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Every signal propagating through the Universe is at least weakly lensed by the intervening
gravitational field. In some situations, wave-optics phenomena (diffraction, interference) can be
observed as frequency-dependent modulations of the waveform of gravitational waves (GWs). We will
denote these signatures as wave-optics features (WOFs) and analyze them in detail. Our framework can
efficiently and accurately compute WOF in the single-image regime, of which weak lensing is a limit.
The phenomenology of WOF is rich and offers valuable information; the dense cusps of individual halos
appear as peaks in Green’s function for lensing. If resolved, these features probe the number, effective
masses, spatial distribution and inner profiles of substructures. High signal-to-noise GW signals reveal
WOFs well beyond the Einstein radius, leading to a fair probability of observation by upcoming detectors
such as LISA. Potential applications of WOF include reconstruction of the lens’ projected density,
delensing standard sirens and inferring large-scale structure morphology and the halo mass function.
Because WOF are sourced by light halos with negligible baryonic content, their detection (or lack
thereof) holds promise to test dark matter scenarios.
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I. INTRODUCTION

Gravitational lensing, the effect of gravitational fields on
the propagation of signals through the Universe, predicts a
plethora of observable effects [1,2]. Many gravitational-
lensing phenomena have been observed using light and
other electromagnetic (EM) signals, leading to a wide-
range of applications in astrophysics, cosmology, and
fundamental physics. Now, the advent of gravitational
wave (GW) astronomy provides the prospect of observing
novel lensing phenomena.
Lensed GW signals stand out as highly complementary

to EM observations. GWs can be detected at very high
redshift and are free from many of the systematic uncer-
tainties present in EM probes. For this reason, GWs have

been proposed as an alternative tool to test the cosmological
model, e.g., studying the cross-correlation of GW obser-
vations and galaxy surveys [3–5]. Moreover, the low
frequency and phase coherence of observable GW sources
make them ideal ground to probe the wave-optics (WO)
regime [6]. WO encompasses phenomena such as diffrac-
tion and interference, which imprint frequency-dependent
signatures on GW waveforms. They can hence be used to
identify a signal as lensed [7–12] and even infer the lens
properties accurately [13–16], at least in the strong-lensing
regime. In contrast, identifying lensing in the geometric-
optics (GO) limit, i.e., the high-frequency limit, requires
associating multiple images from the same event, a method
prone to false alarm [17], or identifying subtle waveform
differences [18], which requires sources with large mass
ratios [19,20].
WO signatures require lenses in a restricted mass range,

set by the frequency range of the observed signal. For
observable GWs, this limitation implies that only relatively
light structures can be detected. This dramatically reduces
the probability of detecting WO features, at least for strongly
lensed signals in which the most likely lenses are massive
galaxies [21]. This led to a pessimistic prospect to detect WO
imprints in strongly lensed signals, e.g., by LISA [22].
WO features can also be searched for in weakly lensed

signals, which do not require a close alignment of source
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lens and observer and thus have a higher probability of
occurring. It was estimated that LISA may detect WO
effects at ∼50× the strong-lensing impact parameter,
corresponding to Oð1%Þ of massive BH binaries [23].
While the above study was based purely on a mismatch
analysis between lensed and unlensed waveforms, a more
detailed estimate (accounting for waveform and lens
parameter correlations) yields comparable values [14].
The trade-off between strong and weak lensing is that of
rare and dramatic versus frequent but subtle signatures.
The lens distribution can be probed in a rather trans-

parent way via weakly lensed GWs that contain WO
features. Reference [24] showed that the frequency-
dependent amplification factor is determined by the shear
of the Fermat potential at distances from the source given
by the Fresnel radius ∝ 1=

ffiffiffi
f

p
. In this way, weakly lensed

GWs probe entire regions of a lens as the source inspirals
towards merger. In contrast, signals in the GO regime are
sensitive to a very small portion of the lens plane where the
image forms. Thus, WO provides a unique opportunity to
test the structure of gravitational lenses.
The purpose of this paper is two-fold: first, we address

the problem of computing WO signatures. Focusing on the
single-image regime, we develop a framework to compute
lensed waveforms of arbitrary lenses, efficiently and
accurately. Second, we use these tools to explore the
phenomenology of weakly lensed gravitational waves,
the possibility of inferring structural features of lenses
and the prospect of detection. The paper is organized as
follows. Section II summarizes the WO regime of gravi-
tational lensing and introduces two frameworks for the
single-image regime; a general numerical computation and
an expansion suitable for the weak-lensing (WL) limit. In
Sec. III we discuss WO phenomenology, using a Green’s
function approach to analyze symmetric lenses, before
addressing the case of a lens with substructure. Section IV
discusses the prospects of observation by future detectors.
Possible future applications of our formalism are presented
in Sec. V. We conclude by discussing our results in Sec. VI.

II. GRAVITATIONAL LENSING IN THE
SINGLE-IMAGE REGIME

In this section, we develop a framework to compute
diffraction effects in the single-image regime. We will first
summarize the WO formalism in the frequency and time
domain (Sec. II A). We will then present a method to
numerically evaluate single-image signals in the time
domain (Sec. II B). Finally, we will develop a perturbative
WL expansion in the time domain (Sec. II C).

A. Wave optics formalism

In the frequency domain, the effect of lensing is
characterized by a multiplicative factor FðfÞ, called the
amplification factor,

FðfÞ≡ h̃ðfÞ
h̃0ðfÞ

; ð1Þ

where h̃0ðfÞ and h̃ðfÞ are respectively the Fourier trans-
forms of the unlensed and lensed strain amplitude. The
frequency-domain amplification factor is obtained as

FðwÞ ¼ w
2πi

Z
d2x expðiwϕðx; yÞÞ; ð2Þ

(see Ref. [1] for a derivation assuming the weak-field limit,
the thin-lens approximation and a static configuration).
The integration is over the lens plane, with the coordinates
rescaled by an arbitrary dimensionful scale ξ0 (e.g., a
characteristic scale of the lens), so x is dimensionless. The
impact parameter y is rescaled by η0 ≡DSξ0=DL, where
DS, DL are the angular diameter distances to the lens and
the source, respectively.
Here we introduce the dimensionless frequency

w≡ 8πGMLzf; ð3Þ

which is given in terms of a redshifted effective lens mass,

MLz ¼
ξ20

4Gdeff
: ð4Þ

The factor deff ≡ DLDLS
ð1þzLÞDS

also depends on the angular

diameter distance between the observer and the source
DLS. For a point lens, MLz is equal to the total mass of
the lens times ð1þ zLÞ if ξ0 is set to the Einstein radius.
However, this is not true for extended lenses [e.g.,
Eq. (46) below].
The integral in Eq. (2) depends on the Fermat potential,

ϕðx; yÞ ¼ 1

2
jx − yj2 − ψðxÞ − ϕmðyÞ; ð5Þ

which is a dimensionless version of the time delay. Here
ψðxÞ is the lensing potential, which depends on the matter
distribution projected on the lens plane and whose deriva-
tive gives the deflection angle. In particular, it is obtained as
the solution of ∇2

xψðxÞ ¼ 2Σðξ0xÞ=Σcr, with ∇2
x being the

2D Laplacian, Σðξ0xÞ the projected matter density of the
lens, and Σcr ≡ ð4πGð1þ zLÞdeffÞ−1 the critical density.
We shift the Fermat potential by a constant ϕmðyÞ, defined
in such a way as to make the minimum time delay equal
to zero.
An important case of WO lensing is the GO limit,

corresponding to the w → ∞ limit of the diffraction integral
Eq. (2),

FðwÞ ¼
X
J

ffiffiffiffiffiffiffiffi
jμJj

p
eiwϕJ−iπnJ : ð6Þ
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Here the index J labels the GO images, located at stationary
points of the Fermat potential xJ such that ϕ;iðxJ; yÞ ¼ 0,
where a comma subscript indicates derivative with respect
to lens-plane coordinates. The magnification μ−1 ≡
det ðϕ;ijðxJÞÞ and the time delay ϕJ ≡ ϕðxJ; yÞ are evalu-
ated on the image positions. The Morse phase is nJ ¼ 0,
π=2 or π depending on whether xJ corresponds to a
minimum, saddle point or maximum of ϕ, respectively.
In the single-image regime, GO is simply a rescaling of the
waveform, FðwÞ ¼ ffiffiffiffiffiffijμjp

.
We will now compute the amplification factor in time

domain. We define the time-domain signal as the Fourier
transform of iFðwÞ=w,

IðτÞ≡
Z þ∞

−∞
dw

iFðwÞ
w

e−iwτ

¼
Z

d2x
Z þ∞

−∞

dw
2π

expðiwðϕðx; yÞ − τÞÞ

¼
Z

d2xδðϕðx; yÞ − τÞ; ð7Þ

where δðxÞ is the Dirac-delta function. The expression
above reduces the computation of IðτÞ to a one-
dimensional integral over contours of equal time delay
ϕðx; yÞ ¼ τ, see [25]. The amplification factor (2) follows
from Fourier transforming back to the frequency domain.
By choosing coordinates that follow the contours, the

equation above reduces to

IðτÞ ¼
X
k

Z
dtds
j∇ϕj δðt − τÞ; ð8Þ

where the coordinate t≡ ϕðx; yÞ and s is the arc-length
distance along contours of equal time delay. The summa-
tion is over distinct contours with same time delay. We give
a detailed derivation of this expression in Appendix A.

We consider the Green’s function, defined as

GðτÞ≡ 1

2π

d
dτ

IðτÞ; ð9Þ

(also the Fourier transform of the amplification factor). The
time-domain lensed waveform is given as a convolution of
the unlensed waveform h0 with Green’s function

hðtÞ ¼
Z þ∞

−∞
dt0Gðt0 − tÞh0ðt0Þ; ð10Þ

where t≡ 4GMLzτ. The GO image in GðτÞ appears as a
singular contribution, stemming form the discontinuity of I
at τI (a Dirac delta function in the single-image regime). We
will hereafter use the term Green’s function when referring
to the regular part, defined as

GðτÞ ¼ GðτÞ −
ffiffiffiffiffiffi
jμj

p
δðτ − τIÞ; ð11Þ

When necessary, we will refer to GðτÞ as the full Green’s
function.
Figure 1 shows the procedure to compute WO predic-

tions in the single-image regime. The lens is a singular
isothermal sphere (SIS), see Appendix B. Panels show the
countours of constant Fermat potential for an example lens,
the time-domain integral (8), Green’s function (11), and the
amplification factor (2). Colored points in IðτÞ and GðτÞ
correspond to the contours in ϕðxÞ. Most discussions on
WO lensing have focused on the amplification factor FðwÞ.
However, Green’s function offers complementary insights
into WO phenomena and their relation to lens properties,
making certain features particularly transparent. Unlike
FðwÞ, GðτÞ is real valued and thus easier to display.

B. Nonperturbative single-image framework

In this work, we focus on the single-image regime, in
which only one GO image forms. The WL limit emerges as

FIG. 1. Computation of the amplification factor in the single-image regime for an SIS with impact parameter y ¼ 3. Each contour of
constant Fermat potential, ϕðxÞ ¼ τ, contributes to a point in IðτÞ, see Eq. (13). The Green’s function GðτÞ is then computed as the
derivative of IðτÞ, see Eqs. (9) and (11). Finally, the amplification factor FðwÞ is the (inverse) Fourier transform of the full Green’s
function GðτÞ. The sharp peak in Green’s function is associated with the center of the lens, which features a cusp in the SIS. In our case,
the lens is located at (0, 0) and the corresponding contour is represented with a dotted line.
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a particular case, in which deflections are small. While the
WL regime is amenable to a perturbative treatment, which
we will develop in Sec. II C, in this section we will first
present the full framework needed to compute the ampli-
fication factor, in the single-image regime, without addi-
tional approximations.
The starting point for the full computation of the time-

domain amplification factor will be Eq. (7), but expressed
in polar coordinates

x1 ¼ xm;1 þ R cos θ; ð12aÞ

x2 ¼ xm;2 þ R sin θ; ð12bÞ

where xm is the location of the minimum time delay, i.e.,
ϕðxmÞ ¼ 0. With this change of coordinates we get

IðτÞ ¼
Z

dRdθRδðϕðR; θÞ − τÞ: ð13Þ

Our main assumption to solve this integral will be that
we are in the single-image regime, so that the global
minimum is the only critical point of the Fermat potential.
Furthermore, if ∂Rϕ ≠ 0, we can invert

ϕðR; θÞ ¼ τ; ð14Þ

to obtain Rðθ; τÞ. Once this solution is found, we can plug it
back and compute the integral as

IðτÞ ¼
Z

2π

0

dθ
Rðθ; τÞ
j∂Rϕj

: ð15Þ

In practice, what we will do is to solve the system of
differential equations

dI
dθ

¼ R
j∂Rϕj

; ð16Þ

dR
dθ

¼ −
∂θϕ

∂Rϕ
: ð17Þ

In this way, the curve will be sampled with the precision
needed to achieve a given tolerance in I . The system is
integrated from θ ¼ 0 to 2π and with initial conditions
Iðθ ¼ 0; τÞ ¼ 0 and Rðθ ¼ 0; τÞ chosen such that
ϕðRð0; τÞ; 0Þ ¼ τ. The previous derivation relied on the
fact that ∂Rϕ ≠ 0, which is always the case for axisym-
metric lenses when there are no critical points. Even though
we will not need it in this work, the previous framework
only needs to be slightly modified if this is not the case and
∂Rϕ ¼ 0. The main change to be made is that, instead of
parametrizing the curve (14) as Rðθ; τÞ, one must use a
parametric representation Rðσ; τÞ and θðσ; τÞ. In this case,
one should also keep track of the values of R and θ and
finish the integration once the contour closes.

C. Perturbative weak-lensing expansion

We can understand how to set up a perturbative calcu-
lation in WL in the following way. Let us consider the
image to be at xm in the lens plane, as in Fig. 2, and let us
assume that ψðxÞ grows less than the quadratic part of
ϕðx; yÞ at large x. Then, at sufficiently large xs from the
image, the contours of constant ϕðx; yÞ ¼ τ approach
circles centered at y and are weakly influenced by ψðxÞ.
One can then take into account the effect of ψðxÞ
perturbatively. On the other hand, at radii comparable with
the distance jy − xmj or smaller, the contours are still
weakly affected by ψðxÞ, but cannot be parametrized at
the lowest order as circles centered in y. Indeed, the correct
parametrization here is with ellipses centered at xm. This
can be understood as the GO limit for IðτÞ since regions of
small time delay correspond to the high-frequency limit
for FðwÞ (see [25,26]). The two calculations for small and
intermediate/large time delays can then be matched in an
intermediate region.

1. Large time delays

The first step of the perturbative approach is to split the
Fermat potential into a lens contribution and a “free” part,
ϕðxÞ ¼ ϕ0ðxÞ − ψðxÞ, where the free piece

ϕ0ðxÞ≡ 1

2
jx − yj − ϕm; ð18Þ

still contains nonperturbative information about the lens
in the minimum time delay ϕm. After plugging this
result into (7), we then expand in powers of the lensing
potential ψ

FIG. 2. Diagram for computation IðτÞ in the weak-lensing
approximation. In the large-time delays region, contour of ap-
proximately equal τ are centered at y, have radius

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðτ þ ϕmÞ

p
and angle φwith respect to the x1 axis. The lens is indicated by the
blue dot, at the origin. The red star corresponds to the source,
appearing at xm.
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IðτÞ ¼
Z

d2xδðϕ0ðxÞ − ψðxÞ − τÞ

¼
Z

d2x
X
n≥0

ð−1Þn
n!

ψnðxÞδðnÞðϕ0ðxÞ − τÞ

¼
X
n≥0

1

n!
dn

dτn

Z
d2xψnðxÞδðϕ0ðxÞ − τÞ: ð19Þ

In the second line, δðnÞ stands for the derivative of the Dirac
delta with respect to its argument. Without loss of general-
ity, the impact parameter y can be taken to be parallel to
the x1 axis and with magnitude y. We can use polar
coordinates again, centered at the minimum of the time
delay of the free case ðy; 0Þ,

x1 ¼ yþ r cosφ; ð20aÞ

x2 ¼ r sinφ; ð20bÞ

to evaluate the integrals in (19). In general, for a generic
function fðxÞ, we can simplify the integral asZ

d2x fðxÞδðϕ0ðxÞ − τÞ

¼
Z

∞

0

rdr
Z

2π

0

dφ fðxðr;φÞÞδ
�
1

2
r2 − τ0

�

¼ ΘðtÞ
Z

2π

0

dφ fðxð
ffiffiffiffiffiffi
2τ0

p
;φÞÞ; ð21Þ

where τ0 ≡ τ þ ϕm and Θ is the Heaviside step function.
Using this result, we can finally write the linear approxi-
mation as

IðτÞ ≃ 2π þ
X
n¼1

I ðnÞðτÞ; τ > −ϕm > 0; ð22Þ

where

I ðnÞðτÞ ¼
1

n!
dn

dτn

Z
2π

0

dφψnðxðτ;φÞÞ; ð23aÞ

x1 ¼ yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðτ þ ϕmÞ

p
cosφ; ð23bÞ

x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðτ þ ϕmÞ

p
sinφ: ð23cÞ

This formula already captures all the essential diffraction
features of the amplification factor with a very good
accuracy that improves as y increases. In the next sub-
section, we will study the region of small time delays,
−ϕm > τ ≥ 0, where the linear formalism cannot be
applied anymore, but analytic results from the GO expan-
sion are available.
We now discuss the frequency-domain version of our

approximation for WL signals. This will serve to illustrate

how the WOF appears in the amplification factor. However,
for applications we will evaluate lensed signals starting
from the time domain. Also, in the frequency domain, WL
effects are given by an expansion in powers of ψðxÞ. We
will show that at leading order in the lensing potential and
for large y, the amplification factor is obtained by Fourier
transforming the signal from the large-time delay region.
To obtain this result, let us write FðwÞ≃Fð0ÞðwÞþFð1ÞðwÞ,
where Fð0ÞðwÞ and Fð1ÞðwÞ are the Fourier transforms
of I ð0ÞðτÞ and I ð1ÞðτÞ, respectively. Then, by using the
expressions in Eq. (22) and by performing the dτ integra-
tion using the delta function, we have

Fð0ÞðwÞ ¼
w
2πi

Z þ∞

−∞
dτ eiwτI ð0ÞðτÞ ¼ e−iwϕm; ð24Þ

Fð1ÞðwÞ ¼
w
2πi

Z þ∞

−∞
dτ eiwτI ð1ÞðτÞ

¼ −
w2

2π

Z
d2x eiwϕ0ðx;yÞψðxÞ: ð25Þ

Notice that ϕm and ϕ0ðx; yÞ still depend on the lensing
potential.However,we are interested in keepingonly leading-
order terms in ψ . Hence, we can expand the exponents of
Eqs. (24) and (25) in powers of ψm ≡ ψðxmÞ, truncating at
linear order. We also make use of the lensing equation at
leading order; xm ≃ yþ ∇yψðyÞ. This gives ψm ≃ ψðyÞ.
Then, expandingFð0ÞðwÞ up to first order in ψðyÞ and adding
the contribution from Fð1ÞðwÞ leads to

FðwÞ ≃ 1 −
w2

2π

Z
d2x eiwjx−yj2=2ðψðxÞ − ψðyÞÞ: ð26Þ

One can check that this expression correctly captures theWL
features. Moreover, in the limit of large y the GO result is
approximately recovered. Indeed, in this limit the location of
the image approaches xm ≃ y. Expanding the integrand in
Eq. (26) around this point and performing the Gaussian
integral we obtain, at leading order in w ≫ 1, FðwÞ≃
1þ∇2

xψðyÞ=2 ≃
ffiffiffiffiffiffijμjp

, as expected (see next subsection
and the GO expressions in Appendix A). Equation (26)
can be applied to simple lenses to obtain analytic expressions
in the WL regime. In Appendix D we present the result for
the SIS lens. An expression similar to Eq. (26) is also derived
in Ref. [24].1

1From our understanding, this reference subtracts ψðxmÞ
instead of ψðyÞ in Eq. (26). In this way, their FðwÞ grows at
high w and does not reduce to the GO limit. Therefore, such an
expression does not reproduce the WOF features we discuss in
the next sections.
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2. Small time delays

For τ approaching the minimum time delay, the formal-
ism above cannot be straightforwardly applied. The main
effect of the lensing potential in this region is to shift the
minimum (from the lens equation, at leading order in ψ one
has xm ≃ yþ ψðyÞ). At subleading order we also have a
deformation of the contours contributing to a change in the
magnification of the image.
The expansion of the contours near the minimum time

delay leads to the GO expansion, which corresponds with
the high-frequency limit of FðwÞ. One can systematically
obtain this expansion without making assumptions about
the size of ψ . Following [15,25], we have in the time
domain

IðτÞ ≃ 2π
ffiffiffiffiffiffi
jμj

p
ΘðτÞ

�
1þ Δð1Þτ þ Δð2Þ

τ2

2

�
: ð27Þ

Here, μ is the magnification factor of the image, while Δð1Þ
and Δð2Þ are the first two beyond-geometric-optics (bGO)
corrections. We give the explicit expression for these
coefficients in Appendix A. Higher-order terms in τ can
be obtained in a similar fashion.
In the frequency domain, Eq. (27) becomes

FðwÞ ≃
ffiffiffiffiffiffi
jμj

p �
1þ iΔð1Þ

w
−
Δð2Þ
w2

�
: ð28Þ

Notice that all these expressions only require knowledge of
the image location xm in order to be evaluated. Moreover,
higher orders in the bGO expansion decay with higher
powers of w and are therefore subleading at high frequen-
cies. On top of the bGO terms associated with the image,
other locations in the lens plane can contribute at sublead-
ing orders in 1=w. For instance, this is the case for points
where ψðxÞ develops cusps (typically at the lens’ center).
We will elaborate on this point later, see also [26,27] for
more details.
In order to connect with the expansion of Sec. II C 1

we need to pick a time delay τmatch where to match the two
expressions. In practice, in the large-τ expansion, it is
convenient to use τ0 ¼ 0 (or τ ¼ −ϕm) as the matching
point and it is usually enough to keep only the leading-
order term in (27). As shown in Appendix E, it is possible
to achieve Oð1%Þ accuracy for y > 2 by setting Δð1Þ ¼
Δð2Þ ¼ 0 and interpolating between τ ¼ 0 and τ ¼ −ϕm

computed using (22) with n ¼ 1.

III. ANALYSIS OF LENSING DIFFRACTIVE
FEATURES

The framework developed in the previous section allows
us to compute wave-optics features (WOFs) in the single-
image regime. Let us now discuss the phenomenology of
WOFs, their dependence on the lens properties and the

prospect of individually identifying and characterizing
sublenses. We will first start with the analysis of symmetric
lenses (Sec. III A) before addressing models of composite
ones (Sec. III B) and their signatures (Sec. III C).

A. Symmetric lenses

Let us start our discussion by considering simple,
symmetric lenses (where ψ only depends on x≡ jxj).
First, we will introduce the symmetric lens models (a
detailed description of these lenses and their phenomenol-
ogy is given in Ref. [15]). Then, we will discuss the WOF
in the time domain and their dependence on the lens
parameters. Since GW analyses are often performed in the
frequency domain, we will also discuss the WOF as a
function of w.
Our discussion of symmetric lenses will focus on the

well-known SIS and a one-parameter generalization, the
cored isothermal sphere (CIS). The SIS is characterized
by a central cusp with diverging density, ΣðxÞ ∝ x−1. In the
GO limit, the SIS can have one or two images depending
on whether the impact parameter is outside or inside the
caustic ycr ¼ 1, respectively. The CIS has finite density
with ΣðxÞ ∝ ðx2 þ x2cÞ−1=2, where xc ≡ rc=ξ0 is the pro-
jected size of the core. Similarly to the SIS, multiple images
form for sources within the caustic yrcðxcÞ ≤ 1 (smaller
than for SIS, multiple images also require xc < 1=2). More
details about both lens models are given in Appendix B.
Let us now describe the WO phenomenology of these

lenses in the single-image regime. Figures 3 and 4 show,
respectively, the predictions for an SIS at varying y and for
a CIS at fixed y but with different xcs. For concreteness,
we will first discuss Green’s function GðτÞ, which makes
the discussion especially transparent, and comment on the
amplification factor FðwÞ afterwards. We will describe
the overall structure of the WOF, then the role of lens
parameters and discuss how they could be measured from
GW observations.
Single-image WOFs begin at τI, which corresponds to

the minimum of the time delay (i.e., the type-I image, we
set τI ¼ 0 by convention). The GO image appears as a
delta function in the full Green’s function, Eq. (11), while
the WO piece GðτÞ features a discontinuity, associated to
the bGO correction at the position of the image [origi-
nating from the coefficient Δð1Þ in Eq. (27)]. GðτÞ is
initially positive and increases with τ, as the contours
approach the center of the lens. The location of the lens
is associated to a peak in Green’s function. At slightly
higher τ, GðτÞ becomes negative and asymptotes towards
zero as τ → ∞.
For symmetric lenses with a cusp (e.g., SIS) the peak of

the WOF is located at τC ¼ ϕðx ¼ 0; yÞ. The peak is due to
the high curvature of the constant-ϕ contours. The curva-
ture, and hence the height of the peak, depends on the lens
profile as well as the impact parameter; denser lenses and
lower impact parameter produce taller peaks.
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In nondifferentiable lenses the peak is singular. For
instance, in the linear weak-lensing approximation for
the SIS lens, Green’s function is found to have a loga-
rithmic divergence (see Appendix D for a derivation)

GðτÞ ≃ −
1

πy3
logðjτ − τCjÞ: ð29Þ

In the frequency domain, the peak in GðτÞ is directly
related to the damped oscillations seen in jFðwÞj; sharper
peaks have more pronounced features that decay more
slowly with w, and can thus be observed at higher
frequencies. The singular contribution is related, in the
frequency domain at large w, with subleading terms in
the bGO expansion originating from regions of the lens
plane close to the center of the lend. See discussion
in Appendix D around Eq. (D7) and Refs. [15,27] for
more details.
Let us now discuss how the lens parameters affect the

WOF, separating the peak and broad shape. WO predic-
tions are independent ofMLz when expressed in terms of y,
τ and w. However, MLz can be inferred when restoring the
units for t or f, given an observed waveform. We will

discuss this at the end of this subsection, together with
prospects for lens parameter recovery.
The impact parameter y controls the position and

amplitude of the WOF peak. This is shown in Fig. 3 for
an SIS at y∈ ð1.5; 12Þ, always in the single-image regime.
We find the scalings

τC ∝ y2=2; Gðτ ∼ τCÞ ∝ y−3: ð30Þ

The time-delay scaling is exact for the SIS, but Green’s
functions dependence is only valid in the WL limit, y ≫ 1.
Because the peak in GðτÞ involves short timescales, in the
frequency domain it corresponds to high frequencies, i.e.,
the damped oscillatory pattern after the maximum of FðwÞ.
The broadband shape of the WOF is also sensitive to the

impact parameter. This is determined by the behavior of
GðτÞ over large time delays and is therefore captured by
low-w features of FðwÞ. We can thus use the position and
height of the first peak, w0 and Fðw0Þ respectively, to
characterize the broadband WOF. We find the scalings

w0 ∝
1

y2
; jFðw0Þ − 1j ∝ 1

y
: ð31Þ

FIG. 4. Role of the core size xc on an CIS lens. The columns show the projected density, time-domain integral, Green’s function and
amplification factor. These examples demonstrate the effect of the matter distribution on the shape of the lensing diffractive feature.

FIG. 3. Role of the impact parameter y on an SIS lens. The columns show the projected density, time-domain integral, Green’s
function and amplification factor. Green’s function omits the GO contribution and has been rescaled by y3 so the WOFs can be
appreciated at large impact parameter. Dashed lines show the ϕðx; yÞ ¼ τC contours passing through the lens’ center and the associated
values of τ.
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The scaling of w0 is approximate, but the scaling of Fðw0Þ
is very accurate. The likely cause is that the height is
dominated by the transition between the behavior near
the image (with a well-defined scaling with y) and the
asymptotics of the lensing potential (independent of y). See
Eq. (D7) for an analytic estimate for the scalings in the
frequency domain.
Measuring a WOF may allow one to infer the magni-

fication of the image, which is not directly observable in the
GO limit. This is because y determines μ, as can be seen
from either the height of Iðτ → 0Þ or the asymptotic value
of jFðw → ∞Þj. For the SIS in the single-image regime

μ ¼ 1þ 1

y
; ð32Þ

(this also holds approximately true for lenses with the
same large-x behavior, like the CIS). Therefore, Eqs. (30)
and (31) imply the following scalings:

μ − 1 ∝ τ−1=2C ; μ − 1 ∝ Gðτ ∼ τCÞ1=3; ð33Þ

μ − 1 ∝ w1=2
0 ; μ − 1 ∝ jFðw0Þj: ð34Þ

The correlation between the μ and the WOF properties
opens the possibility of mitigating the uncertainty due to
WL in standard sirens. We will comment on this potential
application in Sec. V B.
We explore the role of the lens compactness and shape

by considering a CIS with variable core size xc. Figure 4
shows results at fixed y ¼ 3, but varying xc between 0 (the
SIS limit) and 1 (a subcritical lens, unable to form multiple
images even for y → 0). The main effect of xc is on the
amplitude and shape of the WOF peak; smaller cores
produce narrower and taller peaks that persist at higher
frequencies. Larger cores also shift the position of the peak
slightly towards lower τC; in this case the peak is associated
to the edge of the core region, where contour curvature is
maximum, rather than the lens’ center, where the contours
are much smoother. In the subcritical lens case (xc ¼ 1) the
peak in GðτÞ is barely recognizable. The broadbandWOF is
still apparent in FðwÞ by the onset of diffraction, which is
caused by the overall transition rather than the peak.
Let us briefly discuss the prospect of constraining lens

parameters from the observation of weakly lensed GWs.
Such an inference is possible in principle, at least if we
assume a lens model. If we assume an SIS, we can infer the
lens parameters from the WOF peak position and height via
Eq. (30). The degeneracy betweenMLz and y can be broken
because the peak’s position τC ¼ tc=4GMLz depends on
the effective lens mass, while its amplitude GðτCÞ depends
only on y. Converting the projected massMLz into the halo
mass,Mvir, requires knowledge of ξ0, which depends on the
redshift of the source and the lens. While zS can be
constrained by the amplitude of the signal, zL ∈ ð0; zSÞ is

generally unknown and only a lower bound on Mvir can be
derived (corresponding to the largest ξ0). Nonetheless,
assuming a halo mass function enables a probabilistic
inference of Mvir, which is sharply peaked around the
minimum possible value (see Ref. [15], Sec. VA for
details). Additional leverage on the lens parameters can
be obtained from the broadband feature.
More general lens models will make parameter inference

from the WOF more challenging. As we saw in the case of
the CIS (Fig. 4), the lens’ internal parameters affect the
height of the peak, complicating the distinction between y
and MLz outlined above. These additional parameters can
be constrained by the shape of the peak in the WOF and the
broadband feature. Nonetheless, degeneracies with MLz
and y will affect the precision (see Sec. IV in Ref. [15] for
examples in strong lensing) and will lead to biases if the
wrong lens model is assumed. Because the WOF depends
on the entire lens, it is possible to reconstruct ψðxÞ given
IðτÞ under several assumptions (weak lensing, symmetric
lens, and known y). We discuss this possibility in Sec. VA.

B. Modeling composite lenses

Let us now address how GW observations may probe a
lens with a nonsymmetric profile with an internal structure.
We will consider a matter distribution composed of Nsub
objects with a common projected profile, Σsub, and mass

ΣNðxÞ ¼
1

Nsub

XNsub

i¼0

Σsubðx − xiÞ: ð35Þ

We consider equal-mass sublenses for simplicity, but our
expressions are easy to generalize to a mass distribution.
The centers of each sublens, xi, will be drawn from a
distribution PðxiÞ. Together with Nsub, the functions PðxiÞ
and Σsub determine the statistical properties of the
composite lens. We stress that this composite lens model
is not intended to be a realistic realization of a halo, but it
provides insights on the WOF produced by substructures.
The average surface density for the composite lens is a

convolution of the distribution PðxÞ with the subhalo
profile Σsub

hΣNðxÞi ¼
Z

d2x0Pðx0ÞΣsubðx − x0Þ: ð36Þ

Because of linearity, an analogue expression can be derived
for the lensing potential; ψ subðxÞ¼

R
d2x0Pðx0Þψ subðx−x0Þ.

Equation (36) has some obvious limits; if Σsub is a delta
function then the average profile is given by PðxÞ and vice
versa. However, considering two extended functions gives
nontrivial profiles in general. It is in principle possible to
derive an expression for the variance, higher-order statistics
and correlations at different points x1, x2, to further

STEFANO SAVASTANO et al. PHYS. REV. D 108, 103532 (2023)

103532-8



characterize the convergence towards the average lens
as Nsub → ∞.
For the composite lens, we will assume a distribution of

sublenses that follows the SIS projected density profile, and
model each of the sublenses as SISs

ΣsubðxÞ ¼ ΣSISðxÞ; ð37Þ

Pðx;ϕÞ ¼ 1

2πx
Θðxmax − xÞ; ð38Þ

where x is written in polar coordinates x and φ. The
truncation at xmax ensures a finite average profile (36) for
the above x, x0 dependence. Writing x0 ¼ ξx and using the
above definitions, we obtain the average projected profile
and the lensing potential,

hΣNi ¼
1

π

Z
π

0

dφ
Z xmax

x

0

dξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2 − 2ξ cosφ

p ; ð39Þ

hψNi ¼
x2

π

Z
π

0

dφ
Z xmax

x

0

dξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2 − 2ξ cosφ

q
: ð40Þ

These expressions can be solved numerically. Let us now
explore different realizations of this composite lens and
their average limit.

C. Signatures of composite lenses

As we saw, WOFs are characterized by their broadband
modulations and the peak’s position/delay, amplitude and
shape. Each of these characteristics depends on the lens
parameters. An important property of a WOF is that it is
approximately linear in the projected density ΣðxÞ. Hence,
Green’s function GðτÞ [or IðτÞ] of a composite lens is well
described as the sum of the WOFs associated to each of the
sublenses, appropriately time-shifted, at least in the WL
limit. Therefore, WOF peaks in GW data could be used to
identify individual sublenses, infer their spatial distribution
and constrain their properties. We will use the composite
lens, Eq. (35), and its average profile, (36), to investigate
how the number of sublenses and their distribution leave a
characteristic imprint.
We will start exploring the effect of the number of

sublenses. Figure 5 shows ΣðxÞ, IðτÞ, GðτÞ, and FðwÞ for
realizations of the composite lens (35) with Nsub ¼ 2, 4100

FIG. 5. Convergence to the homogeneous lens when the number of sublenses is increased. The columns show the projected density,
time-domain integral, Green’s function and amplification factor for 2-100 SIS. Note that substructures in a realistic halo would appear
far more scattered.
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sublenses with the same total mass and at fixed y ¼ 3.
Predictions for a single SIS and the averaged lensing
profile, Eq. (36), are shown for comparison. Information
about the sublenses is most transparent in Green’s function;
each object forms a distinct peak, whose height and
position are determined by its mass and separation from
the GO image in the lens plane (following the trend seen for
symmetric lenses in Fig. 3). When the number of sublenses
is large, Nsub ¼ 100, GðτÞ follows the averaged profile
closely, with some stochastic “cuspiness” added. In the
frequency domain, the existence of multiple peaks becomes
an interference pattern in the damped oscillations. For
Nsub ¼ 100 the superposition is mostly incoherent, repro-
ducing the prediction of the average profile.
The broadband shape of the WOF (as characterized by

the position and height of the first peak) is independent
of the number of sublenses. The relative difference in
Fðw0Þ between the models shown in Fig. 5 is ∼10−3
between the SIS and the average lens and ∼10−4 between
the average and composite lens Nsub. This homogeneity is
in stark contrast with the patterns of peaks/damped oscil-
lations for different values of Nsub. This consistency may
reflect the broadband WOF only depending on the differ-
ence between the GO region and the asymptotic behavior of
the lensing potential, as argued above.
Let us now explore the effects of the mass distribution on

the WOF. Figure 6 shows ΣðxÞ and GðτÞ for composite
lenses made of four equal-mass SIS profiles, equally spaced
along a straight line. This type of sublens distribution is a
crude approximation to filamentary structures in the cosmic

web. In this case, the position of the four peaks satisfies
τn ∼ 1

2
ðy − αn cos θÞ2 þ ðαn sin θÞ2, where θ is the angle

between the line of sublenses and the optical axis and α
controls the spacing. Therefore, the separation of WOF
peaks in the time domain could be used to infer aspects of
the spatial distribution. This shows that, despite all the
information being compressed into a single dimension
[e.g., GðτÞ, FðwÞ], it might be possible to reconstruct
the morphology of a two-dimensional (projected) structure
under certain circumstances. We will discuss this potential
application in Sec. V C.
Just as for individual lenses, identifying separate peaks

in GðτÞ can provide information on substructure mass and
relative positions, cf. Eq. (30) (although assumptions about
the lens profile might be necessary, cf. Sec. III A). In the
limit in which the linear approximation holds, GðτÞ only
depends on the projected matter distribution of the lens,
with the amplitude determined by the overall impact
parameter. A high-quality observation of a GW signal thus
offers additional constraints on the inner structure of the
lens. Identifying the WOFs allows the reconstruction of
substructures, although certain degeneracies persist. First,
since WO lensing encodes one-dimensional information
[through IðτÞ, GðτÞ, or FðwÞ] it is not possible to recover
the two-dimensional projected distribution ΣðxÞ. This is
obvious from the linear WL limit, in which the position and
height of the peak only depend on the offset between the
sublens and the GO image (for fixed sublens profile).
Second, lack of knowledge of the lens redshift prevents us
from accurately determining the virial mass of the lens

FIG. 6. Predictions for a chain of four sublenses as a function of its orientation θ with respect to the optical axis aligned with the source
(orange star). Only projected density and Green’s function are shown. The sublenses appear as a series of peaks in GðτÞ, whose
distribution over τ depends on the orientation. A chain perpendicular to the optical axis (lower right) produces closely overlapping
peaks, which have a distinct shape from the SIS prediction. The image position (red cross) at different orientations differ marginally.
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(or sublenses), as converting MLz (observed) into a virial
mass requires knowing deff and thus zS (constrained from
the signal amplitude) and zL (unconstrained). As already
discussed, this degeneracy can be partially broken using
probabilistic information, see Sec. VA in Ref. [15].

IV. OBSERVATIONAL PROSPECTS

Let us now discuss the prospects of observing WOFs. We
will first derive the maximum impact parameter at which
WOFs can be detected for a given GW source (Sec. IVA).
We will then include information about the halo abundances
to estimate the probability of observation (Sec. IV B) and the
prospect of constraining the halo mass function (Sec. IV C).
Our estimate of the probabilities includes only isolated halos;
we conclude this section by discussing subhalos and their
expected imprints (Sec. IVD).

A. Critical impact parameter

Assessing whether WOFs are detectable requires
accounting for the details of GW sources and the instru-
ment’s sensitivity. We will assume sources to be equal-mass
ratio, nonspinning compact binary coalescence and
describe them with the IMRPhenomD [28] model in the
PyCBC package [29]. We will focus on LISA [30,31] and
the Einstein Telescope (ET) [32,33]. For each instrument,
we will include the effect of sky inclination and polariza-
tion averaging over the antenna pattern functions [34]. Our
results will then reflect typical sources: neither optimally
aligned nor close to a blind spot of the instrument. We
further consider the detector to be static. This is a good
approximation since there is a single image and the signal-
to-noise ratio (SNR) is very concentrated around the
merger (see Sec. IVA in Ref. [26] or Ref. [35]). Finally,
we will only obtain results for single detectors; a detector
network will in general improve the prospects of detection
by improving SNR and sky coverage.
We will assess the detectability of WOFs based on the

mismatch between the lensed and unlensed waveforms.
For two generic waveforms, h1 and h2, the mismatch is
defined as

M≡ 1 −
ðh1jh2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh1jh1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh2jh2Þ
p : ð41Þ

Here we introduced the noise-weighted inner product for
two signals h1ðtÞ and h2ðtÞ with Fourier transforms h̃1ðfÞ
and h̃2ðfÞ,

ðh1jh2Þ≡ 4Re
Z

∞

0

df
SnðfÞ

h̃1ðfÞ�h̃2ðfÞ; ð42Þ

where SnðfÞ represents the sky-averaged one-sided detec-
tor power spectral density. In terms of this product, the
signal-to-noise ratio is SNR≡ ffiffiffiffiffiffiffiffiffiffiffiðhjhÞp

.

According to the Lindblom criterion [36], two wave-
forms are considered indistinguishable if the condition
ðδhjδhÞ < 1 is satisfied, where δh≡ h1 − h2. When con-
sidering signals with comparable SNR, as for a weakly
lensed and an unlensed signal, this criterion requires
M × SNR2 < 1. In general, the converse of the
Lindblom criterion is not true. Other factors, such as
correlations between waveform parameters and bias in
the recovered source parameters, may restrict the detect-
ability. Parameter degeneracies can be accounted for using
the Fisher information matrix [37]. However, Ref. [15]
showed that the Fisher matrix can overestimate the pre-
cision in lensing parameters due to the breakdown of the
linear signal approximation; this issue depends on the lens
model and parameters and requires a case-by-case inspec-
tion. Detectability in the Fisher matrix approach is usually
defined through the standard deviation of the marginalized
posterior, leading to results that depend strongly on
whether MLz or y is used (see discussion below).
Ultimately, Lindblom and Fisher analyses are answering
different questions about the information gained from
the signal. Due to computational simplicity and the argu-
ments discussed above, we will employ the flipped
Lindblom criterion, considering WOFs to be detectable
if M × SNR2 > 1. Henceforth, M is the lensed-to-
unlensed mismatch, unless stated otherwise. At the end
of the section we will compare our results to other methods.
Weak lensing on a single image can be detected at y ≫ 1

via WOFs. We stress that in GO this is not possible because
a time delay and amplitude magnification on a single image
are degenerate with source properties (luminosity distance,
coalescence time). The condition MðycrÞ × SNR2 ¼ 1
determines the critical impact parameter, ycr, which char-
acterizes the minimum level of alignment between a lens
and source required for detectability. We will omit the
explicit dependence of ycr on the source and lens properties.
Wewill assume all lenses to be described by the SIS profile,
regardless of their mass.
The critical impact parameter depends on both the lens’

and the binary’s masses, as shown in Fig. 7. Here, the virial
mass, Mvir, associated with MLz is shown on the upper
scale, assuming a lens redshift of zL ¼ zS=2 (the relation-
ship between both masses is discussed in Appendix B).
The mass range covered by each curve depends on the
frequency range spanned by the waveform and the corre-
sponding detector response. Typically, since the merger
frequency of a BBH dominates the SNR and scales as
1=MBBH, the onset of WO is expected at larger lens masses
for heavier BBH. This is evident when comparing LISA
and ET systems in the figure. However, for some signals,
the dominant contribution to the SNR might come from a
stage different from the merger. For instance, in LISA’s
MBBHwithMBBH < 106M⊙, the SNR is dominated by the
contribution at the minimum of the detector’s sensitivity
curve, at ∼3 × 10−3 Hz. The critical curves of such systems

WEAKLY LENSED GRAVITATIONAL WAVES: PROBING COSMIC … PHYS. REV. D 108, 103532 (2023)

103532-11



share a common range of lens masses. From the figure, we
infer that lenses withMLz ≃ 5 × 103M⊙ produce detectable
WOFs on the signals fromMBBHs withMBBH ≃ 106M⊙ at
zS ¼ 5 even for misalignment as large as ycr ≃ 71. This is
possible thanks to the large unlensed average SNR of
such systems, SNR ∼ 1.3 × 103, and to the onset of the WO
effect at the merger frequency of the binary. Analogous
conclusions can be drawn for binaries in the ET’s band,
such as BBHs with MBBH ≃ 103M⊙ at zS ¼ 1 lensed by a
10M⊙ object offset by ycr ≃ 29.
Figure 8 shows the mismatch as a function of y for fixed

MLz and source properties. The mismatch increases below
y < ycr, but it saturates at low enough y. Interestingly, the
mismatch at y ≪ ycr is lower for the cases with larger ycr;

the signals with the more clear signatures (higher M) are
not the ones for which the detection probability is most
enhanced (high ycrit). The figure also shows the effect on
both the amplitude and the phase of the GW signal. The two
contributions oscillate as a function of the impact param-
eter, as when approaching the WO regime.
The behavior of the ycr curves presented above can be

understood using the approximate analytical form of
the WOF for the SIS lens given by Eq. (D7), valid at
large w. Here, the WOF arises from the lens center as
δFc ¼ i=ðwy3Þeiwϕc . Since we are considering large y
values, this is a small correction to the amplification factor,
and the critical curves can be derived by expanding the
mismatch M of Eq. (41) in this quantity. Moreover,
we assume the mismatch to be dominated by a single
frequency, f⋆. This is either the BBH merger frequency
at the detector fmax [that we take to be double the
ISCO frequency, assuming negligible final spin, fmax ≃
1=ð6 ffiffiffi

6
p

πGð1þ zSÞMBBHÞ, see e.g., [38]], or the frequency
at the detector’s sensitivity curve minimum, fdet.
At sufficiently small w⋆ ≡ 8πGMLzf⋆, the approxima-

tion used for δFc breaks down, and one has to resort to
the full WO result, Eq. (D6). However, in the regime of
small w we expect the lensing effect to be negligible, with
FðwÞ ≃ 1, and the WL critical impact parameter value to
drop down rapidly. This condition can be implemented,
roughly, by cutting off the curves at the onset of WO.
By inspecting Eqs. (D6) and (D7), this happens when
w⋆y2=2 ≃mπ, wherem is a small integer. This corresponds
to a peak value of the curves ymax

cr ≃ SNR=ð23=2mπÞ, that
depends only on the SNR of the signal.
Following these prescriptions, the critical curves can be

approximated as follows:

ycr ≃
�

SNRffiffiffi
2

p
w⋆

�
1=3

Θ
�
MLz

Mmax
Lz

> 1

�
; ð43Þ

where the curve is truncated at the maximum,
Mmax

Lz ≃ 32π3m3=ðw⋆SNR2Þ, and

w⋆ ≃ 8πGMLz ×

(
ð6 ffiffiffi

6
p

πGMD
BBHÞ−1 if fmax < fdet

fdet if fmax > fdet
;

with MD
BBH ¼ ð1þ zSÞMBBH the redshifted detector-frame

mass. We find that setting m ¼ 2 when fmax < fdet and
m ¼ 1 otherwise returns the closest match with the
numerical results for LISA. Moreover, the agreement is
improved if the fmax is taken to be the actual merger
frequency instead of using the ISCO approximation [for
numerical fits cf. Eq. (29) in [39]]. For ET the noise
curves are flatter, making the single-frequency approxima-
tion less accurate. Notice that MLz depends on the
virial mass and distance of the lens through Eq. (46).
We stress that different mismatch thresholds, i.e.,

FIG. 7. Critical impact parameter curves plotted against the lens
mass MLz (bottom axis) and the virial mass Mvir (top axis),
assuming zL ¼ zS=2. The orange color scheme corresponds to
lensed MBBH at zS observable by LISA, while lighter BBHs at
zS ¼ 1 observable by ET are in blue.

FIG. 8. Lensed-to-unlensed (SIS) mismatch as a function of the
impact parameter. The dashed and dotted lines correspond to
modifications in the amplitude and phase in the lensed waveform,
respectively.
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MðycrÞ × SNR2 ¼ Λ2, lead to rescalings and shifts of
the critical curves. In particular, the peak’s position is
Mmax

Lz ∝ 1=Λ2 and its value as ycr ∝ 1=Λ. These scalings
can be used to extrapolate our results to more stringent
detection criteria (Λ > 1).
Let us now compare our results with previous analyses

that addressed the detectability of WO effects by LISA by
different methods. References [14,40] employed a Fisher-
matrix analysis, including source parameters. The authors
define the critical impact parameter in terms of Δθ=θ, the
ratio of the marginalized posterior width to the fiducial
value of the lens parameter θ. Specifically, they requireMLz
at the critical impact parameter to be measurable at 1σ (the
relative error is order one). This criterion can account for
potential degeneracy in the lens-source parameters. Table II
in Ref. [14] shows results of ycr for an SIS based on
θ ¼ MLz or θ ¼ y in three cases: the two estimates differ by
a factor ∼2, with Δy=y giving the larger ycr. Our analysis
gives slightly larger values, with ycr ¼ 58, 48, and 26,
which are 28%, 29%, and 33% larger than the results in
Ref. [14] for the same source properties.

B. WO optical depth

Here we forecast the probability for a GW signal to carry
a detectable WOF signature. We will focus on isolated
matter halos, described by the SIS profile and with a mass
distribution characterized by a halo mass function. We will
further assume that halos at any given redshift are distrib-
uted homogeneously in space. Lensing probabilities are
then described by Poisson statistics

Pðk; λÞ ¼ λk

k!
e−λ: ð44Þ

Here λ is the optical depth, which we define below. k is the
number of lenses contributing a detectable signature to
the signal: for WOFs, cases with k > 1 would produce
signatures similar to those shown in Figs. 5 and 6. The
probability of having any number of detectable imprints is
simply Pðk ≥ 1Þ ¼ 1 − e−λ ≃ λ, where the approximation
holds for λ ≪ 1.
The lensing probability is given by the optical

depth λ evaluated at the source’s redshift. The total optical
depth is given by an integral over halo masses
λ ¼ R

d logðMvirÞ dλ
d logðMvirÞ, where the differential optical

depth per logarithmic virial mass is

dλ
d logMvir

¼
Z

dχLχ2Lπθ
2
crðzLÞ

dnLðMvir; zLÞ
d logMvir

: ð45Þ

Here nL is the number density of lenses at fixed Mvir, χL is
the lens’ comoving distance. The integrand consists of
two factors. The first is the lensing angular cross section,
namely πθ2cr, representing the projected area where WOF is
detectable. For a symmetric lens θcr ¼ ycrξ0=DL, where the

critical impact parameter is the one discussed in the
previous section. The second factor in Eq. (45) is the halo
mass function, dnLðMvir; zLÞ=d logMvir, i.e., the number
density of lenses per logarithmic virial mass unit. We adopt
the Tinker halo mass function [41] extrapolating it to
low halo masses, i.e., Mvir < 1010M⊙ (other halo mass
functions produce similar results). We note that our
dn=d logðMvirÞ only accounts for isolated halos; subhalos
within the larger structure may further contribute to the
probabilities presented here. We will comment on subhalo
signatures in Sec. IV D.
The optical depth depends on two definitions of the

mass;Mvir in dn=d logðMvirÞ andMLz, Eq. (4), in ycr. They
are related by

MLz ¼ 2.3 × 106M⊙ð1þ zLÞ2
�

deff
1 Gpc

�

×

�
Mvir

109M⊙

HðzLÞ
H0

�
4=3

; ð46Þ

[see Eq. (B4) for further details]. Note that both quantities
differ by several orders of magnitude for typical halos. The
above relation depends on the source and lens’ redshift. zS
can be inferred by the amplitude of the signal, which scales
as ∝ DLðzSÞ−1, assuming a cosmology. As we mentioned
multiple times, while zL is in general unknown, it is
possible to place some restrictions on Mvir, given an
observed MLz, the quantity that lensing is sensitive to.
Let us give more details about this procedure. Assuming a
halo mass function, one can assign a probability distribu-
tion to PðMvirjMLz; zSÞ. Because deff is bounded from
above, it defines a minimum value Mmin

vir (at fixed MLz).
The probability PðMvirjMLz; zSÞ is sharply peaked around
Mmin

vir although larger values are possible, see Sec. VA
in [15] for details.
Using the definition of the effective lens mass, Eq. (4),

and dχLχ2L ¼ dzLð1þ zLÞ2D2
L=HðzLÞ, the differential opti-

cal depth can be recasted as

dλ
d logMvir

¼ 4πG
Z

zS

0

dzLy2crMLzdeff
ð1þ zLÞ3
HðzLÞ

dnL
d logMvir

:

ð47Þ

We will consider two types of lensing observation:
(i) λWO for WOF detection, with ycr computed as

described in Sec. IVA.
(ii) λSL for strong lensing, computed with ycr ¼ 1.

Note that λWO depends on zS as well as the source
properties (MBBH), while λSL only depends on zS. Note
that the strong-lensing criterion is based solely on the
formation of multiple images for the SIS model. Requiring
that the secondary image is brighter than a detection
threshold would reduce λSL. However, lensing situations
with y≳ 1 could still produce strong-WO phenomena even
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in the single-image regime [7]. The probability of these
situations is approximately represented by λSL.
Figure 9 shows the differential optical depth as a function

of the virial mass of the lens, for various redshifts and
total BBH masses (source frame), within LISA’s reach. The
higher peak is reached by the 106M⊙ curve at zS ¼ 5,
which corresponds to the largest critical impact parameter
and SNR among those considered. We observe that larger
source redshifts do not necessarily reduce the differential
optical depth. The SNR is reduced by a factor ð1þ zSÞDS,
while the number of intervening halos and their typical
Einstein radii increase with zS. In addition, as the signal
gets redshifted, i.e., MD

BBH ¼ ð1þ zSÞMBBH, the merger
can be displaced to a frequency band with lower/higher
sensitivity. The final behavior depends on MBBH. For
instance, for MBBH ¼ 107M⊙, the closer source curve
(zS ¼ 5) encompasses the further one (zS ¼ 10), while
the opposite is true for MBBH ¼ 105M⊙. The optical depth
for strong lensing is independent on the BBH mass and
increases with redshift as expected.
We plot the total optical depth λ in Fig. 10 for typical

sources detectable by LISA (upper panel) and ET (lower
panel). Physically, this quantity represents the average
number of lenses per source entering the Poisson distri-
bution, [Eq. (44)].
We find that that λðzSÞ displays a nontrivial dependence

withMBBH; it can increase or decrease with zS, as a result of
the competing effects discussed above (SNR, lens projec-
tion and frequency shift). In the 102M⊙ and 103M⊙ curves
for ET we can see the effect of the signal falling out of the
detector’s horizon at high zS.
The prospect of observing WOFs is optimistic; our

mismatch analysis shows that ∼20% of LISA binaries
with MBBH ∼ 106M⊙ would carry observable WOF

signatures. WOF detection by LISA is substantially more
likely than strong lensing, except for the heavier sources at
very high redshift (MBBH ¼ 107M⊙, zS > 7). While WOF
detection will be dominated by events where a single lens
contributes [k ¼ 1 in Eq. (44)], the probability of detecting
WOF signatures from multiple lenses ∼λ2 is non-negligible
for MBBH ∼ 106M⊙, even when considering only isolated
halos. For ET, strong lensing is more likely. Still, WOFs
can plausibly be observed given the large number of
expected sources, with rates ∼104–105 yr−1 [42,43].
We conclude by recalling that, while the flipped

Lindblom tends to overestimate the critical impact param-
eter, two assumptions make our estimate conservative.
First, ycr was computed from averaged noise curves. This
accounts for typical sources, but we expect it to under-
estimate λWO, as λ ∼ y2cr ∼ SNR2 and hSNR2i > hSNRi2,
i.e., events with better source/detector alignment at fixed zS
will compensate for the fainter ones. This information
(e.g., based on the posteriors for the sky localization,
binary inclination, etc.) could be folded into the estimates
discussed in Secs. IV C and VD. Second, the halo mass
function only accounts for isolated halos. Light subhalos
(M ≲ 109M⊙) are more abundant than their isolated counter-
part, and will further contribute to the optical depth. They
may also be distinguishable through characteristic WOF
signatures (see Sec. IV D).
Now, we compare our estimates with previous results in

the literature. The estimates in Ref. [40] are less optimistic
due to the differences in the critical impact parameter
definition, as discussed at the end of the previous section.
Reference [44] obtained probabilities almost four orders of
magnitude lower. In this case, the difference can be traced
back to different modeling of the source and the lens. They
use the lowest-order post-Newtonian expansion of the

FIG. 9. Prospects of wave-optics features observation by LISA.
Lines show the differential optical depth per logarithmic virial
mass. We considered equal-mass binaries at different total source-
frame masses (colors) and different redshifts (line styles). The
green lines show the strong-lensing (i.e., multiple images)
probability.

FIG. 10. Lensing optical depth, λ, against the redshift of the
source for LISA (top) and ET (bottom), for different source
masses (colors). Dashed lines show the strong-lensing optical
depth (independent of the source mass).
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waveform, truncated at the innermost stable circular orbit,
which covers only the inspiral stage of the coalescence.
As discussed above, the peak of the critical curves is
associated with the large SNR contribution coming from
the merger. Neglecting the merger can severely under-
estimate the height of the peak in ycr and its position.
Finally, they work with a Navarro-Frenk-White lens profile,
which is shallower than the SIS towards the center and
consequently produces a less prominent WOF. Along these
lines, Ref. [45] finds larger detection probabilities for
cuspier profiles. This analysis is also based on inspiral-
only waveforms and thus leads to low detection prospects.
The impact of the lens profile on the detection prospects
will be addressed in future work.

C. Total rates: Probing the halo mass function

We can now estimate the total number of events with
observable WOF and use that information to constrain the
halo mass function on the mass range where WO effects are
observable. We will focus on LISA, for which the optical
depth was found to be significant.
The results depend on the total number of detectable

signals, their redshifts and mass distributions. For LISA, a
recent analysis placed bounds on the detection rate com-
patible with results from pulsar timing arrays [46]. We will
use the results for their “agnostic” [47] and “astroinformed”
[48] models (obtained from their Fig. 2) for sources with
zS ≤ 5 and MBBH ≥ 106M⊙. We will estimate the rate of
lensed events (WL, SL) as λLðz�S;MBBHÞ · ṄdetðMBBHÞTobs,
integrating over the binary masses. We evaluate the optical
depth z�S ¼ 5, the upper end of their interval. This is
conservative for weak lensing, see Fig. 10 (λWO increases
with zS for lighter sources MBBH ¼ 105M⊙, which are not
included). The choice is optimistic for strong lensing/
multiple images, as the optical depth grows with zS.
Table I shows the rates of detected events, WO distortion

and multiple images under the above assumptions. Each
row corresponds to a confidence interval within the
agnostic/astromotivated models. The detection rates vary
several orders of magnitude, especially in the agnostic
model. Note that the above numbers for WOF detection
neglect sources at high redshift (zS > 5) and with light
masses (MBHB ≤ 105M⊙), whose inclusion would increase
the detection rate. Even so, multiplying by the observation
time Tobs ∼ 5 yr gives reasonable observation prospects in
all but the most pessimistic cases.
Detecting WOF enables novel probes of the halo mass

function. In the simplest cases, constraints rely on the ratio
of observed ṄWO=Ṅdet to the values predicted in Eq. (47).
To perform a quantitative estimation of the sensitivity, let us
consider a constant rescaling of the halo mass function

dn
dMvir

¼ fH
dn

dMvir

����
fid
; ð48Þ

where the fiducial case fH ¼ 1 corresponds to the case
discussed in Sec. IV B. This represents a phenomenological
parametrization in the range of Mvir for which a detector is
sensitive to WOF, cf. Fig. 9.
Let us now derive limits on fH given the observation of

kdet events, of which kWO carry WOF signatures. We will
not consider the possibility of events with multiple WOFs,
with probabilityOðλ2WOÞ. Our theoretical model depends on

Ndet ¼ rṄð0Þ
detTobs and NWO ¼ fHṄ

ð0Þ
WOTobs, where Tobs is

the survey time and the free parameters fH, r encode

variation with respect to fiducial values Ṅð0Þ
X . The like-

lihood of the data (kwo, kdet) given the model (fH, r) is

L ¼ PðkwojNWOðr; fÞÞPðkdetjNdetðfÞÞ; ð49Þ

where PðkjλÞ is the Poisson distribution, Eq. (44).
We obtain the one-dimensional confidence levels in f by
evaluating the posterior on a grid in r, f and integrating r.
This implicitly assumes a wide prior, i.e., Πðr; fÞ ≃ 1
around the peak of the likelihood. For kWO > 0, the limits
are consistent with estimating the posterior by sampling
fH ¼ 1

λWO

kWO
kdet

, where kWO, kdet are taken from a Poisson
distributions with rates NWO, Ndet.
Table I shows the marginalized 90% confidence interval

on fH that can be achieved by a Tobs ¼ 5 yr LISA mission,
given the rates shown in Table I. We have assumed that the

number of events kdet; kWO is bNð0Þ
detc, bNð0Þ

WOc, where bxc is
the floor function. The sensitivity ranges from subpercent
in the most optimistic case to 1–2 orders of magnitude
upper bounds in the most pessimistic cases. Note that cases
with kWO ¼ 0 allow upper limits on fH, as long as kdet ≤ 1.

TABLE I. LISA rates and prospective constraints on the halo
mass function. The first three columns show rates of total
mergers, WO detections and multiple-image events withMBBH ≥
106M⊙, zS ≤ 5. Rows correspond to the agnostic and astroin-
formed models in Ref. [46], at different confidence levels (CL)
(The agnostic 5% confidence interval is not shown, as it is several
orders of magnitude lower). The last two columns show the lower
and upper limits on the amplitude of the halo mass function,
Eq. (48).

Rates ½yr−1� fH CL

Limit Ṅdet ṄWO ṄSL 5% 95%

Agnostic 95% 1.3 × 105 2.6 × 104 1.5 × 103 0.995 1.005
Agnostic 75% 5.2 × 103 1.0 × 103 60.2 0.976 1.025
Agnostic 50% 66.3 8.8 0.77 0.77 1.26
Agnostic 25% 0.076 4.7 × 10−3 8.8 × 10−4 � � � � � �
Astro 95% 3.3 × 102 35.2 3.79 0.88 1.13
Astro 75% 40.6 3.26 0.47 0.66 1.49
Astro 50% 8.55 0.48 0.099 0.35 2.84
Astro 25% 2.16 0.11 0.025 � � � 7.14
Astro 5% 0.22 6.8 × 10−3 2.5 × 10−3 � � � 480
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In particular, the astro 25% confidence interval scenario has
a single detection, leading to a Oð102Þ limit. This is a very
simple estimate of prospective constraints on the halo mass
function. In Sec. V D we will discuss how more informa-
tion on dn=dMvir can be obtained from WOF observations.

D. Subhalos vs isolated halos

The rates presented above are conservative, as the halo
mass function accounts only for isolated halos, excluding
structures that have incorporated into more massive halos,
i.e., subhalos (see discussion in Sec. 4 of Ref. [49]). While
some subhalos will be disrupted, those that survive may
contribute to the probability of detecting WO effects,
increasing the rates presented in Sec. IV B.
Besides increasing the probability of WOF detection,

subhalos differ from isolated halos in several regards. Even
when comparing objects of equal mass, we expect the
following effects in subhalos.
(1) Enhanced probability of detecting signatures from

multiple subhalos, e.g., similar to Figs. 5 and 6 but
with a larger spread in τ.

(2) Distortion of the lensing potential by the main halo
through external convergence, shear and flexion
terms in ψðxÞ.

(3) In some cases, multiple strong-lensing images are
produced by the main halo. Then, each image may
contain WOF of different subhalos.

In addition, subhalos will differ from isolated halos (e.g., in
their shape) due to their assembly history and interactions
with the main halo and other subhalos [50]. These evolu-
tionary features will affect the probability of subhalo
lensing and may have observational imprints.
Massive halos contain a large number of lighter

subhalos [50]. A signal propagating through a galactic-
scale halo can have an enhanced probability of encounter-
ing multiple low-mass subhalos that can produce a WOF,
increasing the detection rates computed for isolated halos
in Sec. IV B. The subhalo-lensing probabilities can be
modeled using a Poisson distribution with a rate N̄WO;s,
which depends on the point where the image forms in the
lens plane and the details of the subhalo mass and spatial
distribution [50–52]. Lens configurations for which
N̄WO;s ≳ 1 are likely to produce rich WOF with multiple
peaks, as discussed in Sec. III C.
Another effect of substructures is the distortion of the

lensing potential by the main halo. The leading-order
corrections, convergence and shear, have been shown to
enhance the diffraction pattern appreciably [7] and can
allow lighter microlenses to contribute to diffraction
effects [8] (although see [12]). They may thus increase
the prospects of detecting the WOF, particularly sources
whose image forms in the inner part of the halo. The
imprint of convergence and shear may also serve to
distinguish subhalos from isolated halos and place them
within their host halo.

For closely aligned systems, the main halo will split the
source into multiple images. The associated probability
is given by the strong lensing rate (λSL, for ycr ¼ 1) in
Sec. IV B. In this case, each image may contain information
from nearby subhalos, which will also be affected by
convergence and shear from the main halo. Identifying
multiple GW events as strongly lensed images from the
same source (e.g., by overlapping sky-localization and
intrinsic parameters) would provide a unique opportunity to
constrain the properties of subhalos.
Finally, we note that WOFs could also be imprinted

by close-by systems, such as subhalos of our own
galactic halo. The critical curves presented in Fig. 7 do
not depend on the lens position and retain their validity
when zL, deff → 0. However, the physical impact parameter
shrinks—the Einstein radius goes as

ffiffiffiffiffiffiffi
deff

p
—and the con-

version between MLz and Mvir gets offset. For example,
inverting Eq. (46) the interval MLz ¼ 10−1–10−3M⊙ is
mapped into Mvir≃106–109M⊙ (at zS¼1 and DL ¼
200 kpc). We stress that the geometry of the system does
not suppress the lensing probability. Indeed, despite the
contraction of the physical impact parameter, the quantity
χ2Lθ

2
cr in Eq. (45) is invariant. If a WOF is observed, sky-

localization information could be used to determine the
probability of local versus cosmological origin.

V. POTENTIAL APPLICATIONS

We will now discuss some possible uses of WOF to
constrain properties of the large-scale structure (LSS).
Our presentation will be qualitative and schematic. More
detailed analyses are left for future work.

A. Lens reconstruction

The simple expressions behind the perturbative weak-
lensing framework (Sec. II C) open the possibility of
systematically reconstructing lens features. As already
explained in the previous sections, a full reconstruction
of the two-dimensional lensing potential is impossible from
one-dimensional data from a single source [GðτÞ, IðτÞ
or FðwÞ].
Nonetheless, assuming that the lensing potential is

symmetric, ψðxÞ → ψðxÞ, a formal relation between the
time-domain integral and the lensing potential can be
obtained from the leading-order term in Eq. (23a). First,
we change integration variable from φ to x and obtain

IðτÞ ¼ d
dτ

Z
∞

0

dxKðx; τ; yÞψðxÞ; ð50Þ

with a kernel

Kðx;τ;yÞ≡ 2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðτþϕmÞ

p
ysinφ

Θðx0−xÞΘðx−xπÞ; ð51Þ
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where φ is a function of x, y, and τ [according to Eqs. (23b)
and (23c)], and x0, xπ are the values at which φðx; τ; yÞ ¼ 0,
π, respectively. By knowing IðτÞ, Eq. (50) gives the lensing
potential as the solution of an integral equation. One can
then obtain the projected mass density ΣðxÞ e.g., Eq. (11)
in Ref. [15].
While potentially interesting, it is not clear how useful

the above expression may be in practice. Besides assuming
linearity and symmetry of ψ , Eq. (50) requires knowing
the impact parameter y. If this value is not constrained (e.g.,
from the WOF peak), one possibility is to perform the
reconstruction for different values of y and consider the
most plausible reconstructed lens, according to some
prior, e.g., from theory or simulations. Ultimately, the
reconstruction will be limited by how well IðτÞ can be
inferred from real data.

B. GW delensing

The correlation between the WOF and the GO
magnification opens the possibility of inferring

ffiffiffiffiffiffijμjp
.

Equations (33) and (34) give approximate relationships
for symmetric SIS models.
This information would enable a recalibration of the

intrinsic luminosity of the source, a major source of
uncertainty for standard sirens at high redshift [53].
Such procedures are known as “delensing.” Proposed
methods for GW delensing usually rely on EM follow-
up to characterize the lensing potential in the direction
of the source [54,55]. Because GW sources are poorly
localized, EM follow-up methods need to cover a large
portion of the sky, which can become very costly.
The main limitation is that magnification is dominated

by galactic scale lenses, too heavy to produce an observable
WOF by themselves. Hence, WO-based delensing would
rely on detecting substructure within the main lens
(cf. Sec. IV D). This may limit the applicability to a subset
of sources. However, delensing based on the WOF would
not require additional observations and could be attempted
without any costly follow-up. This is similar to delensing
of the cosmic microwave background, which can be
performed at the level of the observed maps [56].

C. LSS morphology

The LSS of the Universe displays a rich pattern in the
distribuiton of dark and baryonic matter. Different Universe
regions can be broadly classified by their morphology,
determined by the number of independent directions that
are expanding vs contracting. This gives rise to four
categories; voids (three expanding directions), sheets/walls
(two expanding, one contracting), filaments (one expand-
ing, two contracting) and halos (three contracting) [57–59].
In Fig. 6 we explored an idealized representation of a

filamentary structure. Our model, a one-dimensional
chain of equal-mass and equally spaced lenses, left a

characteristic imprint in Green’s function, with a clear
dependence on the angle between the chain and the location
of the source. Weakly lensed GWs have the potential to
distinguish between these patterns, allowing not only to
identify a filament but also to reconstruct its angle, and
perhaps even other properties (e.g., mass and relative
spacing between sublenses).
Realistic realizations of the LSS are vastly more com-

plex. Nonetheless, information about the lens morphology
will be present in the WOF, e.g., through the statistics of the
peak distribution in GðτÞ. This information is projected
from a 3D distribution into the 1D Green’s function,
and thus a complete reconstruction is not possible (see
Sec. VA). Nonetheless, it might be possible to obtain
information on the lens morphology, e.g., in high-SNR
observations where multiple peaks can be clearly located.
More likely, morphology reconstruction will, at best, assign
a probability to each category given an observation.

D. Probing low-mass halos and dark matter

Light halos (Mvir ≲ 1010M⊙) are pristine test-beds for
structure formation and dark matter (DM) theories; they
form at high redshift, their baryonic mass is subdominant,
and many DM scenarios impact their abundances and
profiles [60–64]. However, such light halos are very
difficult to observe, relying on the high-redshift observa-
tions [65–67] or close-by systems in the Milky Way
environment [68–70]. Observations of strongly lensed
signals can also identify individual structures [71–73] or
their collective distortions [74–76]. While these observa-
tions are promising, modeling a strongly lensed system is
challenging and computationally intensive.
Lensed GWs may offer a complementary means to

identify light halos and subhalos, distinguish between both
and constrain their properties [15,44,45] and abundances.
Isolated light halos at cosmological distances can be
observed by future detectors thanks to the large critical
impact parameter (Fig. 7). In Sec. IV C we showed how
LISA can obtain constraints on the halo mass function from
detection of WOFs or their absence. In the most optimistic
case, a constant rescaling on the scale of interest fH,
Eq. (48) can be constrained to subpercent level, while a
single unlensed event yields an Oð103Þ limit. As argued in
Sec. IV B, including information on the source’s parame-
ters that affect the SNR (sky localization, inclination) is
likely to produce more robust limits. Information on the
impact parameter posterior can also be incorporated;
see Ref. [77].
A more detailed analysis can also constrain the virial

mass dependence, i.e., fHðMvirÞ, using the fact that the
source massMBBH determines the range ofMvir that can be
probed (cf. Fig. 9). However, as the rates are dominated
by the optimal mass (∼106M⊙ for LISA), constraints on the
mass dependence will be far less stringent than the overall
amplitude. It may also be possible to constrain the redshift
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dependence: the rates for differentMBBH evolve differently
with zS (cf. Fig. 10) and zS is known from the luminosity
distance (assuming a cosmology). While important degen-
eracies are expected in a generic fHðMvir; zLÞ, it may be
possible to test models with suppression of light halos (e.g.,
warm dark matter [78]) or a minimum low-mass cutoff
(e.g., ultralight dark matter [79,80]).
Additional information on the lens may be obtained

via the WOF; the relevant observable quantities are the
source’s redshift (from the signal’s amplitude, assuming a
cosmology) and the lens’ effective mass MLz (see dis-
cussion in Sec. III A). Because the lens redshift is
unknown, MLz only provides a lower bound on the virial
mass of the halo. However, assuming a halo mass function
allows one to define a probability distribution for zL
and Mvir, which is peaked around the minimum Mvir
(see Sec. VA in Ref. [15] for details). The inferred values
from all events with WOF would then improve on the
constraints from detection counts. This method bears
analogy to inferring the properties of galactic-scale lenses
from strongly lensed signals using the distribution of time
delays between multiple images [81].
Lensed GWs can also probe subhalos and distinguish

them from isolated halos. As argued in Sec. IV D, the
expected signature of substructures is the detection of
multiple peaks in the WOF (from nearby subhalos)
and/or the presence of convergence/shear caused by the
main halo. Subhalos may have different abundances and
properties from isolated halos of the same mass (e.g., due to
tidal stripping, shock heating and other interactions [50]).
Being able to distinguish both populations separately may
offer valuable clues about the assembly history of the large-
scale structure.

VI. CONCLUSIONS

We have investigated the phenomenology of gravita-
tional lensing in the single-image, wave-optics regime, with
an outlook on their potential to probe cosmic structures
and prospects for observation by future GW detectors. Our
results converge to the well-known limits of geometric
optics (GO) in the large source frequency/lens mass limit.
Large angular separation between source and lens corre-
sponds to weak lensing, where WO corrections are subtle
but potentially observable.
We presented two methods to solve the diffraction

integral in the time domain, adapted to the single-image
regime but accounting for WO effects (Sec. II). Both
approaches yield accurate results in their domain of
validity. First, we present an algorithm able to explore
any single-image configuration, its accuracy limited only
by numerical errors. This method is valid even in strong
lensing; it can be used to explore the outer regions of a
caustic, where the GO magnification diverges and WO
effects persist at high frequency. Second, we develop a
perturbative expansion on the lens potential. This method is

faster and converges very rapidly to the full solution in the
WL limit, at large impact parameter y. The leading-order
expansion is linear in the lensing potential/projected lens
density, making the study of composite lenses straightfor-
ward. Both methods are fast enough for applications such
as parameter estimation.
Using these algorithms, we analyze the phenomenology

of WOFs, the WO imprint on lensed GWs (Sec. III).
This discussion is particularly clear when using Green’s
function GðτÞ. The most salient aspects of the WOF are its
peak and broadband distribution. The peak forms at the
center of the lens; its associated time delay and height
contain information about the lens location (relative to the
GO image) and the lens mass (Fig. 3), while its shape is
related to the lens projected density (Fig. 4). The broadband
profile is related to the large-scale properties of the lens,
such as its total mass and spatial extent. In the frequency
domain, the broadband feature corresponds to the first
maximum of FðwÞ, while the peak appears as a damped
oscillatory pattern at higher frequencies. Our analysis also
applies to composite lenses; we study the superposition
of Nsub equal-mass sublenses with an SIS profile. Each
sublens produces a peak, whose associated time delay and
amplitude are set by its distance to the GO image in the lens
plane. We computed the average profile for this distribution
and showed that GðτÞ and FðwÞ converge to it in the limit of
largeNsub, although finiteNsub is associated to stochasticity
in Green’s function.
We then address the prospects of detecting WOFs

(Sec. IV). Future detectors can potentially observe WO
effects at impact parameter one to two orders of magnitude
larger than the Einstein angle. Assuming a halo mass
function (i.e., extrapolating to the mass-scales producing
WO) and uncorrelated spatial distribution, our results can
be directly translated into detection probabilities (via the
optical depth). The prospect of detection is optimistic for
LISA, with rates ∼20% for mergers with the optimal mass
range. The rates suggest that detecting WO effects is
plausible, although subject to uncertainties on the LISA
detection rate for MBHBmergers: the number of detections
ranges from large to unlikely in the scenarios we have
considered. Detection probabilities are lower for ground
detectors due to the reduced SNR and higher frequency,
as WOFs require lighter halos with smaller Einstein radii.
Finally, we note that these rates refer only to isolated halos;
subhalos assembled into larger structures will increase
these rates, and might be distinguishable from isolated
halos in some cases.
We can summarize our main findings as follows:
(i) Gravitational lensing imprints WOF: frequency-

dependent modulations that can be observed in
the waveform without the need of a counterpart,
higher-mode emission or association of multiple
events. The Green’s function offers a particularly
transparent way to analyze these features.
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(ii) Features of the lens (effective mass, spatial distri-
bution, inner structure) translate cleanly into features
of the Green’s function (broadband shape, location
and height of peaks), thanks to (approximate)
linearity in the WL regime. Distinguishing these
features would allow constraints on the properties of
individual sublenses and their relative positions.

(iii) Our framework explains clearly how a macroscopic
lens arises effectively from a superposition of smaller
objects. In the frequency domain a large number of
sublenses add-up incoherently, suppressing the sig-
natures at high frequencies, as in the average smooth
lens (Fig. 5).

(iv) Events with high SNR enable detections of WOFs at
impact parameters much larger than the Einstein
radius. For low-frequency detectors such as LISA,
sensitive to heavier halos, this translates into prom-
ising prospects for observations, with probabilities
well beyond those of strong lensing.

(v) Observation of WOFs (or lack thereof) constrains
the amplitude of the halo mass function in the range
105M⊙ ≲Mvir ≲ 108M⊙, with precision between
percent-level to order-of-magnitude upper limits
(cf. Table I). This information will enable constraints
on halos that are both poorly constrained (from
simulations and observations) and sensitive to the
properties of dark matter.

The transparency offered by WO effects to probe
large-scale structures and the prospect for detection suggest
several applications (Sec. V). GW data may allow a
reconstruction of the lensing potential under the
assumption of a symmetric lens. In some cases, identifying
WOFs on a GW signal might be used to infer the
magnification of the signal, mitigating a major uncertainty
for standard sirens. Novel probes of large-scale structure
could be developed; for instance, identifying several peaks
in the WOF may serve to constrain the morphology of the
gravitational lens. Finally, constraints on the abundance of
subgalactic halos could be improved significantly thanks
to the information on the lens (projected mass, impact
parameter, etc.) obtained from the WOF. In addition, we
envision future directions regarding the computational
framework, lens modeling, and data analysis.
Our computational frameworks are flexible, accurate

and efficient. While we have focused mostly on weak
lensing, our methods can be readily applied to single-
image strong lensing, e.g., a source very close to a
caustic on the side in which a single GO image forms.
This regime has WO features extending to very high
frequencies, and could be used to probe the phenomenol-
ogy of strongly lensed GWs without the challenges of
including multiple GO images [25,26]. Another interest-
ing extension is microlensing by extended structures,
i.e., considering the effects of lens substructure on a
macroimage. Ultimately, our algorithms will be integrated

in the “Gravitational Lensing of Waves” (GLoW) code for
public use by the scientific community.2

Another important extension is improved lens modeling.
Our analysis largely relied on SIS. This choice was moti-
vated by both simplicity and this lens’ particular stance in the
single-image regime; the SIS is the “cuspiest” profile that
does not form multiple images for arbitrarily large y. It leads
to the sharpest possible peak in the WOF, which becomes
smoother in the presence of a central core. Other, well-
motivated, symmetric profiles such as NFW [82] typically
have shallower inner cusps. It is interesting to consider these
well-motivated distributions, as well as profiles motivated by
dark matter theories [15]. Beyond symmetric lenses, future
models should include elliptic matter distributions, external
convergence and shear and realistic realizations of substruc-
ture. Besides more complex lens models, addressing obser-
vational prospects will require reliable halo mass functions
for Mvir ≲ 108M⊙ halos and detailed predictions for source
rates (e.g., Refs. [83–89]).
Important open questions remain on the signal analysis.

A limitation of our analysis is the use of mismatch as a
detectability criterion, which is optimistic (e.g., ignoring
parameter degeneracies). Future analyses should rely on
Fisher matrix or Bayesian sampling. In addition, it is
necessary to address the issue of false alarm triggers, i.e.,
detector noise mimicking a WOF signature. These mundane
effects will affect the detection prospects, although less
significantly than uncertainties on the source rate, cf. Table I.
A standing open question is how to optimally identify
and analyze WOFs from GW signals. A nonparametric
reconstruction of the Green’s function from strain data could
provide a partial reconstruction of the lensing potential and
hence the projected mass [Eq. (50)]. These insights could be
combined with methods for lens-agnostic analyses [90].
Given the chance of signals being affected by multiple
WOFs (but with an unknown number), it will be necessary to
devise a framework for data analysis that does not assume a
fixed number of lenses, e.g., along the lines of reversible-
jump samplers [91]. Regardless of identifying WOF, it is
important to prevent unaccounted-for signatures to bias
the remaining parameter estimation, e.g., in the LISA global
fit [92], or misinterpreting those residuals as new physics
(e.g., violation of Einstein’s GR).
There is a promising future for GW lensing at the

intersection between theWO andWL regimes. While subtle,
WOF may be common enough to offer a window into
cosmic structures and their properties, and will likely lead to
applications beyond the ones outlined here. LISA stands out
as a particularly promising probe, thanks to the combination
of large SNR and low-frequency sensitivity. If deployed,
other proposed space detectors will yield even more impres-
sive results, thanks to larger SNR [93,94], a lower frequency

2Expected release December 2023, https://github.com/
miguelzuma/GLoW_code.
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band [95] or both. These observations will provide novel
means to probe low-mass halos that are both notoriously
elusive and a prime test bed for dark matter models. WOF
may thus become a powerful probe of large-scale structure
and fundamental physics thanks to the next generation of
GW detectors on the ground and in space.
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APPENDIX A: DERIVATION OF LENSING
RESULTS

In this appendix, we give details in the derivations of
the time-domain signal IðτÞ of Eq. (8). Also, we explain
how to obtain the coefficients of the GO expansion in
Eqs. (27) and (28).

1. Derivation of IðτÞ
Let us review how to obtain IðτÞ. This discussion mainly

follows Refs. [15,25]. We start from the definition of
Eq. (7). To simplify this expression we choose coordinates
in the lens plane adapted to the Fermat potential ϕðx; yÞ. In
particular, we introduce a variable t≡ ϕðx; yÞ, while as a
second coordinate we use the “proper time” u along the
curve of constant t (later we will change it to the arc-length
distance s along constant-t lines. From this choice, it
follows that the tangent vectors to the t ¼ const lines are
orthogonal to the gradient of ϕðx; yÞ,

∂xi

∂u
∂iϕðx; yÞ ¼ 0; ðA1Þ

where xi indicates the component i of the vector x, with
i; j; � � � ¼ 1, 2 and the summation is implicit. Due to
Eq. (A1) we can construct ∂xi=∂u as

ẋi ≡ ∂xi

∂u
¼ fϵij∂jϕðx; yÞ; ðA2Þ

where ϵij is the Levi-Civita pseudotensor, with ϵ12 ¼ 1, and
f is a normalization function to be chosen. The dot stands
for the derivative with respect to u.
The dimensionless time-delay t changes perpendicularly

to the contours i.e., ∂itẋi ¼ 0. Also, u at constant t changes
orthogonally to ∂it,

∂iu ¼ gϵji∂jϕðx; yÞ: ðA3Þ

Here g is a function to be fixed. We choose u is such a way
that the measure d2x becomes simple in the new coor-
dinates. Let us call Xa ¼ ft; ug. Then the measure changes
by a Jacobian

det ∂iXa ¼ ϵij∂it∂ju ¼ gϵij∂iϕϵkj∂kϕ ¼ gj∇ϕj2: ðA4Þ

Here we used ϵijϵkj ¼ δik. Now we set this determinant to 1
by choosing g ¼ 1=j∇ϕj2. With this choice, we see that
d2x ¼ dtdu. Moreover, since the determinant in Eq. (A4) is
equal to one, we also have j det ∂axij ¼ 1; it is easy to check
this then fixes the function f ¼ 1.
Now we introduce the arc-length distance s, which is

related to u by the differential relation ds2 ¼ ẋ2du2 ¼
j∇ϕj2du2. Expressed in terms of the variables u and s,
we have that Eq. (7) becomes

IðτÞ ¼
X
k

Z
dt duδðt − τÞ

¼
X
k

Z
dtds
j∇ϕj δðt − τÞ; ðA5Þ

where
P

k is the sum over distinct contours with same time
delay. Since the Fermat potential ϕðx; yÞ is positive by
construction, we then have t > 0 in the integration above.

2. Beyond geometric optics coefficients

In the limit of largew, or for small time delays, the lensing
signal can be expressed as a GO expansion. Indeed, at high
frequencies the diffraction integral (2) can be obtained using
a stationary-phase approximation. This involves solving
Gaussian integrals weighted by powers of derivatives of
ψ at the location of the image (see Refs. [26,27]). Here we
provide the expression for the GO coefficients μ, Δð1Þ and
Δð2Þ appearing in Eqs. (28) and (27) for axisymemetric
lenses. These quantities are given by

jμj−1 ≡ 4ab; ðA6Þ

Δð1Þ ≡ 1

16

�
ψ ð4Þ

2a2
þ 5

12a3
ðψ ð3ÞÞ2 þ ψ ð3Þ

a2x
þ a − b

abx2

�
; ðA7Þ

Δð2Þ ≡ 1

512

�
3ð3a2 þ 2ab− 5b2Þ

a2b2x4
þ 385ðψ ð3ÞÞ4

144a6

þ 35ðψ ð3ÞÞ3
6a5x

þ 35ðψ ð4ÞÞ2
12a4

þ ða− 5bÞψ ð4Þ

a3bx2

− 2ψ ð3Þ
�
−
7ψ ð5Þ

3a4
−
35ψ ð4Þ

3a4x
þ 2ða− 5bÞ

a3bx3

�

− ðψ ð3ÞÞ2
�
−
35ψ ð4Þ

4a5
−
5ða− 7bÞ
6a4bx2

�
þ 4ψ ð6Þ

3a3
þ 4ψ ð5Þ

a3x

�
:

ðA8Þ
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Here we defined a≡ ð1 − ψ 00Þ=2, b≡ ð1 − ψ 0=xÞ=2,
ψ ðnÞ ≡ dnψ=dxn and all quantities are evaluated at the
location of the image, x ¼ xm. As far as we know, the
coefficient Δð2Þ was not given in the literature before.

APPENDIX B: SYMMETRIC LENS MODELS

Here we provide some details of the symmetric lens
models considered in the text (SIS, CIS) and the relation
between the effective lens mass and the virial mass of
the halo.

1. Singular isothermal sphere

A commonly used approximation to the density of a halo
is given by the SIS profile

ρðrÞ ¼ σ2v
2πGr2

; ðB1Þ

where σv is the velocity dispersion of the halo. For this lens,
a convenient choice for the arbitrary scale ξ0 in Eq. (4)
is ξ0 ¼ σ2v=ðGΣcrÞ, with Σcr ¼ ð4πGð1þ zLÞdeffÞ−1. The
lensing potential ψðxÞ associated to ρðrÞ then becomes very
simple ψðxÞ ¼ x.
In the GO limit, the SIS can have one or two images

depending on whether the impact parameter is outside or
inside the caustic ycr ¼ 1, respectively. For y < ycr, two
images form [a minimum and a saddle, labeled respectively
by (þ) and (−)] with magnifications μ� ¼ 1=y� 1, time
delays ϕ� ¼∓ y − 1=2 and Morse phases nþ ¼ 0 (mini-
mum), n− ¼ 1=2 (saddle). Only the image corresponding
to the minimum survives for y > ycr. The minimum time
delay is given by ϕmðyÞ ¼ −y − 1=2.

2. Cored isothermal sphere

We will also consider a CIS, a variant of the SIS in
which the presence of a central core smoothes the density
profile [96,97],

ρ ¼ ρ0
r2c

r2 þ r2c
; ðB2Þ

where ρ0 is the central density and rc is the core radius. The
surface density is ΣðξÞ ¼ πρ0r2c=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ r2c

p
. Choosing a

normalization scale ξ0 ¼ 2πρ0r2c=Σcr, gives the lensing
potential

ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2c þ x2

q
þ xc log

�
2xc=

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2c þ x2

q
þ xc

	�
; ðB3Þ

where xc ≡ rc=ξ0.
Similarly to the SIS, multiple images form for sources

within the caustic yrcðxcÞ ≤ 1, which is smaller than for
SIS. An additional requirement for multiple images is
xc < 1=2, so the lens’ central density Σcr. The eventual

additional GO image is associated to the maximum of the
Fermat potential, and forms close to the center of the lens.
In the SIS limit xc → 0, the GO magnification vanishes and
this image is replaced by the cusp feature. This lens and the
properties of the central image are discussed in detail in
Ref. [15] Sec. III C.

3. Relation between MLz and Mvir

For extended lenses, the redshifted lens mass defined
in Eq. (4) does not typically coincide with the physical
mass of the halo. The two quantities can differ even by a
few orders of magnitude. As a definition for the physical
mass we consider the virial mass Mvir, defined as the mass
up to the virial radius rvir, i.e.,Mvir ≡ 4π

R rvir
0 drr2ρðrÞ (see

Ref. [15] for the full expressions for SIS and CIS lenses).
On the other hand, the virial radius is defined as
ρðrvirðzLÞÞ≡ ΔcρcðzLÞ, with ΔcðzL > 1Þ ≃ 18π2 and ρc
being the critical density at redshift zL, ρc ¼
3HðzLÞ=ð8πGÞ. Due to these relations, the virial mass is
a function of the lens redshift [98].
In the case of the SIS, with ξ0 as in the previous

subsections, MLz and the virial mass are related by

MLz ¼
4π2

G
ð1þ zLÞ2deff

�
5

ffiffiffi
6

p

2
GHðzLÞMvir

�4=3

¼ 2.3 × 106M⊙ð1þ zLÞ2
�

deff
1 Gpc

�

×

�
Mvir

109M⊙

HðzLÞ
H0

�
4=3

: ðB4Þ

Similar expressions for the CIS profile can be adapted from
Sec. III C 1 in Ref. [15].

APPENDIX C: NONPERTURBATIVE RESULTS
FOR THE SIS

The amplification factor for the SIS can be computed
analytically both in the time and frequency domain. These
expressions are valid both in the weak- and strong-lensing
regimes. In this appendix we derive the explicit expression
for IðτÞ, without assuming single-image or weak-lensing
limits.
Here, we exceptionally write the lensing potential for

the SIS as ψðxÞ ¼ ψ0x, where ψ0 is a constant.3 The full
expression for IðτÞ, in the single-image regime and
expanded in powers of ψ0, needs to reduce to the
perturbative calculation outlined in Sec. II C. This will
be a useful check of our results.

3In general, ψ0 will be related to the choice for ξ0, and will be
equal to one only for the specific choice used in the main text.
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1. Time-domain result

Starting with the time-domain version of the amplifica-
tion factor in Eq. (7), we can write it as

ISISðτÞ ¼
Z

d2xδ

�
1

2
x21 − x1yþ

1

2
x22 þ

1

2
y2

− ψ0x − τ − ϕm

�
; ðC1Þ

where, in this case, the minimum time delay is

ϕm ¼ −
1

2
ψ0ðψ0 þ 2yÞ: ðC2Þ

After changing to polar coordinates, the integral over the δ
function can be solved analytically, both in the radial and
in the angular coordinate, since the Fermat potential is
quadratic both in the radius and in the cosine of the angle.
Finally, owing to the simplicity of the SIS, the second
integral can also be performed analytically. We will express
the integral as a function of two new variables, u and R:

u≡
ffiffiffiffiffi
2τ

p

ψ0 þ y
; R≡ ψ0 − y

ψ0 þ y
: ðC3Þ

The variable u is a redefined time parameter while R is a
constant, ranging between −1 and 1.
The final result can be compactly expressed as

ISISðτÞ ¼
8ðb − cÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða − cÞðb − dÞp �

Π
�
a − b
a − c

; r

�
þ cKðrÞ
ðb − cÞ

�
;

ðC4Þ

with

r≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða − bÞðc − dÞ
ða − cÞðb − dÞ

s
; ðC5Þ

and where Π and K are, respectively, the complete elliptic
integrals of the third and first kind, see e.g., Ref. [99].
The coefficients a, b, c, and d are functions of the

variables u and R defined in Eq. (C3) above. We must
however distinguish between three regions:
(1) Region 1: (u > 1)

a ¼ 1þ u; c ¼ 1 − u;

b ¼ Rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ R2 − 1

p
;

d ¼ R −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ R2 − 1

p
:

(2) Region 2: ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2

p
< u < 1Þ

(a) Case A: (R > 0)

a ¼ 1; c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
;

b ¼ R; d ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
:

(b) Case B: (R < 0)

a ¼ 1; c ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
;

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
; d ¼ R:

(3) Region 3: ð0 < u <
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2

p
Þ

a ¼ 1; c ¼ R;

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
; d ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
:

2. Frequency domain result

At this point, one can move to the Fourier transform of
IðτÞ, so to obtain the amplification factor FðwÞ. Starting
from Eq. (2), we could not find a closed-form expression
for FðwÞ, but we were able to reduce it to a single angular
integral. Using polar coordinates again, we can solve the
radial integral, obtaining

FðwÞ ¼ eiwðy2=2−ϕmÞ
�
1þ

Z
π

0

dθαfð−αÞ

− i
Z

π

0

dθαgð−αÞ
�
; ðC6Þ

with

αðθÞ≡
ffiffiffiffi
w
π

r
ðψ0 þ y cos θÞ; ðC7Þ

and where f and g are the auxiliary functions for the Fresnel
integrals. Using the conventions of [100], they can be
written in terms of the Fresnel sine S and cosine C as

fðzÞ≡
�
1

2
− SðzÞ

�
cos

�
π

2
z2
�

−
�
1

2
− CðzÞ

�
sin

�
π

2
z2
�
; ðC8aÞ

gðzÞ≡
�
1

2
− CðzÞ

�
cos

�
π

2
z2
�

þ
�
1

2
− SðzÞ

�
sin

�
π

2
z2
�
: ðC8bÞ

Other representations for FðwÞ are also available. See, for
instance, [26] for a series representation.
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APPENDIX D: WEAK-LENSING EXPANSION
FOR THE SIS

In this appendix, we will apply the weak-lensing
expansion of Sec. II C to the case of the SIS profile.
Thanks to the simplicity of this model, we can obtain
explicit expressions and characterize their WOFs.

1. Time-domain result

Let us apply the time-domain approximation to the SIS,
ψ ¼ x. Let us focus on the single-image region, y > 1.
Starting from Eq. (23a), it is possible to have a closed-form
expression for I ð1Þ,

I ð1ÞðτÞ ¼ 4
d
dτ

�
ðaþ yÞ

Z
π=2

0

dφ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − qsin2φ

q �

¼ 4
d
dτ

½ðaþ yÞEðqÞ�

¼ 2
ðaþ yÞ

a2
EðqÞ þ 2

ða − yÞ
a2

KðqÞ: ðD1Þ

Here we defined q≡ 4ay=ðaþ yÞ2, a≡ ffiffiffiffi
2t

p
, and

t ¼ τ þ ϕm while the functions KðqÞ and EðqÞ are the
complete elliptic integrals of the first and second kind,
respectively.
The functions KðqÞ and EðqÞ are real for q ≤ 1.

Notice also that the parameter q as a function of t spans
from 0 to 1. The latter value is attained at t ¼ y2=2,
while zero is reached asymptotically for large t. We notice
that the function (D1) is always positive. More specifically,
it decays for large τ and has a peak for time delays
corresponding to the center of the lens (i.e., around
t ¼ y2=2).
Although there is no analytic expression for the location

of the maximum, we can see that it is located around q ¼ 1
(here EðqÞ has a maximum). This is physically reasonable
since it corresponds to the features due to the center of the
lens. We can actually find a good approximation for the
maximum by expanding I ð1Þ around t ¼ y2=2. To do so,
we first write q ¼ 1 − ϵ and expand for small ϵ,

I ð1ÞðτÞ ≃
4

y
−
2

ffiffiffi
ϵ

p
y

½6þ logðϵ=16Þ�

þ ϵ

y
½19þ 5 logðϵ=16Þ� þOðϵ3=2Þ: ðD2Þ

Setting the derivative with respect to ϵ of this expression
to zero yields an equation for the maximum, that can be
solved. Such value ϵ̄ does not depend on y, and is
approximately ϵ̄ ≃ 2.1 × 10−3. Having found the approxi-
mate maximum q̄ ¼ 1 − ϵ̄, we can translate to t. For small
ϵ, t ≃ y2=2ð1þ 4

ffiffiffi
ϵ

p þ 8ϵÞ, so that t̄ ≃ 0.6y2. With these
values we can evaluate I ð1ÞðτÞ at the peak, I ð1Þðτ̄Þ≃4.22=y.
We can actually have an analytic form for the peak, with a

very good approximation of the tail at large τ. To get it, we
expand the elliptic integrals around q ¼ 1, and obtain

I ð1ÞðτÞ ≃ logð1 − qÞ
�ðqþ 3Þy

8t
þ 3q − 7

4
ffiffiffiffi
2t

p
�

þ 1ffiffiffiffi
2t

p ½1þ q − q log 8þ log 128�

−
y
2t
½q log 2 − 2þ log 8�; ðD3Þ

This expression well approximates the full I ð1Þ but
becomes unreliable at small t, where it diverges. In the
latter region, one can use the GO expansion instead. It is
also interesting to evaluate Green’s function at the peak.
From the definition of GðτÞ, Eq. (9) and by expanding
Eq. (D3) around the peak, we obtain

GðτÞ ≃ −
1

πy3
logðjt − y2=2jÞ: ðD4Þ

We can also analyze the asymptotic behavior for large τ.
This limit maps to the small-frequency limit since we are
considering large time delays from the image. At leading
order for large τ, the radius is approximated by x ≃

ffiffiffiffi
2t

p
and

is independent on the angle φ; see Eqs. (23b) and (23c).
Then, taking the τ derivative in Eq. (23a) inside the integral
we obtain

I ð1ÞðτÞ ≃
2πffiffiffiffi
2t

p ψ 0ð
ffiffiffiffi
2t

p
Þ: ðD5Þ

Here 0 stands for the derivative with respect to x. The result
above applies to all symmetric lenses, particularly the SIS,
where ψ 0ð ffiffiffiffi

2t
p Þ ¼ 1. We conclude that the falloff of I ð1ÞðτÞ

as a function of τ is related to the asymptotic properties of
the lensing potential at large radii. In particular, more
compact lenses have faster falloffs [e.g., for a point lens
ψðxÞ ∝ log x, the decay is I ð1ÞðτÞ ∝ τ−1].

2. Frequency-domain result

As we discussed in the previous paragraphs, the center
of the lens can be responsible for a peak in Green’s
function in the time domain, even in the absence of an
image. This is indeed the case for the SIS. In the section,
using the frequency-domain approximation derived in
Eq. (26), we obtain the analogous feature in the ampli-
fication factor. For the SIS, it is straightforward to
integrate Eq. (26) directly,

FðwÞ ≃ 1þ iwy −
ffiffiffiffiffiffi
πw
2

r
eiz−i

π
4½2zJ1ðzÞ þ ð2iz − 1ÞJ0ðzÞ�;

ðD6Þ
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where z≡ wy2=4 and JνðzÞ are the Bessel functions
of the first kind. We can better appreciate the effect of
the center by taking the high-w limit of the expression
just obtained,

FðwÞ ≃
ffiffiffiffiffiffi
jμj

p
þ i
8wy3

þ eiwϕc

wy3
; ðD7Þ

where
ffiffiffiffiffiffijμjp

≃ 1þ 2=y at large y and the time delay of the
center is ϕc ≡ y2=2. We can recognize the second term,
going as ∝ w−1, as the approximate bGO correction from
the image (it does not contain phases/time delays with
respect to the magnification term). On the other hand, the
third contribution containing ϕc originates from the center
of the lens. In the SIS case, the dependence on w of these
two contributions scales in the same way, both in w and y.
Moreover, we notice that the bGO contribution is sup-
pressed by a factor of 8.

3. Application to cored lens

In this subsection, we discuss the weak-lensing regime
for a cored lens, focussing for simplicity on a variation of
the CIS lens used in the main text. In general, it is difficult
to obtain analytic expressions for lenses more complicated
than the SIS. For instance, the CIS’s I ð1ÞðτÞ is hard to
evaluate analytically [the problematic term is the log term
in Eq. (B3)]. To have a sense of the effect of a core, we can
use a similar cored profile with density

ρðrÞ ¼ ρ0
r2c

r2 þ r2c

�
1þ 2r2c

r2 þ r2c

�
: ðD8Þ

Notice that the central density of this profile is 3ρ0. This is
the main difference from the CIS used in the main text,
while this profile also approaches asymptotically the SIS.
It is immediate to see that this leads, after a proper choice
for ξ0, to the following lensing potential

ψðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x2c

q
; ðD9Þ

where xc ¼ rc=ξ0. We can obtain I ð1ÞðτÞ by following
the same steps as for SIS, with some slight modifications.
The final result is

I ð1Þ ¼
2

a2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ yÞ2 þ x2c

q
Eðq̃Þ þ a2 − y2 − x2cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðaþ yÞ2 þ x2c
p Kðq̃Þ

�
:

ðD10Þ

Here we introduced the new variable q̃≡ 4ay=½ðaþ yÞ2þ
x2c�, while a ¼ ffiffiffiffi

2t
p

as for the SIS. In comparing this
expression with Eq. (D1), the main difference resides in q̃:
in the cored case, q̃ is strictly smaller than 1 while for SIS q

can reach 1. Since the peak in GðτÞ is roughly given by the
maximum value of q̃ or q, this implies a smoother feature
in the cored case. Recall that for the SIS Green’s function
develops a log-divergence at the peak, whereas in the
presence of a core the feature becomes regular. This is also
seen for the CIS lens, in Fig. 4. The location of the peak is
instead mildly affected by xc.

APPENDIX E: ACCURACY AND TESTS OF THE
WEAK LENSING EXPANSION

The results of the weak-lensing linear approximation
introduced in Sec. II C can be compared with the full
nonperturbative computation, described in Sec. II B. The
performance of the WL approximation is excellent for
large y, with relative differences falling below the 1% level
for y ≥ 3 and remaining quite good, around 10%, even for

FIG. 11. Difference between the nonperturbative computation
using (13) and the WL linear approximation, described in
Sec. II C, for an SIS.

FIG. 12. Difference between the non-perturbative computation
using (13) and the WL linear approximation, described in
Sec. II C, for a lens composed of three equal-mass SISs located
at ð0.4;−0.5Þ, ð−0.1;−0.3Þ, and ð−0.3; 0.8Þ. The total mass of
the lens is the same as the single SIS in Fig. 11.
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impact parameters very close to the strong-lensing limit
y ∼ 1. These tests have been performed for a variety of
lenses, axisymmetric and nonaxisymmetric. Some results
for the amplification factor are shown in Figs. 11 and 12.

The time-domain results, i.e., IðτÞ, show a similar level of
agreement. The inclusion of higher-order terms in the
expansion would further increase the agreement with the
nonperturbative method.
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