in the minimum time delay ϕm. After plugging this re-
sult into (7), we then expand in powers of the lensing
potential ψ

I(τ) =
∫

d2x δ
(
ϕ0(x)− ψ(x)− τ

)

=

∫
d2x

∑

n≥0

(−1)n

n!
ψn(x) δ(n)

(
ϕ0(x)− τ

)

=
∑

n≥0

1

n!

dn

dτn

∫
d2xψn(x)δ

(
ϕ0(x)− τ

)
. (19)

In the second line, δ(n) stands for the derivative of the
Dirac delta with respect to its argument. Without loss
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FIG. 2: Diagram for computation I(τ) in the weak-lensing
approximation. In the large-time delays region, contour
of approximately equal τ are centered at y, have radius√

2(τ + ϕm) and angle φ with respect to the x1 axis. The
lens is indicated by the blue dot, at the origin. The red star
corresponds to the source, appearing at xm.

of generality, the impact parameter y can be taken to be
parallel to the x1 axis and with magnitude y. We can
use polar coordinates again, centered at the minimum of
the time delay of the free case (y, 0),

x1 = y + r cosφ , (20a)

x2 = r sinφ , (20b)

to evaluate the integrals in (19). In general, for a generic
function f(x), we can simplify the integral as

∫
d2x f(x) δ

(
ϕ0(x)− τ

)

=

∫ ∞

0

r dr

∫ 2π

0

dφf
(
x(r, φ)

)
δ

(
1

2
r2 − τ ′

)

= Θ(t)

∫ 2π

0

dφf
(
x(

√
2τ ′, φ)

)
, (21)

where τ ′ ≡ τ + ϕm and Θ is the Heaviside step func-
tion. Using this result, we can finally write the linear
approximation as

I(τ) ≃ 2π +
∑

n=1

I(n)(τ) , τ > −ϕm > 0 , (22)

where

I(n)(τ) =
1

n!

dn

dτn

∫ 2π

0

dφψn
(
x(τ, φ)

)
, (23a)

x1 = y +
√

2(τ + ϕm) cosφ , (23b)

x2 =
√
2(τ + ϕm) sinφ . (23c)

This formula already captures all the essential diffrac-
tion features of the amplification factor with a very good

accuracy that improves as y increases. In the next sub-
section, we will study the region of small time delays,
−ϕm > τ ≥ 0, where the linear formalism cannot be
applied anymore, but analytic results from the GO ex-
pansion are available.
We now discuss the frequency-domain version of our

approximation for WL signals. This will serve to illus-
trate how the WOF appears in the amplification factor.
However, for applications we will evaluate lensed signals
starting from the time domain. Also, in the frequency
domain, WL effects are given by an expansion in pow-
ers of ψ(x). We will show that at leading order in the
lensing potential and for large y, the amplification factor
is obtained by Fourier-transforming the signal from the
large-time delay region. To obtain this result, let us write
F (w) ≃ F(0)(w) + F(1)(w), where F(0)(w) and F(1)(w)
are the Fourier transforms of I(0)(τ) and I(1)(τ), respec-
tively. Then, by using the expressions in Eq. (22) and by
performing the dτ integration using the delta function,
we have

F(0)(w) =
w

2πi

∫ +∞

−∞
dτ eiwτ I(0)(τ) = e−iwϕm , (24)

F(1)(w) =
w

2πi

∫ +∞

−∞
dτ eiwτ I(1)(τ)

= −w
2

2π

∫
d2x eiwϕ0(x,y) ψ(x) . (25)

Notice that ϕm and ϕ0(x,y) still depend on the lensing
potential. However, we are interested in keeping only
leading order terms in ψ. Hence, we can expand the ex-
ponents of Eqs. (24) and (25) in powers of ψm ≡ ψ(xm),
truncating at linear order. We also make use of the lens-
ing equation at leading order: xm ≃ y +∇yψ(y). This
gives ψm ≃ ψ(y). Then, expanding F(0)(w) up to first
order in ψ(y) and adding the contribution from F(1)(w)
leads to

F (w) ≃ 1− w2

2π

∫
d2x eiw|x−y|2/2 (ψ(x)− ψ(y)) . (26)

One can check that this expression correctly captures the
WL features. Moreover, in the limit of large y the GO re-
sult is approximately recovered. Indeed, in this limit the
location of the image approaches xm ≃ y. Expanding
the integrand in Eq. (26) around this point and perform-
ing the Gaussian integral we obtain, at leading order in
w ≫ 1, F (w) ≃ 1 + ∇2

xψ(y)/2 ≃
√
|µ|, as expected

(see next subsection and the GO expressions in App. A).
Equation (26) can be applied to simple lenses to obtain
analytic expressions in the WL regime. In App. D we
present the result for the SIS lens. An expression similar
to Eq. (26) is also derived in Ref. [24]. 1

1 From our understanding, this reference subtracts ψ(xm) instead
of ψ(y) in Eq. (26). In this way, their F (w) grows at high w and
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2. Small time delays

For τ approaching the minimum time delay, the for-
malism above cannot be straightforwardly applied. The
main effect of the lensing potential in this region is to
shift the minimum (from the lens equation, at leading
order in ψ one has xm ≃ y+ψ(y)). At subleading order
we also have a deformation of the contours contributing
to a change in the magnification of the image.

The expansion of the contours near the minimum time
delay leads to the GO expansion, which corresponds with
the high-frequency limit of F (w). One can systematically
obtain this expansion without making assumptions about
the size of ψ. Following [15, 25], we have in the time
domain

I(τ) ≃ 2π
√
|µ|Θ(τ)

(
1 + ∆(1)τ +∆(2)

τ2

2

)
. (27)

Here, µ is the magnification factor of the image, while
∆(1) and ∆(2) are the first two beyond geometric optics
(bGO) corrections. We give the explicit expression for
these coefficients in App. A. Higher-order terms in τ can
be obtained in a similar fashion.

In the frequency domain, Eq. (27) becomes

F (w) ≃
√
|µ|
(
1 +

i∆(1)

w
− ∆(2)

w2

)
. (28)

Notice that all these expressions only require knowledge
of the image location xm in order to be evaluated. More-
over, higher orders in the bGO expansion decay with
higher powers of w and are therefore subleading at high
frequencies. On top of the bGO terms associated with the
image, other locations in the lens plane can contribute at
subleading orders in 1/w. For instance, this is the case
for points where ψ(x) develops cusps (typically at the
lens’ center). We will elaborate on this point later, see
also [26, 27] for more details.

In order to connect with the expansion of Sec. II C 1
we need to pick a time delay τmatch where to match the
two expressions. In practice, in the large-τ expansion, it
is convenient to use τ ′ = 0 (or τ = −ϕm) as the matching
point and it is usually enough to keep only the leading
order term in (27). As shown in App. E, it is possible
to achieve O(1%) accuracy for y > 2 by setting ∆(1) =
∆(2) = 0 and interpolating between τ = 0 and τ = −ϕm
computed using (22) with n = 1.

III. ANALYSIS OF LENSING DIFFRACTIVE
FEATURES

The framework developed in the previous section al-
lows us to compute wave-optics features (WOFs) in the

does not reduce to the GO limit. Therefore such an expression
does not reproduce the WOF features we discuss in the next
sections.

single-image regime. Let us now discuss the phenomenol-
ogy of WOFs, their dependence on the lens properties
and the prospect of individually identifying and charac-
terizing sub-lenses. We will first start with the analysis of
symmetric lenses (Sec. III A) before addressing models of
composite ones (Sec. III B) and their signatures (III C).

A. Symmetric lenses

Let us start our discussion by considering simple, sym-
metric lenses (where ψ only depends on x ≡ |x|). First,
we will introduce the symmetric lens models (a detailed
description of these lenses and their phenomenology is
given in Ref. [15]). Then, we will discuss the WOF in
the time domain and their dependence on the lens pa-
rameters. Since GW analyses are often performed in the
frequency domain, we will also discuss the WOF as a
function of w.
Our discussion of symmetric lenses will focus on the

well-known SIS and a one-parameter generalization, the
Cored Isothermal Sphere (CIS). The SIS is characterized
by a central cusp with diverging density, Σ(x) ∝ x−1.
In the GO limit, the SIS can have one or two images
depending on whether the impact parameter is outside
or inside the caustic ycr = 1, respectively. The CIS has

finite density with Σ(x) ∝
(
x2 + x2c

)−1/2
, where xc ≡

rc/ξ0 is the projected size of the core. Similarly to the
SIS, multiple images form for sources within the caustic
yrc(xc) ≤ 1 (smaller than for SIS, multiple images also
require xc < 1/2). More details about both lens models
are given in App. B.
Let us now describe the WO phenomenology of these

lenses in the single-image regime. Figures 3 and 4 show,
respectively, the predictions for an SIS at varying y and
for a CIS at fixed y but with different xcs. For concrete-
ness, we will first discuss Green’s function G(τ), which
makes the discussion especially transparent, and com-
ment on the amplification factor F (w) afterwards. We
will describe the overall structlensing gravitational waves
o3ure of the WOF, then the role of lens parameters and
discuss how they could be measured from GW observa-
tions.
Single-image WOFs begin at τI , which corresponds to

the minimum of the time delay (i.e. the type I image,
we set τI = 0 by convention). The GO image appears
as a delta function in the full Green’s function, Eq. (11),
while the WO piece G(τ) features a discontinuity, associ-
ated to the bGO correction at the position of the image
(originating from the coefficient ∆(1) in Eq. (27)). G(τ)
is initially positive and increases with τ , as the contours
approach the center of the lens. The location of the lens
is associated to a peak in Green’s function. At slightly
higher τ , G(τ) becomes negative and asymptotes towards
zero as τ → ∞.
For symmetric lenses with a cusp (e.g. SIS) the peak

of the WOF is located at τC = ϕ(x = 0, y). The peak is
due to the high curvature of the constant-ϕ contours. The
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FIG. 4: Role of the core size xc on an CIS lens. The columns show the projected density, time-domain integral, Green’s
function and amplification factor. These examples demonstrate the effect of the matter distribution on the shape of the lensing
diffractive feature.

curvature, and hence the height of the peak, depends on
the lens profile as well as the impact parameter: denser
lenses and lower impact parameter produce taller peaks.

In non-differentiable lenses the peak is singular. For
instance, in the linear weak-lensing approximation for the
SIS lens, Green’s function is found to have a logarithmic
divergence (see App. D for a derivation)

G(τ) ≃ − 1

πy3
log (|τ − τC |) . (29)

In the frequency domain, the peak in G(τ) is directly
related to the damped oscillations seen in |F (w)|: sharper
peaks have more pronounced features that decay more
slowly with w, and can thus be observed at higher fre-
quencies. The singular contribution is related, in the fre-
quency domain at large w, with subleading terms in the
bGO expansion originating from regions of the lens plane
close to the center of the lend. See discussion in App. D
around Eq. (D7) and Refs. [15, 27] for more details.

Let us now discuss how the lens parameters affect the
WOF, separating the peak and broad shape. WO predic-

tions are independent ofMLz when expressed in terms of
y, τ and w. However, MLz can be inferred when restor-
ing the units for t or f , given an observed waveform. We
will discuss this at the end of this subsection, together
with prospects for lens parameter recovery.
The impact parameter y controls the position and am-

plitude of the WOF peak. This is shown in Fig. 3 for an
SIS at y ∈ (1.5, 12), always in the single-image regime.
We find the scalings

τC ∝ y2/2 , G(τ ∼ τC) ∝ y−3 . (30)

The time-delay scaling is exact for the SIS, but Green’s
functions dependence is only valid in the WL limit, y ≫
1. Because the peak in G(τ) involves short timescales, in
the frequency domain it corresponds to high frequencies,
i.e. the damped oscillatory pattern after the maximum of
F (w).
The broadband shape of the WOF is also sensitive to

the impact parameter. This is determined by the be-
haviour of G(τ) over large time delays and is therefore
captured by low w features of F (w). We can thus use



8

the position and height of the first peak, w0 and F (w0)
respectively, to characterize the broadband WOF. We
find the scalings

w0 ∝ 1

y2
, |F (w0)− 1| ∝ 1

y
. (31)

The scaling of w0 is approximate, but the scaling of
F (w0) is very accurate. The likely cause is that the
height is dominated by the transition between the be-
haviour near the image (with a well-defined scaling with
y) and the asymptotics of the lensing potential (indepen-
dent of y). See Eq. (D7) for an analytic estimate for the
scalings in the frequency domain.

Measuring a WOF may allow one to infer the magni-
fication of the image, which is not directly observable in
the GO limit. This is because y determines µ, as can be
seen from either the height of I(τ → 0) or the asymptotic
value of |F (w → ∞)|. For the SIS in the single-image
regime

µ = 1 +
1

y
, (32)

(this also holds approximately true for lenses with
the same large-x behaviour, like the CIS). Therefore,
Eqs. (30), (31) imply the following scalings

µ− 1 ∝ τ
−1/2
C , µ− 1 ∝ G(τ ∼ τC)

1/3 , (33)

µ− 1 ∝ w
1/2
0 , µ− 1 ∝ |F (w0)| . (34)

The correlation between the µ and the WOF properties
opens the possibility of mitigating the uncertainty due to
WL in standard sirens. We will comment on this poten-
tial application in Sec. VB.

We explore the role of the lens compactness and shape
by considering a CIS with variable core size xc. Figure
4 shows results at fixed y = 3, but varying xc between
0 (the SIS limit) and 1 (a sub-critical lens, unable to
form multiple images even for y → 0). The main ef-
fect of xc is on the amplitude and shape of the WOF
peak: smaller cores produce narrower and taller peaks
that persist at higher frequencies. Larger cores also shift
the position of the peak slightly towards lower τC : in this
case the peak is associated to the edge of the core region,
where contour curvature is maximum, rather than the
lens’ center, where the contours are much smoother. In
the sub-critical lens case (xc = 1) the peak in G(τ) is
barely recognizable. The broadband WOF is still appar-
ent in F (w) by the onset of diffraction, which is caused
by the overall transition rather than the peak.

Let us briefly discuss the prospect of constraining lens
parameters from the observation of weakly-lensed GWs.
Such an inference is possible in principle, at least if we as-
sume a lens model. If we assume an SIS, we can infer the
lens parameters from the WOF peak position and height
via Eq. (30). The degeneracy between MLz and y can
be broken because the peak’s position τC = tc/4GMLz

depends on the effective lens mass, while its amplitude

G(τC) depends only on y. Converting the projected mass
MLz into the halo mass, Mvir, requires knowledge of ξ0,
which depends on the redshift of the source and the lens.
While zS can be constrained by the amplitude of the
signal, zL ∈ (0, zS) is generally unknown and only a
lower bound on Mvir can be derived (corresponding to
the largest ξ0). Nonetheless, assuming a halo mass func-
tion enables a probabilistic inference of Mvir, which is
sharply peaked around the minimum possible value (see
Ref. [15] Sec. VA for details). Additional leverage on
the lens parameters can be obtained from the broadband
feature.

More general lens models will make parameter infer-
ence from the WOF more challenging. As we saw in the
case of the CIS (Fig. 4), the lens’ internal parameters af-
fect the height of the peak, complicating the distinction
between y andMLz outlined above. These additional pa-
rameters can be constrained by the shape of the peak in
the WOF and the broadband feature. Nonetheless, de-
generacies with MLz and y will affect the precision (see
Sec. IV in Ref. [15] for examples in strong lensing) and
will lead to biases if the wrong lens model is assumed. Be-
cause the WOF depends on the entire lens, it is possible
to reconstruct ψ(x) given I(τ) under several assumptions
(weak lensing, symmetric lens and known y). We discuss
this possibility in Sec. VA.

B. Modelling composite lenses

Let us now address how GW observations may probe a
lens with a non-symmetric profile with an internal struc-
ture. We will consider a matter distribution composed of
Nsub objects with a common projected profile, Σsub, and
mass

ΣN(x) =
1

Nsub

Nsub∑

i=0

Σsub(x− xi) . (35)

We consider equal-mass sublenses for simplicity, but our
expressions are easy to generalize to a mass distribution.
The centers of each sub-lens, xi, will be drawn from a
distribution P (xi). Together with Nsub, the functions
P (xi) and Σsub determine the statistical properties of
the composite lens. We stress that this composite lens
model is not intended to be a realistic realization of a
halo, but it provides insights on the WOF produced by
substructures.
The average surface density for the composite lens is

a convolution of the distribution P (x) with the sub-halo
profile Σsub

⟨ΣN(x)⟩ =
∫

d2x′P (x′)Σsub(x− x′) . (36)

Because of linearity, an analogue expression can
be derived for the lensing potential: ψsub(x) =∫
d2x′P (x′)ψsub(x − x′). Equation (36) has some ob-

vious limits: if Σsub is a delta function then the average
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profile is given by P (x) and vice-versa. However, consid-
ering two extended functions gives non-trivial profiles in
general. It is in principle possible to derive an expression
for the variance, higher order statistics and correlations
at different points x1,x2, to further characterize the con-
vergence towards the average lens as Nsub → ∞.

For the composite lens, we will assume a distribution of
sublenses that follows the SIS projected density profile,
and model each of the sublenses as SISs

Σsub(x) = ΣSIS(x) , (37)

P (x, ϕ) =
1

2πx
Θ(xmax − x) , (38)

where x is written in polar coordinates x and φ. The
truncation at xmax ensures a finite average profile (36) for
the above x, x′ dependence. Writing x′ = ξx and using
the above definitions, we obtain the average projected
profile and the lensing potential:

⟨ΣN⟩ =
1

π

∫ π

0

dφ

∫ xmax
x

0

dξ√
1 + ξ2 − 2ξ cosφ

, (39)

⟨ψN⟩ =
x2

π

∫ π

0

dφ

∫ xmax
x

0

dξ
√
1 + ξ2 − 2ξ cosφ . (40)

These expressions can be solved numerically. Let us now
explore different realizations of this composite lens and
their average limit.

C. Signatures of composite lenses

As we saw, WOFs are characterized by their broad-
band modulations and the peak’s position/delay, ampli-
tude and shape. Each of these characteristics depends on
the lens parameters. An important property of a WOF
is that it is approximately linear in the projected den-
sity Σ(x). Hence, Green’s function G(τ) (or I(τ)) of a
composite lens is well described as the sum of the WOFs
associated to each of the sublenses, appropriately time-
shifted, at least in the WL limit. Therefore, WOF peaks
in GW data could be used to identify individual sub-
lenses, infer their spatial distribution and constrain their
properties. We will use the composite lens, Eq. (35), and
its average profile, (36), to investigate how the number
of sub-lenses and their distribution leave a characteristic
imprint.

We will start exploring the effect of the number of sub-
lenses. Figure 5 shows Σ(x), I(τ), G(τ) and F (w) for
realizations of the composite lens (35) with Nsub = 2,
4, 100 sublenses with the same total mass and at fixed
y = 3. Predictions for a single SIS and the averaged lens-
ing profile, Eq. (36), are shown for comparison. Informa-
tion about the sublenses is most transparent in Green’s
function: each object forms a distinct peak, whose height
and position are determined by its mass and separation
from the GO image in the lens plane (following the trend
seen for symmetric lenses in Fig. 3). When the number of

sublenses is large, Nsub = 100, G(τ) follows the averaged
profile closely, with some stochastic “cuspiness” added.
In the frequency domain, the existence of multiple peaks
becomes an interference pattern in the damped oscilla-
tions. For Nsub = 100 the superposition is mostly inco-
herent, reproducing the prediction of the average profile.

The broadband shape of the WOF (as characterized by
the position and height of the first peak) is independent
of the number of sublenses. The relative difference in
F (w0) between the models shown in Fig. 5 is ∼ 10−3

between the SIS and the average lens and∼ 10−4 between
the average and composite lens Nsub. This homogeneity
is in stark contrast with the patterns of peaks/damped
oscillations for different values of Nsub. This consistency
may reflect the broadband WOF only depending on the
difference between the GO region and the asymptotic
behaviour of the lensing potential, as argued above.

Let us now explore the effects of the mass distribution
on the WOF. Figure 6 shows Σ(x) and G(τ) for compos-
ite lenses made of four equal-mass SIS profiles, equally
spaced along a straight line. This type of sublens distri-
bution is a crude approximation to filamentary structures
in the cosmic web. In this case, the position of the four
peaks satisfies τn ∼ 1

2 (y−αn cos θ)2+(αn sin θ)2, where θ
is the angle between the line of sublenses and the optical
axis and α controls the spacing. Therefore, the separa-
tion of WOF peaks in the time domain could be used to
infer aspects of the spatial distribution. This shows that,
despite all the information being compressed into a single
dimension (e.g. G(τ), F (w)), it might be possible to re-
construct the morphology of a 2-dimensional (projected)
structure under certain circumstances. We will discuss
this potential application in Sec. VC.

Just as for individual lenses, identifying separate peaks
in G(τ) can provide information on substructure mass
and relative positions, cf. Eq. 30 (although assumptions
about the lens profile might be necessary, cf. Sec. IIIA).
In the limit in which the linear approximation holds,
G(τ) only depends on the projected matter distribution
of the lens, with the amplitude determined by the over-
all impact parameter. A high-quality observation of a
GW signal thus offers additional constraints on the in-
ner structure of the lens. Identifying the WOFs allows
the reconstruction of substructures, although certain de-
generacies persist. First, since WO lensing encodes 1-
dimensional information (through I(τ), G(τ) or F (w)) it
is not possible to recover the 2-dimensional projected dis-
tribution Σ(x). This is obvious from the linear WL limit,
in which the position and height of the peak only depend
on the offset between the sub-lens and the GO image (for
fixed sub-lens profile). Second, lack of knowledge of the
lens redshift prevents us from accurately determining the
virial mass of the lens (or sublenses), as converting MLz

(observed) into a virial mass requires knowing deff and
thus zS (constrained from the signal amplitude) and zL
(unconstrained). As already discussed, this degeneracy
can be partially broken using probabilistic information,
see Sec. VA in Ref. [15].
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IV. OBSERVATIONAL PROSPECTS

Let us now discuss the prospects of observing WOFs.
We will first derive the maximum impact parameter at
which WOFs can be detected for a given GW source
(Sec. IVA). We will then include information about the
halo abundances to estimate the probability of observa-
tion (Sec. IVB) and the prospect of constraining the halo
mass function (Sec. IVC). Our estimate of the probabil-
ities includes only isolated halos: we conclude this sec-
tion by discussing subhalos and their expected imprints
(Sec. IVD).

A. Critical impact parameter

Assessing whether WOFs are detectable requires ac-
counting for the details of GW sources and the instru-
ment’s sensitivity. We will assume sources to be equal-
mass ratio, non-spinning compact binary coalescence and
describe them with the IMRPhenomD [28] model in the
PyCBC package [29]. We will focus on LISA and the Ein-

stein Telescope (ET) prospects. For each instrument, we
will include the effect of sky inclination and polarization
averaging over the antenna pattern functions [30]. Our
results will then reflect typical sources: neither optimally
aligned nor close to a blind spot of the instrument. We
further consider the detector to be static. This is a good
approximation since there is a single image and the SNR
is very concentrated around the merger (see Sec. IVA in
Ref. [26] or Ref. [31]). Finally, we will only obtain results
for single detectors: a detector network will in general
improve the prospects of detection by improving SNR
and sky coverage.

We will assess the detectability of WOFs based on the
mismatch between the lensed and unlensed waveforms.
For two generic waveforms, h1 and h2, the mismatch is
defined as:

M ≡ 1− (h1|h2)√
(h1|h1)

√
(h2|h2)

. (41)

Here we introduced the noise-weighted inner product for
two signals h1(t) and h2(t) with Fourier transforms h̃1(f)
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and h̃2(f):

(h1|h2) ≡ 4Re

∫ ∞

0

df

Sn(f)
h̃1(f)

∗h̃2(f) , (42)

where Sn(f) represents the sky-averaged one-sided de-
tector power spectral density. In terms of this product,
the signal-to-noise ratio is SNR ≡

√
(h|h).

According to the Lindblom criterion [32], two wave-
forms are considered indistinguishable if the condition
(δh|δh) < 1 is satisfied, where δh ≡ h1 − h2. When con-
sidering signals with comparable SNR, as for a weakly
lensed and an unlensed signal, this criterion requires
M × SNR2 < 1. In general, the converse of the Lind-
blom criterion is not true. Other factors, such as cor-
relations between waveform parameters and bias in the
recovered source parameters, may restrict the detectabil-
ity. Parameter degeneracies can be accounted for using
the Fisher information matrix [33]. However, Ref. [15]
showed that the Fisher matrix can overestimate the pre-
cision in lensing parameters due to the breakdown of
the linear signal approximation: this issue depends on
the lens model and parameters and requires a case-by-
case inspection. Detectability in the Fisher matrix ap-
proach is usually defined through the standard deviation
of the marginalized posterior, leading to results that de-
pend strongly on whether MLz or y is used (see discus-
sion below). Ultimately, Lindblom and Fisher analyses
are answering different questions about the information
gained from the signal. Due to computational simplicity
and the arguments discussed above, we will employ the

flipped Lindblom criterion, considering WOFs to be de-
tectable if M× SNR2 > 1. Henceforth, M is the lensed-
to-unlensed mismatch, unless stated otherwise. At the
end of the section we will compare our results to other
methods.
Weak lensing on a single image can be detected at

y ≫ 1 via WOFs. We stress that in GO this is not
possible because a time delay and amplitude magnifica-
tion on a single image are degenerate with source proper-
ties (luminosity distance, coalescence time). The condi-
tion M(ycr) × SNR2 = 1 determines the critical impact
parameter, ycr, which characterizes the minimum level
of alignment between a lens and source required for de-
tectability. We will omit the explicit dependence of ycr
on the source and lens properties. We will assume all
lenses to be described by the SIS profile, regardless of
their mass.
The critical impact parameter depends on both the

lens’ and the binary’s masses, as shown in Fig. 7. Here,
the virial mass, Mvir, associated with MLz is shown on
the upper scale, assuming a lens redshift of zL = zS/2
(the relationship between both masses is discussed in
App. B). The mass range covered by each curve depends
on the frequency range spanned by the waveform and
the corresponding detector response. Typically, since
the merger frequency of a BBH dominates the SNR and
scales as 1/MBBH, the onset of WO is expected at larger
lens masses for heavier BBH. This is evident when com-
paring LISA and ET systems in the Figure. However,
for some signals, the dominant contribution to the SNR
might come from a stage different from the merger. For
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instance, in LISA’s MBBH with MBBH < 106M⊙, the
SNR is dominated by the contribution at the minimum
of the detector’s sensitivity curve, at ∼ 3×10−3 Hz. The
critical curves of such systems share a common range of
lens masses. From the Figure, we infer that lenses with
MLz ≃ 5 × 103M⊙ produce detectable WOFs on the
signals from MBBHs with MBBH ≃ 106M⊙ at zS = 5
even for misalignment as large as ycr ≃ 71. This is pos-
sible thanks to the large unlensed average SNR of such
systems, SNR ∼ 1.3 × 103, and to the onset of the WO
effect at the merger frequency of the binary. Analogous
conclusions can be drawn for binaries in the ET’s band,
such as BBHs with MBBH ≃ 103M⊙ at zS = 1 lensed by
a 10M⊙ object offset by ycr ≃ 29.

Figure 8 shows the mismatch as a function of y for fixed
MLz and source properties. The mismatch increases be-
low y < ycr, but it saturates at low enough y. Inter-

estingly, the mismatch at y ≪ ycr is lower for the cases
with larger ycr: the signals with the more clear signatures
(higherM) are not the ones for which the detection prob-
ability is most enhanced (high ycrit). The Figure also
shows the effect on both the amplitude and the phase
of the GW signal. The two contributions oscillate as a
function of the impact parameter, as when approaching
the WO regime.
The behaviour of the ycr curves presented above can

be understood using the approximate analytical form of
the WOF for the SIS lens given by Eq. (D7), valid at
large w. Here, the WOF arises from the lens center as
δFc = i/(wy3)eiwϕc . Since we are considering large y
values, this is a small correction to the amplification fac-
tor, and the critical curves can be derived by expanding
the mismatch M of Eq. (41) in this quantity. Moreover,
we assume the mismatch to be dominated by a single
frequency, f⋆. This is either the BBH merger frequency
fmax (that we take to be double the ISCO frequency, as-

suming negligible final spin, fmax ≃ 1/(6
√
6πGMBBH),

see e.g. [34]), or the frequency at the detector’s sensitiv-
ity curve minimum, fdet.
At sufficiently small w⋆ ≡ 8πGMLzf⋆, the approxima-

tion used for δFc breaks down, and one has to resort to
the full WO result, Eq. (D6). However, in the regime
of small w we expect the lensing effect to be negligible,
with F (w) ≃ 1, and the WL critical impact parame-
ter value to drop down rapidly. This condition can be
implemented, roughly, by cutting-off the curves at the
onset of WO. By inspecting Eqs. (D6) and (D7), this
happens when w⋆y

2/2 ≃ mπ, where m is a small in-
teger. This corresponds to a peak value of the curves
ymax
cr ≃ SNR/(23/2mπ), that depends only on the SNR
of the signal.
Following these prescriptions, the critical curves can

be approximated as follow:

ycr ≃
(

SNR√
2MLzw⋆

)1/3

Θ(MLz > Mmax
Lz ) , (43)

where

w⋆ ≃ 8πG×
{
fmax ≃ (6

√
6πGMD

BBH)
−1 if fmax < fdet

fdet if fmax > fdet

and MD
BBH = (1 + zS)MBBH is the redshifted detector-

frame mass and the maximum of the curve is at
Mmax

Lz ≃ 32π3m3/(w⋆SNR2). We find that setting m = 2
when fmax < fdet and m = 1 otherwise returns the clos-
est match with the numerical results for LISA. More-
over, the agreement is improved if the fmax is taken to be
the actual merger frequency instead of using the ISCO
approximation (for numerical fits cf. Eq. (29) in [35]).
For ET the noise curves are flatter, making the single-
frequency approximation less accurate. Notice that MLz

depends on the virial mass and distance of the lens
through Eq. (46). We stress that different mismatch
thresholds, i.e. M(ycr)× SNR2 = Λ2, lead to re-scalings
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and shifts of the critical curves. In particular, the peak’s
position is Mmax

Lz ∝ 1/Λ2 and its value as ycr ∝ 1/Λ.
These scalings can be used to extrapolate our results to
more stringent detection criteria (Λ > 1).

Let us now compare our results with previous analyses
that addressed the detectability of WO effects by LISA
by different methods. Reference [14] employed a Fisher-
matrix analysis, including source parameters. The au-
thors define the critical impact parameter in terms of
∆θ/θ, the ratio of the marginalized posterior width to
the fiducial value of the lens parameter θ. Table II in
Ref. [14] shows results of ycr for an SIS based on θ =MLz

or θ = y in three cases: the two estimates differ by a fac-
tor ∼ 2, with ∆y/y giving the larger ycr. Our analysis
gives slightly larger values, with ycr = 58, 48 and 26,
which are 28%, 29% and 33% larger than the results in
Ref. [14] for the same source properties.

B. WO optical depth

Here we forecast the probability for a GW signal to
carry a detectable WOF signature. We will focus on
isolated matter halos, described by the SIS profile and
with a mass distribution characterized by a halo mass
function. We will further assume that halos at any given
redshift are distributed homogeneously in space. Lensing
probabilities are then described by Poisson statistics

P(k, λ) =
λk

k!
e−λ . (44)

Here λ is the optical depth, which we define below. k
is the number of lenses contributing a detectable signa-
ture to the signal: for WOFs, cases with k > 1 would
produce signatures similar to those shown in Figs. 5 and
6. The probability of having any number of detectable
imprints is simply P(k ≥ 1) = 1 − e−λ ≃ λ, where the
approximation holds for λ≪ 1.
The lensing probability is given by the optical depth

λ evaluated at the source’s redshift. The total op-
tical depth is given by an integral over halo masses
λ =

∫
d log(Mvir)

dλ
d log(Mvir)

, where the differential opti-

cal depth per logarithmic virial mass is

dλ

d logMvir
=

∫
dχL χ

2
L π θ

2
cr(zL)

dnL(Mvir, zL)

d logMvir
. (45)

Here nL is the number density of lenses at fixedMvir, χL

is the lens’ comoving distance. The integrand consists of
two factors. The first is the lensing angular cross sec-
tion, namely πθ2cr, representing the projected area where
WOF is detectable. For a symmetric lens θcr = ycrξ0/DL,
where the critical impact parameter is the one discussed
in the previous section. The second factor in Eq. (45) is
the halo mass function, dnL(Mvir, zL)/d logMvir, i.e. the
number density of lenses per logarithmic virial mass unit.
We adopt the Tinker halo mass function [36] extrapolat-
ing it to low halo masses, i.e.Mvir < 1010M⊙ (other halo
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FIG. 9: Prospective of Wave-Optics Features observation by
LISA. Lines show the differential optical depth per logarith-
mic virial mass. We considered equal-mass binaries at differ-
ent total source-frame masses (colors) and different redshifts
(line styles). The green lines show the strong-lensing (i.e. mul-
tiple images) probability.

mass functions produce similar results). We note that
our dn/d log(Mvir) only accounts for isolated halos: sub-
halos within the larger structure may further contribute
to the probabilities presented here. We will comment on
subhalo signatures in Sec. IVD.
The optical depth depends on two definitions of the

mass: Mvir in dn/d log(Mvir) and MLz, Eq. (4), in ycr.
They are related by:

MLz = 2.3× 106M⊙(1 + zL)
2

(
deff

1Gpc

)
× (46)

×
(

Mvir

109M⊙

H(zL)

H0

)4/3

,

(see Eq. (B4) for further details). Note that both quan-
tities differ by several orders of magnitude for typical
halos. The above relation depends on the source and
lens’ redshift. zS can be inferred by the amplitude of the
signal, which scales as ∝ DL(zS)

−1, assuming a cosmol-
ogy. As we mentioned multiple times, while zL is in gen-
eral unknown, it is possible to place some restrictions on
Mvir, given an observed MLz, the quantity that lensing
is sensitive to. Let us give more details about this pro-
cedure. Assuming a halo mass function, one can assign
a probability distribution to P (Mvir|MLz, zS). Because
deff is bounded from above, it defines a minimum value
Mmin

vir (at fixed MLz). The probability P (Mvir|MLz, zS)
is sharply peaked around Mmin

vir although larger values
are possible, see Sec. V-A in [15] for details.
Using the definition of the effective lens mass, Eq. (4),

and dχLχ
2
L = dzL(1 + zL)

2D2
L/H(zL), the differential

optical depth can be recasted as:

dλ

d logMvir
= 4πG

∫ zS

0

dzLy
2
crMLzdeff

(1 + zL)
3

H(zL)

dnL
d logMvir

,

(47)
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FIG. 10: Lensing optical depth, λ, against the redshift of the
source for LISA (top) and ET (bottom), for different source
masses (colors). Dashed lines show the strong-lensing optical
depth (independent of the source mass).

We will consider two types of lensing observation:

• λWO for WOF detection, with ycr computed as de-
scribed in Sec. IVA.

• λSL for strong lensing, computed with ycr = 1.

Note that λWO depends on zS as well as the source prop-
erties (MBBH), while λSL only depends on zS . Note that
the strong-lensing criterion is based solely on the forma-
tion of multiple images for the SIS model. Requiring that
the secondary image is brighter than a detection thresh-
old would reduce λSL. However, lensing situations with
y ≳ 1 could still produce strong-WO phenomena even
in the single-image regime [7]. The probability of these
situations is approximately represented by λSL.

Figure 9 shows the differential optical depth as a func-
tion of the virial mass of the lens, for various redshifts
and total BBH masses (source-frame), within LISA’s
reach. The higher peak is reached by the 106M⊙ curve at
zS = 5, which corresponds to the largest critical impact
parameter and SNR among those considered. We observe
that larger source redshifts do not necessarily reduce the
differential optical depth. The SNR is reduced by a factor
(1 + zS)DS , while the number of intervening halos and
their typical Einstein radii increase with zS . In addition,
as the signal gets redshifted, i.e. MD

BBH = (1+ zS)MBBH,
the merger can be displaced to a frequency band with
lower/higher sensitivity. The final behaviour depends
on MBBH. For instance, for MBBH = 107M⊙, the
closer source curve (zS = 5) encompasses the further one
(zS = 10), while the opposite is true forMBBH = 105M⊙.
The optical depth for strong lensing is independent on the
BBH mass and increases with redshift as expected.

We plot the total optical depth λ in Fig. 10 for typical
sources detectable by LISA (upper panel) and ET (lower
panel). Physically, this quantity represents the average

number of lenses per source entering the Poisson distri-
bution, Eq. (44).
We find that that λ(zS) displays a nontrivial depen-

dence with MBBH: it can increase or decrease with zS ,
as a result of the competing effects discussed above (SNR,
lens projection and frequency shift). In the 102 and
103M⊙ curves for ET we can see the effect of the sig-
nal falling out of the detector’s horizon at high zS .
The prospect of observing WOFs is optimistic: our

mismatch analysis shows that ∼ 20% of LISA binaries
with MBBH ∼ 106M⊙ would carry observable WOF sig-
natures. WOF-detection by LISA is substantially more
likely than strong lensing, except for the heavier sources
at very high redshift (MBBH = 107M⊙, zS > 7). While
WOF detection will be dominated by events where a
single lens contributes (k = 1 in Eq. 44), the proba-
bility of detecting WOF signatures from multiple lenses
∼ λ2 is non-negligible for MBBH ∼ 106M⊙, even when
considering only isolated halos. For ET, strong lensing
is more likely. Still, WOFs can plausibly be observed
given the large number of expected sources, with rates
∼ 104 − 105 yr−1 [37, 38].

We conclude by recalling that, while the flipped Lind-
blom might slightly overestimate the critical impact pa-
rameter, two assumptions make our estimate conserva-
tive. First, ycr was computed from averaged noise curves.
This accounts for typical sources, but we expect it to
underestimate λWO, as λ ∼ y2cr ∼ SNR2 and ⟨SNR2⟩ >
⟨SNR⟩2, i.e. events with better source/detector alignment
at fixed zS will compensate for the fainter ones. This in-
formation (e.g. based on the posteriors for the sky local-
ization, binary inclination, etc...) could be folded into the
estimates discussed in Secs. IVC and VD. Second, the
halo mass function only accounts for isolated halos. Light
subhalos (M ≲ 109M⊙) are more abundant than their
isolated counterpart, and will further contribute to the
optical depth. They may also be distinguishable through
characteristic WOF signatures, see Sec. IVD.

C. Total rates: probing the halo mass function

We can now estimate the total number of events with
observable WOF and use that information to constrain
the halo mass function on the mass range where WO
effects are observable. We will focus on LISA, for which
the optical depth was found to be significant.

The results depend on the total number of detectable
signals, their redshifts and mass distributions. For LISA,
a recent analysis placed bounds on the detection rate
compatible with results from pulsar timing arrays [39].
We will use the results for their “agnostic” [40] and
“astro-informed” [41] models (obtained from their Fig. 2)
for sources with zS ≤ 5 and MBBH ≥ 106M⊙. We
will estimate the rate of lensed events (WL, SL) as

λL(z
∗
S ,MBBH) · Ṅdet(MBBH)Tobs, integrating over the bi-

nary masses. We evaluate the optical depth z∗S = 5, the
upper end of their interval. This is conservative for weak-
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Rates [yr−1] fH c.l.

Limit Ṅdet ṄWO ṄSL 5% 95%

Agnostic 95% 1.3× 105 2.6× 104 1.5× 103 0.995 1.005

Agnostic 75% 5.2× 103 1.0× 103 60.2 0.976 1.025

Agnostic 50% 66.3 8.8 0.77 0.77 1.26

Agnostic 25% 0.076 4.7× 10−3 8.8× 10−4 − −
Astro 95% 3.3× 102 35.2 3.79 0.88 1.13

Astro 75% 40.6 3.26 0.47 0.66 1.49

Astro 50% 8.55 0.48 0.099 0.35 2.84

Astro 25% 2.16 0.11 0.025 − 7.14

Astro 5% 0.22 6.8× 10−3 2.5× 10−3 − 480

TABLE I: LISA rates and prospective constraints on the halo mass function. The first three columns show rates of total mergers,
WO detections and multiple-image events with MBBH ≥ 106 M⊙, zS ≤ 5. Rows correspond t the agnostic and astro-informed
models in Ref. [39], at different confidence levels (Agnostic 5% c.l. is not shown, as it is several orders of magnitude lower).
The last two columns show the lower and upper limits on the amplitude of the halo mass function, Eq. (48).

lensing, see Fig. 10 (λWO increases with zS for lighter
sources MBBH = 105M⊙, which are not included). The
choice is optimistic for strong lensing/multiple images, as
the optical depth grows with zS .
Table I shows the rates of detected events, WO distor-

tion and multiple images under the above assumptions.
Each row corresponds to a confidence interval within the
agnostic/astro-motivated models. The detection rates
vary several orders of magnitude, especially in the ag-
nostic model. Note that the above numbers for WOF
detection neglect sources at high redshift (zS > 5) and
with light masses (MBHB ≤ 105M⊙), whose inclusion
would increase the detection rate. Even so, multiplying
by the observation time Tobs ∼ 5 yr gives reasonable ob-
servation prospects in all but the most pessimistic cases.

Detecting WOF enables novel probes of the halo mass
function. In the simplest cases, constraints rely on the
ratio of observed ṄWO/Ṅdet to the values predicted in
Eq. (47). To perform a quantitative estimation of the
sensitivity, let us consider a constant rescaling of the halo
mass function

dn

dMvir
= fH

dn

dMvir

∣∣∣∣
fid

, (48)

where the fiducial case fH = 1 corresponds to the case
discussed in Sec.IVB. This represents a phenomenologi-
cal parametrization in the range of Mvir for which a de-
tector is sensitive to WOF, cf. Fig. 9.

Let us now derive limits on fH given the observation
of kdet events, of which kWO carry WOF signatures. We
will not consider the possibility of events with multiple
WOFs, with probability O(λ2WO). Our theoretical model

depends on Ndet = rṄ
(0)
detTobs and NWO = fHṄ

(0)
WOTobs,

where Tobs is the survey time and the free parameters fH,

r encode variation with respect to fiducial values Ṅ
(0)
X .

The likelihood of the data (kwo, kdet) given the model
(fH , r) is

L = P(kwo|NWO(r, f))P(kdet|Ndet(f)) , (49)

where P(k|λ) is the Poisson distribution, Eq. (44). We
obtain the 1-dimensional confidence levels in f by eval-
uating the posterior on a grid in r, f and integrating r.
This implicitly assumes a wide prior, i.e. Π(r, f) ≃ 1
around the peak of the likelihood. For kWO > 0, the lim-
its are consistent with estimating the posterior by sam-
pling fH = 1

λWO

kWO

kdet
, where kWO, kdet are taken from a

Poisson distributions with rates NWO, Ndet.
Table I shows the marginalized 90% confidence interval

on fH that can be achieved by a Tobs = 5yr LISA mis-
sion, given the rates shown in Table I. We have assumed

that the number of events kdet, kWO is ⌊N (0)
det⌋, ⌊N

(0)
WO⌋,

where ⌊x⌋ is the floor function. The sensitivity ranges
from sub-percent in the most optimistic case to 1-2 or-
ders of magnitude upper bounds in the most pessimistic
cases. Note that cases with kWO = 0 allow upper limits
on fH, as long as kdet ≤ 1. In particular, the Astro 25%
c.l. scenario has a single detection, leading to a O(102)
limit. This is a very simple estimate of prospective con-
straints on the halo mass function. In Sec. VD we will
discuss how more information on dn/dMvir can be ob-
tained from WOF observations.

D. Subhalos vs isolated halos

The rates presented above are conservative, as the halo
mass function accounts only for isolated halos, excluding
structures that have incorporated into more massive ha-
los, i.e. subhalos (see discussion in Sec. 4 of Ref. [42]).
While some subhalos will be disrupted, those that sur-
vive may contribute to the probability of detecting WO
effects, increasing the rates presented in Sec. IVB.
Besides increasing the probability of WOF detection,

subhalos differ from isolated halos in several regards.
Even when comparing objects of equal mass, we expect
the following effects in subhalos.

1. Enhanced probability of detecting signatures from
multiple subhalos, e.g. similar to Figs. 5,6 but with
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a larger spread in τ .

2. Distortion of the lensing potential by the main halo
through external convergence, shear and flexion
terms in ψ(x).

3. In some cases, multiple strong-lensing images are
produced by the main halo. Then, each image may
contain WOF of different subhalos.

In addition, subhalos will differ from isolated halos
(e.g. in their shape) due to their assembly history and
interactions with the main halo and other subhalos [43].
These evolutionary features will affect the probability of
subhalo lensing and may have observational imprints.

Massive halos contain a large number of lighter sub-
halos [43]. A signal propagating through a galactic-scale
halo can have an enhanced probability of encountering
multiple low-mass subhalos that can produce a WOF,
increasing the detection rates computed for isolated ha-
los in Sec. IVB. The subhalo lensing probabilities can be
modelled using a Poisson distribution with a rate N̄WO,s,
which depends on the point where the image forms in the
lens plane and the details of the subhalo mass and spa-
tial distribution [43–45]. Lens configurations for which
N̄WO,s ≳ 1 are likely to produce rich WOF with multiple
peaks, as discussed in Sec. III C.

Another effect of substructures is the distortion of the
lensing potential by the main halo. The leading order
corrections, convergence and shear, have been shown to
enhance the diffraction pattern appreciably [7] and can
allow lighter microlenses to contribute to diffraction ef-
fects [8] (although see [12]). They may thus increase
the prospects of detecting the WOF, particularly sources
whose image forms in the inner part of the halo. The im-
print of convergence and shear may also serve to distin-
guish subhalos from isolated halos and place them within
their host halo.

For closely aligned systems, the main halo will split the
source into multiple images. The associated probability
is given by the strong lensing rate (λSL, for ycr = 1) in
Sec. IVB. In this case, each image may contain informa-
tion from nearby subhalos, which will also be affected by
convergence and shear from the main halo. Identifying
multiple GW events as strongly lensed images from the
same source (e.g. by overlapping sky-localization and in-
trinsic parameters) would provide a unique opportunity
to constrain the properties of subhalos.

Finally, we note that WOFs could also be imprinted
by close-by systems, such as subhalos of our own galactic
halo. The critical curves presented in Fig. 7 do not de-
pend on the lens position and retain their validity when
zL, deff → 0. However, the physical impact parameter
shrinks – the Einstein radius goes as

√
deff – and the con-

version between MLz and Mvir gets offset. For example,
inverting Eq. (46) the interval MLz = 10−1 − 103M⊙
is mapped into Mvir ≃ 106 − 109M⊙ (at zS = 1 and
DL = 200 kpc). We stress that the geometry of the sys-
tem does not suppress the lensing probability. Indeed,

despite the contraction of the physical impact param-
eter, the quantity χ2

Lθ
2
cr in Eq. (45) is invariant. If a

WOF is observed, sky localization information could be
used to determine the probability of local versus cosmo-
logical origin.

V. POTENTIAL APPLICATIONS

We will now discuss some possible uses of WOF to con-
strain properties of the large-scale structure. Our presen-
tation will be qualitative and schematic. More detailed
analyses are left for future work.

A. Lens reconstruction

The simple expressions behind the perturbative weak-
lensing framework (Sec. II C) open the possibility of sys-
tematically reconstructing lens features. As already ex-
plained in the previous sections, a full reconstruction of
the 2-dimensional lensing potential is impossible from
1-dimensional data from a single source (G(τ), I(τ) or
F (w)).
Nonetheless, assuming that the lensing potential is

symmetric, ψ(x) → ψ(x), a formal relation between the
time-domain integral and the lensing potential can be ob-
tained from the leading-order term in Eq. (23a). First,
we change integration variable from φ to x and obtain

I(τ) = d

dτ

∫ ∞

0

dxK(x, τ, y)ψ(x) , (50)

with a kernel

K(x, τ, y) ≡ 2x√
2(τ + ϕm) y sinφ

Θ(x0 − x)Θ(x− xπ) ,

(51)
where φ is a function of x, y and τ (according to
Eqs. (23b), (23c)), and x0, xπ are the values at which
φ(x, τ, y) = 0, π, respectively. By knowing I(τ), Eq. (50)
gives the lensing potential as the solution of an integral
equation. One can then obtain the projected mass den-
sity Σ(x) e.g. Eqs. (11) in Ref. [15].
While potentially interesting, it is not clear how useful

the above expression may be in practice. Besides as-
suming linearity and symmetry of ψ, Eq. (50) requires
knowing the impact parameter y. If this value is not
constrained (e.g. from the WOF peak), one possibility
is to perform the reconstruction for different values of y
and consider the most plausible reconstructed lens, ac-
cording to some prior, e.g. from theory or simulations.
Ultimately, the reconstruction will be limited by how well
I(τ) can be inferred from real data.

B. GW delensing

The correlation between the WOF and the GO magni-
fication opens the possibility of inferring

√
|µ|. Eqs. (33)
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and (34) give approximate relationships for symmetric
SIS models.

This information would enable a re-calibration of the
intrinsic luminosity of the source, a major source of un-
certainty for standard sirens at high redshift [46]. Such
procedures are known as “delensing”. Proposed meth-
ods for GW delensing usually rely on EM follow-up to
characterize the lensing potential in the direction of the
source [47, 48]. Because GW sources are poorly localized,
EM follow-up methods need to cover a large portion of
the sky, which can become very costly.

The main limitation is that magnification is dominated
by galactic scale lenses, too heavy to produce an observ-
able WOF by themselves. Hence, WO-based delensing
would rely on detecting substructure within the main lens
(cf. Sec. IVD). This may limit the applicability to a sub-
set of sources. However, delensing based on the WOF
would not require additional observations and could be
attempted without any costly follow-up. This is similar
to delensing of the cosmic microwave background, which
can be performed at the level of the observed maps [49].

C. LSS morphology

The large-scale structure (LSS) of the universe displays
a rich pattern in the distribuiton of dark and baryonic
matter. Different universe regions can be broadly classi-
fied by their morphology, determined by the number of
independent directions that are expanding vs contract-
ing. This gives rise to 4 categories: voids (3 expanding
directions), sheets/walls (2 expanding, 1 contracting), fil-
aments (1 expanding, 2 contracting) and halos (3 con-
tracting) [50–52].

In Fig. 6 we explored an idealized representation of a
filamentary structure. Our model, a 1-dimensional chain
of equal-mass and equally-spaced lenses, left a charac-
teristic imprint in Green’s function, with a clear depen-
dence on the angle between the chain and the location
of the source. Weakly-lensed GWs have the potential
to distinguish between these patterns, allowing not only
to identify a filament but also to reconstruct its angle,
and perhaps even other properties (e.g. mass and rela-
tive spacing between sub-lenses).

Realistic realizations of the LSS are vastly more com-
plex. Nonetheless, information about the lens morphol-
ogy will be present in the WOF, e.g. through the statis-
tics of the peak distribution in G(τ). This information
is projected from a 3D distribution into the 1D Green’s
function, and thus a complete reconstruction is not pos-
sible (see Sec. VA). Nonetheless, it might be possible to
obtain information on the lens morphology, e.g. in high-
SNR observations where multiple peaks can be clearly
located. More likely, morphology reconstruction will, at
best, assign a probability to each category given an ob-
servation.

D. Probing low-mass halos and dark matter

Light halos (Mvir ≲ 1010M⊙) are pristine test-beds for
structure formation and dark matter (DM) theories: they
form at high redshift, their baryonic mass is subdomi-
nant, and many DM scenarios impact their abundances
and profiles [53–57]. However, such light halos are very
difficult to observe, relying on the high-redshift observa-
tions [58–60] or close-by systems in the Milky Way envi-
ronment [61–63]. Observations of strongly-lensed signals
can also identify individual structures [64–66] or their col-
lective distortions [67–69]. While these observations are
promising, modelling a strongly-lensed system is chal-
lenging and computationally intensive.
Lensed GWs may offer a complementary means to

identify light halos and subhalos, distinguish between
both and constrain their properties [15, 70, 71] and abun-
dances. Isolated light halos at cosmological distances can
be observed by future detectors thanks to the large crit-
ical impact parameter (Fig. 7). In Sec. IVC we showed
how LISA can obtain constraints on the halo mass func-
tion from detection of WOFs or their absence. In the
most optimistic case, a constant rescaling on the scale of
interest fH, Eq. (48) can be constrained to sub-percent
level, while a single unlensed event yields anO(103) limit.
As argued in Sec. IVB, including information on the
source’s parameters that affect the SNR (sky localiza-
tion, inclination) is likely to produce more robust limits.
Information on the impact parameter posterior can also
be incorporated; see Ref. [72].
A more detailed analysis can also constrain the virial

mass dependence, i.e. fH(Mvir), using the fact that the
source mass MBBH determines the range of Mvir that
can be probed (cf. Fig. 9). However, as the rates are
dominated by the optimal mass (∼ 106M⊙ for LISA),
constraints on the mass dependence will be far less strin-
gent than the overall amplitude. It may also be possible
to constrain the redshift dependence: the rates for dif-
ferent MBBH evolve differently with zS (cf. Fig. 10) and
zS is known from the luminosity distance (assuming a
cosmology). While important degeneracies are expected
in a generic fH(Mvir, zL), it may be possible to test mod-
els with pronounced features such as the minimum halo
mass in ultra-light dark matter [73].
Additional information on the lens may be obtained

via the WOF: the relevant observable quantities are the
source’s redshift (from the signal’s amplitude, assuming a
cosmology) and the lens’ effective mass MLz (see discus-
sion in Sec. III A). Because the lens redshift is unknown,
MLz only provides a lower bound on the virial mass of the
halo. However, assuming a halo mass function allows one
to define a probability distribution for zL andMvir, which
is peaked around the minimum Mvir (see Sec. VA in
Ref. [15] for details). The inferred values from all events
with WOF would then improve on the constraints from
detection counts. This method bears analogy to infer-
ring the properties of galactic-scale lenses from strongly
lensed signals using the distribution of time-delays be-
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tween multiple images [74].
Lensed GWs can also probe subhalos and distinguish

them from isolated halos. As argued in Sec. IVD, the ex-
pected signature of substructures is the detection of mul-
tiple peaks in the WOF (from nearby subhalos) and/or
the presence of convergence/shear caused by the main
halo. Subhalos may have different abundances and prop-
erties from isolated halos of the same mass (e.g. due
to tidal stripping, shock heating and other interactions
[43]). Being able to distinguish both populations sepa-
rately may offer valuable clues about the assembly his-
tory of the large-scale structure.

VI. CONCLUSIONS

We have investigated the phenomenology of gravita-
tional lensing in the single-image, wave optics (WO)
regime, with an outlook on their potential to probe cos-
mic structures and prospects for observation by future
GW detectors. Our results converge to the well-known
limits of geometric optics (GO) in the large source fre-
quency/lens mass limit. Large angular separation be-
tween source and lens corresponds to weak-lensing (WL),
where WO corrections are subtle but potentially observ-
able.

We presented two methods to solve the diffraction in-
tegral in the time-domain, adapted to the single-image
regime but accounting for WO effects (Sec. II). Both ap-
proaches yield accurate results in their domain of validity.
First, we present an algorithm able to explore any single-
image configuration, its accuracy limited only by numer-
ical errors. This method is valid even in strong-lensing:
it can be used to explore the outer regions of a caustic,
where the GO magnification diverges andWO effects per-
sist at high frequency. Second, we develop a perturbative
expansion on the lens potential. This method is faster
and converges very rapidly to the full solution in the WL
limit, at large impact parameter y. The leading-order ex-
pansion is linear in the lensing potential/projected lens
density, making the study of composite lenses straight-
forward. Both methods are fast enough for applications
such as parameter estimation.

Using these algorithms, we analyze the phenomenol-
ogy of Wave-Optics Features (WOFs), the WO imprint
on lensed GWs (Sec. III). This discussion is particularly
clear when using Green’s function G(τ). The most salient
aspects of the WOF are its peak and broadband distribu-
tion. The peak forms at the center of the lens: its asso-
ciated time delay and height contain information about
the lens location (relative to the GO image) and the lens
mass (Fig. 3), while its shape is related to the lens pro-
jected density (Fig. 4). The broadband profile is related
to the large-scale properties of the lens, such as its total
mass and spatial extent. In the frequency domain, the
broadband feature corresponds to the first maximum of
F (w), while the peak appears as a damped oscillatory
pattern at higher frequencies. Our analysis also applies

to composite lenses: we study the superposition of Nsub

equal-mass sublenses with an SIS profile. Each sublens
produces a peak, whose associated time delay and ampli-
tude are set by its distance to the GO image in the lens
plane. We computed the average profile for this distri-
bution and showed that G(τ) and F (w) converge to it in
the limit of large Nsub, although finite Nsub is associated
to stochasticity in Green’s function.
We then address the prospects of detecting WOFs

(Sec. IV). Future detectors can potentially observe WO
effects at impact parameter one to two orders of mag-
nitude larger than the Einstein angle. Assuming a halo
mass function (i.e. extrapolating to the mass-scales pro-
ducing WO) and uncorrelated spatial distribution, our
results can be directly translated into detection probabil-
ities (via the optical depth). The prospect of detection is
optimistic for LISA, with rates ∼ 20% for mergers with
the optimal mass range. The rates suggest that detect-
ing WO effects is plausible, although subject to uncer-
tainties on the LISA detection rate for MBHB mergers:
the number of detections ranges from large to unlikely
in the scenarios we have considered. Detection proba-
bilities are lower for ground detectors due to the reduced
SNR and higher frequency, as WOFs require lighter halos
with smaller Einstein radii. Finally, we note that these
rates refer only to isolated halos: subhalos assembled into
larger structures will increase these rates, and might be
distinguishable from isolated halos in some cases.
We can summarize our main findings as follows

• Gravitational lensing imprints WOF: frequency-
dependent modulations that can be observed in
the waveform without the need of a counterpart,
higher-mode emission or association of multiple
events. The Green’s function offers a particularly
transparent way to analyze these features.

• Features of the lens (effective mass, spatial distribu-
tion, inner structure) translate cleanly into features
of the Green’s function (broadband shape, location
and height of peaks), thanks to (approximate) lin-
earity in the WL regime. Distinguishing these fea-
tures would allow constraints on the properties of
individual sublenses and their relative positions.

• Our framework explains clearly how a macro-
scopic lens arises effectively from a superposition
of smaller objects. In the frequency domain a
large number of sub-lenses add-up incoherently,
suppressing the signatures at high frequencies, as
in the average smooth lens (Fig. 5).

• Events with high SNR enable detections of WOFs
at impact parameters much larger than the Ein-
stein radius. For low-frequency detectors such as
LISA, sensitive to heavier halos, this translates into
promising prospects for observations, with proba-
bilities well beyond those of strong lensing.

• Observation of WOFs (or lack thereof) constrains
the amplitude of the halo mass function in the



19

range 105M⊙ ≲ Mvir ≲ 108M⊙, with precision
between percent-level to order-of-magnitude upper-
limits (cf. Table I). This information will enable
constraints on halos that are both poorly con-
strained (from simulations and observations) and
sensitive to the properties of dark matter.

The transparency offered by WO effects to probe large-
scale structures and the prospect for detection suggest
several applications (Sec. V). GW data may allow a re-
construction of the lensing potential under the assump-
tion of a symmetric lens. In some cases, identifying
WOFs on a GW signal might be used to infer the mag-
nification of the signal, mitigating a major uncertainty
for standard sirens. Novel probes of large-scale struc-
ture could be developed: for instance, identifying several
peaks in the WOF may serve to constrain the morphol-
ogy of the gravitational lens. Finally, constraints on the
abundance of subgalactic halos could be improved signif-
icantly thanks to the information on the lens (projected
mass, impact parameter, etc...) obtained from the WOF.
In addition, we envision future directions regarding the
computational framework, lens modelling and data anal-
ysis.

Our computational frameworks are flexible, accurate
and efficient. While we have focused mostly on weak lens-
ing, our methods can be readily applied to single-image
strong lensing, e.g. a source very close to a caustic on
the side in which a single GO image forms. This regime
has WO features extending to very high frequencies, and
could be used to probe the phenomenology of strongly
lensed GWs without the challenges of including multiple
GO images [25, 26]. Another interesting extension is mi-
crolensing by extended structures, i.e. considering the ef-
fects of lens sub-structure on a macro-image. Ultimately,
our algorithms will be integrated in the “Gravitational
Lensing of Waves” (GLoW) code for public use by the
scientific community.2

Another important extension is improved lens mod-
elling. Our analysis largely relied on SIS. This choice
was motivated by both simplicity and this lens’ partic-
ular stance in the single-image regime: the SIS is the
“cuspiest” profile that does not form multiple images
for arbitrarily large y. It leads to the sharpest possible
peak in the WOF, which becomes smoother in the pres-
ence of a central core. Other, well-motivated, symmetric
profiles such as NFW [75] typically have shallower inner
cusps. It is interesting to consider these well-motivated
distributions, as well as profiles motivated by dark mat-
ter theories [15]. Beyond symmetric lenses, future models
should include elliptic matter distributions, external con-
vergence and shear and realistic realizations of substruc-
ture. Besides more complex lens models, addressing ob-
servational prospects will require reliable halo mass func-

2 2312.xxxxx (hopefully) https://github.com/miguelzuma/GLoW_

code

tions for Mvir ≲ 108M⊙ halos and detailed predictions
for source rates (e.g. Refs. [76–82]).

Important open questions remain on the signal analy-
sis. A limitation of our analysis is the use of mismatch
as a detectability criterion, which is optimistic (e.g. ig-
noring parameter degeneracies). Future analyses should
rely on Fisher matrix or Bayesian sampling. In addition,
it is necessary to address the issue of false alarm triggers,
i.e. detector noise mimicking a WOF signature. These
mundane effects will affect the detection prospects, al-
though less significantly than uncertainties on the source
rate, cf. Table I. A standing open question is how to
optimally identify and analyze WOFs from GW signals.
A non-parametric reconstruction of the Green’s function
from strain data could provide a partial reconstruction
of the lensing potential and hence the projected mass
(Eq. (50)). Given the chance of signals being affected by
multiple WOFs (but with an unknown number), it will
be necessary to devise a framework for data analysis that
does not assume a fixed number of lenses, e.g. along the
lines of reversible-jump samplers [83]. Regardless of iden-
tifying WOF, it is important to prevent unaccounted-for
signatures to bias the remaining parameter estimation,
e.g. in the LISA global fit [84], or misinterpreting those
residuals as new physics (e.g. violation of Einstein’s GR).

There is a promising future for GW lensing at the inter-
section between the WO and WL regimes. While subtle,
WOF may be common enough to offer a window into cos-
mic structures and their properties, and will likely lead to
applications beyond the ones outlined here. LISA stands
out as a particularly promising probe, thanks to the com-
bination of large SNR and low-frequency sensitivity. If
deployed, other proposed space detectors will yield even
more impressive results, thanks to larger SNR [85, 86],
a lower frequency band [87] or both. These observations
will provide novel means to probe low-mass halos that
are both notoriously elusive and a prime test-bed for dark
matter models. WOF may thus become a powerful probe
of large-scale structure and fundamental physics thanks
to the next generation of GW detectors on the ground
and in space.
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Appendix A: Derivation of lensing results

In this appendix, we give details in the derivations of
the time-domain signal I(τ) of Eq. (8). Also, we explain
how to obtain the coefficients of the GO expansion in
Eqs. (27), (28).

Derivation of I(τ)

Let us review how to obtain I(τ). This discussion
mainly follows Refs. [15, 25]. We start from the defini-
tion of Eq. (7). To simplify this expression we choose
coordinates in the lens plane adapted to the Fermat po-
tential ϕ(x,y). In particular, we introduce a variable
t ≡ ϕ(x,y), while as a second coordinate we use the
“proper time” u along the curve of constant t (later we
will change it to the arc-length distance s along constant-
t lines. From this choice, it follows that the tangent vec-
tors to the t = const. lines are orthogonal to the gradient
of ϕ(x,y):

∂xi

∂u
∂iϕ(x,y) = 0 , (A1)

where xi indicates the component i of the vector x, with
i, j, . . . = 1, 2 and the summation is implicit. Due to
Eq. (A1) we can construct ∂xi/∂u as

ẋi ≡ ∂xi

∂u
= fϵij∂jϕ(x,y) , (A2)

where ϵij is the Levi-Civita pseudo tensor, with ϵ12 = 1,
and f is a normalization function to be chosen. The dot
stands for the derivative with respect to u.
The dimensionless time-delay t changes perpendicu-

larly to the contours i.e. ∂it ẋ
i = 0. Also, u at constant t

changes orthogonally to ∂it:

∂iu = g ϵ j
i ∂jϕ(x,y) . (A3)

Here g is a function to be fixed. We choose u is such
a way that the measure d2x becomes simple in the new
coordinates. Let us call Xa = {t, u}. Then the measure
changes by a Jacobian

det ∂iX
a = ϵij∂it∂ju = g ϵij∂iϕ ϵ

k
j ∂kϕ = g |∇ϕ|2 .

(A4)

Here we used ϵijϵ k
j = δik. Now we set this determinant

to 1 by choosing g = 1/|∇ϕ|2. With this choice, we see
that d2x = dtdu. Moreover, since the determinant in
Eq. (A4) is equal to one, we also have |det ∂axi| = 1: it
is easy to check this then fixes the function f = 1.
Now we introduce the arc-length distance s, which is

related to u by the differential relation ds2 = ẋ2du2 =
|∇ϕ|2du2. Expressed in terms of the variables u and s,

we have that Eq. (7) becomes respectively

I(τ) =
∑

k

∫
dtdu δ (t− τ) (A5)

=
∑

k

∫
dtds

|∇ϕ|δ (t− τ) ,

where
∑

k is the sum over distinct contours with same
time delay. Since the Fermat potential ϕ(x,y) is positive
by construction, we then have t > 0 in the integration
above.

Beyond Geometric Optics coefficients

In the limit of large w, or for small time delays,
the lensing signal can be expressed as a GO expansion.
Indeed, at high frequencies the diffraction integral (2)
can be obtained using a stationary-phase approxima-
tion. This involves solving Gaussian integrals weighted
by powers of derivatives of ψ at the location of the image
(see Ref. [26, 27]). Here we provide the expression for the
GO coefficients µ, ∆(1) and ∆(2) appearing in Eqs. (28),
(27) for axi-symemetric lenses. These quantities are given
by

|µ|−1 ≡ 4ab , (A6)

∆(1) ≡
1

16

[
ψ(4)

2a2
+

5

12a3
(ψ(3))2 +

ψ(3)

a2x
+
a− b

abx2

]
,

(A7)

∆(2) ≡
1

512

[
3
(
3a2 + 2ab− 5b2

)

a2b2x4
+

385(ψ(3))4

144a6

+
35(ψ(3))3

6a5x
+

35(ψ(4))2

12a4
+

(a− 5b)ψ(4)

a3bx2

− 2ψ(3)

(
−7ψ(5)

3a4
− 35ψ(4)

3a4x
+

2(a− 5b)

a3bx3

)

− (ψ(3))2
(
−35ψ(4)

4a5
− 5(a− 7b)

6a4bx2

)

+
4ψ(6)

3a3
+

4ψ(5)

a3x

]
. (A8)

Here we defined a ≡ (1−ψ′′)/2, b ≡ (1−ψ′/x)/2, ψ(n) ≡
dnψ/dxn and all quantities are evaluated at the location
of the image, x = xm. As far as we know, the coefficient
∆(2) was not given in the literature before.

Appendix B: Symmetric lens models

Here we provide some details of the symmetric lens
models considered in the text (SIS, CIS) and the relation
between the effective lens mass and the virial mass of the
halo.
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Singular Isothermal Sphere

A commonly used approximation to the density of a
halo is given by the SIS profile

ρ(r) =
σ2
v

2πGr2
, (B1)

where σv is the velocity dispersion of the halo. For
this lens, a convenient choice for the arbitrary scale ξ0
in Eq. (4) is ξ0 = σ2

v/(GΣcr), with Σcr = (4πG(1 +
zL)deff)

−1. The lensing potential ψ(x) associated to ρ(r)
then becomes very simple ψ(x) = x.
In the GO limit, the SIS can have one or two images

depending on whether the impact parameter is outside or
inside the caustic ycr = 1, respectively. For y < ycr, two
images form (a minimum and a saddle, labelled respec-
tively by (+) and (−)) with magnifications µ± = 1/y±1,
time delays ϕ± = ∓y − 1/2 and Morse phases n+ = 0
(minimum), n− = 1/2 (saddle). Only the image cor-
responding to the minimum survives for y > ycr. The
minimum time delay is given by ϕm(y) = −y − 1/2.

Cored Isothermal Sphere

We will also consider a CIS, a variant of the SIS in
which the presence of a central core smoothes the density
profile [88, 89]:

ρ = ρ0
r2c

r2 + r2c
, (B2)

where ρ0 is the central density and rc is the core radius.
The surface density is Σ(ξ) = πρ0r

2
c/
√
ξ2 + r2c . Choosing

a normalization scale ξ0 = 2πρ0r
2
c/Σcr, gives the lensing

potential

ψ =
√
x2c + x2 + xc log

(
2xc/(

√
x2c + x2 + xc)

)
, (B3)

where xc ≡ rc/ξ0.
Similarly to the SIS, multiple images form for sources

within the caustic yrc(xc) ≤ 1, which is smaller than
for SIS. An additional requirement for multiple images
is xc < 1/2, so the lens’ central density Σcr. The even-
tual additional GO image is associated to the maximum
of the Fermat potential, and forms close to the center of
the lens. In the SIS limit xc → 0, the GO magnification
vanishes and this image is replaced by the cusp feature.
This lens and the properties of the central image are dis-
cussed in detail in Ref. [15] Sec. IIIC.

Relation between MLz and Mvir

For extended lenses, the redshifted lens mass defined in
Eq. (4) does not typically coincide with the physical mass
of the halo. The two quantities can differ even by a few

orders of magnitude. As a definition for the physical mass
we consider the virial mass Mvir, defined as the mass
up to the virial radius rvir, i.e. Mvir ≡ 4π

∫ rvir
0

drr2ρ(r)
(see Ref. [15] for the full expressions for SIS and CIS
lenses). On the other hand, the virial radius is defined
as ρ(rvir(zL)) ≡ ∆cρc(zL), with ∆c(zL > 1) ≃ 18π2

and ρc being the critical density at redshift zL, ρc =
3H(zL)/(8πG). Due to these relations, the virial mass is
a function of the lens redshift [90].
In the case of the SIS, with ξ0 as in the previous sub-

sections, MLz and the virial mass are related by:

MLz =
4π2

G
(1 + zL)

2deff

(
5
√
6

2
GH(zL)Mvir

)4/3

(B4)

= 2.3× 106M⊙(1 + zL)
2

(
deff

1Gpc

)
×

×
(

Mvir

109M⊙

H(zL)

H0

)4/3

.

Similar expressions for the CIS profile can be adapted
from Sec. III-C-1 in Ref. [15].

Appendix C: Non-perturbative results for the SIS

The amplification factor for the SIS can be computed
analytically both in the time and frequency domain.
These expressions are valid both in the weak and strong
lensing regimes. In this appendix we derive the explicit
expression for I(τ), without assuming single-image or
weak-lensing limits.
Here, we exceptionally write the lensing potential for

the SIS as ψ(x) = ψ0x, where ψ0 is a constant.3 The
full expression for I(τ), in the single-image regime and
expanded in powers of ψ0, needs to reduce to the per-
turbative calculation outlined in Sec. II C. This will be a
useful check of our results.

Time domain result

Starting with the time-domain version of the amplifi-
cation factor in Eq. (7), we can write it as

ISIS(τ) =

∫
d2x δ

(1
2
x21 − x1y +

1

2
x22 +

1

2
y2

− ψ0x− τ − ϕm

)
, (C1)

where, in this case, the minimum time delay is

ϕm = −1

2
ψ0(ψ0 + 2y) . (C2)

3 In general, ψ0 will be related to the choice for ξ0, and will be
equal to one only for the specific choice used in the main text.
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After changing to polar coordinates, the integral over the
δ function can be solved analytically, both in the radial
and in the angular coordinate, since the Fermat potential
is quadratic both in the radius and in the cosine of the
angle. Finally, owing to the simplicity of the SIS, the sec-
ond integral can also be performed analytically. We will
express the integral as a function of two new variables, u
and R:

u ≡
√
2τ

ψ0 + y
, R ≡ ψ0 − y

ψ0 + y
. (C3)

The variable u is a redefined time parameter while R is
a constant, ranging between −1 and 1.

The final result can be compactly expressed as

ISIS(τ) =
8(b− c)√

(a− c)(b− d)

[
Π

(
a− b

a− c
, r

)
+
cK(r)

(b− c)

]
,

(C4)

with

r ≡
√

(a− b)(c− d)

(a− c)(b− d)
, (C5)

and where Π and K are, respectively, the complete ellip-
tic integrals of the third and first kind, see e.g. Ref.[91].

The coefficients a, b, c and d are functions of the vari-
ables u and R defined in Eq. (C3) above. We must how-
ever distinguish between three regions:

• Region 1 : (u > 1)

a = 1 + u , c = 1− u ,

b = R+
√
u2 +R2 − 1 , d = R−

√
u2 +R2 − 1 .

• Region 2 : (
√
1−R2 < u < 1)

– Case A: (R > 0)

a = 1 , c =
√
1− u2 ,

b = R , d = −
√
1− u2 .

– Case B: (R < 0)

a = 1 , c = −
√
1− u2 ,

b =
√
1− u2 , d = R .

• Region 3 : (0 < u <
√
1−R2)

a = 1 , c = R ,

b =
√
1− u2 , d = −

√
1− u2 .

Frequency domain result

At this point, one can move to the Fourier transform of
I(τ), so to obtain the amplification factor F (w). Starting
from Eq. (2), we could not find a closed-form expression
for F (w), but we were able to reduce it to a single angular
integral. Using polar coordinates again, we can solve the
radial integral, obtaining

F (w) = eiw(y2/2−ϕm)
[
1 +

∫ π

0

dθ αf(−α)

− i

∫ π

0

dθ αg(−α)
]
, (C6)

with

α(θ) ≡
√
w

π
(ψ0 + y cos θ) , (C7)

and where f and g are the auxiliary functions for the
Fresnel integrals. Using the conventions of [92], they can
be written in terms of the Fresnel sine S and cosine C as

f(z) ≡
(
1

2
− S(z)

)
cos
(π
2
z2
)

−
(
1

2
− C(z)

)
sin
(π
2
z2
)
, (C8a)

g(z) ≡
(
1

2
− C(z)

)
cos
(π
2
z2
)

+

(
1

2
− S(z)

)
sin
(π
2
z2
)
. (C8b)

Other representations for F (w) are also available. See,
for instance, [26] for a series representation.

Appendix D: Weak lensing expansion for the SIS

In this appendix, we will apply the weak-lensing expan-
sion of Sec. II C to the case of the SIS profile. Thanks
to the simplicity of this model, we can obtain explicit
expressions and characterize their WOFs.

Time domain result

Let us apply the time-domain approximation to the
SIS, ψ = x. Let us focus on the single-image region,
y > 1. Starting from Eq. (23a), it is possible to have a
closed-form expression for I(1):

I(1)(τ) = 4
d

dτ

[
(a+ y)

∫ π/2

0

dφ

√
1− q sin2 φ

]

= 4
d

dτ
[(a+ y)E (q)]

= 2
(a+ y)

a2
E (q) + 2

(a− y)

a2
K (q) . (D1)
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Here we defined q ≡ 4ay/(a+ y)2, a ≡
√
2t, and t = τ +

ϕm while the functions K(q) and E(q) are the complete
elliptic integrals of the first and second kind, respectively.

The functions K(q) and E(q) are real for q ≤ 1. Notice
also that the parameter q as a function of t spans from
0 to 1. The latter value is attained at t = y2/2, while
zero is reached asymptotically for large t. We notice that
the function (D1) is always positive. More specifically, it
decays for large τ and has a peak for time delays corre-
sponding to the center of the lens (i.e. around t = y2/2).
Although there is no analytic expression for the lo-

cation of the maximum, we can see that it is located
around q = 1 (here E(q) has a maximum). This is phys-
ically reasonable since it corresponds to the features due
to the center of the lens. We can actually find a good ap-
proximation for the maximum by expanding I(1) around
t = y2/2. To do so, we first write q = 1 − ϵ and expand
for small ϵ:

I(1)(τ) ≃
4

y
− 2

√
ϵ

y
[6 + log(ϵ/16)]

+
ϵ

y
[19 + 5 log(ϵ/16)] +O(ϵ3/2) . (D2)

Setting the derivative with respect to ϵ of this expres-
sion to zero yields an equation for the maximum, that
can be solved. Such value ϵ̄ does not depend on y, and
is approximately ϵ̄ ≃ 2.1 × 10−3. Having found the ap-
proximate maximum q̄ = 1 − ϵ̄, we can translate to t.
For small ϵ, t ≃ y2/2(1 + 4

√
ϵ + 8ϵ), so that t̄ ≃ 0.6y2.

With these values we can evaluate I(1)(τ) at the peak,
I(1)(τ̄) ≃ 4.22/y. We can actually have an analytic form
for the peak, with a very good approximation of the tail
at large τ . To get it, we expand the elliptic integrals
around q = 1, and obtain

I(1)(τ) ≃ log(1− q)

[
(q + 3)y

8t
+

3q − 7

4
√
2t

]

+
1√
2t
[1 + q − q log 8 + log 128]

− y

2t
[q log 2− 2 + log 8] , (D3)

This expression well approximates the full I(1) but be-
comes unreliable at small t, where it diverges. In the lat-
ter region, one can use the GO expansion instead. It is
also interesting to evaluate Green’s function at the peak.
From the definition of G(τ), Eq. (9) and by expanding
Eq. (D3) around the peak, we obtain

G(τ) ≃ − 1

πy3
log
(∣∣t− y2/2

∣∣) . (D4)

We can also analyse the asymptotic behaviour for large
τ . This limit maps to the small-frequency limit since we
are considering large time delays from the image. At
leading order for large τ , the radius is approximated
by x ≃

√
2t and is independent on the angle φ: see

Eqs. (23b) and (23c). Then, taking the τ derivative in

Eq. (23a) inside the integral we obtain

I(1)(τ) ≃
2π√
2t
ψ′(

√
2t) . (D5)

Here ′ stands for the derivative with respect to x. The
result above applies to all symmetric lenses, particularly
the SIS, where ψ′(

√
2t) = 1. We conclude that the falloff

of I(1)(τ) as a function of τ is related to the asymptotic
properties of the lensing potential at large radii. In par-
ticular, more compact lenses have faster falloffs (e.g. for
a point lens ψ(x) ∝ log x, the decay is I(1)(τ) ∝ τ−1).

Frequency domain result

As we discussed in the previous paragraphs, the cen-
ter of the lens can be responsible for a peak in Green’s
function in the time domain, even in the absence of an
image. This is indeed the case for the SIS. In the sec-
tion, using the frequency-domain approximation derived
in Eq. (26), we obtain the analogous feature in the am-
plification factor. For the SIS, it is straightforward to
integrate Eq. (26) directly:

F (w) ≃ 1+iwy−
√
πw

2
eiz−iπ

4

[
2zJ1(z)+(2iz−1)J0(z)

]
,

(D6)
where z ≡ wy2/4 and Jν(z) are the Bessel functions of
the first kind. We can better appreciate the effect of the
center by taking the high-w limit of the expression just
obtained:

F (w) ≃
√
|µ|+ i

8wy3
+
eiwϕc

wy3
, (D7)

where
√

|µ| ≃ 1+2/y at large y and the time delay of the
center is ϕc ≡ y2/2. We can recognize the second term,
going as ∝ w−1, as the approximate bGO correction from
the image (it does not contain phases/time delays with
respect to the magnification term). On the other hand,
the third contribution containing ϕc originates from the
center of the lens. In the SIS case, the dependence on w
of these two contributions scales in the same way, both in
w and y. Moreover, we notice that the bGO contribution
is suppressed by a factor of 8.

Application to cored lens

In this subsection, we discuss the weak-lensing regime
for a cored lens, focussing for simplicity on a variation
of the CIS lens used in the main text. In general, it is
difficult to obtain analytic expressions for lenses more
complicated than the SIS. For instance, the CIS’s I(1)(τ)
is hard to evaluate analytically (the problematic term is
the log term in Eq. (B3)). To have a sense of the effect
of a core, we can use a similar cored profile with density

ρ(r) = ρ0
r2c

r2 + r2c

[
1 +

2r2c
r2 + r2c

]
. (D8)
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FIG. 11: Difference between the non-perturbative computa-
tion using (13) and the WL linear approximation, described
in Section IIC, for an SIS.

Notice that the central density of this profile is 3ρ0. This
is the main difference from the CIS used in the main text,
while this profile also approaches asymptotically the SIS.
It is immediate to see that this leads, after a proper choice
for ξ0, to the following lensing potential

ψ(x) =
√
x2 + x2c , (D9)

where xc = rc/ξ0. We can obtain I(1)(τ) by following
the same steps as for SIS, with some slight modifications.
The final result is

I(1) =
2

a2

[
√
(a+ y)2 + x2c E(q̃) +

a2 − y2 − x2c√
(a+ y)2 + x2c

K(q̃)

]
.

(D10)
Here we introduced the new variable q̃ ≡ 4ay/[(a+ y)2+

x2c ], while a =
√
2t as for the SIS. In comparing this

expression with Eq. (D1), the main difference resides in
q̃: in the cored case, q̃ is strictly smaller than 1 while for
SIS q can reach 1. Since the peak in G(τ) is roughly given
by the maximum value of q̃ or q, this implies a smoother
feature in the cored case. Recall that for the SIS Green’s
function develops a log-divergence at the peak, whereas
in the presence of a core the feature becomes regular.
This is also seen for the CIS lens, in Fig. 4. The location
of the peak is instead mildly affected by xc.

Appendix E: Accuracy and tests of the weak lensing
expansion

The results of the weak-lensing linear approximation
introduced in Sec. II C can be compared with the full non-
perturbative computation, described in Sec. II B. The
performance of the WL approximation is excellent for
large y, with relative differences falling below the 1% level
for y ≥ 3 and remaining quite good, around 10%, even
for impact parameters very close to the strong-lensing
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1.6

|F
(w

)|

composite lens

y = 1.2

y = 1.2 (WL)

y = 2.4
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y = 4.8 (WL)
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w
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F

(w
)|/
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FIG. 12: Difference between the non-perturbative computa-
tion using (13) and the WL linear approximation, described
in Section IIC, for a lens composed of three equal-mass SISs
located at (0.4,−0.5), (−0.1,−0.3), and (−0.3, 0.8). The to-
tal mass of the lens is the same as the single SIS in Fig. 11.

limit y ∼ 1. These tests have been performed for a vari-
ety of lenses, axisymmetric and non-axisymmetric. Some
results for the amplification factor are shown in Figs. 11
and 12. The time-domain results, i.e. I(τ), show a similar
level of agreement. The inclusion of higher-order terms
in the expansion would further increase the agreement
with the non-perturbative method.
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[59] V. Iršič, M. Viel, M. G. Haehnelt, J. S. Bolton, and
G. D. Becker, Phys. Rev. Lett. 119, 031302 (2017),
arXiv:1703.04683 [astro-ph.CO] .

[60] K. K. Rogers and H. V. Peiris, Phys. Rev. Lett. 126,
071302 (2021), arXiv:2007.12705 [astro-ph.CO] .

[61] E. O. Nadler et al. (DES), Astrophys. J. 893, 48 (2020),
arXiv:1912.03303 [astro-ph.GA] .

[62] N. Banik, J. Bovy, G. Bertone, D. Erkal, and T. J. L.
de Boer, Mon. Not. Roy. Astron. Soc. 502, 2364 (2021),
arXiv:1911.02662 [astro-ph.GA] .

[63] A. Bonaca, C. Conroy, D. W. Hogg, P. A. Cargile,
N. Caldwell, R. P. Naidu, A. M. Price-Whelan, J. S.
Speagle, and B. D. Johnson, Astrophys. J. Lett. 892,
L37 (2020), arXiv:2001.07215 [astro-ph.GA] .

[64] S. Vegetti, D. J. Lagattuta, J. P. McKean, M. W. Auger,
C. D. Fassnacht, and L. V. E. Koopmans, Nature 481,
341 (2012), arXiv:1201.3643 [astro-ph.CO] .

[65] Y. D. Hezaveh et al., Astrophys. J. 823, 37 (2016),
arXiv:1601.01388 [astro-ph.CO] .
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