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Abstract

Supersymmetric field theories can be characterized by the existence of a non-linear and non-local
transformation of the bosonic fields, called the Nicolai map. It maps the interacting functional
measure to that of a free theory such that the Jacobian determinant of the transformation
equals the product of the fermionic determinants. In this thesis, we study the Nicolai maps of

the 2-dimensional Wess-Zumino model, N' =1 super Yang-Mills and N = 4 super Yang-Mills.

We give a constructive proof for the existence of the Nicolai map in these theories. The proof
includes the derivation of the infinitesimal generator of the inverse Nicolai map, called the R4-
operator. We use this operator to compute the Nicolai map of the 2-dimensional Wess-Zumino
model up to the fifth order in the coupling. In N =1 super Yang-Mills, we introduce the
notion of ‘on- and off-shell’ Nicolai maps, corresponding to the ‘on-shell’ respectively ‘off-shell’
supersymmetry in the different versions of the theory. The ‘on-shell’ Nicolai map of N'=1 super
Yang-Mills exists in d = 3, 4, 6 and 10 dimensions but is constrained to the Landau gauge. We
compute this map up to the fourth order in the coupling. The ‘off-shell’ Nicolai map exists
only in d = 4 dimensions but for general gauges. We compute it in the axial gauge up to the
second order in the coupling. In A" =4 super Yang-Mills, we give the R4-operator and use it to
show that the Nicolai map of N'=4 super Yang-Mills can be obtained from the Nicolai map of

10-dimensional N'= 1 super Yang-Mills by dimensional reduction.

Inverse Nicolai maps have a remarkable property. They map quantum correlation functions of
bosonic observables to free correlation functions. Hence, Nicolai maps allow for a fermion (and
ghost) free quantization of supersymmetric (gauge) theories. We apply this property to the
10-dimensional N = 1 super Yang-Mills Nicolai map and compute the vacuum expectation value
of the infinite straight line Maldacena-Wilson loop in NV = 4 super Yang-Mills to order g®. Thus

extending the previous perturbative result by one order.

In the second part of this thesis, we derive the explicit field content of the %—BPS stress tensor
multiplet in A/ =4 super Yang-Mills, which in particular contains the R-symmetry current and

the energy-momentum tensor.
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1. Introduction

Quantum field theory is our most comprehensive theoretical framework to describe subatomic
particles and forces. It was largely developed in the 20th century and unifies the principles of
quantum mechanics and special relativity. In particular, the perturbative predictions of the Stan-
dard Model have an unprecedented accuracy. However, in general quantum field theory is hard
and to a large extent results beyond perturbation theory are unattainable. Thus, a considerable
part of modern-day research in quantum field theory revolves around possible simplifications
one can impose to make it more tractable. One such simplification is supersymmetry. Super-
symmetry is a spacetime symmetry between bosons and fermions. The constraints it imposes on
quantum field theory are strong enough to yield some additional non-perturbative results and
considerable simplifications while at the same time not prohibiting all the interesting dynamics
of regular quantum field theory. Mathematically, supersymmetry is a Zs-graded extension of the
Poincaré algebra, where the new anti-commuting generators relate bosonic states to fermionic
states and vice versa. We call this algebra the supersymmetry algebra. While every quantum
field theory is invariant under the action of the Poincaré algebra, every supersymmetric field

theory is invariant under the action of the supersymmetry algebra.

Supersymmetry was initially discovered in string theory in the early 1970s. The first super-
symmetric quantum field theory was the 4-dimensional Wess-Zumino model [5], introduced by
Wess and Zumino in 1974. It describes two scalar fields, a four-component Majorana spinor
and two auxiliary fields. Shortly after the first supersymmetric gauge theories were introduced,
first as a supersymmetric extension of quantum electrodynamics [6] and later as supersymmet-
ric extensions of Yang-Mills theories [7-9]. Today supersymmetric Yang-Mills theories and,
in particular, the maximally extended N = 4 super Yang-Mills theory [9, 10], are among the

best-studied examples of quantum field theories.

A key consequence of supersymmetry is the dramatic improvement it produces in the ultraviolet
behavior of quantum field theories. In theories with linearly realized supersymmetry, such as
the 4-dimensional Wess-Zumino model, there is a very powerful non-renormalization theorem,

stating that superpotentials of chiral superfields do not get renormalized [11, 12]. Moreover,
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the mass and coupling constant do not receive any renormalization besides the wave-function
renormalization. Thus, the mass term is at most logarithmically divergent. In supersymmetric
gauge theories, the situation is a little more complicated as the renormalization constants become
gauge-dependent. However, there is a notable exception. It has been shown that the beta
function of N/ =4 super Yang-Mills vanishes to all orders in perturbation theory [13, 14] (see
also [15—-20]). This implies that the coupling constant does not get renormalized in any gauge
and allows the theory’s superconformal symmetry to extend to the quantum level. Furthermore,
it was argued that, in the light-cone gauge, the A/ =4 theory is completely ultraviolet finite
[13, 16, 17, 21].

Another universal consequence of supersymmetry is the exact vanishing of the vacuum energy
[22]. Fermions and bosons contribute with opposite signs to the vacuum energy and since there
are just as many fermions as bosons in supersymmetric theories, their respective contributions

cancel to all orders in perturbation theory.

Among all the supersymmetric field theories one, in particular, stands out, namely N = 4 super
Yang-Mills. Beyond its finiteness properties and exact quantum conformal invariance, it is
ubiquitous in non-perturbative formulations of string theory (M-theory), either via the AdS/CFT
correspondence [23] or, in its dimensionally reduced form, via the maximally supersymmetric
d = 1 matrix model with gauge group SU(o0) [24, 25]. In the large N limit A/ =4 super Yang-
Mills is even integrable (see [26] for a review). Moreover, being a 4-dimensional, non-abelian,
minimally coupled gauge theory, N’ =4 super Yang-Mills is similar enough to more realistic
theories such as QCD that we can hope to deduce some approximations for these theories from
exact results in N =4 super Yang-Mills. Thus, a sustained effort to study supersymmetric

Yang-Mills theories from all possible perspectives is more than justified.

Yet, despite the vast literature on supersymmetric gauge theories, and especially the N/ = 4
theory, important questions remain. For example, does the N' =4 theory exist beyond pertur-
bation theory as a non-trivial quantum theory or is it simply a free theory in disguise? Because
of the conformal invariance of the theory, even at the quantum level, it does not have a mass
gap. Thus, there are no asymptotic one-particle states and consequentially no S-matrix (at
least not in any conventional sense) whose non-triviality would affirm the non-triviality of the
theory. A more appropriate framework to establish the non-perturbative existence is provided
by the conformal bootstrap program (see e.g. [27]). Here the challenge is to compute exact
n-point (for n > 4) correlation functions and the associated conformal cross ratios. Considerable
progress in this direction has been made using integrability [26], amplitude calculations [28, 29],

and holographic duality [30].



1.1. A First Example and Previous Results

Other issues revolve around the finiteness of N' =4 super Yang-Mills. Thus far, it has only
been established in the light-cone gauge and only for the transversal degrees of freedom [13, 31,
32]. In other gauges, the usual quantum field theoretical infinities appear and a wave function
renormalization has to be implemented [33]. Thus, a non-perturbative construction of the N’ =4
theory would require a non-perturbative regularization both in the IR and the UV. However,
non-perturbative regularizations break supersymmetry at least partially; thus, it is unclear how

the supersymmetry can be utilized in a non-perturbative formulation of the theory.

This thesis is part of an ongoing effort to develop an alternative perspective on supersymmetric
quantum field theories in order to eventually address some of the above questions in a different
way. The importance of anti-commuting variables in quantizing supersymmetric field theories is
well known. Gauge theories, in particular, require the introduction of additional anti-commuting
virtual particles, the ghost fields, to allow for a consistent definition of the path integral. How-
ever, anti-commuting variables, both real and virtual, are difficult to work with, especially in
perturbation theory. Fortunately, supersymmetric field theories are overdetermined in the sense
that there exist Ward identities relating bosonic and fermionic correlation functions. This obser-
vation can be formalized, giving rise to a fermion (and ghost) free quantization of supersymmetric

field theories.

According to a theorem by Hermann Nicolai [34], supersymmetric field theories can be char-
acterized by the existence of a non-linear and non-local transformation of the bosonic fields,
called the Nicolai map 7. It was first proposed by Nicolai in [34-38] and further developed by
Dietz, Flume and Lechtenfeld in [39-43]. The Nicolai map 74 maps the interacting functional
measure to that of a free theory such that the Jacobian determinant of 7, equals the product of
the fermionic determinants. The Nicolai map thus allows for a more economical, purely bosonic

formulation of the quantum theory of supersymmetric field theories.

1.1. A First Example and Previous Results

The Nicolai map is best understood from examples and the by far simplest example of a Nicolai

map is found in supersymmetric quantum mechanics. The theory describes a real scalar ¢(t)

and a pair of Grassman coordinates (), ¥(t). Its Euclidean action is given by [44, 45]
1. . 1 -/d
s=[at s +av@+ 3V +d 5V @), (11)

where V(q) is some superpotential and the topological invariant ¢V (q) has been added for later

convenience. The Nicolai map of (1.1) is given by

(To)(®) =a(t)+ [t ot ~#)V(a(t)). (12)
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where 0(t) is the step function with $£6(t —t') = 6(t —t'). It can easily be checked that 7, indeed

maps the bosonic action to the free action
[ [ (8m0) ] = [at L +avo+ v (13)
and that its Jacobian determinant equals the fermionic determinant
det(J(Tgq)) = det (5(t — ') £0(t —t')V'(q(t'))) = Awmss|a]- (1.4)
The fermionic (or Matthews-Salam-Seiler) determinant [46, 47] is defined by
/ DY D e~ J WP GEAV D) = det [ (& +V'(q(1)) 6t )] = det [£5(t—t)] Awssla] - (1.5)

The Nicolai map of supersymmetric quantum mechanics is special in several ways. There is no
need for a formal derivation of the map (1.2) as it can be inferred from the action (1.1) and the
fermionic determinant (1.5). Moreover, it terminates after the first order. In general, Nicolai
maps require tedious derivations and are non-finite perturbative series without even a closed-
form formulation. Most of this work is dedicated to setting up formalisms to derive Nicolai maps

in various supersymmetric (gauge) theories.

However, before outlining the scope of this thesis, let us recollect some historical results. In
fact, a lot of work on the Nicolai map was done in the early 1980s until the research came to a
sudden hold with the beginning of the first superstring revolution. Many problems and incom-
plete results were left behind and have not been solved until the active research on the Nicolai
map continued very recently in 2020. A comprehensive overview of the state of research in the
mid-1980s can be found in the lecture notes of Nicolai [34] and the doctoral thesis of Lecht-
enfeld [41]. By 1984 Nicolai had formulated and proven his theorem capturing the properties
of the Nicolai map for the 2-dimensional Wess-Zumino model and 4-dimensional A/ =1 super
Yang-Mills in the Landau gauge. A crucial addition to the proof in N'= 1 super Yang-Mills was
made by Flume and Lechtenfeld [39] ensuring the distributivity of the infinitesimal generator of
the inverse Nicolai map. Moreover, Nicolai found explicit expressions for the Nicolai maps of
supersymmetric quantum mechanics, the 2-dimensional Wess-Zumino model and 4-dimensional
N =1 super Yang-Mills in Landau gauge. However, neither of these Nicolai maps was system-
atically derived, but rather they were the result of guesswork. Hence, the Nicolai maps for the
2-dimensional Wess-Zumino model and N = 1 super Yang-Mills were limited to the lowest orders

of perturbation theory.

In [41, 42] Dietz and Lechtenfeld discovered that the inverse Nicolai map '7'9*1 maps interacting

correlation functions of bosonic operators O; to free correlation functions

(O1(21)...On(@n)), = (T OV (1) (Tg ' On) () - (1.6)



1.2. Results of this Work

This statement is quite remarkable. While it, of course, does not render the computation of
interacting correlation functions trivial as the complexity is now hidden in the transformations
(7;*1(’)1), it allows us to obtain bosonic correlation functions in supersymmetric field theories
without the use of anti-commuting variables. Thus, one does not have to worry about the
fermion (and ghost) loops arising on the left-hand side of (1.6) in each order of perturbation

theory. But instead, simply compute the bosonic Wick contractions on the right-hand side.

Furthermore, there were several attempts to formulate a Nicolai map for N'= 1 super Yang-Mills
in gauges other than the Landau gauge. Most notably, Dietz and Lechtenfeld came very close
to finding the Nicolai map in general gauges [41, 42]. As we have now learned almost 40 years
later, they have found the correct infinitesimal generator of the inverse map but used it in the
wrong way (for more details, see chapter 4). Also de Alfaro, Fubini, Furlan and Veneziano were
investigating a variation of the Nicolai map [48-50]. Their work displayed hints of a polynomial
form of the map for the A'=1 and N = 2 super Yang-Mills theories in the light-cone gauge,
and in terms of the light-cone components of the field strength. Unfortunately, an inspection of
the relevant formulas revealed that their Nicolai map does not apply to the ‘real’ super Yang-
Mills theory. Instead, one must simultaneously invoke the light-cone gauge (which exists only for
Lorentzian signature) and introduce a complexification of the basic fields, which for the fermions
would only be appropriate for Euclidean spinors. On the other hand, employing a time-like axial
gauge with Euclidean signature, a direct construction fails [51]. In fact, the map in [51] is an
expansion in powers of the covariant derivative rather than the coupling constant. Thus, it
is not applicable to (1.6). Moreover, it only works up to the quadratic order in the covariant

derivative.

1.2. Results of this Work

In this thesis, we continue the research of the 1980s and present a comprehensive study of the
Nicolai map in various supersymmetric (gauge) theories of increasing complexity. We address
the problems and open questions mentioned above and demonstrate a neat application of the
Nicolai map. The work presented here is mostly based on the author’s publications [1-4]. The
main results of this work are the systematic calculations of the Nicolai map for the 2-dimensional
Wess-Zumino model up the fifth order in the coupling, the Nicolai map of N'=1 super Yang-
Mills for general gauges and the second order in the coupling and the Nicolai map of A =1
super Yang-Mills in the Landau gauge up to the fourth order in the coupling. Furthermore,
we use this last result to compute the vacuum expectation value of the infinite straight line
Maldacena-Wilson loop up to order ¢5. In a little more detail, the results of this thesis are as

follows.



1. Introduction

First, we study the Nicolai map for the 2-dimensional Wess-Zumino model. We give a ped-
agogical proof of Nicolai’s main theorem and compute the Nicolai map to the fifth order in
perturbation theory, thus extending the previous result [34] by three orders. The Nicolai map is
obtained in two simple steps. First, the inverse Nicolai map is constructed from its infinitesimal
generator, the R -operator. Then the actual Nicolai map is obtained by formal power series
inversion. The explicit expression for the map is subjected to two tests similar to (1.3) and (1.4).
While the 2-dimensional Wess-Zumino model by itself is not a particularly interesting theory,
it provides an excellent non-trivial example to understand the Nicolai map and its derivation.
Since the Wess-Zumino model is not a gauge theory, its supersymmetry is realized linearly. This
makes for a straightforward construction of the Rg-operator and gives us a benchmark of an

ideal non-trivial Nicolai map. These results have not been published before.

Then we introduce the Nicolai map and the Rg-operator for A' =1 super Yang-Mills. In partic-
ular, we introduce the notion of an ‘on-shell’ respectively ‘off-shell’ Nicolai map corresponding
to the ‘on-shell’ respectively ‘off-shell’ supersymmetry in the different formulations of the the-
ory. We state and prove according versions of the main theorem. In the presence of ‘off-shell’
supersymmetry, we are able to construct a Nicolai map in general gauges, satisfying the scaling
relation G?[A] = gG%[g ' A]. The construction is universal to all gauge theories. We compute
the Nicolai map for 4-dimensional A/ = 1 super Yang-Mills in axial gauge. We find that the
axial gauge Nicolai map is considerably more complicated than the previously known Landau
gauge Nicolai map. This is in accord with the mixed success story of the axial gauge in quantum
field theory [52]. Moreover, ‘off-shell’ supersymmetry (with finitely many auxiliary fields) exists
for N'=1 super Yang-Mills only in 4 dimensions. Thus we subsequently resort to ‘on-shell’
supersymmetry. Here we are confined to the Landau gauge, but we can construct the Nicolai
map in d =3, 4, 6 and 10 dimensions. The map is much simpler than in axial gauge and we
can compute and test it up to the fourth order in the coupling constant, thus extending the
previously known result [53] by two orders. Besides restricting the gauge parameter to £ =0 in
the R¢ type gauges, i.e. forcing us into the Landau gauge, the ‘on-shell-ness’ in the Nicolai map
is much less of a restriction than usual, where for example the equations of motion are required
to close the supersymmetry algebra. We have first published our work on the ‘on- and off-shell’

N =1 super Yang-Mills Nicolai maps in [1] and [3].

Already very early in the research on the Nicolai map, it was discovered that finite perturbative
expansions of the map are not unique. This is because (in Landau gauge) Nicolai’s theorem only
makes statements about the derivative of the Nicolai map. In [2] we have found an alternative
formulation of the A/ =1 super Yang-Mills Nicolai map specifically in 6 dimensions up to the

third order in perturbation theory. We briefly discuss the result and validate it.
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The third and last supersymmetric field theory we will discuss is N/ = 4 super Yang-Mills and
its cousin 4-dimensional maximally extended N = 1 super Yang-Mills. For the latter, we can
construct an ‘off-shell’ Nicolai map. For the former, however, it seems to be out of reach due
to the lack of an ‘off-shell’ formulation. Thus, as before, we are constrained to the Landau
gauge. Unfortunately, the formal construction of the Nicolai map via the R4-operator in the
maximally extended N =1 theory and the N =4 theory is very sophisticated due to the large
number of (auxiliary) fields. Luckily, however, we are able to prove that the N/ =4 Nicolai map
can be obtained from the 10-dimensional AN/ =1 super Yang-Mills Nicolai map by dimensional
reduction. Thus, we automatically get access to the fourth-order Nicolai map we computed

before. The N/ =4 Nicolai map was first studied by Rupprecht in [54].

We close the discussion of the Nicolai map in this thesis by giving a neat example of its ap-
plication. We use (1.6) to compute the vacuum expectation value of the infinite-straight line
Maldacena-Wilson loop in N = 4 super Yang-Mills to order ¢g. The results are two-fold. Con-
trary to popular belief, the perturbative cancellations of the different contributions to the vacuum
expectation value of the Maldacena-Wilson loop are by no means trivial and seem to resemble
those of the circular Maldacena-Wilson loop at order g*. Furthermore, we argue that our ap-
proach to computing quantum correlation functions with the Nicolai map is competitive with
more standard diagrammatic techniques. This result was first published in [4] by the author of

this thesis.

1.3. The Stress Tensor Multiplet

If an operator is a fixed point of the inverse Nicolai map, ¢.e. if (7;_1(’)) = O, then by (1.6) its
n-point correlation functions do not receive quantum corrections. The only known example of
such an operator is the (anti) self-dual field strength tensor in 4-dimensional A’ =1 super Yang-
Mills with a topological term. However, in N/ = 4 super Yang-Mills, there are many operators
whose 2- and 3-point functions are entirely determined by their classical expressions. They
form several so-called short supermultiplets of the superconformal algebra. A long-term goal
is to study these short supermultiplets through the Nicolai map. However, this requires us to
know their explicit field content. In the second part of this thesis, we thus determine the entire
field content of one of these short multiplets, namely the stress tensor multiplet in N' = 4 super

Yang-Mills.

The symmetry algebra of N'=4 super Yang-Mills is the superconformal algebra psu(2,2[4). A
set of fields forming a representation of the superconformal algebra is called a supermultiplet.

Understanding these supermultiplets is crucial for the study of many aspects of supersymmetric
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field theories. For example, the construction of the Rg-operator, i.e. the infinitesimal genera-
tor of the inverse Nicolai map, hinges on understanding the supermultiplet of the Lagrangian.
Given the primary field of a supermultiplet, its descendants are obtained by repeatedly acting
with the anti-commuting supersymmetry generators Qé and Qaa. In N =4 super Yang-Mills,
there are 16 such generators. If the primary field is annihilated by the action of some of the
supersymmetry generators, then it lives in a so-called short or semi-short multiplet. In [55],
Dolan and Osborn have studied all short and-semi short representations of N'=2 and N =4
superconform?l symmetry. The most interesting short multiplet is the current (or stress tensor)

1
2°2
[0,2,0](0,0)"

sor. It was first discovered in perturbation theory [56—60] and later shown non-perturbatively

multiplet It contains the R-symmetry current as well as the energy-momentum ten-
[61] that the elements of the stress tensor multiplet are subjected to a non-renormalization the-
orem and do not receive any anomalous dimension. Thus, their 2- and 3-point functions are

entirely determined by their classical expressions.

The first correlation functions to receive quantum corrections are the 4-point functions. They
have been studied in a variety of ways. In particular, it has been shown that all the 4-point
functions of the stress tensor multiplet are related by the superconformal algebra [62]. Moreover,
the 4-point correlation functions can be expressed in terms of a single function of the two
conformal invariants [63]. However, this function is not yet fully known.

In [63] Dolan and Osborn have given a list of all states in the N’ =4 stress tensor multiplet
11
520100

formations of all fields in the stress tensor multiplet. However, the explicit expression for the

Moreover, they have found the field constraints as well as supersymmetry trans-

fields corresponding to the states in the multiplet were not provided. When we want to study
the multiplet via the Nicolai map, we need to know its explicit field content. Thus, starting
from the chiral primary field of the stress tensor multiplet, we compute all descendant fields by
repeated action of the supersymmetry transformations. With our analysis we set the foundation
for future investigations of the stress tensor multiplet via the Nicolai map. This result has not

been published before.

1.4. Outline

This thesis is divided into two parts. In the first part, we discuss the Nicolai map and in the

second part, we discuss the stress tensor multiplet. The first part is organized as follows.

In chapter 2, we introduce the various supersymmetric quantum field theories studied in the sub-

sequent chapters. These are the 2-dimensional Wess-Zumino model, N' =1 super Yang-Mills in
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d =3, 4, 6 and 10 spacetime dimensions and N = 4 as well as maximally extended 4-dimensional
N =1 super Yang-Mills. In particular, we discuss their supersymmetry transformations, quan-

tization and, in the case of the Yang-Mills theories, gauge fixing procedure.

Chapters 3 - 6 each present the Nicolai map for one particular supersymmetric theory. We begin
with an extensive study of the Nicolai map for the 2-dimensional Wess-Zumino model in chapter
3. We formulate and prove the main theorem. In particular, we derive the R -operator and do a
step-by-step calculation of the first two orders of the Nicolai map. Moreover, we briefly introduce
an alternative approach to computing the Nicolai map developed by Lechtenfeld and Rupprecht.
Section 3.4 contains the main result, i.e. the Nicolai map for the Wess-Zumino model up to the
fifth order in the coupling constant. We briefly comment on the radius of convergence of the
Nicolai map. In the last part of this chapter, we verify our result by conducting two tests on it

similar to (1.3) and (1.4). They correspond to the two statements of the main theorem.

In chapter 4, we discuss the Nicolai map for ‘off-shell’ V' = 1 super Yang-Mills in four dimensions.
Since super Yang-Mills is a gauge theory, we adjust the main theorem from before by demanding
that the Nicolai map is gauge invariant. The new theorem is then briefly proven. The ‘off-
shell” supersymmetry necessitates the introduction of rescaled fields to derive the R4-operator
in general gauges. The main result of this chapter is the second order ‘off-shell’ A" =1 super
Yang-Mills Nicolai map in axial gauge in section 4.5. Similar to the previous chapter, we verify

the result. In section 4.7, we discuss a potential simplification of the ‘off-shell’ Nicolai map.

In chapter 5, we repeat the discussions of the previous chapter but for N'=1 super Yang-Mills
with ‘on-shell’ supersymmetry. The ‘on-shell’ supersymmetry will restrict the Nicolai map to the
Landau gauge but allow for a construction in d =3, 4, 6 and 10 dimensions. Moreover, there is
an extra step in constructing the R -operator where we have to prove that it acts distributively.
But we are no longer required a detour via rescaled fields to compute the Nicolai map. The
main result of this chapter is the fourth-order Nicolai map. The first three orders are given in
section 5.4 and the entire expression is provided in appendix C. Again the result is tested. In
section 5.5, we discuss the renormalization properties of the R -operator and the Nicolai map in
different supersymmetric theories. In section 5.7, we point out an ambiguity in the Nicolai map.
We show that a different map up to the third order exists specifically for d = 6 dimensions. In

the last section, we test this additional result.

In chapter 6, we discuss the R 4-operators and Nicolai maps for maximally extended N = 1 super
Yang-Mills and N/ = 4 super Yang-Mills. Both R4-operators are rather cumbersome compared to
the N =1 super Yang-Mills R4-operator from the previous chapters. Thus, we will not compute

any Nicolai maps. Instead, we prove that the ‘on-shell’ A/ =4 super Yang-Mills Nicolai map



1. Introduction

can be obtained from the 10-dimensional ‘on-shell’ N'= 1 super Yang-Mills Nicolai map by the
means of dimensional reduction. Furthermore, we comment on the calculation of correlation

functions, BPS operators and the large N limit in the context of the Nicolai map.

In chapter 7, we demonstrate a perturbative application of the Nicolai map. We use the previ-
ously obtained fourth-order Nicolai map to compute the vacuum expectation value of the infinite
straight line Maldacena-Wilson loop in N = 4 super Yang-Mills to order ¢® (for all N). This

chapter marks the end of our discussion of the Nicolai map in this thesis.

The second part of this thesis is much shorter. It consists only of the two chapters 8 and 9. In
chapter 8 we introduce the superconformal algebra psu(2,2|4) and its unitary representations.
Moreover, we discuss multiplet shortening, anomalous dimensions and conformal correlation
functions. In chapter 9 we present the explicit field content of the N = 4 stress tensor multiplet.
Some general properties of the multiplet are discussed and we demonstrate how to obtain the
descendant fields in the multiplet from supersymmetry transformations of the primary field.

Furthermore, we derive a generalization of (1.6) for correlation functions including spinor fields.

In the final chapter 10, we briefly review our most important results and give an outlook into

the future of the Nicolai map.

There are three appendices. Appendix A contains our notation and conventions for spinors,
gamma and sigma matrices in various dimensions. Also, we collect some important formulae. In
appendix B we review the calculation of bosonic and fermionic functional determinants. Finally,
in appendix C, we present the N'= 1 super Yang-Mills Nicolai map in Landau gauge and d = 3,

4, 6 and 10 dimensions up to the fourth order in the coupling.

10



2. Aspects of Supersymmetric Field Theories

In this chapter we establish the technical foundation for the first part of this thesis. We begin
with a brief overview of the notation and conventions. Then we discuss the super Poincaré alge-
bra and its representations. Finally, we introduce three supersymmetric field theories. Namely
the 2-dimensional Wess-Zumino model, N' = 1 super Yang-Mills and A = 4 super Yang-Mills.
Good references for the topics presented in this chapter are [64-67] and [68].

2.1. Notation and Conventions

In the following, we consider various supersymmetric field theories. Generally, we work in
Minkowski space and only for the 2-dimensional Wess-Zumino model in Euclidean space. In

Minkowski space we use the mostly minus metric n*¥ with pu,v =0,...,d —1 and signature
(+,—,...,—). The Clifford algebra is

{v*, 7" =20 (2.1)

In the case of the 2-dimensional Euclidean space n*¥ is replaced by 6** and the metric is only plus,
i.e. (+,+). This change of the signature will have consequences on the subsequent definitions.
We will highlight them when discussing the Wess-Zumino model and stick with Minkowski space

for now.

In the first part of this thesis, we predominantly work with Majorana spinors. They carry
one spinor index «,8 =1,...,r, where r counts the number of ‘off-shell’ fermionic degrees of
freedom. Majorana spinors are real spinors with A = A7C, where C is the charge conjugation
matrix and A = Afy. In general we will suppress spinor indices by writing e.g. (/_\)\) = AoAa OF
(MHN) = S\O/ygﬁ)\lg. All other spinor conventions and some useful formulae are summarized in

appendix A.

Traces over the spinor indices are denoted by tr with

trl=r. (2.2)

11
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The trace over a single gamma matrix vanishes. Traces over products of gamma matrices are

obtained recursively using the cyclicity of the trace

n

tr(y#...yHn) = Z(—l)i /i ] LI L N (e (2.3)
=2

where the hat indicates that 4*¢ is excluded from the product.

In a non-abelian gauge theory, the fields carry an additional index a,b=1,...,|G|, with G the
gauge Lie group and |G| the dimension of G. The generators of the Lie algebra g associated to

G are denoted by t*. fo¢ are the real totally anti-symmetric structure constants with
[t 7] = i fabese, (2.4)
The structure constants satisfy the Jacobi identity
fabe pade | pabd paec | pabe pacd _ (. (2.5)

The gauge group of super Yang-Mills field theories is usually U(N) or SU(N), depending on
the application. The dimension of U(N) is N? and the dimension of SU(N) is N?—1. In either

case, the structure constants of the associated Lie algebras obey
fabz:fabd — N(SCd ) (2.6)

In the fundamental representation of u(N) (respectively su(/N)), the generators t* are hermitian

N x N matrices with

#94% = Cpl (2.7)

and the quadratic Casimir Cp = & for u(N) (respectively Cr = N;]; L for su(N)). Furthermore,

in the case of su(N) the t* are traceless. The trace over the representation space is denoted by

tr, with
atb 1 ab
tre(1=N and tr.(t%’) = 55 . (2.8)

The remaining pieces of notation are specific to the supersymmetric field theories and will be

introduced alongside the latter.

2.2. The super Poincaré Algebra

Any relativistic field theory is invariant under the Poincaré algebra
[Py, P] =0,
(M, Mp\] = i(nupMyx —uaxMyp — up My + 103 M,,) (2.9)
(M, Py] = i(mua Py — v Py)

12
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where P, is the generator of translations and M, is the generator of Lorenz transformations.
The supersymmetric Poincaré algebra is a graded extension of the Poincaré algebra. It intro-
duces N generators of supersymmetric transformations Qé (with A=1,...,N), which transform

bosonic states into fermionic states and vice versa, i.e.
@ |boson) = |fermion) and @ |fermion) = |boson). (2.10)

The new relations to supplement (2.9) are

{Q4,Q8)Y =" ("")ap Py,
{Qa,QF}={Q2.QF =0,
[P Q4] = [P, Q4] =0, (2.11)
My, Q2 = = (s @)

[Mum Qé] = _%(QA ’Yuu)a .

Supersymmetric field theories are constructed from representations of the super Poincaré alge-
bra. Each of these representations contains an equal number of bosonic and fermionic states.
Furthermore, all states in one representation have the same mass. The set of states forming
a representation of the supersymmetry algebra is called a multiplet. In four dimensions, the
maximum amount of supersymmetry of a multiplet with spin <1 is A’ =4. If we allow for spin

< 2 in our multiplet, we can go as high as N’ = 8 supersymmetry.

To formulate a supersymmetric field theory, we must represent the supersymmetry algebra on

fields. To this end, we introduce the Majorana spinors €2 with
{eleft=1{e0. Q5 =...=[Pu,el] =0 (2.12)
such that the superalgebra (2.11) can be expressed only in terms of commutators, i.e.

(£Q),(Qe)] = (£7"') Pu,
(£Q), (EQ)] = [(Qe),(Qe)] =0,

M)

[P, (EQ)] = [Py, (Q2)] =0, (2.13)
(M, (2Q)] = — 5 ().
[M,uua (QE)} = _%(Q7uug) .

We used (Q) =£4Q4. A (component) multiplet (A,4),...) is a set of fields on which we define

the infinitesimal supersymmetry transformation ¢

SA=(EQ+Qe)x A, &):=(EQ+Qe)xv, ... (2.14)

13



2. Aspects of Supersymmetric Field Theories
The supersymmetry generators Qé have mass dimension % Thus a field of mass dimension [
transforms into fields of mass dimension l+% and derivatives of fields of lower mass dimension.

The transformations are such that the supersymmetry algebra (2.13) closes on the multiplet
[01,02] A = [(E17"'e2) — (Eav!'e1)|PuA = —i[(E17!e2) — (E2vMer)]0A, ... (2.15)
Here we have used that P, = —i0,. We define b := [(E9y/e1) — (€17*€2)] such that
[01,02] A =1bMO,A, ... (2.16)

If the multiplet in question is a gauge multiplet, the supersymmetry algebra closes up to a gauge

transformation
[01,02] A = ib" 0, A" + Sgange A, ... (2.17)

For some supersymmetric field theories, the supersymmetry algebra (2.16) will close only upon
evoking the field equations of motion. We will call such theories ‘on-shell’ supersymmetric field
theories. If the algebra closes without the equations of motion, we call the field theory ‘off-shell’
supersymmetric. For some theories such as A =1 super Yang-Mills in 3, 6 and 10 dimensions or
N =4 super Yang-Mills in 4 dimensions, there are no ‘off-shell’ formulations with finitely many

auxiliary fields'.

2.3. The Wess-Zumino Model

In this section, we discuss various aspects of the 2-dimensional Wess-Zumino model.

2.3.1. The Action

The Wess-Zumino model was first introduced in 1974 [5] as a 4-dimensional supersymmetric
field theory describing a scalar field A(x), a pseudoscalar field B(x), a four-component Majorana
spinor ¢, (z) and two auxiliary fields F(x) and G(z). In its 2-dimensional version, the model
describes a scalar field A(z), a two-component Majorana spinor v, (z) and one auxiliary field
F(z). Since Majorana spinors are real, the 2-dimensional Wess-Zumino model has two fermionic

and two bosonic degrees of freedom. The action is given by [70-72]
1 ) - _
Sws =5 [ 0 [0, A) @A)+ 2ip(A)F+ F2 4+ (@7 0,0) + (A0 . (218)

where p(A) is some polynomial in A. The spinor indices have been suppressed by using the

shorthand notation 41, = (¥1)). For the Wess-Zumino model, we work in Euclidean spacetime

! Despite some serious attempts (see for example [69]) this has never been proven.

14
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where the gamma matrices satisfy the Clifford algebra relation {~#,~v"} = 26" with signature
(+,4). A priori, one would expect a factor of i in front of the fermionic terms in the action.
However, with the change in the signature, this factor gets absorbed in the definition of the
gamma matrices. Moreover, the Euclidean signature modifies the supersymmetry algebra (2.11)
such that there is an additional factor of 4 on the right-hand side. In particular, the first relation

becomes

{Qa:Qp} =i(v")apPu- (2.19)

Finally, we must adjust our notion of Majorana spinors because, in Euclidean spacetime, we
cannot have A = Afg. There are several approaches to this problem by Zumino [73], Schwinger
[74, 75] and Fubini, Hanson and Jackiw [76]. However, here we will follow the work of Nicolai
[34, 77] (see also [78] for a summary). Nicolai proposed to drop the usual hermiticity condition
of the Euclidean action introduced by Zumino in favor of Osterwalder-Schrader positivity [79].
This leads to A := AT'C, with the 2-dimensional charge conjugation matrix C, as a definition of
\. The advantage of this approach is that it preserves all the usual Majorana spinor relations
(see appendix A) as well as the supersymmetric Ward identities between fermions and bosons.
So, in particular, it is possible to translate between correlation functions in Euclidean spacetime

and Minkowski spacetime.

Thus we have discussed all peculiarities of Fuclidean space and can now study the properties
of the action (2.18). First and foremost, it is invariant under the following supersymmetry

transformations
A= (Ye), o= (Ve)aOyA—icaF, OF =—i(e9"0,1), (2.20)

where ¢, is a constant two-component Euclidean Majorana spinor. These variations satisfy the

supersymmetry algebra (2.19)
[01,02]A = =010, A, [01,02|00a = —b"Outhe, [01,02]F = —b'O,F (2.21)

with b* = [(EayHe1) — (€17He2)] as above. To show this, one needs to use the Fierz identity for
2-dimensional gamma matrices (see appendix A). The relations (2.21) differ from (2.16) by a

factor of 1.

The action (2.18) may be simplified by integrating out the auxiliary field F', i.e. we replace all

instances of F' by their corresponding (algebraic) equation of motion

F =—ip(A). (2.22)

15



2. Aspects of Supersymmetric Field Theories

Furthermore, we choose the simplest non-trivial example p(A) = mA+ AA3 for the polynomial
p(A), where m is the mass and \ is the coupling constant. Both m and A are assumed to be

positive such that p’(A) > 0 for all A (see [35]). Hence the action (2.18) becomes
1 _ _
Sus =5 [ 0 [, A) @A)+ (mA+ D+ (57 0,0) + (m+ A @) . (2:28)

We distinguish between the ‘off-shell’ and ‘on-shell’ action by writing Sy.[A; A, F,¢] for the
former and Sy,[A; A,1] for the latter. Thus the absence of the auxiliary field is immediately

evident. The ‘on-shell’ supersymmetry variations are
0A=(ve), Otho=(7"e)aluA—ca(mA+AA?). (2.24)

With these variations, the supersymmetry algebra (2.19) closes only upon evoking the equations
of motion for ¢,. The ‘on-shell’ action (2.23) has one fermionic and one bosonic degree of
freedom. Compared to (2.18), this is only half the fermionic and bosonic degrees of freedom.
The bosonic degrees of freedom are reduced by the elimination of the auxiliary field. The
fermionic degrees of freedom, on the other hand, are halved because 1, must obey its equation
of motion to close the supersymmetry algebra. Moreover, we obtain the expressions for the
bosonic and fermionic propagators from the action (2.23) by collecting the terms quadratic in

A respectively ¢,. The free, i.e. A =0, bosonic propagator C(z —y) is defined via
(~O+m?*)C(z —y) = (z —y) (2.25)
with the Laplacian [0 = 0,0" and

ko. eikx
Clz) = / G (2.26)

The fermion propagator ¢(z)1(y) = S(x,y; A) is defined via the Dirac equation

[579+m+3)u42(x)]w 7(x)zﬁg(y) =dap0(z—y). (2.27)
In the limit A = 0, we obtain the free fermionic propagator
So(x —y) = (=P +m)C(z —y). (2.28)

The bosonic propagator is symmetric under the exchange of x and y, i.e. C(z—y) =C(y —x).

Derivatives act on the first argument unless indicated differently. In particular, we have

0,C(r 1) = 50 —9) = —5 0o =9) = —5 o Cly—a) = ,Cly=a).  (220)
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2.3. The Wess-Zumino Model

2.3.2. Correlation Functions

The correlation function of a set of operators O;(x1)...On(xy,) in the ‘on-shell’ Wess-Zumino

model is given by
(O1(x1) ... Oplzn))y = / DA Dy e~ 5w=NAY O (21) ... Oy (2). (2.30)

The correlation function is automatically normalized to (1)), = 1. It was first shown by Zumino

in 1974 that this is a general feature of any supersymmetric field theory [22].

From now on, let us assume that the operators Oy (z1)...Op(zy,) are purely bosonic, i.e. they do
not depend on the spinor field 1,. This motivates the introduction of the free bosonic correlation

function
(O1(21)...On(an))y = / DoA e 550941 O (21)...On(n), (2.31)

where DyA = DA det(d+m)/? is the free measure and Sy, [0; A] denotes the bosonic part of the
action (2.23) at A = 0. The normalization constant det(@+m)'/? in the free measure is chosen

such that (1), =1, i.e.
(1), = /DOA e~ SBl0A] — /DA det(@+m)V/? ez PrACDHmHA _ g (2.32)
In the last step, we computed the functional determinant
/ DA ¢ 5[ PrACTEMIA _ qot(_0 4 m?) 12 (2.33)

and used det(—0+m?)~"/2 = det(d#+m) /2. See appendix B for an introduction to computing
functional determinants. Finally, if O;(x1)...Op(xy,) is not only bosonic but also independent

of the coupling A we obtain

(O1(@1) .- On(@a))y| = (O1(1)...On(wn))s - (2.34)

Free bosonic correlation functions are computed using Wick’s theorem

(A(@)A(y))o = Alx) Aly) = C(z —y), (2.35)

(A
where C(x) is the free bosonic propagator (2.26). The free bosonic correlation function of more
than two fields is the sum of all possible Wick contractions, where terms containing uncontracted
fields vanish. Because the Majorana spinor 1, appears only quadratically in the action (2.23) we
can integrate out the fermionic degrees of freedom in any correlation function. If the correlation

function in question is purely bosonic, we obtain

/m exp [—; /d%s (@ +m+3NAZ)

= det(§+m+324%)12 = det(@+m)" /2 det(1+3ASp * A%)1/2,

(2.36)
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2. Aspects of Supersymmetric Field Theories

where Sy is the free fermion propagator from (2.28) and * denotes the convolution. The first
term is the normalization factor from above and the second term is the Matthews-Salam-Seiler
(MSS) determinant Aysg [46, 47]. This determinant will be key to the main part of this work.
In particular, we shall be interested in the perturbative expansion of its logarithm in powers of

the coupling constant A. Using the well-known relation det M = exp(Tr(logM)) we find that
1
log(Aniss[A; A]) = 5 Trlog 143280+ 42 . (2.37)

The capitalized trace Tr is over both the spinor indices and the convolution, i.e. in the pertur-
bative expansion of the logarithm it identifies the last variable with the first and integrates over

the remaining free variable. Expanding the right-hand side in powers of A yields

%Trlog [1+3A50 *Aﬂ %ﬂ (so A2) - %”ﬁ (50 « A% S, *A2> 9
+92>\3Tr(S0*A2*SO*A2*SO*A2)+ |
For the leading term, we obtain
91& (505 42) =22 2@ [0 4m) C0)4) =3mA [ @2 CO @), (239)
The propagator C(0) is formally divergent but can be regulated. For the second term, we find
- %Tr (SO * A% % S * A2)

:_if/ﬁ%d@t4¢@+woo@—mA%w«v+wwc@—mA%@] 010

2
_9;\/d2x d?y 8MC($_y)A2(y)3uC(y—x)A2(x)

9m2\2

[ @y Cla—y Ly —2)A@).
The higher orders are computed accordingly.

A correlation function where the fermionic degrees of freedom have been integrated out is denoted

by a single bracket
(O1(21) ... On(20))y, = / DyA e 5= O (1) ... O (), (2.41)

with DyA = DA det(d +m)/2Angss[A; A].  This definition is such that (O;...0 'aho =

(O1...0y), for a A independent set of bosonic operators.
Finally, we may also integrate out the fermionic degrees of freedom in a correlation function

containing spinor fields. Consider the example

(A (m)e(2)), = (A@)Y)Y(2)), = (A(2)S(y, 2 A)),. (2.42)

(I
Again this is Wick’s theorem in action; however, when applying it to interacting, i.e. A de-
pendent, correlation functions with fermions, the contractions refer to the interacting fermion

propagator S(z,y; A).
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2.3.3. Ward ldentities

Ward identities can be thought of as the quantum version of Noether’s theorem. The invariance
of the Wess-Zumino action under the supersymmetry transformations leads to the conservation
of its correlation functions. Let X[A,1] be an arbitrary string of operators depending on the
scalar field A and the Majorana spinor 1,. We introduce the anti-commuting supersymmetry

variation &, via § = e,0,. The Ward identity is
(0o XA Y]), =0. (2.43)

To prove the Ward identity, we first show that

/ DA D 5, X[A, )] = 0. (2.44)
Using (2.24), we write the supersymmetry variation as the sum of a bosonic and a fermionic
derivative
_ g9 Iz 3
= —tas7 + [1hs(0uA) — bap(mA+ 1A% 5y (2.45)
Thus the integral becomes
/DADdeAw /szwa/DA(SXAw
2.46)
0X[A Y (
+/DA ygB(aMA)—éaB(mAHA?’)] /sz 5[1/151

First, we consider the second term. Let 6 be a Grasssmann variable. Recall that the Taylor
expansion of any function f(6) terminates at the second order, i.e. f(0) =a+bf. Moreover,

recall the Berezin integral (see appendix B)
/d09:1, /dQ:O. (2.47)
Thus it follows
/de 110 /de b=0. (2.48)

This statement extends to functional integrals and thus, the second term in (2.46) vanishes
because the integral over 1 is zero. Then we consider the first term. Here we have a total
derivative. Thus we expect to obtain a boundary term. However, we assume that all fields

vanish at the boundary. Hence we conclude

/ DA DY 5, X[A )] = 0. (2.49)

In order to turn the left-hand side of (2.49) into a correlation function, we have to insert the

exponential of the action in the integral. Since d,Sw,[A; A,1] =0 we get
S NAY (5, XA, ]) = 0o (€S AY XA, 9] (2.50)

Together with (2.49) this implies (2.43) and concludes the proof.
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2. Aspects of Supersymmetric Field Theories

2.4. N =1 super Yang-Mills

This section discusses various aspects of N'=1 super Yang-Mills.

2.4.1. The Action

Four-dimensional A/ =1 super Yang-Mills is a massless non-abelian gauge theory describing a
gauge field Ay, a four-component Majorana spinor A\f, and a real auxiliary field D* [7, 8]. All the
fields are in the adjoint representation of the gauge group U(N) or SU(N). The gauge invariant

action is given by
1 4 1 a papv i Na a 1 a a
Sinv: d*z _ZF;U/F _5)‘ Y (D,u)\) +§D D s (251)
with the standard definitions

Ff, =0, A, — 0, A, +gf ™ AL AL (2.52)
(Dpda)® = 0u\% + g f** AL NG, (2.53)

for the field strength tensor and covariant derivative. The coupling constant is denoted by g.

The superscript 1 in Si  indicates the one supersymmetry (opposed to the four supersymmetries

inv
in A/ = 4 super Yang-Mills). In its ‘off-shell’ version, N'= 1 super Yang-Mills has four fermionic
degrees of freedom from the Majorana spinor and 3+ 1 bosonic degrees of freedom from the gauge
field and the auxiliary field. Notice that the gauge field only has three degrees of freedom and
not four because of the gauge condition. The action (2.51) is invariant under the supersymmetry

variations

. a a 1 v a . a a = a
04, = —i(N"pe), X = =5 ("e)ak, +i(1°€)a D", 6D = —(e7°y"(DuX").  (254)
These variations satisfy the supersymmetry algebra
[61,02]AY, = bV F,,  [01,02] A5 = ib"(DyA)g,  [01,00]D* = ib"(D,D)*. (2.55)

Notice that " Fy, = b0, A}, —b”(D,A,)* in agreement with (2.16). Both the invariance of the
action under the supersymmetry transformations and the closing of the supersymmetry algebra

requires the 4-dimensional Fierz identities for Majorana spinors (see appendix A).

Similar to the Wess-Zumino model, it is possible to integrate out the auxiliary field D® in the

action (2.51). The relevant equation of motion is D® =0 and we obtain

1 -
Sho= / dz {—4F§VF‘L“V—;)\“7”(DMA)“ . (2.56)
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2.4. N =1 super Yang-Mills

. ) ) . Real ‘on-shell’
Spacetime Dimension Spinor Type
fermionic DoF
3 Majorana 1
4 Majorana (or Weyl) 2
6 Weyl 4
10 Majorana-Weyl 8

Table 2.1.: Possible spacetime dimensions and their spinor types for ‘on-shell’ N' =1 super Yang-Mills.

One particular feature of the ‘on-shell’ /=1 super Yang-Mills theory is that it also exists in
other spacetime dimensions than four [9]. To this end, let us assume for a moment that A% is a
Dirac spinor. In even spacetime dimension d a Dirac spinor has 2-2%2 real degrees of freedom,
i.e. twice as many as a Majorana spinor. In odd spacetime dimensions, a Dirac spinor has
2.2(@=1)/2 real degrees of freedom. Since we are in the ‘on-shell’ formulation A% must obey
the Dirac equation to close the supersymmetry algebra. This halves its degrees of freedom and
the spinor now has %~2 -24/2 = 24/2 (yespectively 2(4=1/2 for odd d) real degrees of freedom.
The ‘on-shell’ gauge field, on the other hand, has d — 2 degrees of freedom. We see that these
numbers do not match for any d. Hence we must implement further constraints on the Dirac

spinor to reduce its degrees of freedom.
If the spacetime dimension is d =1,2,3,4 mod 8 we may impose the Majorana condition
=T, (2.57)

rendering the spinor real and reducing its degrees of freedom by a factor of 2. In any even

number of spacetime dimensions, we may impose the Weyl condition

1
A\ = 5(1—7“”1)»1, (2.58)

which also halves the number of degrees of freedom. Finally, we may impose both conditions
simultaneously if the spacetime dimension is d =2 mod 8. This reduces the degrees of freedom
by a factor of 4. In table 2.1, we have summarized the spacetime dimensions for which we
can match the fermionic and bosonic degrees of freedom and which spinor constraints we have
to impose to do so. There are no solutions for d > 10 since the number of bosonic degrees of
freedom grows linearly while the number of fermionic degrees of freedom grows exponentially
and there are simply no other conditions to implement on the spinor. We conclude that ‘on-
shell’ A" =1 super Yang-Mills exists in d = 3, 4, 6 and 10 spacetime dimensions. Moreover,
the dimension of the corresponding Clifford algebra representation is related to the number of

spacetime dimensions by

r=2(d—2). (2.59)
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2. Aspects of Supersymmetric Field Theories

We will later re-derive this equation in the context of the Nicolai map. In the following, we want
to continue working with Majorana spinors only. Thus the case of d = 6 is formally excluded
from our derivations. However, let us emphasize that our results do not depend on the choice
of spinors and thus are also valid for d = 6. In particular, we may repeat all calculations using

Weyl spinors instead of Majorana spinors.

Upon using the appropriate Fierz identities, the ‘on-shell” action (2.56) is invariant under the

following supersymmetry transformations

a av a 1 v a
0A = —i(A"yue), OAG = —5(7“ €)all - (2.60)

(63
In the ‘on-shell’ formulation, the supersymmetry algebra

[51,52]14 = Zby [(51,(52])\2 = ib“(Du)\)g (2.61)

a
u,u ’
closes up to terms proportional to the equations of motion

7 _
(DB = (0, (DA =0. (2.62)

The N =1 super Yang-Mills fermion propagator i\*(z)A’(y) = S%(x,y; A) is defined via the

Dirac equation
(" Do) (@) Ny () = 0S5 1) (2.63)
The limit g = 0 gives us the free massless fermionic propagator So(z —y), which obeys
Y 0uSo(r —y) =d(z —y). (2.64)
This implies So(z —y) = —v*9,C(z — y), where C(z) is the free (massless) scalar propagator?
Ole) = / (gi’)“d ek';x (2.65)

The massless scalar propagator obeys —[JC(z) = §(x). The free bosonic (or Feynman) propa-
gator C,(x) is obtained from the first term in the action (2.56) at g =0

1
/ a's Fppem| =3 / dly AC[—P D)4 040"] A2 (2.66)

However, the d x d matrix [—n**O+ 0*0"] is singular and cannot be inverted. The singularity

stems from the gauge invariance of the action. A general gauge transformation is of the form

Al () = Ay (@) + (Dpa)*(z) (2.67)

2We used the same symbols as for the massive propagators in the Wess-Zumino model, but it should always be

clear which one we refer to from the context.
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2.4. N =1 super Yang-Mills

For all Af(z) = (Dya)?(z), the field strength tensor term of the action vanishes, thus making

the inverse Feynman propagator singular. Furthermore, also the path integral
/ DA ¢ WinvlgiAA] (2.68)

is not well-defined because we are redundantly integrating over field configurations related by

gauge transformations (2.67). These two issues can be resolved by a gauge fixing procedure.

2.4.2. The Faddeev-Popov Procedure

In the following, we describe the Faddeev-Popov procedure [80]. It will fix the problem of
overcounting physically equivalent field configurations and subsequently make the Feynman

propagator and path integral well-defined.

Let G*(A) be an arbitrary gauge function. Physically equivalent field configurations are removed

from the path integral by demanding that G*(A) = 0. We insert a 1 in (2.68) in the following

way
0G4 (A«
- / Da 6(G(A%)) det (g;)) , (2.69)
!
where A% is the gauge transformed field
ayaia iga®t® b b i —igacte
(A%)a0 = 19 [Aut + gaﬂ} e (2.70)
The infinitesimal form of the transformation is (2.67)
(A% = A%+ (Dpa)®. (2.71)

Since the super Yang-Mills action is gauge invariant, we can replace A by A% in (2.68). Further-
more, also the path integral measure is invariant under this transformation, i.e. DA = DA“.
Thus we have

/DA e~ WSinv[gi AN — /DQ/DAO‘ e~ Sinvlg AN 5(Ga(AY)) det <5Q5(A)) . (2.72)
o

Subsequently, we can rename A® to A. For linear gauges the Faddeev-Popov determinant
det (%) does not depend on « and hence the « integration factors out. Thus [Da is just a
constant. To continue, we specify the gauge function a bit further. Let G¢(A) = GF Af(z) —w?(7)
with some scalar function w®(z). Then the Faddeev-Popov determinant becomes

det <5g5(0‘:m) — det(G"D,,) . (2.73)
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2. Aspects of Supersymmetric Field Theories

Similar to (2.32), we can express the determinant as a path integral. To this end, we introduce

the anti-commuting Faddeev-Popov ghost fields C' and C and write
det (G"D,,) = / DC DC' exp {—; / d4x C°GH(D,C)?| . (2.74)
See also appendix B for a derivation of this equation. Now (2.72) reads

/ DA ¢~ WSmvlgAA = [ / Da] / DA DC DC §(GH A% — w*)
(2.75)

% efiSim,[g;A,/\]f%fddx C*GH(D,u0)*
This equation is true for any w. Hence we can integrate over all w*(x), with a Gaussian weighting

function centered on w® =0, provided we introduce a normalization constant N(§). Thus we

obtain
/ DA ¢ Sml5AN = N(g) { / Da} / Duy o3 f At v / DA DC DC §(GHA% — )

% efiSmV[g;A,)\]f%fdd:v CeGH(D,C)*
B (2.76)
=N(¢) {/Da} /DA DC DC

y efiSinv[g;A,)\]fifddz (GHA%)(GY A%)—1L [ddz CagH(D,C)e

where £ is an arbitrary constant. In the second step, we used the delta function to integrate over

a

w®. For convenience, we will remove the unimportant normalization constant N(§)[[Da] by

simply redefining the path integral measure. Furthermore, we introduce the gauge-fixing action
1 1
Sef = /dd:c {%(Q“AZ)(Q”AZ‘) + iC“g“(DMC)“ . (2.77)

When computing correlation functions, we must add this term to the gauge-invariant action
(2.56) to obtain a finite result. Thus the ‘on-shell’ correlation function of some operators

O1(x1)...On(xy) is given by
(O1(21) ... On(an)), = / DA D) DC DC e~ SinlsAN=iSutls:ACCl 0 (1) ... Op(2y). (2.78)

The ‘off-shell” version of this definition has an additional path integral over the auxiliary field
D% and the corresponding ‘off-shell’ action in the exponent. Integrating out the auxiliary field

simply yields
/DD g3 d'e DD _q (2.79)

Furthermore, the gauge fixing action introduces the ghost propagator C%(x)C®(y) = G%(z,y; A).
It is defined via

GHM(D,C) (2)CP(y) = 875 (x —y). (2.80)

In the limit g =0, we obtain the free ghost propagator Go(z —y). The explicit form of the ghost

propagator depends on the choice of gauge.
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2.4. N =1 super Yang-Mills

2.4.3. Choosing a Gauge

We review several common gauge choices and their implications. Popular gauge choices where
the Faddeev-Popov determinant does not depend on « are the Re type gauges G%(A) = oM Aj, and
the axial gauge G*(A) = nt Ay with nynt =1. If n,n* = 0, the axial gauge is called light-cone
gauge. In the following, we simplify the notation by writing G*(A) = grAj, with Gt =0t or

G* = n# depending on the type of gauge in question.

At first, consider the R¢ type gauges. When adding the gauge fixing term (2.77) to the action
(2.56) the defining equation for the Feynman propagator becomes

1
[—n’“’D+ (1—§> 8“81’] Co(z—y)=06"0(z—y). (2.81)
This equation is well-defined and solved by

Couo=9) = [~ (1 22| Cla—y). (2.82)

So far, we have kept the gauge parameter ¢ arbitrary. The Feynman propagator becomes
particularly simple in the Feynman gauge £ = 1. When computing correlation functions, this is

usually the preferred choice.

Another common choice is the Landau gauge £ = 0. In the limit £ — 0 the functional

o3¢ [ dle (90A)? (2.83)
oscillates very rapidly, except near 9" Af, = 0. Thus in the ‘on-shell’ formulation (i.e. when

minimizing the action), the functional acts like a delta function imposing the gauge condition.

Now consider the axial type gauges G* = n#. In this type of gauge, the Feynman propagator

becomes

n,0, +n,0 n2—¢0
Cov(®—y) = 1w — #(8-71) £y (8'5)2 0,0, | Clz —y). (2.84)

Compared to the Feynman propagator in the R¢ type gauges, this is a very complicated expres-
sion. However, there are also advantages to using axial type gauges. For example, the ghost
fields decouple from the gauge field and can thus always be integrated out in the path integral.

This is because for n#Aj =0

1 d,.. Ha a 1 d,. Ha a

§/d z C'n"(D,C)" = i/d x C'nt(0,C)". (2.85)
So there is no dependence on the gauge field. Furthermore, the light-cone gauge (n? = 0) has

been used to prove the ultraviolet finiteness of N’ =4 super Yang-Mills [13, 14].
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2. Aspects of Supersymmetric Field Theories

2.4.4. Correlation Functions
Recall the ‘on-shell’ correlation function of some operators Oy (z1)...Op(zy)
(O1(21)...On(z)), = / DA D\ DC DC e~ S l9:AN =8 A.CCL O (7). O, (2y).  (2.86)

Similar to the Wess-Zumino model also the super Yang-Mills correlation function is automatically

normalized to (1), =1. This remains true even for ‘on-shell’ supersymmetry.
For a purely bosonic string of operators O1(z1)...On(xy) we introduce

(O1(21) ... Op(x0))g = / DoA e 0 Oy (21)... 0 (z0), (2.87)
with the free measure DgA = DA det(0)"/*det(G*0,) and the free bosonic action

1 1
Shl0s] = [dla | =50,A8 =0, 4@ A — 0" A+ (@ AD(GI A (289
The free measure is chosen such that (1), = 1. If, furthermore, the set of operators does not

depend on the coupling g, we have

(O1@1) - Onlwn))y | =(O1(31)...On(an))y - (2.89)

9=0

Free bosonic correlation functions are computed using Wick’s theorem. For example, we have
(A (2) AL (y)y = Al () AY(y) = 6 Cpu(x — y), (2.90)

where Cy, (z —y) is the gauge dependent Feynman propagator. In the Feynman gauge, the free
correlator is particularly simple. Integrating out the fermion and ghost fields in a purely bosonic
correlation function is straightforward. For the fermions, we obtain the Matthews-Salam-Seiler

determinant Apss
/m exp {—; /dda: A (D N | = det (D)2 = det(d)/? det(1 - Y)Y, (2.91)
with the integration kernel
Y (2,53 A) = g f (VY )ap OuC (z — y) AS(y). (2.92)

Y is obtained by observing that @ is the inverse of the free fermion propagator Sp(z —y) from
(2.64). Again we are interested in the perturbative expansion of the logarithm of the Matthews-

Salam-Seiler determinant. We use the well-known relation det M = exp(Tr(log.M)) and obtain

log(Awsslg: 4) =  Trlog[1 - Y]. (2.93)
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2.4. N =1 super Yang-Mills

The factor % comes from the square root in (2.91). The trace Tr is over all indices and variables
of Ygf’ﬂ (z,y; A). In particular, it integrates over the remaining free variable. Subsequently, we

find
log(Aussslgi Al) =~ 1 r(y") [ e 0,00 — ) AL(w)
2
_ngabc!}cbacltr(,y,u,,)/u,yp,y)\)/dal‘r ddy

X 0,02 — y) A (1)3,C (y — 2) A ()

X (2.94)
g aoc (& am v . T
= T (P Ty )/ddw dy d’z
% 0,0 (@ — ) AS ()0, 0y — ) A5 (2)0,C (2 — 2) A7 (2)
+0(gY).
The first term cancels since f2% =0. For the second term we use f2¢f%%€ = —N§°. In the third

order, the structure constants do not simplify. Computing the traces over the gamma matrices

yields the final result

rg’ N
log(Anss|g; A]) = - /ddw d’y {

4
+20"C(z —y) A} (y)0"Cy —x) Ag(z)
—0"C(w—y) A" (y)0,Cy —2) Ag(x) |

n 7”693fadmfbemfcde /ddx ddy d’z {
—60"C(x —y) Ay (y)0"Cly — 2) A (2)9,0 (2 — ) A () (2.95)
+20"C(z —y)AL(y) 0P Cy — 2) AN (2)91C (2 — 2) Al ()
+301C(x —y) AL ()0 Cy — 2) AS (2)01C (2 — x) A (x)
—9"C(a —y) Ay (y) O Cy — 2) A5 (2)9°C (2 — ) AS (x)
—|—38“C(:U—y)Ab"(y)a)‘C(y—z)A,‘fL(z)ﬁ)\C’(z—x)AZ(m)}

+0(g").

The MSS determinant is invariant under the choice of gauge. The ghost (or Faddeev-Popov)
determinant, on the other hand, is gauge-dependent. However, its calculation is much simpler.

In the R¢ type gauges, we find
_ 1 _
/ DE DC exp [—2 / e C°9™(D,C)?| = det (9"D,,) = det () det (1 — X) (2.96)
with

Xz, A) = gf *° C(x —y) AS (y) 0L . (2.97)
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2. Aspects of Supersymmetric Field Theories

Here the relevant observation is that in the R¢ type gauges the free ghost propagator is given

by Go(x —y) = —C(x —y). The logarithm of the Faddeev-Popov determinant is given by
log(Arplg; A]) = Trlog[1 — X]. (2.98)
Expanding the logarithm and computing the trace yields
log(Arplg: A) =~ [ d’a "Cla—a) 4} (a)

2
g°N a a
—i—T/dda: ddy oMC(x —y)Ay(y)0°C(y — ) A (x)

3
_%fabc'fbdefdam/ddx ddy d? (2.99)

x 07C(x —y) A, (y)o'C(y — 2) AL (2)0"C (2 — ) A ()
+0(gh).

Again the first term vanishes since f% = 0. In the axial type gauges, the integration kernel for

the Faddeev-Popov determinant is given by
X (z,y; A) = g f**°Go(z —y)n- A(y), (2.100)
where Go(z —y) is the free axial ghost propagator. It solves the equation
n"0,Go(x—y) =0(x—y). (2.101)
In four dimensions and for n,n* =1 it is given by

Go(z) =e(n-2)0®) (z1) = —Go(—2), (2.102)

where £(z) is the anti-symmetric step function e(z) := ©(z) — 3 and xﬁ is the transverse coor-
dinate xﬁ :=ny,(n-z). Expanding the logarithm of the Faddeev-Popov determinant in the axial

gauge, we obtain
log(Arp[g; A]) = —gf“ab/ddx GO(x—x)n-Ab(x)
S\
+gT/dda; ddy Go(z—y)n- A%(y)Goly — z)n- A*(x) (2.103)
+0(g%).

Once more, the first term vanishes since f% = 0. Restricting ourselves to the gauge surface,
i.e. G*(A) =0, the Faddeev-Popov determinant in axial gauge becomes trivial. In the R¢ type

gauges, it remains unchanged.

As before, a correlation function where we have integrated out the anti-commuting degrees of

freedom is denoted by a single bracket

(O1(21) ... Op(an)), = / DyA e SinlsAl=8utl0:4] O, (21)... O, (), (2.104)
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2.4. N =1 super Yang-Mills

with DyA = DA det(0)"/*det(G*9,) Ansslg; A|Arp[g; A This definition is such that in the

limit (O;...0,) (O1...0y), for a g independent set of bosonic operators.

g |g=0 =
Furthermore, we may also integrate out the anti-commuting degrees of freedom in any correlation

function containing spinor or ghost fields. To this end, consider the examples

(AN W)X (), = AL N X)), = (AL(@)S (0,25 4)),  (2.105)
and

(AL CO W) (2)), = (AL (4)Co(2)), = ~i(AL@)G™(y, 5 A)),. (2.106)
Notice that each contraction of two spinor fields produces a factor of i and each contraction of
two ghost fields produces a factor of (—¢). This is due to different normalizations of the spinor
and ghost path integrals (see appendix B for details). Using Wick’s theorem, the generalization

to multiple spinor and ghost fields is immediate.

2.4.5. BRST Variations and Ward ldentities

We want to construct a Ward identity for A/ =1 super Yang-Mills similar to (2.43) for the

Wess-Zumino model. However, the complete N’ =1 super Yang-Mills action
St =S+ S, (2.107)

which is used for computing correlation functions, is not invariant under the supersymmetry
transformations (2.54) (respectively (2.60)). In particular 6, Sef # 0. Thus the expression (2.43)
must be modified for the super Yang-Mills field theory.

Combining the ‘off-shell’ supersymmetry variations (2.54) into a single equation, we obtain

./Na d 1 v a ; a Y
da = 1(A"y,) <(ﬁw )5aFuu_Z(’75)BaD )

S )
v - a a9y
“5Az \2 % (DAY a5 - (2.108)

There is no susy partner for the ghost field. Hence it transforms trivially under the supersym-
metry variation. Now let X[A,D,\,C,C] be an arbitrary string of operators. Repeating the
argument about integrals over fermionic and bosonic derivatives from subsection 2.3.3, we obtain
/DA DD DX DC DC 6,X[A,D,\,C,C]=0. (2.109)
Completing the integral to a correlation function, we obtain
(6aX[A,D,C,C]) = [ DA DD DA DC DC ¢S85 5, X[A, D, \,C,C]
g
- / DA DD DA DC DC 5, (¢ *Sh % X[4,D,).C.C)
(2.110)
+i / DA DD DA DC DC e~ Sin=iSst (5,8,) X[A, D,\, O, C]
=1 <<(6O¢ng) X[A7 D7 >‘7 C770]>>

g
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2. Aspects of Supersymmetric Field Theories

Hence the super Yang-Mills Ward identity reads

<<5aX[A,D,A,C,C]>>g =i {(6a5gt) X[A,D,\,C,C) (2.111)

.
In an attempt to develop a mathematically rigorous quantization of gauge theories, Becchi,
Rouet, Stora and Tyutin have introduced the so-called BRST (or Slavnov) variations [81-83]
which leave the entire super Yang-Mills action (2.107) invariant. For ‘off-shell’ N' =1 super
Yang-Mills, the BRST variations are
SAZ: (DMC)G, SDa:gfabCDbCC, SA\% — _gfabC)\vac7
1

$C"=—2G"(4), sC"= —%fabcobcw.

The Slavnov operator s is fermionic, .e. it anti-commutes with other fermionic quantities, and

(2.112)

it is nilpotent, i.e. s> =0. Since s(S!) =0 the Ward identity for the Slavnov variations reads

(sX[A,D,\,C,CI),=0. (2.113)
Moreover, we observe that
5aSet = — / A% G (5,G%(A)). (2.114)
So we can further modify (2.111) and obtain
(6.X14,D,C,Cl), =i( ( / 4%z C° (5aga(A))> S(X[A,D,A,G,C])>>g. (2.115)

2.5. N = 4 super Yang-Mills

In this section, we discuss various aspects of N =4 super Yang-Mills relevant to the first part
of this thesis. Further properties of the theory specific to the second part of the thesis are given
in chapter 8 and 9.

2.5.1. The Action

The 4-dimensional N' = 4 super Yang-Mills theory was originally introduced as the dimensional
reduction of 10-dimensional N' =1 super Yang-Mills [9, 10]. It describes a gauge field Aj,
three scalar fields A} (7,7 =1,2,3), three pseudoscalar fields B and four Majorana spinors A% ,

(A,B=1,...,4). The gauge invariant action is given by

1 1 . 1 .
St = / d*z {— ZF;}VFW - E(D#Ai)“(D“Al)a - §(DuBi)“(D“BZ)a
iy 3 i . i c
— SN (DA + S F NG (g AL + 58 BN (2.116)

2 . . . . . .
— T pebe pede (AVASAT AT 4 BYBS BB 424} BS A" B } ,
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2.5. N =4 super Yang-Mills

where the field strength tensor Fjj, and the covariant derivative are defined as before. The real

anti-symmetric 4 x 4 matrices o and ° satisfy
{af 0} = 20" [a},af] =2e0kak
{887y =—20", [3",p]=—2""5", [a',p7]=0.

While working with Majorana spinors, we do not distinguish between subscript and superscript

(2.117)

spinor indices A, B =1,...,4. The action (2.116) is invariant under the supersymmetry trans-

formations
0AL =i(EaX%), AL =—(EaaiPAE), 0Bf = —i(eaysBi"\B),
oo = —%(’Y“"&A)aF[fu — (Yol 5eR)a(DpAi)* — (157" Bapen)a(DuBi)” (2.118)
- gfabc ((OZQBA? - i%ﬁi&Bsz) (a%cAﬁ +i756%CB_7C') EC)Q :
Using the 4-dimensional Fierz identity for Majorana spinors and the definition
o i= [ (@ AL + 15845 B)el — Eh (0l p AL +i7584 5 BY)eh (2.119)

we can show that the supersymmetry algebra (2.118) closes ‘on-shell’. Hence up to terms pro-

portional to the equations of motion, we have

[01,02) A% = ib¥ F, — (Dyc)*, [01,02) A%, = b (DpAaa)® + 9PN, ,

(2.120)
[01,09] AS = ib" (D, A)) + g f P AS,  [81,02) B = ib* (D, B;)* + g f " BE.

Since the supersymmetry is only ‘on-shell’, the theory (2.116) has 24 3+ 3 bosonic and 4 -2
fermionic degrees of freedom.

The fermion propagator of the four Majorana spinors in the action (2.116) is
iXNa(2)A\p(y) = SHp(z,y;.9), (2.121)

where o/ = (A, A7, B) is the set of bosonic fields in (2.116). The Dirac equation then reads
[5,405“‘37“DH +igfealy o AS(x) — g f 4584 o BE (az)} S (x,y;9) = 64008 (x —y). (2.122)

The corresponding free fermion propagator is the same as for the A/ = 1 theory.

2.5.2. Dimensional Reduction

We describe how to obtain the action (2.116) via dimensional reduction of the 10-dimensional

N =1 super Yang-Mills action (2.56). Recall

1 -
Sho = [ A0 | Fpn MY - SR (D) (2.12)
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2. Aspects of Supersymmetric Field Theories

where M, N =0,...,9. This action is ‘on-shell’ invariant under the supersymmetry transforma-

tions (2.60)
_ 1
0ASy = —i(A"Tyerw), 0AL=—3 (PNewo) Fhrw, (2.124)

where €19 is a 10-dimensional Majorana-Weyl spinor (see appendix A). The first step of the

dimensional reduction is to set
63+i = 86+1l =0 for i= 1,2,3. (2.125)

This breaks the O(1,9) Lorentz symmetry of the 10-dimensional theory (2.123) down to a
0(1,3) ®0(6) ~ SL(2,C) ® SU(4) symmetry. Moreover, it implies the split of the spacetime

M

indices M = (u,4,7). Likewise, we decompose the coordinates w xM,y' 27) and the gauge

field
A (z,y,2) = (A} (2), A (x), Bj (2)) - (2.126)

Notice that the dependence on the internal coordinates y* and 27 is dropped. To decompose the

spinor field, we choose a particular representation of the 10-dimensional 32 x 32 I'-matrices

r# Z:"}/p’@:ﬂ.g, /14207172737

340 . 0 Z'Oéi .

3= ® (_W 0 ) , 1=1,2,3, (2.127)
. %

F6+1::’y5®<§i %) i=1,2,3.

The ~-matrices are given by

0 ot ~1y 0
A= <5ﬂ %) 75:< 0 ]12>’ (2.128)

with o# := (12,0%) and 6* := (19, —0c"). They satisfy the Clifford algebra relation {y#,7"} = 2nH".

The o and B* matrices are defined as

Joe . Jjo_ 7
Qi = Cijk, Q= —0y

szk = —Eijk, 634 = _B4z = —5{, ﬁfm =0.
They satisfy (2.117). All of these definitions are such that the T'M satisfy the 10-dimensional

Clifford algebra relation {I'™ TN} = 2pMN_ The eleventh gamma matrix is defined as I'y; =

_

70

— .
;= oy =0,

(2.129)

I'g---T'g and the 10-dimensional charge conjugation matrix is
. 0 14
ClO — C4® <]14 0 ) 5 (2130)

where C4y = i97yg is the 4-dimensional charge conjugation matrix. I';; commutes with all the

other gamma matrices and

CiolmCrg = —T3%,. (2.131)
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2.5. N =4 super Yang-Mills

The given representation of the 10-dimensional gamma matrices implies

a ° 0
. wWe:
Aa = (%a) with Xa‘ = 01 and ¢f = w?{i ’ 0= ol - (2132)
(0] Wi 0

This 32-component spinor satisfies the Majorana condition A% = A®TCyy as well as the Weyl

condition A% = % (132 —T'11) A®. It decomposes into four 4-dimensional Majorana spinors
2= Y42 |, (2.133)

Subsequently, we find
ATH(DLA) = Mgy (Dpda)?,
A3 (D3 A)® = ig fPeN 0l g AUNG (2.134)
AT (Do 1iN)* = =g f" Nays Bap BIAG
and
FinFO™ = F F*" +2(D, A;)* (D' A")* +2(D,, B;)*(D* B')*

. .y . (2.135)
g2 febe pode (ALAS AT A% + BYBSBY BT 4240 Bs AV BeT) |

Hence the 10-dimensional N'=1 action (2.123) decomposes into the 4-dimensional N = 4 action
(2.116). Furthermore the 10-dimensional N = 1 supersymmetry variations (2.124) imply the

4-dimensional N = 4 supersymmetry variations (2.118).

2.5.3. Maximally extended N = 1 super Yang-Mills

A different way of deriving the N' = 4 super Yang-Mills action is through maximally extended
4-dimensional A/ = 1 super Yang-Mills. From the superspace formulation of ' =1 super Yang-
Mills, it is evident that we can couple it to three copies of the 4-dimensional Wess-Zumino
model. We will not go into the details here, but in the end, the action reads (see [84] or [67] for

a review)
max 4 1 a apy i N a 1 ana
Sinv = d X — EF/»“/F — 5)\ ’}/ (Dﬂ)\) + §D _D

1 1 1 1
+ 5 (DuA) (DM A)" + 5 (D, By (D" By)" + S F{Ff 4 5 GIGY

; (2.136)
1 _ — .
— S (D) = gf " (D ALBE + (W (A} + i3 B )
1_ , 1
beaugf ™ (GUAY— ins By — S PG~ BIBY) - GAB ) |.
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2. Aspects of Supersymmetric Field Theories

This action is invariant under the supersymmetry transformations
1
SA} =iey A\, 6 = —5('7“”5)6,}75” +i(y58)aD?, 6D = —ysy* (D),
0AY =exy, 0B} =ievysx7,
OF = iey"(Dyxi)" + g™ &(AD +iys BY)A, (2.137)
0G = —&y5y"(Dyxi)* — gf *°e(BY — ins AL,

X = i(Vug)a(DuAi)a + ('YS'Y“E)a(DMBi)a + F'eq +i(756)a Gy -

In order to turn the N =1 supersymmetry into a N’ = 4 supersymmetry we integrate out the

auxiliary fields D?, F* and GY{. Their algebraic equations of motion are
D= gf*™AlBf, F{= %f“bcé‘ijk (A?Ai - B?BE) . G =gf e ALBY,. (2.138)
Plugging this back into the action, we use the Jacobi identity (2.5) to obtain

1 a a v 1 a a 1 a a
Sﬁl\,:/d‘lx {—4FMVF K +§(DuAi) (D" A;) +§(DuBi) (D" B;)

(A i _ _ ,
= SAM(DEA)" = XV (D) — g X (A +ins BN

p (2.139)
+ ekl XE (A] — 15 B)XG,

2
g b d b d b d b d
_ Zfa ¢ pade (AzAjAzAj_'_BzBJCBz B; —|—2AZ-B§Ai B]e)] .
This is almost the correct result. To write it in the form (2.116) we introduce the four Majorana

spinors A% with

A =x5 fori=1,2,3 and Aj=X\ (2.140)

(2

and the matrices o’ and 3¢ defined as in (2.129). These identifications also imply the maximally

extended N =1 version of the fermion propagator (2.121) and Dirac equation (2.122).

2.5.4. Gauge Fixing, Correlation Functions and Ward Identities

Since the 4-dimensional N' = 4 super Yang-Mills theory can be obtained from 10-dimensional
N =1 super Yang-Mills, it also inherits many properties from N = 1 super Yang-Mills. For
example, the gauge fixing procedure of N =4 super Yang-Mills is identical to that of N’ =1
super Yang-Mills. Hence the action (2.116) is supplemented by the same gauge fixing term as

before, i.e.

St =St 4 Set (2.141)
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2.5. N =4 super Yang-Mills

with
St = [ e |5 (@ A(@"42) + 501 (D,0)) (2142)
The combined action is invariant under the BRST variations
SAL=(DC),  sAT=gf AN, sBY =g BIC,
(2.143)

_ 1 ~
S\Y :_gfabC)\i)ACc’ SCva:_gga(fl)7 Sca:_%fabccbcc.

Thus, correlation functions in N' = 4 super Yang-Mills are defined in the same way as in /' =1
super Yang-Mills. Moreover, also the Ward identities (2.113) and (2.115) remain unchanged.
All definitions for maximally extended A/ =1 super Yang-Mills arise accordingly.

2.5.5. The N = 4 Action with Weyl Spinors

For some applications, it can be useful to write the N' = 4 super Yang-Mills action with Weyl
spinors. We have summarized our notation and conventions for Weyl spinors in appendix A.
First, we combine the 3+ 3 scalar and pseudoscalar fields A and B{ into the six scalar fields

o7 via

i, 1=1,2,3. (2.144)

a .__ a a o— a
o7 =AY, diy3 =B
Moreover, we introduce the six anti-symmetric 4 x 4 sigma matrices

Yyp=adyp, TP =afP ShE = —iBup, iﬁBg =iBP, i=1,2,3. (2.145)

They satisfy the Clifford algebra {%1, %7} = —267 with I,J =1,...,6. We write the Majorana,

spinors and gamma matrices in the Weyl basis, i.e.
() @) () e
Together with the above definitions (2.144) and (2.145) this implies
XAV (Dpra)® = 294l (Duh)” (2.147)
and
NG (AL +ivs B p BE) A = £ (00 48k g ) + 1o (vaS1P et ug) . (2.148)

In contrast to Majorana spinors, the subscript and superscript placement of the spinor indices

A,B=1,...,4 matters for Weyl spinors.

Furthermore, recall that the gauge group of N'=4 super Yang-Mills is U(N) or SU(N). The

generators of the fundamental representation of the associated Lie algebra are denoted by t.
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2. Aspects of Supersymmetric Field Theories

Given an element u of u(N) (respectively su(NN)) the unitary transformation ut®u~! must be a

linear combination of the generators t°, i.e.
ut®u~t =t° R, (2.149)

where R is a real N2 x N2 (respectively (N2 —1) x (N? —1)) matrix. It can be shown that
the R'® are elements of the adjoint representation of u(N) (respectively su(N)). Thus we
can write any field X as an element of the gauge Lie algebra u(NN) (respectively su(N)) via
X =t*X°. For any gauge Lie algebra element v we have uXu "' = t*R**X®. Hence the quantity

X =2§%tr,(t°X) transforms in the adjoint representation of the gauge Lie algebra
X = 2691 (tPuXut) = 2091, (1"t ROIXY) = R X, (2.150)

Since all the fields in /' = 4 super Yang-Mills are in the adjoint representation of the gauge Lie
algebra, we can write them as Lie algebra valued objects ¢ = t%¢“. In the case of the gauge field

A, =t"Aj is called the gauge potential.

Subsequently, the action (2.116), written in terms of the Lie algebra valued objects with Weyl

spinors and the six scalar fields ¢, becomes

1 g I
Sflnv:/d4x trC|:_2FMVFMV_(DM¢I)(Du¢I)+4[¢I7¢JH¢ 7¢ ]
(2.151)

— 200l (D) —ig* A (S por, vl —igaalS7P ¢, &%ﬂ :

We will introduce the supersymmetry variations and equations of motion for this action in

chapter 9.

36



3. The Wess-Zumino Model

In this chapter, we introduce the Nicolai map for the 2-dimensional Wess-Zumino model. Most
of the content presented here has been developed by Nicolai in a series of papers [35-38] with
a comprehensive summary given in [34]. However, we will also expand the previously existing
results by providing an explicit expression for the Nicolai map up to and including the fifth

order in the coupling constant.

In the first section, we recall the 2-dimensional Wess-Zumino model and state the main theo-
rem capturing the map’s properties. Furthermore, we explain the practical application of the
theorem. In section 3.2 we derive the infinitesimal generator of the inverse Nicolai map, called
the Ry-operator and compute the inverse Nicolai map to second order. Moreover, we briefly
introduce an alternative approach to computing the Nicolai map developed by Lechtenfeld and
Rupprecht. In section 3.3 we prove the main theorem. Section 3.4 contains the Nicolai map and

a discussion of the result. Finally, in the last section, we test the Nicolai map.

3.1. Introduction and Main Theorem

In this chapter, we work in 2-dimensional Euclidean space. Recall the action of the ‘on-shell’

2-dimensional Wess-Zumino model (2.23)
Sz = % / A%z [(9,4) (9" A) + (mA+AA®2 4 (7" 0,10) + (m+3AAD) ()|, (3.1)

where m is the mass and )\ is the coupling constant. The action is invariant under the super-

symmetry variations (2.24)
SA=(Ye), o= (7"€)a0uA—ca(mA+IA%). (3.2)

The central result is summarized in the following theorem [34, 37].

Main Theorem 3.1.
The 2-dimensional Wess-Zumino model is characterized by the existence of a non-linear and

non-local transformation Ty of the bosonic field

Th: Alx) = A(x,m,\; A),
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3. The Wess-Zumino Model

which is invertible, at least in the sense of a formal power series such that
i) The bosonic Wess-Zumino action is mapped to the abelian action,
SwalA; A] = Sw2[0; TAA]
where Sy, [\; A is the bosonic part of the action Sy,[\; A, and Sy,[0; A] denotes the free
bosonic action, i.e. Sy,[\;A] at A=0.
it) The Jacobian determinant of Ty equals the Matthews-Salam-Seiler determinant, i.e.
T (TAA) = Apss[A; Al

at least order by order in perturbation theory.

In the following sections, we give a constructive proof of the main theorem by deriving the

Nicolai map Ty and checking that it satisfies ¢) and 7).

However, first, let us investigate the implication of the theorem. Assume that we have indeed
found the map 7, and its inverse T)\*l. We will later see that the inverse map acts on bosonic
monomials X[A] by 7, 'X[A] = X[7, 'A]. Computing the free bosonic vacuum expectation

value of such a monomial we find
(XT3 Ay = [ Dod el XT3 a) = [DoA J(Ta) eS0T X[ (33)

In the second step, we have performed a change of variables from A to 7y A. On the other hand,
integrating out the fermionic degrees of freedom in the interacting vacuum expectation value of
X|[A] yields

(X[A])y = [DADY 9] X[a] = [Doa AyssniA] e S X[4]. (3
If we now assume that 7 satisfies 7) and i) from the main theorem we obtain
(XTAD), = (X[T3 " AD),. (3-5)

Notice that this transformation does not render the vacuum expectation value trivial. The com-
plexity is hidden in the perturbative expansion of the non-linear and non-local transformation
7. !. Using the linearity of the correlation function {...), and 7T, 'X[A] = X[T, *A] we can

extend (3.5) to n-point correlators of bosonic operators O;(x;), i.e.

(O1(21) ... On(@n) ), = ((Ty PO (1) .. (T3 On) (), - (3.6)

So instead of computing interacting n-point correlation functions of the Wess-Zumino model
(with fermions), we can simply compute the free correlation function of the transformed oper-
ators. After working out the transformations (7, 'O)(x) to the desired order in the coupling,
we use Wick’s theorem to obtain the free correlator. This property of the Nicolai map was first

discovered by Dietz and Lechtenfeld in [40-42].

38



3.2. The Rx-Operator

3.2. The R -Operator

The inverse Nicolai map 7;_1 is obtained from its infinitesimal generator Ry, a non-local func-
tional differential operator, 7.e.
1 — A"
T A @)= 3 5 R (37)
n=
The actual map (7yA)(z) is then obtained order by order in A\ by formally inverting the power

series. For an arbitrary monomial of bosonic operators X [A], the linear response of its vacuum

expectation value to a change in the coupling constant is given by

S, = (FF) (B —maxi),. 6)

At this point, it is crucial that the correlation function is automatically properly normalized due
to supersymmetry, and we do not have to divide it by a A dependent constant. If this were not
the case, it would spoil the simple form of the A\ derivative above. Making use of supersymmetry,
we want to rewrite the right-hand side in terms of a derivational operator R). Luckily even
for the ‘on-shell’ version of the Wess-Zumino model, the action still is the top component of a
supersymmetry multiplet, which does not rely on the equations of motion to close. Thus we
obtain

dSwz[A; A, 9]

_ : N Y e 3
S - A with A= / A2 o (x) A3 (x). (3.9)

Recall that . anti-commutes with other anti-commuting operators. Using the supersymmetry

Ward identity (2.43)
(6aY )\ =0 (3.10)

for an arbitrary string of operators Y, we then obtain

dSw,[A; A,
(A ) = — 520 X1A), =~ (adaX (4], (3.11)
Subsequently, we integrate out the fermionic degrees of freedom and obtain the R y-operator
_ dX[A]
RAX[A] = Y +Ali<,5aX[A], (3.12)

which is now a purely bosonic expression. The Ry-operator acts distributively
RAXY)=RA(X)Y + XRL(Y). (3.13)

Plugging in the definition for A, and the supersymmetry variation for A(z) we arrive at

Ra= 5 =5 & By @) A0 51 (3.14)
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3. The Wess-Zumino Model

We recognize the fermionic propagator 1/}( Y(y) = S(x,y; A). From its definition (2.27)

[0 +m+3XA* ()], by (2)P3(y) = Gapd(2 —y) (3.15)

we obtain the identities

d ;A
5(*’3’;%») _ 3 / A2z S(z, 2 A)A%(2)S(z,y; A) (3.16)
and
08(x,y;A) _ > , ,
A 6)\/d z S(x,2;A)A(2)S(z,y; A). (3.17)
Subsequently the R,\—operator (3.14) becomes
)
_ 4 L[ 9 3
R = /d 0y S, A A0) s (3.18)

In the limit A = 0 the propagator S(z,y; A) gets replaced by the free fermion propagator (2.28)
So(z —y) = (=P +m)C(z—y). (3.19)

After iteratively computing (R}A)(z) to any desired order n, we set A =0 and obtain (75 ' 4)(x)

at O(A"). The actual map T, is obtained from its inverse by formal power series inversion. Let

()= Y 21,4, (3.20)

n=0

Expanding 7;*173\ =1id in powers of A and matching coefficients we readily obtain

(ToA) = A,

n-1/. (3.21)
(Tad) == (JRQ(EA)’/\:O.

3.2.1. The Inverse Nicolai Map

To gain a better understanding of the R y-operator we compute (75 *A)(z) up to order A\2. Hence

we have to act twice with Ry on A(x). The first application of the R -operator yields
1
(Rad)(w) = — [ 2y tr[S(ays A4 (). (3.22)

When acting again, we must remember that S(x,y; A) depends on both A and A(z), thus, it

contributes two terms to the second order. A third term comes from the action of R on A3(y)
(R3A)(a / a2y ]S (@, 5 A)A%(2) S, A)] A*()
=2 [ @y a2 w8 (e, 5 ) 42:)S s A W)IS (s A A w) - (3:23)

+2 [ a2y @z ulS(e,0; A A% )l (5 A A,
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We set A =0
RaA)@)] | =5 [ Py tillm—#0,)Cla— )] 2%,
RRAY@)]_ =5 [Py trllm—10,)C0(w— ) 4%(2) (m —"0,)C =~ )] A%(y)
+3 [ @y @z uln—1"0,)C( —y)

x A (y)tr[(m —~78,)C(y — 2)|A%(2).

(3.24)

Computing the traces (with tr1 = 2) and simplifying the results we subsequently obtain
(T A)(a) = Alw) —mx [ dy Cla—y)A%(y)
+3m2)\2/d2y d?z C(w—y)AQ(y)C(y—z)Ag(z) (3.25)
3\? 2, 12 2 3
+ T/d y d*z 0,C(x —y)A*(y)0"'C(y — 2) A’ ().

This result can now be inverted using the steps explained above. The explicit expression for

(TAA)(x) up to O(A3) is presented in section 3.4.

3.2.2. An Alternative Construction of the Nicolai Map

To close this section, let us remark that there exists an alternative but equivalent construction
of the Nicolai map developed by Lechtenfeld and Rupprecht in [85]. It is based on earlier work
of Lechtenfeld (see for example [41]). In this construction, one does not need the main theorem

3.1 but rather starts with the equation
(XTAD), = (X[T71 4], (3.26)
as a defining property of the inverse Nicolai map. Differentiating (3.26) with respect to A yields

sy, = (55 - 2eg ) x) —((55+R)x) e

with the functional differential operator

4]
§A(x) "

Ry = / @ (3T o Th) Ala) (3.28)

The 7v2)\—operat0r differs from the Rj-operator introduced above by the A derivative, i.e. Ry =
&£ +Ry. By setting X[A] = 75 A in (3.26) we derive the relation
(d+7é>TA—0 (3.29)
ax ) A '

The solution to this equation is the path-ordered exponential

— A .
(Tx A)(x) =Pexp [— /0 dh Rh] Az). (3.30)
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3. The Wess-Zumino Model

The inverse Nicolai map is given by

— A .
(75 ' A)(z) = Pexp VO dh Rh] Az). (3.31)

In the end, one finds from (3.27)

0
SA(x)”

Ry = —% / A2z 2y tr[S(z,y; A)] A3(y) (3.32)

Compared to (3.7) the X\ derivatives have now been traded for integrals. However, this con-
struction allows us to obtain the Nicolai map directly without passing through its inverse first.
Furthermore, this construction not only works for scalar theories, such as the Wess-Zumino

model but also for gauge theories. For more details, see [85].

Finally, Lechtenfeld and Rupprecht have also developed a graphical representation of the Nicolai

map, see section 4 of [1] and [86].

3.3. Proof of the Main Theorem

In this section, we prove the main theorem 3.1. Large parts of the proof are universal to all
the supersymmetric field theories discussed in this thesis and will thus not be repeated in the
subsequent chapters. The existence, non-locality and non-linearity, as well as the inversion
property of T, are all given by the explicit construction in the previous section. Hence we only

need to show that 7, has the properties i) and ).

3.3.1. Part i)

For part i) we need to show that Sy,[\; A] = Sy,[0;T\A]. This is equivalent to showing that
Swa[X; Ty P A] = Sy, [0; A]. Thus we write

Szl A A] = So[A] + AS1[A] + A2 S [A] (3.33)

and Taylor expand Sy,[\; 75 ' A] around A =0
=147 -1 1
ST A= ST, Z [Tl
_ 7!
= So[A Z [ TS0l T A ’)\:0] (3.34)

dn 1 1 dn— 2 1
+Z d\n— A \n—1 [7;\ A’ +Z dxn— A\n—2 [7j\ A]‘)\:O :
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Inserting the definition of T/\_l into the second term yields

ST A = [ a (i . [WR”A)(@\AZOD (Z e >\AZOD

n=0 n=0

+m Z [ R"A)( ’)\0] .

Taking the derivative with respect to A gives 5=.Sg [T Alla=0 = RE(So[A])|a=0 and similar

relations for the other two terms. Subsequently we conclude

SwalN Ty Al = +Z [R” (So[A +R§(>\51[AD+RK(>‘252[AM ‘AzO

(3.36)

A+ WRQ(SWZ[A;AD\A_O.
n=1 """ -

It remains to be shown that R (Swz[A; A]) = 0. This requires the explicit form of the R y-operator
given in (3.12). We find

R (Sua[N; A]) = dA( /d2 (8,4) (9" A) + (mA+)\A3)D
6(0uA(2))(0"A(2))
0A(x)
S(mA(z) + A\A3(2))?
6A(z) (3.37)

-1 [P Py s ulS(y )4 )

-1 [P Py s ulS(,y )4 )
- / e [mad (@) +24%(a)]
+ % / e d%y OA(2) e[S (e, y: A)| A ()
=3 [ P @y nA@)+ A4 @)) (m+ 3 @) ]S, A A ),
with the Laplacian [ = 8,8". In the third term, we use the Dirac equation (2.27)
(m+3XA%(2)) tr[S (2, y; A)] = —tr[@S (2, y; A)] + 26 (z — y) (3.38)
such that
R (Sus[ N A]) = /d% [ma’ () + A45(2)]
+% / Ca d?y OA(z) S (e, v A)) A3(y) -
4y [ o dy (mA() + 143 @) uldS (.5 A)4%0)

—/dzw {mAA‘(:L')—i—/\AG(x)} .
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The two blue terms cancel. In the two remaining terms, we use integration by parts and the
relation (1 = 0,0 = a9

Ra(Sual i A]) = =5 [ o Py tr[BA@IIS (2,4 4)] 4*(0)
— 3 [ @ @y [BmA@) + A4 @) S, 4)] 4°()
S / A2z d%y tr [@A )(@+m -+ 3AA%(2)) S(x.y: 4)| A%(y) (3.40)
=5 [ @ @y wBA@E )] 40)

=0.

In the second step, we have again used (2.27). The last equality follows from tr(y*) =0. Thus
we have proven that Sy,[\; 7, " A] = Sy.[0; A].

Equations (3.33) - (3.36) are universal to all supersymmetric field theories, which are at most
quadratic in the coupling. Only the proof of R (Sw,[A; A]) =0 was specific to the Wess-Zumino

model and has to be repeated for other field theories.

3.3.2. Part ii)

For the proof of part i) consider the Taylor expansion

(Xt =32 5 [ 1AM ] (3.41)

Inserting the definition of the Ry-operator and the expectation value yields

(XA, = 3 g [mnX[ADA ’)\:0] — [ Do e nzo i:

> [R"X[A] ‘)\:0}

(3.42)
_ / Do e SwelOAI X [T 4] = / DoA J(ThA) eS0T A X 4]

In the second step, we have used Aygs[A =0;A] =1. On the other hand, integrating out
the fermionic degrees of freedom in the correlation function yields the Matthews-Salam-Seiler

determinant, 7.e.
(XA = [ DA DY = S=NANX[A] = [Dyd Augss[hs AleSPAX[A]. (3.43)

From part i) we know that Sy,[0; TAA] = Swz[A; A] and since these two equations hold for all

bosonic monomials X[A] we can deduce that
J(TZA) = Auss[A; A] (3.44)

at least order by order in perturbation theory. These steps are universal to any scalar super-
symmetric field theory. However, for gauge theories, we will obtain an additional term from the

Faddeev-Popov determinant. This concludes the proof.
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3.4. Result and Discussion

We present the explicit formula for the Nicolai map up to O()\%) extending the previously
existing result by three orders. The first two lines correspond to the result obtained in [34]. In
the following section, we will verify that this result satisfies both statements of the main theorem
3.1, providing a highly non-trivial test. The map reads?

(TaA) (@) = A(x) + mA / a2y Cla— ) A%(y)

o
2

3
+%/d2y d%z dw OuC(z —vy) {
—2A(y)0"C(y —2) A’ (2) C(y — w) A® (w)
+3A%(1)0"C(y — 2)A%(2)C(z — w) A (w)

/ @y 4% 0,0 (w — y) A2(4) " Cly — ) A%(2)

+642(y)Cly — 2) A2(2)0"C (= — w)AB(w)}
mZ\4

1

x O C(y — 2) A (2)C(y — w) A (w)C (y — v) A* (v)

3m2A*

/d2y d%z d®w d%v uC(x—vy)

/d2y d?z d®w d?v ouClz—y)A(y) {
+0MC(y — 2)A3(2)C(y — w) A% (w) C(w — v) A (v)
+ 0y - 2) A% () Cy — w) A% ()9 Clw— ) A°(0) } (3.45)

3mZa?
+

/de 4%z w 20 9,C(z — y) A2(y) {
+0"C(y—2)A(2)C(z —w) A* (w)C (2 — v) A3 (v)
+2C(y —2)A(2)0"C (2 — w) A* (w)C(z — v) A (v)
+301C(y —2)A%(2)C (2 — w) A (w)C(w — v) A (v)
—6C(y—2)A%(2)0" C (2 — w) A* (w)C(w — v) A* (v)
—9C(y - 2)A%(2)C(z - w) A* ()9 C(w— ) A°(v) }

4
+ % d%y d%z d®w d*v 0uC(z—y)A(y)

X 9" C(y —2) A (2)0u C(y — w) A (w)d” C(w —v) A>(v)
+ 27%4 d%y d?z d*w d?v B#C’(mfy)AQ(y) {
—O'C(y — 2)A%(2)8,C (2 — w) A% (w)d” C(w — v) A3 (v)

F40,0(y ~ AP O ) A @)0 C(w — ) A (w)}

LA different result up to O(A3) obtained in [35] via trial and error hints towards an ambiguity in the map 7.
However, we do not expect this result to hold up in higher-order calculations. A similar case for N'= 1 super

Yang-Mills in six dimensions is discussed in section 5.7.
2 As usual, all anti-symmetrizations are with strength one, such that e.g. [ab] = %(ab— ba).
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46

3m

/d2y d?z d*w d*v d*u ouC(z—vy)

X OMC(y—2)A(2)3Cy — w) A(w)>Cy — v) A(v)*C(v —u) A(u)?

3m3\®

10 /de d%z d*w d*v d*u ouC(x—y)Ay) {

+0"C(y—2)C(z —w) A(w)*Cy —v) A(v)*Cy — u) A(u)®
+0"C(y—2)C(z —w)A(w)3C(z —v)A(v)3C(z —u) A(u)?
+270"C(y — 2)A(2)*C(z — w) A(w) 2 C(w —v) A(v)2C (v — u) A(u)®
—60"C(y—2)A(2)°Cz — w) A(w)C(w —v) A(v)*C(w — u) A(u)®
+2C(y—2)0"C(z —w)A(w)>C(z —v) A(V)3C(z — u) A(u)>
—18C(y — 2) A(2)0"C(z — w) A(w)3C(z —v) A(v)*C (v — u) A(u)?
—12C(y— 2)A(2)?0"C (2 — w) A(w)C (w — v) A(v)* C(w — u) A(u)®
+54C(y — 2)A(2)?0" C (2 — w) A(w)*C(w — v) A(v)?C (v — u) A(u)?
—6C(y—2)A(2)C(z — w) A(w) " C(z = v) A(v)*C (v —u) A(u)®
—18C(y — 2)A(2)C(z = w) A(w)d" C(w — v) A(v)* C(w — u) A(u)®
+81C(y—2)A(2)?C(z — w)A(w) 20" C(w — v) A(v)*C(v — u) A(u)?
—18C(y — 2)A(2)C(z — w) A(w)>C(z —v) A(v)?0" C (v — u) A(u)®

(2
(
A

w

+1osc<y—z>A<z>2< W) A(w)*Clw — ) AW)*0*Clo - u)A(w)*}
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21mA\>
20

+ /d2y d?z d*w d*v d*u ouC(z—vy)
x MOy —2)A(2)3C(y — w)A(w)>0,C(y — U)A(U)28VC(U — u)A(u)3

+ %/d%} d%z d*w d*v d*u OuC(x—y)A(y) {
—8OMC(y —2)A(2)>C(y — w) A(w)? 8, C(w — v) A(v) 20" C (v — u) A(u)?
—128"C(y —2)A(2)0,C(y — w) A(w)*C(w — v) A(v)? 8 C(v —u) A(u)?
—90"C(y —2)A(2)°0,C(y —w) A(w)? 0" C(w —v) A(v)?C (v — u) A(u)?
+20"C(y — 2)A(2)30,C(y — w) A(w)d” C(w — v) A(v)>C(w — u) A(u)®
—0MC(y—2)A(2)2C(z — w) A(w)38,C(y — v) A(v)?0” C(v — u) A(u)?
+C(y—2)A(2)20"C(y — w) A(w)? 8, C(w — v) A(v) 20" C (v — u) A(u)?
+12C(y—2)A(2)%0,C(y — w)A(w)Qa[“C(w — U)A(’U)26V]C(’U — u)A(u)3
—SC(y—z)A(z)Q‘a”C(z—w)A(w)gayC(y—U)A(v)zauC(v—u)A(u)g}

- %/d% d*z d*w d*v d*u 9uC(x —y)A(y)? {

—140"C(y — 2)A(2)C(z — w) A(w) 0, C (2 — v) A(v)*0" C (v — u) A(u)®
+240"C(y—2)A()*C(z — w) A(w)?0, C(w — v) A(v)*0 C(v — u) A(u)
+279"C(y — 2)A(2)20,C (2 — w) A(w)*8” C(w — v) A(v)2C(v — u) A(u)®
—60"C(y —2)A(2)° 0, C (2 — w) A(w)d C(w — v) A(v)*C (w u)A(u)®
+360"C(y — 2)A(2)?00 C (2 — w) A(w)C(w — v) A(1) 20" C(v — u) Au)*
—16C(y—2)A(2)0"C (2 — w) A(w)* 0, C (2 — v) A(v)?d (v u)A(u)®
+48C(y — 2)A(2)20" C (2 — w) A(w) 28, C(w — v) A(v) 20" C (v — u) A(u)®
+128,C(y — 2)A(2)20"C(z — w) A(w)d” C(w — v) A(w)3C(w — u) A(u)®
—1080,C(y—2)A(2)?0MC (2 —w) A(w) 20" C(w — v)A(v)QCvqu(uB
—1440,C(y — 2)A(2)?0" C (2 — w) A(w)*C(w —v
— H4C(y — 2)A(2)° 0, C(2 — w) A(w) 0!
~1448,C(y — 2) A(2)° (z w) A(w)?ol
—130,C(y —2)A(2)20" C(z — w) A(w)d"C(w —v) A(v
2)A(2)C(z — w) A(w) > C (2 —v) A()?0" C (v —u) A(u

\_/\_/

vv

+240,C(y —

+0(\%).
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3. The Wess-Zumino Model

Technically, it is possible to compute the Nicolai map to arbitrary order in the coupling constant
A. However, as can be seen above, the number of terms grows very fast. In particular, we do not
expect to obtain a closed-form expression of the map like in supersymmetric quantum mechanics

(c.f. section 1.1 or [34]).

3.4.1. The ‘Off-Shell’ Nicolai Map

Instead of considering the ‘on-shell’” Wess-Zumino action (2.23) and ‘on-shell’ supersymmetry
variations (2.24), we could have also considered the respective ‘off-shell” expressions (2.18) and
(2.20). Remarkably, we notice that even in the ‘off-shell’ case (3.9) remains true with the
same expression for A, as in the ‘on-shell’ case. Thus we immediately obtain the ‘off-shell’

‘R -operator

R — % _;/d% A%y tr[S(z,y; A)] A% (y) 5A5(ac) (3.46)
_%/de d®y tr[y" 9,5 (x,y; A)] A% (y) 5F5(x) ‘

This R y-operator gives rise to two Nicolai maps. One for A(x) and one for F(z). Since the first
line of the ‘off-shell’ R y-operator is free of the auxiliary field F'(z) the ‘off-shell’ Nicolai map for
A(z) coincides with its ‘on-shell” counterpart (3.45).

3.4.2. The Radius of Convergence

A few remarks on the radius of convergence of the map (7, A) are in order. For supersymmetric
quantum mechanics with a topological 6 term, it has been shown by Lechtenfeld that, at suf-
ficiently small coupling, the Nicolai map converges to a mathematically well-defined functional
[87]. Unfortunately, the gamma trace in the Ry-operator (3.18) complicates the situation for
the Wess-Zumino model. The trace is similar to an additional loop structure in spinor space
attached to the tree diagrams and leads to spacetime index contractions between partial deriva-
tives distributed all over the tree. Consequently, with these additional terms, the estimations in
[87] are not good enough to give a finite radius of convergence for the Wess-Zumino model. In

[34], it was speculated, but not proven, that the Wess-Zumino Nicolai map should converge.

A different approach to finding the radius of convergence of the Nicolai map was given in [88].
Lechtenfeld and Nicolai demonstrated that in supermembrane theory, the Jacobian of the Nicolai
map has a non-zero radius of convergence. Moreover, the authors argued that, with appropriate
UV and IR regularization, also the Jacobian of the Nicolai map in super Yang-Mills theories

(at least in the axial gauge) has a finite radius of convergence. However, the finite radius of
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convergence of the Jacobian does not imply a finite radius of convergence of the map itself. But

it at least constrains the series expansion.

So, while still unproven, a finite radius of convergence also for the Nicolai map of the Wess-
Zumino model is very likely. Finally, let us remark that in any supersymmetric theory, a finite
radius of convergence of the Nicolai map does, of course, not imply a finite radius of convergence
for the perturbative expansion of the theory itself. For example, it has been shown by Balian,
Itzykson, Parisi and Zuber in a series of papers [89-91] (and also generally argued by Dyson
[92]), that the perturbative expansion of quantum electrodynamics has a vanishing radius of
convergence. However, in our formalism, the usual perturbation expansion is split into two
steps. In the first step, the calculation of (7;_114), the radius of convergence is finite and then
at the second step, the computation of correlators and thus production of loop diagrams, it is

not.

3.5. Tests

In this section, we show that the Nicolai map (3.45) satisfies part ¢) and ¢i) of the main theorem
3.1 order by order in A\. Thus providing two highly non-trivial tests for our main result (3.45).
To keep this section concise, we however only consider the first three orders. The calculations

at higher orders follow accordingly and yield the expected results.

3.5.1. The Free Action

By the first statement in the main theorem, the bosonic action is mapped to the abelian action.

Hence the transformed bosonic field A’ = (T, A) from (3.45) must satisfy
% / Pz A(—O+m?)A’ L % / @ [(0,A)(0"A) + (mA+ AA%?] + O(XO). (3.47)

At the leading order, there is nothing to do. At the first order we plug A’(x)|p(y) into the
left-hand side of (3.47) and integrate the second term by parts

mTA /d% d%y [A(:n)(—D +m?)C(x—y) A (y) + C(x —y) A (y) (O + WZ)A(CL")}
_ mA/d% A%y A(z)(—O+m?)C(z —y) A3 (y) (3.48)
3.48

— m)\/dzx A%y A(z)d(z —y) A3 (y)

= m)\/de Al(z).
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3. The Wess-Zumino Model

In the second step, we have used the definition of the free massive scalar propagator C(zx).
Collecting the terms of O(A) on the right-hand side of (3.47), we find agreement with (3.48).
Similarly, we use integration by parts and the definition of the free scalar propagator at O(\?)

to obtain
3)\2 2 2 2 2 2 3
/d A2y A2 A(x)(—O+m?)9,C(x —y) A2(y)I"Cly — 2) A3 (2)

3)\2/d2x A2y 22 8,0 (x — ) A%()"Cy — 2) A3(2) (~ O+ m?) A(z)

2 2

/d%; &2y 422 Oz — ) A3 (y) (~O+m?)C(x — 2)A3(2)

_ / Lo d2y 42 9, A(x) (04 m?)C(x — y) A2 () Cy — ) A3 (2)
2)\2

/ &2z 42y A3(2)C(x —y) A3 (y) (3.49)

2
= >\2/d2x A%y 9,43 (2)0"C(z —y) A% (y)
m2\?

/d2$ d%y A3(z)C(z —y)A3(y)

2
— )\z/d% d?y A3(2)(~O0+4+m?)C(z —y)A3(y)

2
= )\2/d2x AS(x)

Again this agrees with the right-hand side of (3.47). In every subsequent order, the general
procedure remains the same. By partial integration, we seek to obtain factors of (—+m?)C/(z —
y) = 6(z —y) to cancel terms with fewer scalar propagators. At O(A3) we have for the left-hand
side of (3.47)

7712)\3/de d?y d?z d*w {
—30,C(z —y) A (y)o"Cy — 2) A°(2) (=0 +m?)C(z —w) A (w)
—20"C(z —y) A(y)uC(y — 2)A%(2)C (y — w) A*(w) (-0 +m?*) A(z)
+ 3010 (x —y) A% (y)0,C(y — 2) A%(2)C(z — w) A% (w) (-0 +m?) A(z)
+601C(z —y) A% (y)Cy —2)A%( )3u0(2—w)AS(w)(—D+m2)A($)}
:m;\g/d% 2y d2z { (3.50)
— A%(2)8,0(x — y) A% (y) ' Cly — 2) A°(2)
— A% (2)0C (z — y) A (y)C (2 — 2) A°(2)
— A%(2)8,0(x — y) A (y) ' Ca — 2) A%(2)
(z)0]

+ A} (2)0C (v —y) A2 (y)Cly — 2) A*(2) }
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For the last equality, we have exchanged z <+ y in the third and fourth term and used OC'(z —y) =
OC(y — ) as well as 0,C(y —x) = —0,C(x —y) to cancel them against the first two terms. A
similar calculation at O(\*) and O(\®) also agrees with (3.47). It is worth pointing out here
that the very existence of a non-local field transformation mapping one local action to another
local action is a remarkable fact in itself, independently of supersymmetry (but in the absence

of supersymmetry, locality would be spoilt by the Jacobian).

3.5.2. Jacobian and Fermion Determinant

We need to show that the Jacobian determinant is equal to the Matthews-Salam-Seiler determi-
nant at least order by order in perturbation theory. This is done by considering the logarithms
of the determinants rather than the determinants themselves, i.e.

dA ()
6A(y)

log 7 (A') = logdet( ) L log(Anss[ A]). (3.51)

Up to O(A3) the logarithm of the MSS determinant (2.37) is
1
log(Anmss[A; 4]) = §Trlog {1 + 350 * Az}
=3mA /thx C(0)A%(x)
N[ 0 2y 0,00 — ) A2()Cly— 2)A°
- | e dy 0,00z —y)A%(y)0"Cly — 2)A%(x)
9m2\%
[ @ dy Cla -y A2 Cly - ) A2(a) (3.52)

+9m\? /d2x d?y 42z {

+30,C(z —y)A%(y)O"C(y — 2) A*(2)C(z — ) A*(z)
+m?C(x—y)A%(y)C(y — 2) A% (2)C (2 — :1;)A2(:1;)}
+0(\Y).
The coloring is for later convenience. Recall that C'(0) can be regulated. The Jacobian determi-

nant is of the form 14 X, where X is a power series in the coupling X starting at O(A!). Hence,

the logarithm of the Jacobian determinant is given by

n

log(1+X)=— i (=" yn (3.53)
n=1

We must keep this equation in mind when collecting the terms at each order in A. In particular,
we see that there is no contribution at the leading order. At O(\) we find

!/ /
logdet <5A (JU)) ‘ =Tr [6A
O(A)

A i (3.54)

om] ‘
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The final trace is done by setting y = x and integrating over . The computation is straightfor-

ward, and we find

5A’(x))

lo det<
5\ 5Ay)

= 3mA /hdzaz C(0)A%(x),
A=0 :

which matches the red term in (3.52). In the second order, we find

A A’ 1 A’
logdet<5 m)‘ :TY[(S ]—Tr [5
o) opn| 2 04

IA(y) 04
9N 2 2 2 0 2
_ 77/d z d%y 8,0(z —y) A2 ()" C(y — ) A ()

o
op) 04

O(Al)]

m2 2,
: 2A /d% d%y C(z—y)A%(y)Cy — 2) A*(x).

Again this agrees with (3.52). Finally, at O(\®) we have

SA (x) dA’ 1 dA’ dA’
logdet< )‘ =Tr [ ] —(2-) Tr [ —_—
5A(y) O3) 0A O(3) 2 oA O(A\2) 0A O(Al)
1 [M' SA SA ]
4+ =Tr|— s 7 .

For the first term, on the right-hand side, we find

dA

Tr SA

= 9m/d21: d?y d2z {

O(3)
+A(x)C(z —y)0,C(x — y)A(y)Qa"C’(:L' — z)A(z)3

3
+ 5 A@)*0,C (@ —y) A(y)*Cly — 2)A(2)°0"C(= ~ z)}.
The second term gives
1 oA A
() l(m o 04
= 9m/d2x d?y d?z {
— A(2)C(x—y)9C(x —y)A(y)*0"C(x — 2) A(2)*

- % A(@)?0,C(x — y) A(y)*Cly — 2) A(2)?0"C (2~ ) } .

-

Finally, the last term gives

o

GA'

1
—Tr -
o) 04

3

§A
0A

ol
= 9m3/d2w d%y A%z A%(2)C(z—y)A%(y)C(y — 2) A3(2)C(z — ).
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Adding these three terms gives

dA' (x) 5 o
logdet< ) ' = 9m/d2x d?y d2z
5A(y) O(\3) {

+ 3A(a:)28u0(:p — y)A(y)QC’(y — Z)A(z)Qa“C'(z —x)
+m2A%(z)C(w —y) A2 (y)C(y — 2) A3 (2)C (2~ ) },

(3.61)

which matches the green terms in (3.52). The calculation for the fourth and fifth order work
accordingly and yield the expected results. Thus we have shown that the map (3.45) satisfies
i) and ) from the main theorem 3.1. This concludes our discussion of the Nicolai map for the

2-dimensional Wess-Zumino model.
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4. Off-Shell N/ = 1 super Yang-Mills

In this chapter, we discuss the construction of the Nicolai map for ‘off-shell’ A/ = 1 super Yang-
Mills in four dimensions. ‘Off-shell’ meaning that the auxiliary field is present in the action
and the supersymmetry algebra closes without evoking the equations of motion. The ‘off-shell’

supersymmetry is crucial to the existence of the Nicolai map in general gauges.

In the first section, we recall the relevant notation and introduce rescaled fields. Furthermore,
we state the ‘off-shell’ N/ =1 super Yang-Mills version of the main theorem 3.1. In section 4.2
we derive the ﬁg—operator and in section 4.3, we prove the new main theorem. In the following
two sections, we discuss properties of the ﬁ‘,g—operator and give the Nicolai map in axial gauge
up to the second order in the coupling constant g. In section 4.6 we test the Nicolai map from
the previous section. The last section discusses a potential simplification of the Nicolai map by
resorting to the ‘on-shell’ formulation of N' =1 super Yang-Mills and the Landau gauge. This

will motivate the construction presented in the next chapter.

This chapter is mostly based on the author’s publication [3]. However, the ﬁg—opera‘cor given

in section 4.2 was first derived by Dietz and Lechtenfeld in [40-42].

4.1. Introduction and Main Theorem

Recall the 4-dimensional gauge invariant ‘off-shell’ N'=1 super Yang-Mills action (2.51)

1 i 1
Sl / die [—4F5VFW — SX (D) + DD (4.1)

with the standard definitions
Ff, =0, A% — 0, A% + g f* AL AS (4.2)
(DpA)™ = 0\ + g f* AL, (4.3)

for the field strength tensor and covariant derivative. The action (4.1) is invariant under the

supersymmetry variations (2.54)

a - a a 1 14 a . a a = a
5A# = —i(A 7#5)7 oA, = 75(’7# 5)04Ful/ +l(r755)aD ,  0D%= *(5757“(17#)‘ ). (4.4)
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Thanks to the presence of the auxiliary field, the supersymmetric action (4.1) can be written as

a supervariation
Sinv = 0alq (4.5)
with the gauge invariant functional
_ /d4 {_ MV)\Q) Fe _ z(,}ﬁ)\a) Da} (4 6)
CY N N2 8 6% . .

When computing path integrals, we have to add a gauge fixing term to the action (4.1) to

prevent the over-counting of physically equivalent paths
1 1=
Sit = [ e |5 (@ A(@" 42) + 5CG1(D,0)") (4.7)

In the following, we restrict the choice of gauge fixing functionals to G* = 0* for the R¢ type
gauges and G* = n# for the axial type gauges (including the light-cone gauge with n,n* =0). The
most general gauge fixing functional compatible with the subsequent discussion is any functional

obeying the scaling relation [3]
GU(A) =gG°(9~"A). (4.8)

The complete ‘off-shell’ N' =1 super Yang-Mills action S! = S}

iy T Sgf is invariant under the
following BRST (or Slavnov) variations (2.112)

sA% = (D,C)*,  sD*=gf*D’C,  sA*=—gf*\C",
C’a — _}gﬂAa C° = _gfabccbcc (49)
s - é o S - 9 .

The derivation of the ‘off-shell’ R 4-operator will necessitate a ‘detour’ via a reformulation of the

theory in terms of rescaled fields
AZ:gAZ, N =g\, D*=g¢D*, (C%=gC?, C:'“:gC_'a, (4.10)

such that the coupling constant appears only as an overall factor outside the action (4.1)

= - 1~ -
Sk, —/d4 [ o 9 A A“y“(Du)\)“+§D“D“ : (4.11)
where now
[a 1a 1a abc Ab fc
FW = 0,4, —GVAM+f Aqu (4.12)
(D) = 0\ + feAb X, (4.13)

The ghost action S’gf as well as the supersymmetry and the BRST transformations are obtained

from (4.7), (4.4) and (4.9) by dropping ¢ and putting tildes on all fields; idem for (4.5) and (4.6)
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4. Off-Shell N = 1 super Yang-Mills

(it is here that we would need the scaling relation (4.8)). For clarity of notation, we always
put tildes on all quantities involving rescaled fields. Correlation functions of tilded and untilded

monomials of, for example, the gauge field are related by

<<f~lzll (z1)... flm (mn)>>g =g" <<AZ11 (x1)... A% (l‘n)>>g ) (4.14)

Finally, let us comment on the limit g — 0 in both the tilded and untilded version of the theory.
For the untilded version, the limit of Silm,—l—ng is simply the free supersymmetric Maxwell
theory. By contrast, the g — 0 limit of SL -+ S’gf localizes the bosonic Yang-Mills action on zero
curvature configurations. Here we will be concerned with the former case and make use of the

tilded formulation only as an intermediate device.
Subsequently, we can formulate the main theorem [3].
Main Theorem 4.1.

‘Off-shell’ 4-dimensional N =1 super Yang-Mills is characterized by the existence of a non-linear

and non-local transformation Ty of the bosonic fields ® = (AZ,D“)
Ty : ®(z) = & (z,9; ),
which is invertible, at least in the sense of a formal power series such that
i) The gauge-fizing function GrAY, is a fized point of the map 7.
it) The bosonic Yang-Mills action without gauge-fizring terms is mapped to the abelian action,

iii) The Jacobian determinant of T, is equal to the product of the Matthews-Salam-Seiler and

Faddeev-Popov determinants, i.e.
I (T3 ®) = Ausslg; ®|Arp|g; @]
at least order by order in perturbation theory.
Similarly to the previous chapter, we give a constructive proof of the theorem by deriving 7,
and showing that it satisfies ) - ).

However, first, we show that the relation between free and interacting correlation functions (3.6)
we have derived for the Wess-Zumino model extends to gauge theories. The A/ =1 super Yang-

Mills Nicolai map has similar properties as the Wess-Zumino Model Nicolai map. In particular
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4.2. The 7~€g—Operator

its inverse acts on bosonic monomials X [®] by 7;_1X [P =X [7;_1<I>]. Computing the free bosonic
vacuum expectation value of such a monomial and performing a change of variables gives
<X[7;_1<I>]>0 = /DO(I) o~ Sy [0;®]—iSes[g;®] X[Tg_lfb]

(4.15)

— /D()(P j(/]}@)efisilnv[0;7;‘13‘]71'53[0;7—9@] X[(p] )

On the other hand, integrating out the fermionic degrees of freedom in the interacting vacuum
expectation value of X [®] yields

<<X[<I>]>>g = /D<I> DU o 1S [0:0,¥]—iSgi[g: @, T] X[®]

- A (4.16)

= / Do® Awissg; D] Arp[g; ®le Simloi?l=i5ule®] x[q].

Notice the appearance of the Faddeev-Popov determinant from integrating out the ghost fields.

Assuming that 7, satisfies ¢) - i) of the main theorem above we conclude that
(X[@I), = (X[T5 @), (4.17)

Again the generalization to n-point correlation functions of arbitrary bosonic operators O;(x;)

is immediate and we conclude

(Or(1)...Ou(@n)), = (T, O (1) ... (T; On)(a)), (4.18)

Remember that this does not render the correlation function trivial since the complexity lives

on in the perturbative expansion of the inverse Nicolai map.

4.2. The R ,-Operator

Similar to the discussion in the previous chapter, we construct the inverse map '7'9*1 via its
infinitesimal generator 7~€g. For ‘off-shell” super Yang-Mills, this construction was first done in
1984 by Dietz and Lechtenfeld [40-42]. However, they were not able to obtain the correct inverse
Nicolai map from the ﬁg—operator since they did not realize at the time that one must act with
the Ry-operator on Af(z) = é[lf;(x) and D%(x) = %D“ rather than AZ(.%’) and D®. The correct
power series for the inverse Nicolai map of Af(z) was first published in [3] (and [93])

(7 A = (7 A =3 4 [y A

’ 2 h@)| é:gq)]gzo} (4.19)

By swapping Af(r) and D%(x), we obtain the corresponding map for the auxiliary field. For a
bosonic monomial, X = X[®] the linear response of its vacuum expectation value to a change

in the coupling constant is given by

o7



4. Off-Shell N = 1 super Yang-Mills

Notice the factor of ¢ from the definition of the correlation function in (2.86). Because the g

dependence appears only as an overall factor in the action S* Sllnv

+ ggf we have

ds’inv 2ginv 2 -
— —_ZG.A, 4.21
dg g i (4.21)

where A, is defined in (4.6) and Aa refers to the expression with all fields rescaled. Sa is the

supersymmetry variation for rescaled fields. So

d dX 20, ~ ~ 21, ~
R R L R @22
We want to rewrite
<<(5aAa)X>>g = <<5a(AaX) >>g + <<Aa<gaX)>>g (4.23)
using the supersymmetry Ward identity (2.115)
N =4 i 4£U ~a ¥ 1a s
(3.Y), = <<g2 [t Ceda(enAy) (Y)>>g (4.24)

applied to Y = A, X. Because A, is gauge invariant we have s(A,) =0 and thus s(A,X) =
—Aas(X ) (the minus sign here appears because s anti-commutes with fermionic expressions

such as A,). For the third term on the right-hand side of (4.22) we use
Q 1 ~a Aa
Sy =s (—292 / d'z ¢ (Q“Au)) (4.25)
and the BRST Ward identity (2.113) such that
_ 1 = _
(S X)), = <<—292 / d*z GO (Q“AZ)s(X)>> . (4.26)
g

Subsequently, we put everything back together and obtain

140 —<<dX>> B (Baldu ), + 2 [ ate G0 ) <X>>>g
e <</d4:” ¢*(@) (Q“AZ)S(X)>>Q .

Finally, we integrate over the fermionic degrees of freedom. Recall that each spinor field con-

(4.27)

traction comes with a factor of ¢ and each ghost field contraction comes with a factor of (—i).
Due to the rescaling of the fields, both contractions furthermore come with an additional factor

of g%. Subsequently, we arrive at

Ry X =X 2R 6ux)+ 2 [dte Co(a)ba(gr A0
g —J g

(4.28)
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4.2. The 7~€g—Operator

This operator is manifestly distributive. We use the definitions of the fermion and ghost prop-

agators

N (@) (y) = §(z,y3 ), C(@)Ch(y) = G (x,y; A) (4.29)

pegall

as well as the definition of A, from (4.6) and the supersymmetry and BRST transformations

(4.4) and (4.9) to obtain the final form

Rg :ﬁinv'f_,]égf (430)
with
R =L L 10 aty (3,5 (0,0 0 By )
inv dg 8g K 14 pA 5AZ<H?)
; B - 5
— [d*z d*yt S (g, y: A)) Db _ 4.31
o [t dty (7,8 ) ) 5 (431)
1 - )
Z [ a4z D* _
+g/ x D(x) 55 (z)
and

- ~ o~ ~ 0

Rt = —g/d4:c d*y (DuG)™ (2, y; A) Riny (5G4 AL (y) ) —

& # (9 H ) 5 A4 (x)
~ < = ~ ~ o

+9fabc/d4$ d*y G*(z,y; A) Riny (%Q“&Z(y)) De(x) 3D (2)

(4.32)

Like the super Yang-Mills action, also the ﬁg—operator is divided into a gauge invariant and a
gauge fixing part. Since the gauge fixing part is constructed from the two terms with BRST
variations in (4.28), its action on any gauge invariant operator Oiy,y is trivial, i.e. (7~€gf Oinv) = 0.
Furthermore, since the other term of the ﬁg—operator is gauge invariant also (7~2mv Oiny) is gauge
invariant. This can significantly simplify the calculation of the Nicolai map for gauge invariant

operators.

From the definition of the A/ =1 super Yang-Mills fermion propagator (2.63) we obtain

55ab($ y'fi) dé& i &Gdb i
00 _BUL) _ _ pemagac(y z Ayt S (z,y; ). (4.33)
(5Azl(z)
Similarly, we obtain from (2.80) for the ghost propagator
~ab A B B B B
POADUA) _ pema ey, A) BG4 (4.34)
i (2)

In their rescaled formulations, neither one of these propagators depends on the coupling constant
g. For practical calculations, it is sometimes useful to write out these equations in Dyson-
Schwinger (integrated) form

S (9 A) = 69 Sy(x —y) — faCd/d4z So(x— z)v“ﬁi(z)gdb(z,y;ﬁ) ,

. B ~ ~ ) (4.35)
G, A) = 3Gl — )~ 1 [ d'z Gl — )G A5 ()G (2, A).
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4. Off-Shell N = 1 super Yang-Mills

These identities can be obtained by multiplying the equation of motion for S%(x,y; A) (respec-

tively G®(z,y; A)) with So(y — z) (respectively Go(z —%)) and integrating over y.

Like in the previous chapter, the actual Nicolai map is obtained by power series inversion. The
relevant equations are (3.20) and (3.21). However, one must be careful to rescale the fields in

the expansion of (Tg_lA)fL before again acting with the ﬁg—operator. Subsequently, we obtain

(T =3 L (TA) =Y (TG A) (4.36)
n=0 """ n=0 """
with
(ToA); = A,
a = n neq 1 a (437)
Ti==3 () (RyTGANG 5ol

The corresponding expressions for (7,D)* follow immediately.

4.3. Proof of the Main Theorem

As we have pointed out in the last chapter, large parts of the proof are universal to all the
supersymmetric field theories in this thesis. Hence, in this chapter we shall only discuss the
steps differing from the previous discussion. The first difference is the new part i) in the main

theorem 4.1.

4.3.1. Part i)

The gauge fixing functional being a fixed point of the Nicolai map is equivalent to it being

annihilated by the ﬁg—operator. This follows directly from (4.19). We write

Ry = Rinv— g / d'z dty (DLG)™ (@, y; A) Rine (164 AL (1)) 5 Ag(x) )
+gf“bc/d4x d'y G*(z,y; A) Riny (ég*‘flﬁ(y)) D<(x) 6Di(x) : -
Hence, we find
Ry (161 A(2)) = Rin (16 A5(2))
_/d4x dty W(Dué)“(x,y;ﬁ) Rinw (1G4 48(1)) (4.39)

=0.
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4.3. Proof of the Main Theorem

4.3.2. Part ii)

For the proof of part #) we must now only show that ﬁg-operator annihilates the bosonic part

of the gauge invariant A/ = 1 super Yang-Mills action. A direct calculation yields

R (Shloi]) = 10 (5 [t [~ {ER@F (@) + ;D" @0)D" ()| )

5 (Fer(2)Feo(2))

6 (Fo\(2) Fe\(2))
5/12(:1:)

3 3/d4:v dty d*z tr(y,8%(z,y; A)y p)‘) Fb (y)

~ 16 3/d4a: dty d*z tr(57,5%(z,y; A)) D®(y)

B b
+503 = [t aty p) 5D5%’2(D)(y) (4.40)

-2 / dle [~ 3Fn @ F @) + 3D (@)D @)
+ﬁ / Az dly tr(4#5% (w, y; Ay ) B (1) (DY Fop)? ()
4 [l dly (s S @y 4) D (5) (D" Frp) (@)
+glg /d% D (2)D%(x).
The blue terms cancel. In the two green terms we use

(D Fup)* (@) = AP Dy Fyp) () = 2472 (Dp o) (2) = 597(DyFo)* (). (4:41)

Due to the Bianchi identity y*** (DPFW)Q = 0. Subsequently, we integrate by parts and obtain

ﬁirw(Sllnv g7 7/(14:1: Fa Fa,uu( )
~ 169 3/d4:c dty tr(y"47 (D, S)% (x, y,A)'yp)‘)Fg)\(y)F,fu(x) (4.42)
- g?,/d“x Ay tr(v99" 7 (D S)* (2, y; A)) D (y) FY, () .

We identify the Dirac equation 77 (D,S)® (z,y; A) = §%6(z —y) and thus get

~ 1 " ~
Rinv (Sllnv g7 0.3 /d4 /1V FGIJV( )_ Fqg /(14'7; tr(ﬁ/lwpr>F/{: ( )ng( )
4 v\ b a
o [ 4 () D) (o) (443
=0.

The red terms cancel upon taking the trace. The remaining term vanishes since tr(y>y**) = 0.
Furthermore, we notice that the 7~€g-operat0r annihilates the two terms of the gauge invariant

bosonic action separately. This concludes the proof of part 7).
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4. Off-Shell N = 1 super Yang-Mills

4.3.3. Part iii)

The proof of part i) is again largely similar to the discussion in the previous chapter. The only
difference is the appearance of the Faddeev-Popov determinant from the integration over the

ghost fields, i.e.

(X)), = / DO DY ¢~ Sinv[0:® V] =iSerlo:®. V] x (]
. ' (4.44)
= /'DO(I) Anss[P]App[P] eflsinv[gi‘b]*lsgf[g’(b]X[(I)] .

Thus we obtain
T(Th®) = Aniss[P]App D] (4.45)

at least order by order in perturbation theory. This concludes the proof.

4.4. Properties of the ’fzg-Operator

In the proof of the main theorem 4.1, we have seen that 7~€g annihilates the two terms of the gauge
invariant bosonic action separately. Furthermore, neither the gauge condition nor the Matthews-
Salam-Seiler or Faddeev-Popov determinant depend on the auxiliary field D*. Hence, we shall
disregard all terms involving the auxiliary field in the remainder of this chapter. Nevertheless
the Nicolai map (75 A)}, still satisfies 4) - 4ii) of the main theorem 4.1 for any gauge with the
scaling property (4.8). Finally, let us point out that when considering ‘on-shell’ supersymmetry,

the auxiliary field will drop out anyway.

Furthermore, we want to study the well-definedness of (4.19). A priori it is not obvious that
the limit g — 0 in (7@’;(%[1))2(33) ] $g ¢|g:0 exists. When computirig the invejrse Nicolai map
7;_1 to some arbitrary order in the coupling we must act with R, on (%AZ), the fermion
propagator S%(z,y;A) and the ghost propagator G®(x,y; A). We want to check that each
of these calculations gives a finite result when replacing fil‘j = gAj, and taking the limit g — 0.

Therefore let us rewrite (4.27) and (4.28) by means of the identity [41]
B, = 990 (D, ) — 200 A — fey AL (1.16)

leaving the gauge functional arbitrary. Integrating by parts, so D, acts on the fermionic propa-

gator to give a d-function, then leads to the new representation

ﬁ,g = 7?,0 + 7?,1 + 7%2 (4.47)
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with the counting operator (now with D® = 0)

. 5
Ro=—+~ [ d*z A%(x) TSR (4.48)

The other two operators are given by

> 1 4 4 Jab AN~ PA bed fc 1d d
Raime g fate dy o (S0 A0 A 0 570
1 _ ~ _ _
- 89/d43: d*y d*z (D,G)*(x,z; A) tr (yyg”Sd’(z,y;A)va) (4.49)
- . )
x fPUAL () AS(y) =
P 5Az(x)
and
Ry = — 1/d41: dty tr <7M§“b(as,y;fl)) A8 () #
4g 6 AL (z) (4.50)
1 4 4 4 ~v\ab A v gbe A A fcC 0 .
—1-49/d z d'y d*z (D.G)¥ (z,y; A) tr (%g S (y,z,A))@ AS(2) 5/12(%)
The counting operator 7~20 obeys
> ay — P 1 fa) _
Ro(Af) =Ro (LA2) =0 (4.51)
as well as relations like
Ro (Sab(x,y;fl)> = —dee/d4z 5’“6(56,Z;A)'y“flﬁ(z)geb(z,y;fl) etc. (4.52)

Counting the powers of A shows that also R gives finite results for (é[lﬁ), Seb(z,y; A) and
G%(z,y; A) in the limit A= gA and g — 0. For Ry, we need to be a bit more careful. We
consider the potentially singular zeroth order contributions in both integrands of (4.50), using

the Dyson-Schwinger identities (4.35),

Sab(m, Y; fl) = —5ab’yp8p0(x —y)+ (’)([1) ,

) ) ) (4.53)
Gab(l'ay; A) = 5abG0($ - y) + O(A) )

where C'(x) is the free scalar propagator obeying OC(z) = —d(z). We can ignore the O(A) terms
since they are non-singular as g — 0. If we had chosen a more general gauge in agreement with
(4.8), the second term in (4.50) would potentially have another A dependence in front of the

fermion propagator. However, it also follows from (4.8) that

0G°[A](x)

SAL(y) =§%GHs(z —y) + O(A). (4.54)
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4. Off-Shell N = 1 super Yang-Mills

Hence, this does not harm the g — 0 limit. For the Landau gauge (G* = 0") the cancellation
of the singular term follows easily upon use of ¥#0,S5¢(x) = d(x) and Go(x) = —C(zx). For the

axial gauge (G* =n*), we compute
tr (Sl — 2)) = —An8,C(y— 2), (4.55)

integrate by parts, and use the defining equation for the free ghost propagator n“@MGSb(az) =
§9%§(x) to show that these contributions cancel again (as we pointed out, higher order terms in
the gauge functional do not affect this argument). All remaining terms in (4.50) are at least of

order A and therefore possess a well-defined limit for g — 0.
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4.5. The Nicolai Map in Axial Gauge

We present the expansion of the Nicolai map (7, A),(z) in axial gauge GHAj; = nt A}, up to the
second order in the coupling [3]!
(Tg A), (z) = Aji(x) +grte [ aty d*z (Muwd(x —y) — OuGo(r —y)nw)
A WC=20-4°) +0*Cly =) A" ()A5(2) |
+2gf% [ d'y d*z d'w (nuwd(@—y) —duGol(z—y)ny)
x 0Oy — 2) AP (2)0N (2 — w) 8- A% (w)
2
+ et [ty ats dtw (ud(e—y) —uGola—y)n) {
— 24" (y)C(y — ) A (2)07C(z —w) 9 A° (w)
— A (y)C(y—2)0-A%(2)C (2 —w) 9 A (w)
- %C(y —2)0-A%(2)0C(= — w) AT (w) AS ()
+ 30— 2)9-A°(2)9 Oy —w) AT (1) A5 ()
- %C(y — 2) A% (2) AS(2)07C (2 — w) 9 - A (w)
+ éaAC(y —2) A% (2) A (2)C (2 — w) 8- A% (w)
—20\C(y — 2) A (2) AN (2)C (2 — w) 0 - A° (w)
130,C(y — 2)AS(2)0 C (2 — w) A% (w) A7 (w)} (4.56)
2
+ et [aty ats dtw dt (puda—y) —uGole—y)me) {
—C(y—2) A ()N C(z —w) - A (w)I\C(2 —v) 8- A°(v)
—C(y—2)0-A%(2)0\C(z —w) A (w)aN C(w —v) 0- A% (v)
+C(y—2)9-A°(2)2Cly — w) A ()N C(w —v) - A% (v)
—9\Cl(y fz)Ad[V(z)a)‘}C( —w) A (w)C(z —v)9-A°(v)
— 9Oy —2)0"C(z — w) 9-A°(w) D C (2 — v) A% (1) A (v)
+20\C(y — )0 AN (2)C (2 —w) 9 A (w
—20\C(y—2) A ()N (2 —w)8-A%(w
—40\C(y—2) A ()N C (2 — w) Al (w)d"C
1 68,C(y — 2)AS (2) C (2 — w) A (w)oP)C w—u)a.Ae(v)}
— g2 fee e [ty 'z dlw d'v dlu (nuwd(z —y) — 0uGolx —y)nw)

x N O(y — 2)0" C 2 —w) 0 A°(w)DP Oz — v) Ay (1)9,) C (v — ) D - A° (u)
+0(g%).

L As explained above we have disregarded all terms containing the auxiliary field D.
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4. Off-Shell N = 1 super Yang-Mills

We point out that this result is, in principle, valid for all n#, regardless of whether they are time-
like, space-like or null. It, therefore, applies to the light-cone gauge as well. However, (4.56) is
substantially more complicated than the corresponding expression for the Wess-Zumino model
(3.45). There the first and second order each only consisted of a single term. In section 4.7 we

explain how to simplify this result when accepting some restrictions.
Recall that the free axial gauge ghost propagator from (2.102) satisfies
n*0,Go(z—y)=0(z—y). (4.57)

In writing the above result, we have regrouped the terms in such a way that they all appear

with the axial projector
I (x) == nuwdé(x) — 0,Go(x)ny (4.58)
in front. This projector obeys n*II,, () =0 (but II,, (z)n” # 0). By (4.8) we further have
[ty (o =)0 Fy) =0 (4.59)

for any function F. Hence, the second order result in axial gauge can be written in such a way
that it differs from the result in the R¢ type gauges only by the insertion of this projector, since
all terms of type (4.59) drop out.

4.6. Tests

There are three tests we can perform on (4.56). They correspond to the three main properties

of the Nicolai map from the theorem 4.1. In the following let A} = (7, A)j.

4.6.1. The Gauge Condition
The preservation of the gauge condition
a _ a 3
n“AL (x) = n“A#(a;) +0(g°) (4.60)

is trivially satisfied up to the order considered. This is because the axial projector obeys

n*Il,, (z) = 0. So in particular n#Ajf(x) = n* Aj (z).
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4.6.2. The Free Action

By the second statement in the main theorem, the bosonic Yang-Mills action without gauge-
fixing terms is mapped to the abelian action. We integrate the abelian action by parts and

obtain
/ d A'(—On™ +0ro") Al £ = / bt F2FO 4 O(g%). (4.61)

In the leading order, the statement is trivial. We notice that any term which can be written
as a total derivative 0} (...) does not contribute by the gauge invariance of the free action. In
particular this reduces the axial projector I1,,(z —y) = nuwd(z —y) — 0,Go(x — y)n, to simply
Nuwd(x —y). In the first order, we find for the left-hand side of (4.61)

5 [t A @00 +0r0) Al (2)
2 (g
— g5 [ dla dly AL (2)C(o — ) 9-A%(y) (-0 + 0'0") A3(w) o)
gfre [de dly 0°C( - ) AL A () (O + 0°0) AL ()
+ QQbec/d4CL' dty d*z 0MC(x — y)Alfu(y)OA]C(y —2)0-A°(2)(—0On*" +0"0")Al(x).
We integrate by parts and remove anti-symmetric terms
1/d4x A () (=Ont + 019" ) A ()
2 O(g")
= —gf™ [ a'z \AL (@) A (@) A (@)
+gfabc/d4$ d4y {
— DA () A" (2)C(x —y) 8- A°(y)
+0,0-A4%(2) AP (2)C (- ) 0-A%(y)
— 20, Al (2) AV ()N C (w — ) 0-A%(y) |

— gfebe / die 9,45 (x) AP (z) AN (z)

L[t L @re @)
4 (")

In the second order, the steps are generally the same. However, we will need to use the Jacobi

identity (2.5)

(4.63)

fabCfade + fabdfaec + fabefacd —0. (464)

Furthermore, we can again disregard half the terms because of the axial projector II,, (z —y).

After carefully collecting all the terms contributing to the left-hand side of (4.61) at O(g?), we
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perform similar partial integrations as above and obtain
1
5 [l A0 +00") A2 (@)
2 0(s?)
= [ e A52(@)| e (O + 00 AL @) o,

1 a v v a
+§/d4x AL ($)|o(gl)(_|j77u + 010 )A:/ (x)|o(g1)
2
g aoc € a Cc €
= g [ dla A (a) A5 () AT (@) A @)
: (4.65)
% [l dy A(@) A5 @0 AT (@)l - y) 0-A7(y)
% (fabCfbde + febafbdc+ be@fbda)

9 rabe pad 4., 4b d A
= e gote [t AL (o) A5 () AT (@) A (@)

4/d4:c FS (z) " ()

0O(g?)

Thus (4.61) is satisfied. These relations are independent of dimension.

4.6.3. Jacobian, Fermion and Ghost Determinant

Finally, we need to perturbatively show that the Jacobian determinant is equal to the product
of the MSS and FP determinants. This is done order by order by considering the logarithms of
the determinants rather than the determinants themselves, i.e.

SA ()

log J(T4A) = logdet((SAb W)

) = log (Auiss|g; A]Appg; A]) . (4.66)

For the logarithm on the right-hand side, remember that log(a-b) = log(a) + log(b). In section
2.4.4 we have discussed how to obtain the Matthews-Salam-Seiler and Faddeev-Popov determi-

nants. Recall the results for the MSS determinant (2.95)

log(Awsslg; A]) = >N / %z dy {
+20"C(x —y) AL (y)0"C(y — x) A7 (x) (4.67)
—OMC(x— y) A (y)9,C(y — 7) Al () }
+0(g°).
And the FP determinant in axial gauge (2.103)
o\
log(App[g: A]) = £= /d4x d'y Go(z —y)n- A°(y)Goly —a)n- A%(x) + O(¢°). (4.68)

In the leading order, there is no contribution from the Jacobian determinant since log1 =0. At

O(g), the logarithm of the Jacobian determinant is proportional to % = 0. Also, the MSS and
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FP determinants have no contribution in this order. At O(g?) the logarithm of the Jacobian

determinant consists of two terms

sAl / /
log det ( £ (x)) ‘ =Tr [5/1 o4
0(g?)

A (4.69)

1 léA’ ]
— =Tr | — ,
0(92)] 2 oA O(gt)

where the trace is done by setting v = u, b = a, y = r and integrating over . The computation

S AL (y) A ogh)

is straightforward, but we must be careful with formally divergent terms. The first term gives
gA’ 2 4. 14
trlM —gN/dxdy{
— 8,0 — y) AP Cly — 2) A" ()

—C(a—y) " (As(y)Goly —z)) n-A%(2)

+ 0 —y)0-A"(y) (Cly— )~ 20(0)) 9-A%(x)}

0(92)]

+g2N/d4m diy dtz { (4.70)

+ iGo(x—z)n“C(z—x)8-Aa(y)8MC(y—m)8.A“(:c)
+2Go(z — 2)0"C(z —2) 8- A% (y)n" 0y, Cy — 2) A% (x)
—2Go(x— 2)0"C (2 — y) A (y)n 0" I\ Cy — ) Al (x)
+ 25(0)0(2 —y)0-A"(y)C(:—2)0-A%() }.
The second term gives
L [M
2|54

o
6A

] :gQN/d4:E dy {

+20"C(x —y) Al (y) 0" Cx —y) Ay ()

O(g1) O(g1)

+ 5 Golw—y) - A°(y) Goly — ) - A°(0)
+C(w—y) 0" (As(y)Goly — ) n-A*(x)
~ {0 -0 A) (Cly—2)-200) 0 A@)} 4oy
+¢2N / diz dy dz {
- iGo(x (2 — )0 A (1)uCy — ) D - A%(2)
—2Go(z —2)0"C (2 —2)0-A"(y)n" 0y, Cy —x) Ajy (2)
+2Go(x —2)0"C (2 — y)Aﬁ(y)nAE)”@{AC(y —z)Aj, (@)
- 25(0)C(z—y)a-Aa(y)C(z—x)a.Aa(x)}.

Carefully collecting all the blue terms, we see that they cancel. Notice that this also applies to

the formally divergent terms, including a factor of §(0) (which can be appropriately regularized).
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4. Off-Shell N = 1 super Yang-Mills

The three remaining black terms in (4.70) and (4.71) match the three terms from (4.67) and
(4.68). This concludes the determinant test.

Notably, the determinant test also works in general dimensions d for which r = 2(d —2). However,
we do not expect this lucky coincidence to survive in higher orders. Furthermore, we have also

checked that the determinant test is passed in the R¢ type gauges.

4.7. Going ‘On-Shell’

From the ‘off-shell’ /=1 super Yang-Mills Nicolai map (4.56) in axial gauge, we can easily

obtain the corresponding result in Landau gauge. We must simply make the substitution
0u,Go(z —y)n, — —0,C(x—y)0,. (4.72)

This is because, in Landau gauge, the free ghost propagator is Go(x) = —C(x) and GH = .
After the substitution, some terms will drop out as they are now anti-symmetric under the
exchange of two spacetime indices. Furthermore, recall that in Landau gauge £ — 0. Thus the
bosonic part of the gauge fixing action behaves like a delta function forcing us on the gauge
surface 9" A, = 0. Most terms in (4.56) are proportional to the gauge condition G¢(A) = 9" Af,.

Thus when going ‘on-shell’; these terms drop out and we obtain
(T AV () = ALw) + g% [ d'y 09C(w—y)A™ () A5(y)
3 2 aoc e (& e
2 pore g [aty ate 00C (- ) AN, Cly - DAL A () (AT)

+0(g?).

This result is much simpler than (4.56). However, it only exists in the Landau gauge. Going ‘on-
shell’” in the axial or light-cone gauge, i.e. considering the limit £ — 0, does not simplify (4.56).
It appears that the Landau gauge is the preferred gauge of super Yang-Mills field theories. In
section 4.4 we have reformulated the ﬁg—operator (4.30) using the identity

VAFD, = 29PN (D, A" — 20N AR — frleyPr AT AS (4.74)

This led to a formulation of the ﬁg—operator where the term Ry was proportional to the Landau
gauge condition. Thus we suspect that the favoritism of super Yang-Mills field theories for the

Landau gauge stems from the form of the field strength tensor.

In any kind of practical calculation, we will only consider correlation functions of gauge invariant

operators O;(z;). Thus for

(O1(21)... On(@n)), = (T OV (1) - (T On) (), (4.75)
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it does not make a difference whether we use the inverse of (4.56) or (4.73). However, from a
practical point of view, it is much simpler to use (4.73). In the next chapter, we will show how
to obtain (4.73) without the detour through a rescaled field formulation. Furthermore, we will
be able to obtain the Nicolai map for a wider range of super Yang-Mills field theories, which
do not have an ‘off-shell’ formulation with (finitely many) auxiliary fields. Namely, these are
N =1 super Yang-Mills in 3, 6 and 10 dimensions and N = 4 super Yang-Mills in 4 dimensions.

However, we will also see that the ‘on-shell’ formulation requires the Landau gauge.
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5. On-Shell N/ = 1 super Yang-Mills

In this chapter we present the ‘on-shell’ V' = 1 super Yang-Mills Nicolai map in d = 3, 4, 6 and 10
dimensions up to the third order, with the fourth-order result given in appendix C. We will learn
that the ‘on-shell construction of the R4-operator requires the Landau gauge but in return no
detour via rescaled fields. However, the ‘on-shell‘ version of the A/ =1 super Yang-Mills Nicolai
map is much simpler than the corresponding ‘off-shell’ map. In particular, we will rederive the

‘on-shell’ map (4.73) in a more direct fashion.

This chapter is organized as follows. In the first section, we recall the relevant notation and state
the main theorem. In particular, we highlight the differences to the ‘off-shell’ formulation of the
theorem from the previous chapter. In section 5.2 we derive the Rg4-operator before proving the
main theorem in section 5.3. In section 5.4 we give the Nicolai map to third order in Landau
gauge and discuss the history of this result. In section 5.5 we comment on the renormalization of
the R4-operator and Nicolai map. Section 5.6 contains the tests for the Nicolai map. In section
5.7 we point out an ambiguity in the Nicolai map. We show that a different map up to the third

order exists specifically for d = 6 dimensions, which also passes the three tests from section 5.6.

This chapter is heavily based on [1] and [2]. The fourth-order Nicolai map was first published
in [3].

5.1. Introduction and Main Theorem
Recall the ‘on-shell’ d-dimensional N'= 1 super Yang-Mills action (2.56)
4

1 -
S}nv:/ddx {F“ F“ﬂh%A%ﬂ(DM)a . (5.1)

The action is invariant under the supersymmetry transformations (2.60)

a N a a 1 174 a
0A = —i(A"yue), OAG = —5(7“ €)ally, - (5.2)

(67

When computing correlation functions, the gauge-invariant action (5.1) must be amended by a

gauge fixing term (2.77)

S = [ s [ge(@naz)(e A + 50D, (3
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5.1. Introduction and Main Theorem

The complete action S = SL, + Sy is invariant under the BRST transformations (2.112)
a a a abc c ~a 1 a a 9 cabe c
sAy = (DO, sXT=—gfNCe, C =04y, Ot =—1f bechce, (5.4)

In this chapter, we present a more direct construction of the Nicolai map with only ‘on-shell’
supersymmetry and without passing through the rescaled fields. This construction necessitates
the Landau gauge G Aj, = 0" Af,. However, the ‘on-shellness’ is much less of a restriction for
the Nicolai map than, for example, for the supersymmetry algebra. Still, the third part of
the main theorem 4.1 from the previous chapter has to be adapted to allow the matching of
determinants to be modulo terms proportional to the gauge fixing functional. At the same time

we can generalize from 4 spacetime dimensions to d spacetime dimensions.

Main Theorem 5.1.
‘On-shell’ d-dimensional N =1 super Yang-Mills is characterized by the existence of a non-linear

and non-local transformation Ty of the gauge field
Ty: AZ(JC) — A;f(x,g;A) ,
which is invertible, at least in the sense of a formal power series such that
i) The Landau gauge-fizing function GFAf, = 0" A}, is a fized point of the map Ty.
1) The bosonic Yang-Mills action without gauge-fixing terms is mapped to the abelian action,

Siuwl95 Al = Sine[0; Ty A].

ii1) Modulo terms proportional to the gauge firing functional grAj, = orAjy, the Jacobian de-
terminant of Ty is equal to the product of the Matthews-Salam-Seiler and Faddeev-Popov

determinants, i.e.
J(Tg A) = Awmss[g; AJArp[g; A

at least order by order in perturbation theory.

Regardless of the changes to the theorem, it still implies the important relation

(O1(21)...On(@n)), = (T OV (1) (Tg ' On) () - (5.5)

However, this time restricted to the Landau gauge. If the operators O;(z;) are gauge invariant,

this restriction is unimportant.
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5. On-Shell N' = 1 super Yang-Mills

5.2. The R4-Operator

We derive the ‘on-shell” R4-operator. Since we work with Majorana spinors, this R4-operator
is technically only valid in d =3, 4 and 10 dimensions. However, the Nicolai map itself is
independent of the spinor choice and is thus also valid in 6 dimensions'. Without passing

through the rescaled fields, the inverse Nicolai map is defined as

[e o] n

T =3 z {(Rg A)Z(x)‘go] . (5.6)

The Nicolai map is obtained from its inverse by power series inversion, see (3.20) - (3.21).
The Rg-operator was first introduced specifically for d =4 in [39, 40, 42]. Only recently the
construction has been generalized to d = 3, 4, 6 and 10 dimensions [1]. As usual, we construct
the R4-operator from the linear response of the vacuum expectation value of a bosonic monomial

X[A] to changes in the coupling constant

<fg<<X>>g _ <<<ji);>>g _Z~<<d(5m21;5gf) X>>g = (RyX),. (5.7)

In the previous chapter, the ‘off-shell’ supersymmetry allowed us to write the action Si,, as a

supervariation. In the ‘on-shell’ formulation, this is no longer possible. We find

dSilnv[g;Av)‘] (1 d—1 abe d Yan. i AbyC
dg_daAa—z<2—r>f /dx ()\ﬂyAu/\) (5.8)
with
_ 1 abc d pAYa b gc
Ao=—o-f /d x (7 A )aApAA. (5.9)

We want to rewrite

((0ata) X ), = (0a(BaX) ), + (Aal6aX)), (5.10)

using the supersymmetry Ward identity (2.115)

(GaY), = << / dz ¢ 5a(8“AZ)s(Y)>> (5.11)
g
applied to Y = A, X. Since A, is not gauge invariant in the ‘on-shell’ formulation, its BRST

variation does not vanish. Using the Jacobi identity (2.5) we find
1
s(Ba) = - / Al (1PAN)0,CP A5, (5.12)

For the g derivative of Sgr (in Landau gauge) we obtain

dSgelg; AN

_ rabe d 7auAb cy 1
o f /dxC@(MC) (5.13)

'An Rg-operator with Weyl spinors is, for example, derived in [41].
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5.2. The R4-Operator

Thus, putting everything back together, we have

Cfg<<x>>g _ <<‘if;>> (A (5 X))+ << / dy caaa(auA;)Aas(X)>>g+ (z X), (5.14)
with
( / ddy C%(y) da (9" A% (y) ) L pabe / Az (’yp’\)\a(a:))aapCb(x)Ai(w)
_ (; _ dl) fabc/dd 3 () Al ()X () (5.15)
_jpabe / dd ()% (AL, (2)C%(x)) .

In the next subsection, we will show that Z vanishes upon integrating out the fermionic degrees

of freedom. We show that this is true only in the Landau gauge. The R4-operator then reads?

e g d,.. Ha o oAa
RyX = +A|a_(c,5aX)+/d 7 C%0a(0" A1) Aus(X) + Z X (5.16)

Without the vanishing of g this operator would not act distributively. Neglecting the multi-

plicative term, we can plug in the definition of A, as well as the fermion and ghost propagators

to obtain
ab Ci (& 5
Ry=q." o / d'e d'y tr(y, 5" (,y: AP AL W) 5
1 S (5.17)
+5- / dz ddy A%z (DuG) (x, 23 A) tr(1,0” S (2,55 A)r™) f* AL (y) AL (y) 5Ae(x)
)

Compared to the ﬁg-operator (4.27) there is no inherently gauge invariant part (other than the
g derivative) in this Rg-operator. Thus, when computing the inverse Nicolai map (5.6), we must
always act with the entire R -operator even on gauge invariant operators. This is because, from
the second application of the R4-operator onward, it will start to act on itself. Since A, is not

gauge invariant, there will be contributions from the second line in (5.17) acting on the first.
Nevertheless, we might still simplify (5.17) by introducing the covariant transversal projector
Pﬁf,’(x,z; A) = 5“1’(5“”(5@ —2z)— (DMG)“b(a:, z; A)0% (5.18)

obeying P P = P and 8“P“b 0. This is the non-abelian version of (4.58). They differ by the
appearance of the gauge covariant derivative and a non-linear dependence on AZ. It allows for a
non-standard (non-linear) separation between transversal and longitudinal degrees of freedom,

with

A%tz / dly Pob(z,y; A) A (y) and  A%l(x / dly (D,G)"(x,y; A) 8" Ab(y), (5.19)

2We have put a factor of ¢ for each integration over two spinor fields and a factor of (—i) for each integration

over two ghost fields.
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5. On-Shell N' = 1 super Yang-Mills

such that the more standard abelian (linear) split of Aj(x) into transversal and longitudinal

parts is recovered by setting g = 0. Subsequently, we find

d 1 ae v Qe Ci Cc
0= g~ g [ A Ay &% Pl 2) (S (2 Ay ) 7 A ) AL )

Tt (5.20)

This means that the Rg-operator acts only on the ‘covariantly transversal’ part of its argument.

Consequently, the map 7, and its inverse 771 affect only the transverse degrees of freedom

g
of the gauge field, whereas they do not change its longitudinal component, which is therefore

effectively the same as in the free theory.

From the definition of the N'=1 super Yang-Mills fermion propagator (2.63) we obtain

ab .
d5%(@,y;4) (;’y’A) = 7f6de/ddz S’“C(:U,z;A)AZ(z)Seb(z,y;A) (5.21)
g
and
55(11)(3:73/;14) _ cde qac . wqdb .
W——gf S (:c,z,A)’y S (Zay,A)' (5-22)

Similarly, we obtain from (2.80) for the ghost propagator

ab .
46T (@, y; A) Eil’g,y,A) = dee/ddz G“C(:L‘,z)%’z‘Az(z)GEb(z,y;A) (5.23)
and
0G (2,45 A) e it b
————T L =[G (1, 2; A) PGP (z,y; A) . (5.24)
§Ad(2)

Finally, recall that in the previous chapter we have expressed the ﬁg—operator as a sum of
three operators 7~€g =TRo+R1+Rs. The ‘on-shell’ counterpart to Ry is simply the g derivative.

Artificially removing the rescaling from R in (4.49) we see that in 4 dimensions

d

This is as expected since the Ry-operator must also be compatible with switching between the
rescaled and non-rescaled version of the theory. Furthermore, we argue that Ry does not have
an ‘on-shell” counterpart since it is proportional to 9*Aj, and we are in Landau gauge, i.e.
ot Ay =0.

5.2.1. Distributivity of the R,-Operator

We show that Z vanishes in the Landau gauge upon integrating out the fermionic degrees of

freedom. The following calculation was first sketched by Flume and Lechtenfeld in [39]. A
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5.2. The R4-Operator

more detailed version was first given in [1]. Recall that the Landau gauge does not only require
GgrAf, = 0' Ay, but also § — 0, i.e. forcing us onto the gauge surface. Integrating out the anti-
commuting degrees of freedom in (5.15) gives
z—- [aty W OH ) [t WAla(:c))aapc'*b(m) 5()
1 d-1

mi(5 - ) e [t Rt A )X @) (5.26)

| fabe / dd () AL (2)04C* ().

In the last term, we used the Landau gauge condition 8“AZ($) = 0 to move the derivative
past the vector field. Moreover, we use the identity v** = %('y”'yA —MP) = =P 4P and
reorder the contracted terms such that we can identify any contraction with a fermion or ghost

propagator (in the presence of the gauge-field background) to get
1 C X a a C
Z=—f d/ddx d’y tr (O5G™ (@, y; A"y 7 O™ (w,y; A) ) AS ()

1 C T a a C
- ;fb d/ddx d?y tr (8de (x,y;A)’y“ép)‘asz (:L‘,y;A)) AS (2)
1 d-1 (5.27)
+ <2 — ) fabc/dd:v tr (Sca(x,x;A)v“)AZ(m)
r
= o [t 01 z A) A (o).
The formally singular terms with coinciding arguments can be appropriately regulated if needed.

Then we need the following Landau gauge versions of the Dyson-Schwinger identities (4.35)

5™ (a,5 A) = 8 So(w —y) + 9f™™ [ Az So( — )AL S 2,5 4),

(5.28)
OG0, 4) = 58 —) +0 £ [ A% S —2) AR(2)0C 2 4).
Integrating by parts and using 794 So(z —y) = —d(r —y) in 5 yields
Z = lfbca/ddx tr (V“Sba(:ﬁ xA)) AS (x)
L r b ) :LL
n gfbcdfdmn/ddx ddy d’z
r
X tr (So(:v - z)AZ(z)ﬁgGma(z,y;A)W’\ﬁsz“(x,y;A)'y“) AS ()
4 pocd / dde 01 G (z,; A) AS ()
(5.29)

B gfbcdfbmn/ddx ddy d?

st (DG (5 A) ol — 27" AZ()OLS™ (2, A)7# ) A a)
+ <; — dr1> fabe /dda: tr (Sca(m,x;A)’y“)AZ(x)

_fa,bc/ddflj aggca(x_/g;;A)AZ(.T/)-
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5. On-Shell N' = 1 super Yang-Mills

The pure fermion loops (blue terms) cancel, provided r =2(d —2) with d =3, 4, 6 or 10. The
pure ghost loops (green terms) cancel independently of dimension. Finally, we use Sy(z — z) =

—So(z — ) to cancel the two remaining terms

7 gfbcdfdmn/ddx ddy d’z
oo
X tr (So(a: - z)AZ(z)agGma(z,y;A)’y’\(?sza(x,y;A)fy“) AS ()
gfbcdfbmn/ddx ddy d'z (5.30)
r
x tx (00G (, y; A)So(w — 2)7” AL(2)DLS™ (2, A" ) A ()
=0.
Without the relation between the free fermion and the free ghost propagator that only exists in
the R¢ type gauges and without using 8”AZ($) =0 in the first step, this proof would not have
worked. Thus, without the Landau gauge, the R4-operator would not act distributively.

5.3. Proof of the Main Theorem

The proof of the theorem 5.1 follows the same steps as the proof in the previous chapter. For

part i) of the main theorem 5.1 we simply get
Ra(043(0)) = - [ %y 4% 04 Pis(,2) (3,08 (o3 APy A5 () AS) =0 (5.31)
since BNPf}fj = 0. For part ii) we show that R, (St [g;A]) =0
R Sl - —*/dd Faul/ )
(Shlosl) = 5 ( (@
+ E/ddac ddy d%z d%w P;fﬁ(x,z)tr(’y”SEb(z,y;A)’yp)‘)

SE (w) P (w)
A () (5.32)

_ _% fae / e P (2) A (2) AS ()

1
— [t dly dts (D @) P .2) r(r” S 2. A )

x fPLAS (y) AS ()

x fPUAL(y) AS(y) -
In the second term, the projector Pj} can be replaced by the identity since
/dd::: (Do F7M)%(2)(D,G) ™ (2, 2; A) . /dd (DpDyFoM)(2)G (2, 2; A)... = 0. (5.33)
Thus we have
1 aoc a v (&
Ry (Sholgs A1) = =5 £ [ ale Fo(2) 4} (2) 45 )
1 (5.34)
e / Az dty (D" Fy) " ()te(y" S (@, y: A)y") Ap () AL (y) -
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Like in the previous chapter, we use (4.41)
v a v a 1 17 a 1 17 a
(D" Fy)(2) = A0 (Dy Fyp () = 24792 (D Fop) () = 5D Py (x). (5.35)

and subsequently the Bianchi identity v***(D,F,,)* = 0. Moreover, we integrate by parts and
use the Dirac equation (2.63) to get

Ry (Sholgi A)) = =500 [t 7o ()48 2) 45 (0)
g [l dly F (2 (D,8) . A A5 (0) A0
S fabc / dda o (z) A (z) AS (x) (5.36)
o7 [t g () s )
=0.

The proof of part 4ii) remains largely unchanged from the ‘off-shell’ version. However, the limit

& — 0 in the path integral implies that
J(TgA) = Awusslg; A]Arp[g; A] (5.37)

must now only hold up to terms proportional to 9" Aj,. This concludes the proof.

79



5. On-Shell N' = 1 super Yang-Mills

5.4. Result and Discussion

We present the explicit formula for the Nicolai map 74 to cubic order [1]

(Ta A)aw) = ALw) + g% [ dly 09C = y) AL () A5(0)
4 3 pove e [ty 4tz 90— ) A (3)0,C0 — 2) AL(2) 45 2)
+ 923 gore e gesa [ty atz dtw 9°Cla—y)
X OOy = 2)A4(2) 47 (2)0),Cy — w) Al (w) A% (w)
gyt pie s [ty atz atw 0rCla—y) A )
~7Cly - 2)A5(2)0,C (= — w) AL ) A (w)

+01,C(y — 2) A5, ()07 C (2 — w) A (w) A (w) }

3 5.38
+gfabCfbdefdfg/ddy A% d%w { (5.38)

+60,C(x —y) AN (y)OPCy — 2) AN (2)I O (2 — w) A (w) AL (w)
—60°C(z —y) A5 (y)I*Cy — 2)A°7)(2)0),C (= — w) Al (w) AT (w)
—60,C(x — y) AS (1) Oy — 2) Ay (2)0PC (2 = w) AT (w) A7 (w)
+20°C( —y) Af, (y)9y Cy — 2) AN (2)0° C (2 — w) Af (w) Af (w)

~9uC(x—y)0" (A;<y>c<y—z>) A ()97 C (2 = w) AL (w) A (w) |
3
g aoc € C e

= et e e [ aty ats A5 @)Clo — ) AP ()0 Cly - 2) A () A2

+0(gY).
The map up to O(g?) is given in appendix C. The first two lines of (5.38) were first obtained
for d =4 dimensions already in 1980 [37]. Much later, it was shown in [53] that the same result
also holds for d =3, 6 and 10 dimensions. Shortly after, the third [1] and fourth order [3] were
computed. While the map up to O(g?) was originally obtained by trial and error, this becomes
tricky at higher orders because the number of terms is significantly larger at O(g®) and above.

In section 5.6, we will verify that this result satisfies all three statements of the main theorem

5.1 simultaneously, providing a highly non-trivial test.

5.5. Renormalization

While the 2-dimensional Wess-Zumino model is finite [72], the 4-dimensional Wess-Zumino model

and (most) super Yang-Mills theories are not and require renormalization. We restrict the
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following discussion to 4-dimensional theories since quantum field theories in more than four

dimensions are generally not renormalizable.

For pure supersymmetric field theories, there is a beautiful non-renormalization theorem stating
that superpotentials of chiral superfields do not get renormalized [11, 12]. For the 4-dimensional
Wess-Zumino model, this implies that all fields are renormalized with a single renormalization
constant Z'/2 and that the coupling constant and the mass do not receive any renormalization
besides the wave function renormalization, i.e. A= Z~3/2\, and m = Z~'m, [94, 95]. This

remains true even in the ‘on-shell’ version of the theory. Subsequently, n-point correlation

functions I'™) (z1,...,2z,;m,\) of fundamental fields are simply renormalized by
T (21, .. xpsme, M) = Z7200) (@, m, N) (5.39)

This is similar to the renormalization in the ¢* theory (see e.g. [66]). Moreover, one finds that
both the Ry-operator and the Nicolai map 7, of the 4-dimensional Wess-Zumino model are

renormalized by a global factor. For instance, we get
(TarA)(@,me, A\ Ay) = Z7V2(THA) (z,m, A\ A) (5.40)

This is compatible with (5.39). Moreover, the 4-dimensional Wess-Zumino model can be regular-
ized such that the supersymmetry is preserved [94, 96]. Hence, regularization and construction

of the Ry-operator are interchangeable.

Unfortunately, the regularization of super Yang-Mills theories is more complicated. All known
regularization procedures of supersymmetric gauge theories break supersymmetry at least par-
tially. In particular, this applies to the popular dimensional regularization and regularization
by dimensional reduction [97-99]. Hence, we must fist construct the Rg-operator and then

manually regularize the integrals.

Moreover, also the renormalization exhibits extra difficulties. The usual Wess-Zumino gauge of
the /' =1 super Yang-Mills vector superfield breaks the linear realization of supersymmetry by
introducing a gauge transformation. Thus the non-renormalization theorem of chiral superfields
no longer applies to A/ =1 super Yang-Mills. In particular, the gauge field and the fermion
receive different renormalizations even though they belong to the same supermultiplet [100, 101].
Only the auxiliary field D* does not get renormalized because it enters the action (2.51) only
quadratically. Hence, there is no difference in the renormalization of the ‘off-shell’ and ‘on-shell’
N =1 theory. The other renormalization constants are gauge-dependent. In [100] it was shown

that in Landau gauge only three renormalization constants are needed because Z¢ = Z5 and

7,2 Z¢ =1. (5.41)
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5. On-Shell N' = 1 super Yang-Mills

These renormalization constants have been computed to third order in [33] and [100]. The
renormalization of the Nicolai map is best understood by studying the renormalization of the
‘R4-operator. For simplicity, we consider the ‘on-shell’ Landau gauge. The central building blocks
of the R4-operator (5.17) are the fermion and ghost propagator. Recall that (with dimensional

regularization)
S%(x,y; A)
= 5o —y) + g [ @ Solw— )y A%, (1) So(e1 — ) (5.42)

—i—ngadcfdbe/dQ“’zl A%z, So(x— zl)fy“lAZl (21)So(z1 — 22)’)/“21422 (22)So(z2—y) +...
The free fermion propagator receives its renormalization from the fermion, i.e.
So(x —y) = ZxSor(x—1y). (5.43)
Thus with (5.41) we find for (5.42)

S (x,y; A)

= Z)\(Sabsor(:c—y)—{—ZfZ(Elgrfabc/dzwzl Sor(a:—zl)yﬂlAilr(zl)Sor(zl —9)
(5.44)

+Z§ZE2ngadCfdbe/d2wzl d2wz2 SOr(x_Zl)VulAilr(Zl)

X SOT'<21 — ZQ)’YMQAZQT(ZQ)SOT(ZQ - y) +...

The renormalization is not homogeneous. For the ghost propagator, on the other hand, we find

a homogeneous renormalization to all orders

G (x,y;A)
= Zc6%Go,(x —y) + Zo gr f° / d*z1 Gor(z — 21)0" (AS, . (21)Gor(21 — y))
+ ZC ngadcfdb6 /dz‘“zl d2w22 Go,«(a} — z1)8“1 (AZ1 r(zl)GoT(zl — Zg)) (5'45)

x 0?2 (Ae (ZQ)GOT(ZQ — y)) +...

par

= Zc G (z,y; A).

The renormalization of the g derivative in the R4-operator (5.17) is

d d
—=Z1—. 4
dg 9 dgr (5 6)
Similarly, the renormalization of the gauge field term is
0
AS(y) A = 7324, (y) AL, (y) ——— 5.47
p(y> )\(y> 5AZ($) A pr(y) /\r<y) 5*’4?“*(:6) ( )
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Finally, also the covariant derivative in the second line of (5.17) must be properly renormalized.
Altogether this gives the inhomogeneous renormalization of the Rj-operator and subsequently

the Nicolai map.

In A =4 super Yang-Mills the situation is largely similar. It has been shown that the theory
exhibits ultraviolet finiteness in the light cone gauge [13, 14]. However, it was already pointed
out by Mandelstam in [13] that the wave function renormalizations are gauge dependent and,
generally, not trivial. Only the vanishing of the beta function is a gauge invariant statement
and thus Z, =1 is true in all gauges. Structurally the ' =4 R‘;—Operator will be very similar
to the N'=1 Rgy-operator (5.17). Thus, also its renormalization will be similar to the N' =1
renormalization discussed above. For the R¢ type gauges, the A" =4 super Yang-Mills renormal-
ization constants have been computed up to three loops in [33]. However, despite the non-trivial
renormalization in general gauges we expect that vacuum expectation values and correlation
functions of well-defined gauge invariant operators are finite due to the finiteness of the N’ =4

theory.

5.6. Tests

We perform the three tests corresponding to the three parts of the main theorem 5.1 for the

‘on-shell’ Nicolai map (5.38) up to O(g?). Let A= (T A5

5.6.1. The Gauge Condition

We first verify that 9" A/(z) = 8,A%(x) +O(g*). Applying 8" to (5.38) and removing all terms
that are manifestly anti-symmetric under the exchange of two spacetime indices yields
3
0 A () = 0 A () + T oo g [ty atz dt {

+60"0,C (w —y) AN ()P C(y — 2) A% (2) I\ C (2 — w) A, (w) A, (w)

—60"9,C(z —y) A5 (1)9,C(y — 2) A ()0 C (2 — w) AM (w) AV (w) ~ (5.48)

~OC(z —y) 9 (A5(y)C(y — 2)) A*(2)07C (= — w) AL (w) A (w) |

3
- % fabe pbde g / dly d’z 9 (A (2)C(x —y)) AP ()0 Cy — 2) Af (2) A (2)

+0(g%).
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5. On-Shell N' = 1 super Yang-Mills

The two blue terms cancel each other. In the second to last term we use JC(z —y) = —d(z —y).

It is then easy to see that
3
O A () = 0 AL () + g e p U [ty s
+0° (A5(2)C(@ —y) ) A ()07 Cly — ) AL () A5 (2)
— 0" (A5 (2)C(a—y)) AP () Cly— ) AS () A4 (»)} 49

+0(g")
= o' Al (z) +0(g").

5.6.2. The Free Action
By the second statement in the main theorem, the transformed gauge field must satisfy
/ddl‘ A'“( H — grov) Ale = /dd:z: F;fl,F"“‘“’+(’)(g4). (5.50)

We stress that, unlike the matching of determinants, the fulfillment of this condition will not
depend on the dimension d. Because of the previous subsection, we can ignore the second term
on the left-hand side from order g onward. At the leading order, the statement (5.50) is trivial.
At order g, we find
1 d la uv YR la
5/d v A%(z) (@™ — 0"0") Al (x)‘o(gl)
— g™ [ dla dly 0°Ca - ) AL (1) A5 (1) DA (@)
(5.51)
— gy [ dla 0 4% 2) AL (2) A5 2)
:—7/dd:1; o () F" (z)]
O(g")

At order ¢2, we find

% / dig A'%(z) (O™ —aﬂa”)A;a(x)’o(g2)
= g [ ate dly d's 97 Cla—y) AL (y) A5 ()0 OC (@ - 2) A (2) 45(2)
+392f“bcf”de/ddx d?y A%z 8"C(z —y) ANY)0L Oy — 2) Aj(2) Ay (2) DA™ (2)  (5.52)
= g [t dly 929" Cla—y) AL (y) A5 () AT (@) A5 )
3¢ [t aly 0 A (@) AP (@0, Cla =) AL A3 (0).

Since the second term is symmetric under the simultaneous exchange of a <> ¢ and v <> A we

can replace 9, A% (2) AN (z) by $0,(A%(x)A°*(x)). Then we integrate by parts and expand
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the anti-symmetrization in the second term
1 d la uy _ auav la
5/d v A% (@) (O™ — 0"0") Al (w)‘o(gQ)
= g pepe [t dly 929" Cla—y) AL (y) A5 () AT (@) 45 )

3
_ §g2fabcfbde/dd$ ddy Aa“(x)AC)‘(:c)(?”B[,,C(:c—y)Aﬁ(y)Ai}(y)

= g2y [t dly 9197 Cla—y) AL y) A5 () AV (@) 45 )
(5.53)
8ot [t aty A% () AN )00~ 3) AL ) AS )

R g [dda dly A @) AN @)00,C @ — ) ALy A5 )
2
= g grie [[dta dly A (@) A (@) Al () A5 (2)

/ddyc Fi(z) P (x )‘ .
O(g?)
The two blue terms cancel. In the third order, there are many more terms, but the steps of the
calculation remain largely the same. We find for the left-hand side of (5.50)
1 d la Qv ¥4 la
5 A A @ - )|
3
— %fabCfbdefcfg/ddl, ddy ddZ ddw 8pc($_y)

x POy — 2) AL (2) A°7 (2)0},C (y — w) Af, (w) AZ,

_’_g3fab0fbdefdfg/ddx ddy ddZ ddw 8p0(1‘—y)Ac}\(y) {

(w)OA ()

—87C(y —2) A5 (2)0,C (= — w) Af (w) A% (w) DA (z)
—i-a[pC(y—z)AZ(z)@”C(z—w)Af\c] (w)Ag(w)DA““(x)}
+93fabCfbdefdfg/ddx ddy Atz ddw {
3

+60,C(x—y) ANy )Py — ) A7) (2 2)O\C(z —w )Af( VA%, (w) DA () (5.54)

o]
—60,C(x —y)AS ()9, Cy — 2) A (2)01PC (2 — w) AT (w) A7 (w) D A¥ ()
+20°C(z—y)Af, ()0, Cly —z)AEA(z)8UC(z—w)AA(w)Ag(w)DAa“(m)

( o)
~60°C(x —y) A3 () O Cly — 2)A°7)(2)0},C (2 — w) Af (w) AZ) (w) DA ()

(

( ’
—aucw—y)aﬂ(A;<y>c<y—z>)A“<z>a”c<z—w)Ai(w)A?,(w)DAw(x)}

3
g aoc € C e a
—gf be fbd fdfg/dda; ddy ddzAu(x)C’(x—y)A p(y)(?)‘C(y—z)Ag(z)Af]\(z)DA H(x)
3 3
+ —‘g fabcfbde/ddx d?y d%z d%w BpC(a;—y)AC/\(y)B[MC(y—z)Aﬁl\(z)Az}(z)

x 01997 Cw — w) AT (w) A% (w) )
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5. On-Shell N' = 1 super Yang-Mills

We follow the same steps of integrating by parts and using OC (z —y) = —d(x —y) as above and

arrive at
1 d la ny _ g ary Ala
5 [ ate a2 O -0 Az
:gSfabCfbdefcfg/ddx ddy d’z {
N %A““(x)t?” O*C(x —y) AL (Y) A ()8, C (x — 2) A, (2) A (2)
— L A(@) Ol y) A () A°7 ()00, Ol — 2) AL () A% ()}

+gsfab0fbdefdfg/ddx ddy A’z {

+ %Aa#(I)AM(w)apaacu —y) A% (y)9,Cy — z)Aﬁ(z)Ai] (2)
1

— AU (@) AN @)0°01,C (& — y) A5, ()7 C (y — 2) A (2) A% (2) (5.55)
— A () AN )0,010C i — ) AN ()OOl — )AL (2) AL (2)
+24% (1) A ()27 0 O (2 — y) A7) ()8}, C (y — 2) AL (2) A% (2)
20 A (1) A ()0, 0w — ) AN )7 €y — 2) AL () A9.2)
~ 50,4 ()0 (A5(2) Oz 1)) A W) Cly — ) 4] () 452
— SDA () A5 () Ol — ) A0 ()0 Cly — 2) A5 ()4

+ 3;’3 gebegrie posa [t aty ats

x ATH(2) AL (2)9°07 C (2 — y) AN (y) 9, Oy — 2) AL (2) Ap) (2)

The blue, red and black terms cancel upon renaming some variables. The green terms combine

to give
3
- et ghie 1o [t ity A8 () AN (@) A°7 ()0 C o — ) Af () A% ()
9> ( abe gbd ba bd be pbda\ pdf d,. 1d
— aoc € eoa C coe a g
= O (et e et ey e phie) pila [t aty (5.56)
< A () A (@) A°7 ()90 C @ — )AL () A% (0)
=0.
Here we used the Jacobi identity (2.5). Subsequently, we conclude
1 d la uv LAavy Ala _
5/d v AL%(z) Oy — g0”) AL (x)\O(QS) —0. (5.57)

Thus, the condition (5.50) holds up to and including O(g?).
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5.6.3. Jacobian, Fermion and Ghost Determinant

Finally, we need to show that the logarithm of the Jacobian determinant matches the logarithm
of the product of the Matthews—Salam—Seiler and Faddeev—Popov determinant up to the third

order, i.e.

log J (T4 A) = logdet (%) = log(Awss|g; AJApp[g; A]). (5.58)

Recall the logarithm of the Matthews—Salam—Seiler determinant (2.95) for general Clifford al-

gebra dimension r and spacetime dimension d

log(Amsslg; 4]) = Tf/ddx ddy {
+20"C(z —y) A, (y)0°Cy — ) Ap(z)

—0"C(w—y) A" (y)0,C(y —2) Ag(x) |

+7“g3fadmfbemfcde /ddx ddy d’z {
—60"C(x —y) A} (y)0 C(y — 2) AN(2)9,0 (2 — ) AL () (5.59)
+20"C(x —y) AL (y)0PC(y — 2) A5 (2)0*C (2 — x) Al ()
+30"C(x—y) AL (y)0PCy — 2) A (2)0*C (2 — x) A% ()
—0"C(z —y)A)(y)0Cly — 2) A5 (2)0°C (2 — ) A ()
+38“C(x—y)Ab”(y)8AC’(y—z)A;(z)&\C’(z—x)Az(a:)}

+0(g").

The coloring is for later convenience. Also, recall the logarithm of the Faddeev—Popov determi-

nant (2.99) (in Landau gauge)

. _ 927N abc pbad d d " _ a 12 _ a
log(Arplg: A) = L% 0 [ ata dty 04C o~ y) A3(y) 07 Cly — o) A3 2)

3
9" cabe pbde pdam d.. 1d, 3d
_3f U /d”dydz (5.60)

x OPC(x —y) Ay (y)0'C(y — 2) A} (2)0"C(z — ) A (x)
+0(gh).

Like in the previous chapter, there is nothing to compute at order g. At order g2, there are two

terms contributing to the logarithm of the Jacobian determinant
OA Y (x JA oA
logdet (u()) | =Tr [
O(g?)

1 (5.61)

1 GA
“TbA

_ I .
A (y) 0A 0<92>] 2 0(91)]

O(g1)

87



5. On-Shell N' = 1 super Yang-Mills

As always, the trace Tr is done by setting v = u, b =a, y = = and integrating over x. After a

brief calculation, we arrive at

loed SA ()
o8 et(éAf;(y))

3—2d
=222 / dd dly OC (x —y) A% (1) Cy — ) A%(x)
O(g?) (5.62)

2—d
+ Tg2N/dd:B dy oMC(z —y) A" (y)0.C(y — x)Aj(z).

This matches the sum of the black terms in (5.60) and (5.59) if r = 2(d — 2) because then

372 a —To22d (5.63)

1_
2 2 4 2

N3

At O(g?) the logarithm of the Jacobian determinant schematically consists of three terms

log det <W> ’ =tr VA/ ] — (2. 1) tr ldA/ LA/ ]
W) oy L4 ow) 2/ 04 o 0o (5.64)
e lM' oA oA ] ,
3 [0l 04 o 04 o)

The computation of each one of these terms is straightforward. For the third term, we find

oA
o 04

SA

1 [5,4' sA
o) 04

gtr oA 0(91)]
— g3fadmfbemfcde /ddx ddy ddZ {
~3-d

3
+0"C(x — ;1/)44?,(,1/)(')”(‘(,1/ —z)Aj, (2)0C(z — ) AS ()

(5.65)

0 C(wr—y) A ()3 Cly — 2)A5(2)9°C (= — ) Al (x)

— % oMC(x— y)Ag(y)G’\C(y —2)A5(2)0°C (2 — J‘)A()L\(.I)} .

The second term gives

_ <2. 1) o [M’ ]
2/ [ 0Aloge) 04 Lo

— g3fadmfbemfcde /ddCB ddy ddZ {
1—d
2
1 C a
+§3“C(xfy)Ai’)(y)8pC'(y*z)AA(z)a/\C(zfx)AH(m)

3—d

o
0A

_'_

0Cla—y) A3, (1)0Cy —2) AN (),0 (=~ 2) AS () (5.66)

C(x—y)Ab(y)0PC(y — 2) A (2)0 Oz — x) A (x)

+ % OO —y) AP ()0 Cly — 2) A5 ()01 C (2 — 2) A () }.
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Finally, the first term gives

. [514' ]
o el
0A O(g?)
:g3fadTnfbemfcde /ddl' ddy ddZ {
7—3d b cA a
+ T2 0000 ) AL ) Oy — ) A ()9, 02— 2) A ()
3—2d
- O C(x—y)A)(y)0 Cly — 2) A5 (2)07C (2 — ) A ()
Y ; d oMC(x— ;/)A%(;,/)()"’C(;/ —2)Aj, (2)0*C(z — x)AS ()
54 (5.67)
+ 3 5)“0(1‘—y)Ai’)(y)ﬁ/\C(y—z)AZ(z)@pC(z—x)A‘}\(x)
5—2d

OC (x—y) A" (y)D*C(y — 2) AL (2)NC (= — ) Al() }
3
= 2 grem e peim [ 4 @ty AV () A5()C o — )0PC ) Asy)
+ 8 i g e [ gt gty s 40 (2) (0,0 ) Cly— 2) A4 (2) 452

3
= G gem e gl [ty ady ©(0) A ()08 C - ) A () AL ).

To obtain this last term, we had to use the Landau gauge condition 9" Aj, = 0. Before addressing
the black terms, let us show that the colored terms match the respectively colored terms in the
MSS and FP determinants. Imposing r = 2(d — 2) we obtain

_1-d 7-3d

= Y49,
7 2 + 5 d,
r+17_3—d+1_3—2d72d—3
3 3 2 6 3 7
1:,7?37(1757(1:(172, (5.68)
2 2 2
r_ 1 3-d 2-d
6 3 3 37
1 _
r_1l_5-2d_ ., ,
22 2

All five equations are happily satisfied. We turn to the three black terms in (5.67). Using the
Jacobi identity in the first term and £ = N§° in the latter two yields

_ 933‘Nfabc/ddaj ddy Ab”(m)AZ(m)C(m—y)ﬁpC(x _y)AZ(y)
+ gZNfabc/dda; ddy d%» A () (0,C(x — y))2 a/\C(y — Z)Ag(z)AZ(z) (5.69)

3
g N aoc a (&
=L e [[ata dty C0) A (@)07C (@ — ) Al (1) A5 ).
The second term is rewritten using the identity

O(C?*(z —y)) = —2C(0)8(x —y) +20°C(z —y)9,C(x —y). (5.70)
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This simplifies the expression above to

TN gute [ty dty AP () A5()Cla )07 Cla ) AL)

TN poe [ty aty atz 4010020 )0 Ol — ) () 452)

TN g [ e aty €(0) A7 ()07 Cla ) ALy) A )

=0.

(5.71)

TN pure [ty dty €(0) A (2)07C x —3) AL A5

Thus, (5.58) is satisfied. Showing that the Nicolai map passes these three tests in the fourth

order follows the same steps.

However, given the size of the fourth-order result, there are, of

course, many more terms to consider.

5.7. An Ambiguity in Six Dimensions

The first Nicolai maps in [34-38] were not obtained by a systematic construction via the R4-

operator but rather by trial and error. For lower orders in perturbation theory, this is possible

because here the map is rather constrained. However, at higher orders, the number of terms

grows rapidly. In this section, we present another trial and error Nicolai map for 6-dimensional

N =1 super Yang-Mills [2]

(Ty A)j(2) =

90

A o)+ gf™ [ @y 0C(w — ) AL ) A5()
3 2
4 5 e e [ 0y 402 99Ol - ) A ()9, Cly — ) AL(2) 45 (2)
+3793fab0fbdefdfg d6 d6Z d6w BPC(I‘* )Ac)\( ) {
9 Y ) )
+0\C(y —2)A°?(2)0,C (2 —

w) A () A2 (w)

— 9,0y — 2) A7 (2)INC (= — w) AL (1) AZ (w)
f

A

]
w) A (w) A% (w) }

_gZSfabCfbdefdfg/de d6z d6w apc(x_y)Ac)\(y) {

—0,C(y —2)A%(2)9,C(z — (5.72)

+0°C(y — 2) A5 (2)9,,C (2 — w) Af (w) A (w)
—07C(y — 2) A5 (2)9),,C (= — w) Af (w) A% (w)
+07Cy — 2) A5, (2)0),C (2 — w) Af (w) A% (w)
F97C(y — 2) A (2)9,C (c — w) A () A% (w)}

+0(g").



5.8. Tests in Six Dimensions

We found this Nicolai map while working on the calculations presented in section 5.6. Since
this is a trial-and-error expression, there is no systematic way to obtain it. In particular, there
is no Rg-operator to generate the inverse Nicolai map. Up to O(g?) (5.72) agrees with (5.38).
However, in the third order, the two expressions differ. (5.72) is shorter than (5.38) and the
structure of the terms is more homogeneous in (5.72). In particular, the last and second to last

term from (5.38) are absent here.

There is no guarantee that the map (5.72) has an extension to higher orders. The freedom in
finding different Nicolai maps at any given order stems from the fact that the main theorem
5.1 only makes statements about the derivatives of the map. Another example of a map that
differs from the one obtained via the Rg-operator, is the third-order map for the 2-dimensional
Wess-Zumino model proposed in [35]. When computing a Nicolai map via the R4-operator, the

result is always unique. So all order Nicolai maps are expected to be unique.

5.8. Tests in Six Dimensions

We show that (5.72) satisfies the three tests from section 5.6. We will see that the determinant
test only works for d =6 dimensions. The other two tests work in any dimension. Since the new

result agrees with (5.38) up to O(g?), we only have to perform the tests in the third order.

5.8.1. The Gauge Condition

Let /Vlif = (7, A)g. Acting with a derivative on (5.72) yields
Ala a 393 abc pbde c
0 A () = 0 () S e e 09 [ @Oy @O dOw 99 Cla - y) AN )

+8>\C'(y—z)Ae”(z)8[ C(z—w)A (w)Ag_]( w)

1w
—@LC(y—z)Aw(z)@P\C(z—w)Ap(w)Ag](w)
—8PC(y—z)Aw(z)a[NC(z—w)A{(w)Ag](w)}

g3fab0fbdefdfg/d6y d6Z d6w B“BPC(:B—y)AC)‘(y) {

(5.73)

+0°Cy —2) A5(2)0),C (2 —w) Af (w) A2 (w)
— 07 Cy— 2) A5(2)0),C (2 —w) Af (w) AZ, (w)
+0°Cy — 2) A5 (2)0),C (2 — w) Af (w) A (w)
+07C(y — 2) A5, (2)9,C (= — w) Af () A% (w) }

+0(g")
— 0n A2 (2) + O(gY).
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5. On-Shell N' = 1 super Yang-Mills

The blue and red terms cancel respectively. The other terms are anti-symmetric in p and p.

5.8.2. The Free Action
The calculation of the free action (5.50) is also straightforward

1 6, Ala Lwr  auAary Ala
[ 4 Ae@) @ - o) A @) g

3
_ ?)‘gfabCfbdefdfg/dﬁx de dGZ d6w apC(:E—y)AC/\(y) {
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We integrate by parts and obtain

1 v o

5 / d Alf(2) (O™ — 90") Alf ()|

39% abe phde paf 6.. 16, 16
ZTf reef g/dxdydz{

— 45(@) A ()0 30— y) A7 (1), Oy — 2) 4] () A% 2)

O(g3)

AL AN @O0~ ) A ()0, Cy — 2) A () A% (=)}

B 3fab(;fbdefdfg/d6x d6y 2 {
2A;1< ) A ()00 O — y) AS (1), Oy — ) A (2) 4% (2
§ AL () AN )00 Ca— ) Ar() Oy, Oy — 2) AL () A% (2

(5.75)

—Az<x>A“< )00 e — ) AS ()3, 0y — )AL (2) 4% ()}
_'_32‘gsfab0fbd6fafg/d61, d()y d()z

x AT () A3 ()07 0°C (x — y) A ()91, C (y — 2) AL (2) Afy (2).
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5.8. Tests in Six Dimensions

Again the blue and red terms cancel respectively. The green term is anti-symmetric under the
exchange of p and . In the remaining black term we use JC(z —y) = —d(z —y) and the Jacobi
identity (2.5)
1 6 Ala 0% wavy Ala
5/01 v Ao (@) @ — 0m0”) AL (w)’O(QB)
393 aobc € a C eo
— 2 gt ey [0z By A5 () AN @) A7 (2)0,Ca — ) AL () A% ()

— _f (fabCfbde+febafbdc+fcbefbda) fdfg/dﬁx d6y (576)

X A™() AN (@) A% ()91, C (x —y) AL (1) AL ()

5.8.3. Jacobian, Fermion and Ghost Determinants

Let us, for a moment, assume that (5.72) exists in d dimensions. Then we compute the logarithm

of the Jacobian determinant at O(g3) using (5.64)

e I L N R G
L lafi' SA'| A ]
—tr | —- —_— —_— .
3[04 log 04 1o 94 log
We find for (5.72) (in d dimensions)
A’
tr [M ] :g3fadmfbemfcde /ddI ddy ddZ {
04 lo)
27—1
=10 b — ) AL (3)07C(y — ) AN (2)0,C (2 — ) A3 (2)
3—d b c A a
SO AP D@D CE D)
3—2d , \ Qp Y \ pC AN Y Aa
~ =5 (')“C'(:z:fg/);”li’)(j/)()’ C(,{/f:/);1/“1(;)()\( (z—x)AS(x)
3—-d L c a
+T8‘ C’(:L‘—y)Az(y)(()/\C(y—z)AM(z)apC(z—x)A/\(gL’)
21—-17d

OO (x —1y) AP ()OO (y — 2) A7 (2)0\C (2 — .Z‘)Az(l’)} .

Compared to (5.67), there are no additional terms here that require extra work to vanish. Since
(5.72) is identical to (5.38) up to the second order, the other two terms in (5.77) give the same
result as before, i.e. (5.65) and (5.66). Comparing these terms to the sum of the logarithm of the
Matthews-Salam-Seiler determinant (5.59) and the logarithm of the Faddeev-Popov determinant
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5. On-Shell N' = 1 super Yang-Mills

(5.60) at O(g3) yields

_1—d 27-10d 30-13d

T T 6
r+1 3—d+1 3—d  12-5d
3 3 2 2 6
r 3— 3-2 5 — 5
;:1_3 d_% d:_() )af7 (5'79)
2 2 6 6
r1 21-7d 2-d
6 3 6 3’
r 1 21-7d  18-7d
2 2 6 6

All of these equations are simultaneously satisfied for d =6 and r =2(6 —2) = 8. Thus we see
that (5.72) is only valid in six dimensions. Unlike for the Nicolai map (5.38), we could not find
a fourth-order result compatible with this 6-dimensional third-order result. However, it might

still exist.
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6. N = 4 super Yang-Mills

In this chapter, we discuss the Rg-operators and Nicolai maps for maximally extended 4-
dimensional N = 1 super Yang-Mills and N = 4 super Yang-Mills. Both R j-operators are rather
cumbersome compared to the /' =1 super Yang-Mills R -operator from the previous chapter.
Thus, we will show that the N =4 super Yang-Mills Nicolai map can be obtained from the

10-dimensional N =1 super Yang-Mills Nicolai map by the means of dimensional reduction.

In section 6.1 we present the ‘off-shell’ ﬁglax—operator for maximally extended 4-dimensional
N =1 super Yang-Mills. In section 6.2, we give the ‘on-shell’ R;}—operator of N'=4 super Yang-
Mills and discuss the dimensional reduction of R4-operators and Nicolai maps. Furthermore,
we give the first two orders of the A/ =4 super Yang-Mills Nicolai maps. In the last section, we
discuss N = 4 correlation functions, BPS operators and the large N limit in the context of the

Nicolai map.

Most of this chapter is based on unpublished work by the author of this thesis. However, the
Rg-operators of maximally extended N =1 super Yang-Mills and A =4 super Yang-Mills have
first been derived by Rupprecht in [54]. The N'=4 super Yang-Mills Nicolai map was first given
by Nicolai and Plefka in [102].

6.1. ‘Off-Shell’ Supersymmetry

The closest we can get to an ‘off-shell’ formulation of the Nicolai map in N = 4 super Yang-Mills
is the ‘off-shell’ Nicolai map of maximally extended N =1 super Yang-Mills in four dimensions.
Since this extended super Yang-Mills theory is a gauge theory with ‘off-shell’ supersymmetry, the
main theorem governing the properties of the Nicolai map is identical to the main theorem 4.1.
‘Off-shell” supersymmetry allows us to write the action (2.136) as a supervariation. Moreover,
the gauge fixing procedure and the Ward identities are identical to those of regular N =1 super

Yang-Mills. Hence, we may adopt the universal form of the Nicolai map from chapter 4 and
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6. N = 4 super Yang-Mills

write

X 2. - 2 = - .
mmesx = X 2R x4 2 / dtx G (x) 5,(G" A2) Ay 5(X)

dgl - | (6.1)
4 ~a wAaQ
g/d v C(x) (GHA) 5(X).

This ﬁ;nax—operator inherits all its relevant properties from the Rq—operator (4.28). Thus, we
will not repeat the proof of theorem 4.1 from section 4.3. In particular, the ﬁ?ax—operator
preserves the gauge condition, and it maps the bosonic part of the gauge invariant action to the
abelian action. As before, we split the ﬁg‘ax—operator into a gauge invariant term and a gauge

fixing term Rmax Rmax —i—RmaX with

mv

. X 2: -
max y — O 2R (GuX 2
R x = = 280 (3,X) (6.2

and
Ry X =g [ dto C(a) Rin (LG A3) s(). (6.3)

Subsequently, the inverse Nicolai map of the gauge field is obtained by (4.19)

7A@ = (7 A = 3 0 (e ) L6

<i>:g<1>‘ g:0:|
where ® = (A, A¢, Bf', D, F#*,G}) are the bosonic fields in the action (2.136). Thus, technically,

there are now 14 Nicolai maps for the 14 bosonic fields.

To find the explicit form of (6.1), we need the maximally extended N = 1 super Yang-Mills
action and its supersymmetry and BRST variations. Recall the action (2.136)

= - 1~ -
Shox = = / d*z [ —Fo e — A“v“(DM)“+§D“D“

mv

P e 1 - - 1~ - 1~ -
+ S (DRAY (D AN+ S (DF B (DB + S FEF + S GIG

. 6.5
— SN (D) — g (D AVBE + (R4 (AY +insBDA)) Y
+eing [ (; X¢ (A —ins BY) X, — 1F“(Ab ~ BjB}) - @?A?BE) ] :
It is invariant under the supersymmetry transformations (2.137)
SAG = ien At 50 = L (" eaFg, i)D", 5D = 2957 (D)
dA}=ex!, OB} =iEsxi,
SFE = igy™ (Do) + fe( AL +ins BY)XC, (6.6)

Sé? = —5757“(DM)~(Z‘)CL — fabc&:(B? — i"}ﬁjl?)j\c,
0X = i(1"€)a(Dpdi) + (157"€)a (D Bi) + Ffea +i(15)a Gy -
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6.1. ‘Off-Shell’ Supersymmetry

We utilize the ‘off-shell’ supersymmetry and write
Smax _ § Amax (6.7)
with [54]
A= [ate | = S (PR, — S0PAaDR — G — L0 R)aC
- éwwxmwuém LD A+ AN A (69)
e (VAL - BYBY) + (0P xDa VB ) |

Given the action (6.5) and the supersymmetry transformations (6.6), it is not very complicated
to guess the form of (6.8) up to the coefficients. The first two terms are the same as in the regular
N =1 super Yang-Mills version of Agm (4.6). The next two terms are simply the analog of the
second term for the other two auxiliary fields, and all the remaining terms are the analog of the

first term for the new scalar fields A¢ and B{. The coefficients are then determined from (6.7).

The action (6.5) is subjected to the same gauge fixing procedure as the regular N' =1 super

Yang-Mills action. Thus, we add to (6.5) the gauge fixing term (2.77)
G 1 4 1 Aa v fa 1 ~a ~\a
S = 3 / alr |5 (@ AL)(GA) + 5C°G" (D) | (6.9)

The combined action §™&* = gmax | S'gf is invariant under the BRST transformations

SAZ — (D’ué)a’ Sﬁgy — fabcﬁwﬁyéc’ Sj\a — _f(leXbCYC7
SAQ _ fabcA?Cvc’ SB? _ fachSszch’ 8}2? _ _fabcélbéc’
D¢ = fabcDwac SF-a _ fabcﬁwbé«c Séq _ fabcélgéc (610)
) 1 1 ’ 2 % )

~a 1 abe Ab Ae Sa 1 Aa
sCt = - feChee, sC :—EQ“AH.

The definition of the fermion propagator follows from (2.121)
IN(@)N(y) = S8 (w,y;.47), iX(2)X0(y) = S8 (2,44,
= . ~ (6.11)
i (@) (y) = 5 (w5 4), ii (@)X §(y) = 5§ (w,y:4)

>
o

with & = (/IZ,A?,B?). The propagator obeys the Dirac equation

Y (DySaa) ™ (w,y; ) +if (A5(x) +ivsBE (2)) S2h (2,3 9) = 54466 — ),

~ ~ ~ ~ ~ ~ (6.12)
7V (DuSia) (a3 )+ e f° (A5 (@) =5 B (2) ) S (,y5.7) = 610" 3 (x — ),

where A =1,2,3,4. The ghost propagator remains unchanged from the one for N'=1 super
Yang-Mills in (4.29). Thus, we have collected all the relevant equations to obtain the explicit
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6. N = 4 super Yang-Mills

form of the ﬁ?ax—operator (6.1). The initial result may be simplified slightly by using the Dirac

equation (6.12). Subsequently, the gauge invariant part of the ﬁ,glax—operator reads

S max d 1 4 4 [ cab 7 p)\:| b g
max . & 4~ ; F _
Rlnv dg + 89 /d zd Yy tr 7#544 (x,y,%)’y pA(y) (5AZ(Z‘)

é

SAG (x)

_
4g
1

4 4 zab (b b g
~ g [ ety e [t () + 5000 ) | s

/d4x dy tr {wgﬂ(w,y;u@@%} D'(y)

i 4 4 -”ab v b 4 .
_ 2 gtz dty o | S b ~ ~
o [t atv e[St 2 (s o )|

1 4 4 [ cab >\ b ,
+ = [ dte dby tr 45 8% (2, y; ) D O iy
5 [t atve st 0h0) (7o v 5t )|

i [ (= A 5 , 5
-+ / d'e d'y tr |52 (a,y; ) (Ff(y)+mG2<y))< e )}
L i 7

1 Aol A% 0 B} (z
+§/d $|:Az( )5A?(x)+Bl( )5Bf($)]

_i 4 4 [ nwa yab - p)\} b g
89/d z A%y tr | 75yu (D" S4a) ™ @,y )07 Fpa(y) 55()
i 4 4 I na yab . ~:| Ao J
+4g/d xz d7y tr _'yM(D S44)" (z,y;9) | D’ (y) 6[)“(1) (6.13)
{ [ u & \ab [ b b 4
—Zg/d% d'y tr 757" (DuSai) ™ (@, y: ) (Fz (y) +iv5Gi (y))} D)
+i/d4x d*y tr _7”(Du§¢4)“b(w,y)’VpAFbA(y) 00
8g i o SF(x) 5G9 ()
i 4 4 [ & \ab S\ =b g . 4
—— [dizd 'yt ®(D,S; ;) D = + =
5 [t aty e o DS e D) (s + st )

1 4 4 & ab N . =b 9 , o
L[ dts aty o [M(Du8 ) (s (F G ) _ _
e [ e DS o5 ) () + 0G0 (570 + 0 50

T Labe [ 4 4 ¢ = cbd S pA d 0 ) g
+— d*z A%y tr | (A5 (z) +iv5B; Si4(z,y; )y F = + =
8gf z d%y r[( (z) +iv5 Bi () S1a(w,y; )7 Fyp(y) (6F;L(a:) WS(SG‘?(JU)):|

3

1 Labe 4 4 ic . HC cad L7 Ad 0 . 0
il d*z d7y tr |:(A2 (@) +1iv5 B (2))Si4 (z,y; )y D () <6F.“(:r) +i7s 5Ga )
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6.2. ‘On-Shell’ Supersymmetry

Likewise, the gauge fixing term is given by

Smax 4 4 Anyab - AR 1 b 0
Rgt ™ = —g/d z &%y (DpG)™ (2, y; A)Rinv (9 gMA”(y)) SAf, (x)
abc 4 4 xbd YR 1 d A¢ 0
-|-gf d*z d Yy G (x,y,A)Rmv (§ gHA/L(y)) Al (I) 514?(33)
war [ dte aty 6o, Ao (394 A30)) B o) ="
B (x) (6.14)
abc 4 4 ~bd AY R 1 d D¢ 0
+gf d*z d*y G"(z,y; A)Rinv (5 Q”Au(y)) D(x) 513“(3:)
abc 4 4 ~bd AR 1 d 2 0
+gf d*z d Y G (QT,yyA)RmV (6 gHAM(y)> FZ (:U) 5Fla(x)
abe 4 4 ~bd NS 1 d C 5
dzd7y G Y3 A) Rinv (* HA ) @ 8

Without any explicit calculations, we can already tell that the Nicolai maps corresponding to
this ﬁglax—operator will be highly complicated. Even though physical observables do not depend

on the auxiliary fields, these will be present in the Nicolai maps of all bosonic fields.

6.2. ‘On-Shell’ Supersymmetry

We consider the ‘on-shell’ formulation of maximally extended N = 1 super Yang-Mills, i.e. N’ =4
super Yang-Mills, in the hope of a more concise R 4-operator and Nicolai map. The R;}—operator
of N'=4 super Yang-Mills is derived exactly like the ‘on-shell’ A" =1 super Yang-Mills R,-
operator in the previous chapter. Due to the similarity between N/ =1 super Yang-Mills and
N = 4 super Yang-Mills, we can once again immediately predict the structure of the A" =4 super
Yang-Mills R;}—operator

RyX = ax | Aaa (a4 X)+ / d*z C*0a(0" AL Aqas(X)+ 24 X . (6.15)

[ Sl O

dg =/

Notice that the supersymmetry variation and Ay4 carry an additional index A =1,2,3,4 like
the four Majorana fermions A% 4. The multiplicative contribution Z4 again only vanishes in the
Landau gauge. This can be seen from a direct calculation or by dimensionally reducing the

10-dimensional Z from (5.15).

So, as before, we must now only figure out the supersymmetry and BRST variations as well as
the explicit expression of Ay 4 to give the explicit form of (6.15). To this end, recall the gauge

invariant AV = 4 super Yang-Mills action with Majorana spinors (2.116)

1 1 . 1 )
She = [[dte | = JFLF — (D4 (DF A — (DB (DB
iy 3 L . % c
- iAaA’YM(Du)\A)a + gfabc)\%(afaxBA? +ivs 845 BY)AG (6.16)

2 . . . . . .
— T pete fede (APASATAT 4 BB BB 4247 BS A" B ) } .
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6. N = 4 super Yang-Mills

The action is invariant under the supersymmetry transformations (2.118)
0A, =i(EavuAs), O0A] =—(EaciapAp), O0B]' =—i(€aVs8iaBAE),
1 o :
0Aan = —5 (1" en)ally, — (v dapep)a(Dudi)" = (157" Bapep)a(DpBi)" (6.17)
g . . . . . .
- ifabc ((0434314? - Z’YS@&BB?) (O‘%CAE + 175/353035) 5C)a

The gauge fixing term is the non-rescaled version of (6.9) and the BRST transformations are
the non-rescaled version of (6.10) without the auxiliary fields. Subsequently, we find that the
N =4 super Yang-Mills versions of (5.9) and (5.15) are given by [54]

1 1 ; a(, i ; i c
Baa == 367" [[dle | OM XA+ A5 (@ AL+ 255DV )

+§ (ks A¢ —ivsBi5BY ) (oAb +iv5550BY) A%u o
and
2= 5 [ty O wiaa (00450)) £ [ At (72 ()0, 0" (@) 45 0)
- [ty e iaa (0450)
« fobe / d'z (719,0% () (@yp A (@) — 75845 BY ()N ())a
(6.19)

1 _
368 [ a2 Xy AL @)X (@)
15 [[ate X () (alyp AL(a) + 75 B (@) N o)
_j fabe / dhe CO(2)0" (A (2)C°(x))

The fermion propagator i\% (z)A\%(y) = S5 (2, y; <) and Dirac equation

(5A05QC'YNDAL +igf*CalcAf(x) - gfaec%ﬁichf(ﬂU)) Sep(w,y; /) = 64p8™6(x —y)  (6.20)
for N'= 4 super Yang-Mills with &/ = (AZ,A?,BZ@) were defined in (2.121) and (2.122).

To obtain a compact expression for the R -operator, we would like to write the gauge fixing
term as a function of the remaining R;}—operator, i.e. the ‘on-shell” analog of (6.14). In chapter
5, we have obtained a more compact form by introducing the transversal projector (5.18). In
N =4 super Yang-Mills, it appears that it is advantageous to write the R4-operator as

rRi— L i

4
g dg 1nv+Rgf (621)
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6.2. ‘On-Shell’ Supersymmetry

with

4 1 Lba 4 4 b A 4 d 0
Rinv = —ﬁf [ dizdiytr [V/LSZA(LZ/;W)’YP }Ap(y)Ai(y)m

) e a 1 . '3 e 6
= 1ot [ ate aty oSt (@) (apadl () + v BpaBlW) ) A0 | s
16 5Aﬂ(a:)
4 j b . g b 0 J
d*z d*y tr |7 S4p (@, y; ) (o 4 (DpA)) () +iv58% 4 (DpB) () ) 7 5A% ()

32

i ,bd 4 4 b d 0 1)
+ @f © d'zd y tr |:SZB(1'7yv“Q{)’YMVAM(y)As(y) <aBA 5Aa( ) +Z’Y5ﬁBA §Ba( )>:|

e [ate d4yt1[5%9(967y;£7)(a}3014()JrWsBBC 1) A5) (6.22)

X i L + ] ﬁi L
acA (5Aq(m) 5PCA (5Bia(1’) ]
1

o5 [dladly e [SAB(x i) (ke (DoA) (1) + 75850 (Dp B () ) 1

X <Oéic,4;S +iv58Ea f)
dA¢(x) 0B (z) ) |

1 a 4 a g
— 5/d‘*:)c tr [AZ- (m)w + B; (m)w}

and

Rig = [ d'a d'y (D)™ (.3 Rim (07 A1)

gfe [da dly G,y Rin (97 AL(y)) Af(a (6.23)

_|_gfab0/d4x d*y GY(z,y; o ) Riny (0”Aﬁ(y)) Bi () 5B (z)

These expressions are already much more concise than (6.13) - (6.14). However, compared to the
N =1 super Yang-Mills Rg-operator (5.20), they are still rather complicated. Hence, we want
to show that the construction of the Rg-operator is compatible with the dimensional reduction
of 10-dimensional N = 1 super Yang-Mills to 4-dimensional N'= 4 super Yang-Mills. This would
allow us to circumvent the A/ = 4 super Yang-Mills R;}—operator altogether. Instead, we could

simply apply the dimensional reduction to the 10-dimensional A= 1 super Yang-Mills Nicolai
map (5.38).

6.2.1. The Dimensional Reduction of the 10-dimensional R,-Operator

We compute the dimensional reduction of the 10-dimensional R4-operator (5.16). Recall that

._d 10 10, ~a M qa 10
RoX = d‘gf +AlL (6TX)+/d © O3 (M AG )AL 5(X) +Z X (6.24)
with M =0,...,9, 7=1,...,32 and
1
A =~ f / 0z (TMNA®) G A% (6.25)
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6. N = 4 super Yang-Mills

In section 2.5.2, we have explained how to dimensionally reduce the 10-dimensional N =1
super Yang-Mills action to the 4-dimensional N = 4 super Yang-Mills action. The cost of this

calculation was that we had to choose an explicit spinor representation (2.127)

r# I:"}/H@:ﬂ.g, /1420717273)

344 . 0 iOéi .

r = Y5 & (—za’ 0 ) ) L= 1)2737 (626)
6+ ::75®<[§)i %) i=1,2,3.

These gamma matrices fix the form of a general 10-dimensional Majorana-Weyl spinor to (2.132)

a Qz)a (:ujil 8
A= (iéa) with x*=1|"¢ | and ¢f= ngz » 0=1p (6.27)
() wi; 0

During the dimensional reduction, this 32-component Majorana-Weyl spinor decomposes into
four 4-component Majorana spinors
Wi
a— [ “az 6.28)
A% = —cy | - (6.
Wi
We already know from section 2.5.2 that the dimensional reduction of the 10-dimensional su-
persymmetry variations implies the 4-dimensional supersymmetry variations (6.17). Thus, it

remains to be shown that Al is related to the A,4 in the same way that A? is related to the

A% 4. A brief calculation indeed reveals that
A Aa=01a, A =004, AlRia=-D34, AN, 4=—Aya (6.29)

for all A=1,2,3,4. Hence, we can conclude that R;O is equivalent to R‘; upon dimensional
reduction. Thus, instead of computing the A" =4 super Yang-Mills Nicolai map via the R4-
operator (6.21), we can take the 10-dimensional N'=1 super Yang-Mills Nicolai map from (5.38)
and imply the dimensional reduction. Furthermore, this allows us to obtain the map directly
for the six scalar fields ¢¢ instead of the 3+ 3 scalar and pseudoscalar fields A§ and Bf, without
passing through a Weyl spinor formulation of the R‘;—operator. Up to the second order in the

coupling, we find [102]
(T, A)aw) = ALw) + g% [ d'y 09Cla—y) AL ) A5(0)
3 2 aoc e (& e
+%f b fbd /d4y 44z PC(x—y)A )\(y)a[pC(y—z)Aﬁ(z) /\](z) (6.30)
+ g7 fobe fhde / dy d*z 9°C(x—y)¢*' ()9,Cy — 2) Ay (2)65(2)

+0(g°)
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6.3. Correlation Functions and the Nicolai Map

and
(Ty 8)3(w) = As(w) + £ [ aly #Cla =)o) Axly)
— g? fobe phie / d*y d*z 07C(x —y) AMNY)9;,Cy — 2) A% (2)$4(2)
2 (6.31)
g
= T gere e [ty dlz 070 (@ - )¢ (10,0 ly — 85 (2)65 (2
+0(g%).
In the next chapter, we will see yet another approach to the Nicolai map in N’ =4 super Yang-
Mills. We will compute the vacuum expectation value of a N’ =4 Wilson loop by expressing it
in terms of 10-dimensional N' =1 fields. This is the most effective method of computing ' =4
super Yang-Mills correlation functions or vacuum expectation values with the Nicolai map since
it allows us to directly use the A/ =1 Nicolai map (5.38). A Nicolai map which is simpler than

any map we have found in this chapter.

6.3. Correlation Functions and the Nicolai Map

In [102] Nicolai and Plefka have used the Nicolai maps (6.30) and (6.31) to compute all scalar
2-, 3-, and 4-point functions in N = 4 super Yang-Mills up to O(g?). As expected, their results
agree with the previous calculation from e.g. [103]. Furthermore, they constructed the one-loop

dilatation operator matching the result from [104].

In the last chapter of [102], the authors also speculate about a possible invariance of (certain)
Wilson loops under the action of the R;}—operator (6.15). However, it turns out that no Wilson
loop is invariant under the action of the R;}—operator. This can be seen by a direct calculation.
More generally, the statement that the vacuum expectation value of some operator O does not
receive quantum corrections is much weaker than the operator being invariant under the action
of the R;}—operator as this would imply that also all n-point functions ((O...O)) o of the operator
O do not receive any quantum corrections. The statement follows from the simple observation

that T\’f; O =0 implies 7;1(’) = O and thus
(0...0), =(T,0...T,710),=(0...0),. (6.32)

This is clearly not the case for Wilson loops, as has been demonstrated in [105] for straight

anti-parallel lines and in [106] for circles.

So far, the examples of operators annihilated by the R4-operator are scarce. In [34] Nicolai

showed that if the R -operator (5.16) is restricted to 4 dimensions and modified by letting

1
Ao = AT =5 (147 apls (6.33)
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6. N = 4 super Yang-Mills

it annihilates the (anti) self-dual field strength

Fif(z) = %Fﬁy(x) + %WPAF“P*(:E) (6.34)
on the gauge surface. For the N/ =4 super Yang-Mills Rg—operator, this is no longer true. The
next best prospect are operators which are not annihilated by the Rg—operator but whose Nicolai
map gives rise to some simplifications. A natural candidate in N' = 4 super Yang-Mills would
be BPS operators. These are operators corresponding to states which are annihilated by some
of the supersymmetry generators (see chapters 8 and 9 for details). In A/ =4 super Yang-Mills,
some of these BPS operators are so strongly protected that their 2- and 3-point functions do not
receive any quantum corrections. Unfortunately, however, the Nicolai maps of these operators
are not significantly simpler than the maps for similar non-BPS operators. For example compare
the Nicolai map of the unprotected Konishi operator K = tr.(¢;¢’) to the Nicolai map of the
%—BPS operator 1y :=tre(¢pros) — mTjtrc(gngbK) by using (6.31). We suspect this is because the
4-point functions of BPS operators are not protected. Nevertheless, the 2- and 3-point functions
computed with the Nicolai map reveal the expected simplifications. Thus possibly a focus on
correlation functions of BPS operators via the Nicolai map rather than the study of the Nicolai

maps of the operators themselves is more fruitful. However, this is left for the future.

6.3.1. The Large N Limit

In [107] ‘t Hooft showed that the SU(N) symmetry structure of N' =4 super Yang-Mills allows
us to interpret N as an additional coupling constant and consider correlation functions as ex-
pansions in powers of 1/N. A particularly interesting case arises in the large N (or ‘t Hooft)
limit N — oo, g — 0 and ¢?N fixed. In this limit, only planar Feynman diagrams survive, and
the theory is believed to be integrable [104, 108-110]. Moreover, the planar limit is important
in the context of the AdS/CFT correspondence [23] (see also [26] for a review). In its strongest
version, the correspondence claims that there is an exact equivalence between 4-dimensional
N =4 super Yang-Mills and type IIB superstring theory on the AdSs x S° background. How-
ever, profound tests of the correspondence, such as comparing the anomalous dimension of the
dilatation operator [111] to certain solitonic closed-string solutions [112], are constrained to the

large N limit of the gauge theory.

Thus, one might wonder about the large N limit in the context of the Nicolai map. After all,
the image of the map is a free, i.e. integrable field theory. However, the Nicolai map itself
(6.30) - (6.31) does not depend on N but merely the structure constants f%¢. Thus, the large
N expansion becomes visible only when computing vacuum expectation values or correlation

functions. We obtain factors of N via contractions of the type fo¢fd = N§¢  1In general,
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6.3. Correlation Functions and the Nicolai Map

all terms in the Nicolai map contribute to all orders of the 1/N expansion through their Wick
contractions with each other. This appears to rule out the existence of a large N Nicolai map.
Moreover, neither the N’ = 4 super Yang-Mills action nor the supersymmetry variations are
altered by resorting to the large N limit. Thus, also the construction of R‘gl will not change in

this limit.
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7. Wilson Loops and the Nicolai Map

In this chapter, we demonstrate an application of the Nicolai map by computing the vacuum
expectation value of the infinite straight line Maldacena-Wilson loop in N = 4 super Yang-Mills
to order g% (for all N). Thus, we extend the previous perturbative result by one order. The
results of this chapter are twofold. The perturbative cancellations of the different contributions
to the Maldacena-Wilson loop are by no means trivial and seem to resemble those of the circular
Maldacena-Wilson loop at order ¢g*. Furthermore, we argue that our approach to computing

quantum correlation functions is competitive with more standard diagrammatic techniques.

The chapter is organized as follows. In the first section, we introduce the Maldacena-Wilson
loop and briefly review previous results and their importance in the AdS/CFT correspondence.
In the second section, we outline our strategy for the perturbative calculation of the vacuum
expectation value. In section 7.3, we discuss the possible divergences arising in the calculation.
Section 7.4 contains the details of the perturbative calculation of the vacuum expectation value.

In particular, we show that all quantum corrections vanish up to O(g%).

This chapter is heavily based on the author’s publication [4].

7.1. Introduction

Wilson loops are gauge invariant operators describing the parallel transport of a gauge field
around a closed loop [113]. Thus, they are essentially path dependent phase factors. In a pure
gauge theory, they form an over-complete basis of gauge invariant operators [114]. In gauge
theories containing matter, open Wilson loops (or Wilson lines) can be thought of as parallel
transport operators used to compare two quark fields ¥ (x) and v (y), transforming under the
fundamental representation of the gauge group, at two different points x and y (see e.g. [65] for

details).

In super Yang-Mills field theories, the Wilson line along some curve C from a to b is defined as

We(a,b) =P exp <z’g/cda:“ Au(x)> , (7.1)
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7.1. Introduction

where A, (z) =1*Af,(z) is the Lie algebra valued gauge potential, with ¢ the traceless hermitian
generators of the fundamental representation of su(/N). P denotes the path ordering. Given a

parametrization x#(7) of the curve C with 2(0) =a and z(1) =b (7.1) becomes

We(a,b) =P exp <z’g/01 dTAu(.%')j?“> , (7.2)

where we have abbreviated 2 = d‘ﬁ—(:) and 2 = x(7). The path ordering is such that larger values

of 7 stand to the right. When we take the trace of a Wilson line along a closed curve C, we

obtain the gauge invariant Wilson loop

W(C) = %trcp exp (ig?édTA,Am)i“) . (7.3)

For the conventions on the trace, see section 2.1. The factor of % is to normalize the large N

expansion of the vacuum expectation value.

In [115], Maldacena generalized the definition of the Wilson loop for N/ = 4 super Yang-Mills by
additionally coupling it to the scalar fields. The (gauge invariant) Euclidean Maldacena-Wilson
loop is defined as

WM (C) = %trCP exp (ig é dr (A, (@) +¢¢I(g;)yg;~|ef)> , (7.4)

where 6! describes a point on the unit 5-sphere, i.e. §;67 =1, and x(T) parametrizes the curve
C. In general 6! can depend on 7. However, in the following, we will restrict ourselves to
the simpler case of constant #/. The Maldacena-Wilson loop plays an important role in the
context of the AdS/CFT correspondence as its vacuum expectation value is believed to be dual
to the area of the minimal surface of a disk in supergravity [115, 116]. However, the instances
of good tests for the AdS/CFT correspondence are scarce. Usually, the problem is that the
gauge theory limit of large N and large ¢?N is not attainable in perturbation theory. Thus, for
a long time, most tests of the AdS/CFT correspondence have been restricted to operators so
protected by supersymmetry that they do not receive any quantum corrections (see chapters 8
and 9). However, in a series of papers, Erickson, Drukker, Gross, Pestun, Semenoff and Zarembo
found an exact expression for the vacuum expectation value of a circular Maldacena-Wilson loop
to all orders in the coupling constant [105, 116, 117]. After an initial conjecture by Erickson,
Semenoff and Zarembo, who summed only certain types of Feynman diagrams to obtain the
vacuum expectation value, Drukker, Gross and Pestun used the technique of localization to
obtain the vacuum expectation value of the circular Maldacena-Wilson loop from that of the
infinite straight line. The idea behind the proof is that the infinite straight line and the circle are
related by a special conformal transformation and that the difference of the vacuum expectation

values for Maldacena-Wilson loops of these two shapes depends merely on the one point of the
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7. Wilson Loops and the Nicolai Map

circle that gets sent to infinity during the special conformal transformation turning it into an
infinite straight line. The all-order gauge theory result has been successfully tested up to the
second order in string theory [118-121].

Unfortunately, however, there is a problem with this very nice result. While it is widely believed
that the vacuum expectation value of the infinite straight line Maldacena-Wilson loop is exactly

equal to one, i.e.

(W(=)), =1 (7.5)

this has not been proven. In [120], Zarembo showed that the infinite straight line Maldacena-
Wilson loop is a %—BPS object, i.e. it preserves % of the N = 4 supersymmetries. But contrary
to the type of BPS operators we will meet in the next two chapters, this does not imply anything
regarding the vacuum expectation value of the Maldacena-Wilson loop. Thus, for now, we are
limited to perturbation theory in which the vacuum expectation value of the infinite straight line
Maldacena-Wilson loop has previously only been computed to O(g*N?) [120]. In the following,
we want to show how to use our fourth-order A/ =1 super Yang-Mills Nicolai map (C.1) to

obtain the vacuum expectation value of the infinite straight line Maldacena-Wilson loop up to
O(g®) (for all N).

7.2. The Wilson Loop and the Nicolai Map

In this chapter we use the Euclidean metric. We parametrize the infinite straight line Maldacena-

Wilson loop by z#(7) = (7,0,0,0)

WM (2 = %m«m exp <ig /_ : dr (4, ()" +i¢[(x)\a'c]9[)) . (7.6)

Due to the work of Dietz and Lechtenfeld, we know that the Nicolai map provides a ghost
and fermion free quantization of supersymmetric Yang-Mills theories [40-42]. Recall that the

vacuum expectation value of any bosonic monomial X [®] is given by
(XT@I), = (X[7," @]),, (7.7)

where 77! is the inverse Nicolai map. Using the linearity of (... >>g and 7,7 ' X[®] = X[T, ' ®]

we can extend (7.7) to n-point correlators of bosonic operators O;(x;), i.e.

(O1(21)...On(zn)), = <(7;_101)($1) e (7;_1071>(xn)>0~ (7.8)

g

A priori, there are several ways to compute the vacuum expectation value of the infinite straight

line Maldacena-Wilson loop (7.6) with the Nicolai map. The naive approach is to first compute
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the inverse Nicolai transformation of (7.6) and then use (7.7) to find the vacuum expectation
value. However, unfortunately, the Nicolai transform of (7.6) is by no means a trivial expression

and thus, the intermediate expressions in the calculation would be unnecessarily cumbersome.

So instead of the 4-dimensional /' =4 super Yang-Mills Maldacena-Wilson loop (7.6) we consider
the 10-dimensional N'= 1 super Yang-Mills Wilson loop

wM(—) = %trCP exp (zg/_o; dr AM(z)z"M> , (7.9)

with the 10-dimensional gauge field Ays(z) = t%A%,(2) and M = (i#,9!) = (24,4]2]67). We

abbreviate z; = z(7;). For an infinite straight line 2 satisfies

S 2 Y = e iy — |a]|dy] = 0. (7.10)

Furthermore, we will not apply the inverse Nicolai map to (7.9) directly but rather first expand
the vacuum expectation value of (7.9) in powers of the coupling g. Then we obtain simple
n-point correlation functions of the 10-dimensional gauge field A}, which are computed by the
means of (7.8) and Wick’s theorem. Up to the second order, the inverse of the 10-dimensional
Nicolai map (C.1) is given by
(T )30(2) = Ay (2) = g [ 10 DV (== 0) Ay (1) A5 (0)
+%f&b6fbde/dlov dl(],w {
N, oy ack _ d e (7.11)
+307C(z —v) A" (v) O C (v — w) Ay (w) AT (w)
— 40N C (2 = v) Afy ()9 C (v — w) ALy (w) AG (w) }
+0(g°).

For n-point quantum correlation functions, we define

(O1(21) ... Onlwn)),, = (O1(21) .. Onlan)), (7.12)

o)

with {O1(x1)...On(xn)), = (O1(21) ... On(20)),-

7.3. Divergences and Dimensional Reduction

Starting at order g2, the vacuum expectation value of a general Maldacena-Wilson loop is di-
vergent when two or more space-time arguments approach each other. However, in [118], it was
argued that these linear divergences cancel for loops of the type (7.4), which are parametrized

by a four-vector z* and a point on the unit 5-sphere §/. For an explicit proof at O(g*) see
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7. Wilson Loops and the Nicolai Map

[105]. In the case of the infinite straight line, the situation is even simpler since up to O(g*) all
divergent terms are proportional to &,i* — |#||#| = 0. However, we will see that at order ¢, this
simplicity ceases to exist as the internal structure of, in particular, the 2- and 3-point correlation
functions becomes more involved. We expect to obtain two UV divergent contributions from

these correlation functions, which cancel each other when they are summed up.

Moreover, partial contributions of, for example, fermion or ghost loops to any n-point function
are generally highly divergent. Luckily, the Nicolai map completely sidesteps the use of fermion
and ghost fields in the computation of bosonic correlation functions. Thus, we will not see any

divergences related to such loops.

Since intermediate results in our calculations are UV divergent, regularization by dimensional
reduction is in order. Our starting point is N’ =1 super Yang-Mills in 10 dimensions, where
we denote the spacetime indices by M, N =0,...,9. Dimensionally reducing the 10-dimensional
N =1 theory to N/ =4 super Yang-Mills in 2w dimensions, we split the spacetime indices
M = (u,I), where p,v =0,...,2w—1 and I,J =1,...,10 — 2w. Likewise we decompose the

coordinates 2™ = (z#,y’) and the gauge field

Al (z,y) = (A} (2),67(2)) - (7.13)
Notice that the dependence on the internal coordinates y! is dropped. The scalar propagator in
2w dimensions is (with the Laplacian (0 = 0,,0*)

2w eikac
C(z) = /(gw)fwk2 (7.14)

It satisfies —JC(x) = 6(z) with the 2w-dimensional delta function §(x) = 6%¥(x). In 2w dimen-
sions, we have

Clz) = F(‘;;l) [x2]1w—1 . (7.15)

In 10 dimensions, the gauge field propagator is (2.90)

(A8 () A% )y =6 (sa1 — (1~ 222 ) Cla ). (7.16)

Here £ is the gauge parameter. We argue that we can compute the inverse Nicolai map in
Landau gauge (£ = 0) whilst using the Feynman gauge (¢ = 1) for the propagator because the
Wilson loop is gauge invariant. When computing its vacuum expectation value, all terms coming
from the gauge parameter dependent term in the propagator must vanish. Thus, without loss

of generality, we choose £ =1 and the propagator becomes

(Af1(2) Al () = 0" 0mnCl(z —y). (7.17)
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7.4. Perturbation Theory

In perturbation theory, the vacuum expectation value of (7.9) is given by

W, =1+ [~ an 4T e (Au (),
-2 2
vy
21N
2'393
3IN
+....

+ / dr dm Z{\/Ié’é\] tr. P <<AM(21)AN(22)>>9

(7.18)

+ / d7‘1 d7‘2 d7‘3 Z{V[Zévzg tl"cp<<AM(21)AN(ZQ)AL(23)>>g

The expectation value has been computed perturbatively up to order g* N2 by Erickson, Semenoff
and Zarembo in [105, 120]. We have checked that their result also holds for all N. In the
following, we show how to compute the next nontrivial order of (7.18) by the means of the

Nicolai map. Expanding the vacuum expectation value at order g% we obtain

W)

) o0 .
= Ng/ dr M trc<<AM(zl)>>5
ig*
21N
i*g’
3IN
U M N L
+ ﬁ/ d’i‘1 d’i‘g d7'3 d7'4 z{\/[zévz?%zf tI‘CP<<AM(21)AN(ZQ)AL(Zg)AP(Z4)>>2 (7‘19)
: —o0
2'595
5IN
x Ml 4 22 e P (Anr(21) An (22) AL (23) Ap(21) Ag(25) ),
2‘696
6N
x i1 23 2 5 22480 e P (Ani(21) An (22) AL (23) Ap(22) Ag(25) AR(26) ) -

+ / d7'1 d7'2 Z{V[Zév tI‘CP<<AM(zl)AN(22)>>4

+ / dr dmy drg Z'{M,éévz"é; tI‘cP<<AM(21)AN(22)AL(23)>>3

+ / dr dm dm3 dmy d7y

+ / dr dm drg dry d7s d7g

We briefly discuss the terms which vanish more or less trivially. The trace over the 1-point

function is zero since for t* € su(N)

tre (Anr(21))5 = tre(t*) (A% (21))5 = 0. (7.20)

For the 4-point function, we need to expand the inverse Nicolai map (7.11) up to O(g?). Then
we use (7.8) and collect all terms of O(g?). Computing the Wick contractions, we obtain several
non-vanishing terms. However, once we multiply the correlation function with #7222 and
insert the parametrization of the straight line, everything cancels. The vanishing of the last

two terms is rather simple. In both cases, there are Wick contractions of two untransformed
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fields. These produce terms which are proportional to 2 MZ-ZJM =0. Thus, only the 2- and 3-point

functions need to be discussed in detail.

7.4.1. 2-Point Function

To compute the two-loop correction to the 2-point function, we need to expand the inverse
Nicolai map (7.11) up to O(g*)'. At the fourth-order (7;_1A)§1\4 has about 500 terms. We apply
(7.8) to the 2-point function and collect all terms of O(g*), i.e.

2 = 2‘N/ d7—1 d7—2 Zl 22 tr. P <<AM 21 AN(22)>>
6 (7.21)
— g ab N ,1A a 7_7114 b
= — (i) d7'1 dry M (T A) 8 (1) (T, AR (22), \0(94).

Because tr.(t%t%) = tr.(t’t?) the path ordering is trivial. After computing the free field expecta-
tion value of the transformed fields and some basic simplifications, such as enforcing f** =0,
we obtain roughly 650 terms. Approximately a third of them are proportional to §x7n 2172 =0.
We observe that most of the remaining terms are proportional to

/ dry dry 2725 /dm A0y d1%s Ay,

—00

x O(21 —y1)0mC(y1 —y3)0" C(y1 — ya) C(y3 — ya)OpC (ya — y2)OnC (Y3 — y2)C(y2 — 22) ,

(7.22)

where the four derivatives may sit at any of the seven propagators. Using integration by parts, it
is always possible to rearrange the contracted derivatives such that they act on two propagators

both, depending on either y;, y3 or y4. In this situation, we use
/d10y4 O C(y1 —ya)C(ys — ya)OpC (ys — y2)

— ;/d10y4 {—C’(yl —y4)DC’(y3 —y4)0(y4_y2)

(7.23)
+0C(y1 —y4)C(y3 —ya4)C(ya — y2)
+C(y1—y4)C(y3—y4)DC’(y4—y2)}

and OC(z —y) = —6(x —y). Thus, (7.22) becomes
1
1/ d7'1 d7'2 Z{VIZQ /d10y1 leyQ d10y3 {
1, _ )2 V2 (4
+ 20(2’1 y1)OmC(y1 —y3)"ONC(y3 —y2)"C(y2 — 22) (7.24)

— Oz = y1)OnClyn —y3)Clyr — y2) N Clys — y2) g2 — 22)
— Cz1 = y1)OnCy1 = 3)Clyr —y2) N Clys —2)*Clyn — 20) .

"When computing the inverse map in Landau gauge it is necessary to explicitly enforce the gauge condition

0" A, =0 in all terms. This is similar to the determinant test for the Nicolai map in Landau gauge (see [1]).
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The first term turns out to be a total derivative. Integrating by parts we obtain

/_O:OdTl Z{VlaMC(Zl—yl) [] —/_O:od’l'l 8810(21_y1) [] =0. (7.25)

T

The other two terms can be combined using the observation

/d10y3 OmC (y1 —y3)?OnCys —y2) = /dloy?, OC(y1 —y3)ONC (Y3 —12)° (7.26)

We repeat these steps on the other 400 non-vanishing terms. Subsequently, we perform the

dimensional reduction and obtain the now very simple expression

B Z‘2g2

- 2IN
oo

:g6N(N2 — 1)/ dm dm :'c’fjrg/dm’yl d®>yy d®ys {
—0o0

21 / d’7'1 dTQ Z{V"zév trcP<<AM(z1)AN(z2)>>4
(7.27)
+0,0,C (w1 — y1)C (w1 — y2)C(w2 — y1)C(y1 — y3)C(y2 — y3)*

+ 20,001~ ) C1 — )02~ ys)Clyr ~92)C o — 1) Cloz — ) ).

Neither of these terms is a total derivative as there are two x; dependencies in each. Thus, we

must cancel 31 against the 3-point function.

7.4.2. 3-Point Function

For the 3-point function, the procedure is much the same as for the 2-point function. For the
trace and path ordering, we find
Z'3g3

Sy =9
27 3IN

/ dr dr drg Z{VIZ%VZ:% tI‘CP<<AM(Z1)AN(ZQ)AL(23)>>3

7: 3 o . . .
— _7249N dabc/ dry dry drs 5759 55 (A4 (21) A% (22) AS (23))4 (7.28)

3 (e%S)
_’_2.[917Nfabc/ dT1 d7-2 d7-3 6(7’1,7’2,7'3) z{\/[zévzg <<A7\4(21)A?\7(Z2)A2(Z3)>>37

dabc

where is totally symmetric and

€(11,72,73) = [0(11 —12) — (12 — 71)| [0(T1 — 73) — O(73 — 71)] [0(72 — T3) — O(T3 — T2)] . (7.29)

So €(11,72,73) = 1 for 71 > 75 > 73 and anti-symmetric under the transposition of any two 7;.
The first term will cancel because the 3-point correlation function at O(g?) is anti-symmetric
in a, b and c. This time we only need the inverse Nicolai map up to O(g3). However, since we
now compute a 3-point function instead of a 2-point function, we end up with about the same
number of terms as before. But two-thirds of the terms are proportional to dy;n, dpsz or d 7, and

thus cancel. The remaining terms are simplified using the same integration by parts relations
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as above. However, for the 3-point function, there are no total derivatives. Subsequently, we

perform the dimensional reduction and obtain the 15 terms

SN(NZ—1) [
Y= _gauY 7Y (12 )/ dr drp d73 €(71,72,73) :t’fd:gig/d%yl d®y, d*ys {
—00

+ 0u0,02C (1 — y1)C (w2 — 1) Cw3 — y2)C(y1 — y3)C (Y2 — y3)°
+0,0,C (w1 — y1)C (2 — y1)Cw3 — y2) C(y1 — y3)C (Y2 — y3)”

+ permutations }
FNN?—1) o (7.30)
f/ dr dro drs €(my,72,73) :t‘fx'gz'vg/d%yl d®yy d®ys {
+ 0,0, C (21— y1)C (22 — y2)C(23 — y3)C'(y1 — y2)C(y1 — y3) N C(y2 — y3)
—CO(21 —y1)0,02\C(22 — y2)C (23 —y3)C(y1 — y2)9.C (y1 — y3)C (y2 — 3)
+C(@1 = y1)C(w2 — y2)Dr9uC (w3 — y3)3y C (1 — y2)C 31 — y) 2~ y3) }
All these terms have a factor of the form
0
' 0,C (2 —y) = 75— Oz —y) (7.31)
87‘1'
and this is their only dependence on x;. Thus, we can integrate by parts and use
886(7'1,7'2,7'3) =26(1 —12) —26(11 —73). (7.32)
1
After integrating over the delta functions and renaming the variables, we obtain
22 :g6N(N2 - 1)/ dT1 dT2 jﬁlf.fg/d?wyl d%yg d2wy3 {
+0,0,C(z1 —y1)C(21 —y1)C(22 — y2)C(y1 — y3)C (Y2 — y3)*
= 0,0,C(21 —y1)C (21 —y2)C(22 — 11 2 (7.33)

2001 ) Ol ~ 1) — )~ 12)C 0~ 95)0 Ol — )}

The first and third term can be combined to give a total derivative. Also, the fourth term is a

total derivative. Subsequently, we conclude
Yo =—¢SN(N?-1) /0O dr dry ;t‘szg/d%yl d®y, d*ys {
+0,0,C(z1 —11)C (22 —y1)C(21 — y2)C(y1 — y3)Cy2 — y3)* (7.34)
+ 20,0~ )0l — 1) Oz —5)Clyr —92)Clan — 1), 0l — 1)}

We see that ¥ and X5 cancel
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Thus, we have shown that for a Maldacena-Wilson loop operator of an infinite straight line

(W(=)), =1+0(" (7.36)

for all N. Although the infinite straight line Maldacena-Wilson loop is a %—BPS operator, the
cancellation of the perturbative corrections at the sixth order is far from trivial. They seem to
resemble the cancellations of the fourth-order perturbative corrections for the expectation value
of the circular Maldacena-Wilson loop (see [105]). All correlation functions have been computed
using the Nicolai map. Despite the complexity of intermediate results, such as the non-linear
and non-local transformation of the gauge field to fourth order in [3], the general procedure is
rather simple as it completely circumvents the use of anti-commuting variables. In the future, it
will be interesting to see if the Nicolai map can also be used to obtain non-perturbative results

for certain Wilson loop operators.
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8. The Superconformal Algebra and its Unitary

Representations

In this chapter, we introduce the superconformal algebra psu(2,2|4) and its unitary represen-
tations. psu(2,2|4) is the symmetry algebra of N'=4 super Yang-Mills. Due to the vanishing
of the beta function to all orders, the superconformal symmetry is preserved even at the quan-
tum level. Moreover, the superconformal symmetry puts very strong restrictions on the 2- and
3-point functions of certain BPS operators protecting them from receiving any quantum correc-
tions. This chapter aims to establish the technical foundation for the subsequent chapter, where

we discuss the stress-tensor multiplet.

The chapter is organized as follows. In section 8.1 we introduce the superconformal algebra
psu(2,2]4). Then, in section 8.2, we discuss the representation theory of the R-symmetry al-
gebra su(4) and subsequently, in section 8.3, the unitary irreducible representations of the su-
perconformal algebra. In section 8.4, we study the implications of unitarity on the psu(2,2|4)
representations and then, in section 8.5, the shortening of supermultiplets. Finally, in the last
two sections, we briefly discuss the anomalous dimension and 2- and 3-point correlation functions

in conformal field theories.

The representation theory of the superconformal algebra has been studied by Dolan and Osborn
in [55]. In this chapter, we closely follow their work and notation. See also [122] for a more
pedagogical and less technical introduction to the representation theory of the superconformal
algebra. For a general mathematical introduction to the representation theory of Lie algebras,
see [123] and for everything on conformal field theory, including the representation theory of the

conformal algebra see [124].

8.1. The Superconformal Algebra

We first introduce the algebra su(2,2]4). Its bosonic subalgebras are the conformal algebra

su(2,2) and the R-symmetry algebra u(4). As before, we work in 4-dimensional Minkowski
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8.1. The Superconformal Algebra

space, where the metric " (u,v =0,1,2,3) has mostly minus signature (+,—,—,—). The 4-
dimensional conformal algebra su(2,2) ~ s0(2,4) is an extension of the Poincaré algebra. We
have already introduced the Poincaré algebra in chapter 2. Recall that it consists of the four-

momentum generators P, and the six anti-symmetric Lorenz generators M,
[P 2 P, l/] =0,
[M;wa Mp)x] = i("?upMV)\ - nuAMVp - nupM;M + 771/)\M,u/1) ) (8'1)
[M;u/v P/\] = i(n,u)\PV - 77)\1/Pu) .

To obtain the conformal algebra, su(2,2), the Poincaré algebra is supplemented by the dilata-

tion generator D and the generators of special conformal transformations K. The additional

relations are
[D, Py =iP,, [D,Mu]=0, [D,K,]=-iKy,
[P, K = ~2i( My~ D), KK, =0, (8.2)
(M, Kx] = i (mua Ky — muaKy) -
For the subsequent discussion, it is advantageous to switch to a spinor basis, eliminating all
spacetime indices. We choose to work with Weyl spinors. The spinor indices are o = 1,2 and

& =1,2. For all other conventions and some useful relations involving Weyl spinors, see appendix

A. We define

Pos = 0he Py, K% = (M) K,,,
B i u=vy B Vel i — U VNG (83)
M, ::_Z(U ") My M€= _Z(U o )BM’“"
Subsequently, the Poincaré algebra (8.1) becomes
[Paéwpﬂg'] =0,
[Maﬁa M'yé] = 57ﬂMa6 - 5046M'yﬁ ) [Mdﬁ'v M%] = _5d8M7,3' + 57,3]\74055 ’ (8.4)
8 _ 5B 1ss Ve _sa L
(M, Pys) = 8.0 Pas = 50,0 Py, [M%,Pys) = 04 P = 2% Ps.
Similarly, the rest of the conformal algebra (8.2) now reads
[Dapad]:ipadm [DaMaﬁ]zoa [D7MOCB]:07 [D;Kda]:_iKady
[Pag, K78 = —4(6,P M7, +6°. M P +5.56°. D), [K% K] =0, (8.5)

. . 1 . y . C 1.
[Maﬁ,KW] - _5ava5 + §5aﬂKWa [MOZ;’K’Y’Y] — _5WBK04’Y+ §5aBK’W_

Then the 16 supercharges Q4 and Qa4 (A =1,2,3,4) as well as the 16 superconformal charges

54 and S%4 are introduced via

{Q4,Qpp}t =20P, 5, (594, 583 = 264, K4

- - o (8.6)
{Qa,Q5) ={Qan. Qs5 =0,  {S%.55} ={5%4,5"F} =0.
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8. The Superconformal Algebra and its Unitary Representations

The Lie brackets with the generators of the conformal algebra are

[Pac: Q3] =0, [Pac, 85 = —26,°Qaa,
[Pac, @54 =0, (Pas, 74 = 26°,Q2,

1 1
(M,7,Q41=6,7Q4 - 58,07, (M2, 83] = =674 + 50557

Ve & A 1 A T QA Y Qd 1o &
(M, Q5] = —0%Qpa+50%Qsa,  [MG, 571 = 67,5 — 255,87,

[MaBaQ"}/A]:()? [Maﬂ’S'VA]:()’ 3.7
& NA] & Qv ( : )
[MB,Q,Y]—O, [MI@SA]_O
l a v a
[DaQé]:§Qé7 [DvsA]:_gsAa
_ 7 - _. 7 —-
[DanA]:§QdA7 [DasaA]:_isaAa
[Kda,Qg] — 25ﬁa5«dA’ [Kda,55A] — 0’
(K9, Q5] = —26%5%, (K4, 53] =0.

The two columns are anti-symmetric under the simultaneous exchange of P,s and K% as well

as Qﬁ and S¢. The supercharges anti-commute with the superconformal charges as follows
(Q4.85) =4 (540, - 548D~ 5, Y ).
(594, Oyl =4 <5ABM% i %MBW,@D _ 5d5‘RAB) ’ (8.8)
{Q4.5°F} = {85,Q55} =0.
The RAB are the generators of the R-symmetry. They form the bosonic subalgebra u(4)
[RABaRCD] = 6CBRAD - 5ADRCB . (8.9)
The R-symmetry generators commute with all generators of the conformal subalgebra
[R4;, P, =0, [R5, M) =0, [R%5,D] =0, (R4, K,] =0. (8.10)
Finally, the Lie brackets of RAB with the supercharges and superconformal charges are
(R4, Q51 = 65Q4 — 16455, (R, 58] = ~5L:5 + ;9%58, -
(R, Qac) = —0%Qaa + %5A3Wac, [RA;,54C] = 655544 — %6‘435"5‘0. (41

We notice that R4, (summation over A) is in the center of su(2,2|4). Upon setting R4, =0 the
R-symmetry algebra u(4) becomes su(4) ~ s0(6) and thus the superconfromal algebra su(2,2|4)
becomes psu(2,2]4). In other words the superconformal algebra psu(2,2|4) is defined through

the short exact sequence

0 — u(l) — su(2,2/4) — psu(2,2/4) — 0. (8.12)
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8.2. Representations of su(4)

This concludes the introduction of the superconformal algebra and its 56 generators
(Padm Maﬁa MO}JM Kdaa D ‘ an QdAv S%v SdA? RAB) . (813)

Demanding hermiticity of the operators associated to the generators imposes the following ad-

ditional conditions

(M2 =N, (RY)T=RE,, QY1 =Qaa, (897 =5%. (8.14)

8.2. Representations of su(4)

Before discussing the representation theory of the superconformal algebra, we briefly study the
representation theory of the R-symmetry algebra su(4). Recall that su(4) is a complex simple
Lie algebra of rank 3. Thus, all of its irreducible finite-dimensional representations are uniquely
classified by a highest weight. We decompose the su(4) generators into the Chevalley basis to
find these highest weight representations. For each of the three simple roots of su(4) there is a
su(2) algebra generated by H; and Ef (i = 1,2,3) with

[H;,Hj] =0, [Ef E;]=6iH; [H;,Ej"] = +K;;E; no sum over j, (8.15)

where Kj; are the elements of the Cartan matrix
2 -1 0
K= <—1 2 —1) . (8.16)
0o -1 2

The Chevalley basis is the Cartan-Weyl basis but with a different normalization. The H; are

the Cartan generators. Furthermore, the generators Ezi satisfy the Serre relations
(ad o)1~ (B2) = (B2, .. [E£, EE]..]] =0, i#]. (8.17)
2 N
(1-Kj;) times
All remaining commutation relations are determined using (8.15), (8.17) and the Jacobi identity.

Since su(4) is also a compact Lie algebra, we may further impose the hermiticity conditions

H =H;,, E'"=E~, i=1,23. (8.18)

1

Subsequently, we find that the following decomposition of the su(4) generators RAB satisfies
(8.9) and R4, =0

1(3H1 +2Hz + H3) ) Ef (B By ] (B, [ES,ES]
o By YH M Hy) B £, Ef] . (8.19)
~Ey By ] Ey —+(H1 +2Hs — H3) Ef
o) ~[B; B3 2 ~ 1 (H1+2Ho + 3Hs)
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8. The Superconformal Algebra and its Unitary Representations

Let b = {Hy, Ho, H3} be the Cartan subalgebra of su(4) and let n* = {Ef, EF, B}, From the
discussion above it follows that su(4) = h@®n~ @&nt. Further let V be a representation of su(4).
Then v € V is called of weight A € H* if v # 0 and h.v = A(h)v for all h € h. The weight space

for A is
V[A]:=={v €V | vis a vector of weight A}. (8.20)

If V[A] # {0}, then X is called weight of V. Subsequently, V' # {0} is a highest weight represen-
tation of weight X if V' is generated by some v € V[A] (v #0) and n*v ={0}. As stated above,
every irreducible finite-dimensional representation of su(4) is a highest weight representation.
For the following discussion, we choose the eigenvectors of the H; as generators of the weight
space. In common physics notation, the eigenvectors are labeled by their three eigenvalues with

respect to the action of the three H;, i.e.
Hi| A1, X2,A3) = Ai| A1, A2, A3) (8.21)

In this notation we write |A1, Ag, /\3>hW for the non-zero highest weight vector annihilated by the
2

Ef AL 2,23 =0, X\ >0. (8.22)

Every highest weight representation, i.e. every irreducible finite-dimensional representation of
su(4), is uniquely characterized by its highest weight vector | A1, A2, )\3>hw and thus by its Dynkin
labels [A1,A2,A3]. The remaining basis vectors for the given representation are obtained by the

successive action of F; on the highest weight vector. In particular
E7 AL A, A3)™ =0 if A =0. (8.23)

In general an irreducible finite dimensional su(4) representation with Dynkin labels [A1, A2, As]

has complex dimensions [123]
1
d()\17>\27)\3) = E(Al + Ao+ )\3 + 3)()\1 + Ao+ 2)()\2 + )\3 =+ 2)(}\1 =+ 1)(A2 + 1)(}\3 + 1) . (8.24)

This result is obtained using the Weyl dimension formula. For some representations, the dimen-

sion will reduce by a factor of two since they are real.

8.3. Unitary Representations of psu(2,2(4)

Building on the discussion above, we construct all unitary irreducible representations of the

superconformal algebra psu(2,2|4). Since the superconformal algebra contains the connected,
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8.3. Unitary Representations of psu(2,2|4)

simple, non-compact Poincaré algebra, it has no non-trivial finite-dimensional unitary represen-

tations [125]. Thus, all unitary representations are necessarily infinite-dimensional.

In the previous section, the starting point to finding all the irreducible finite-dimensional repre-

sentations of su(4) was the Cartan subalgebra h = {H;, Hy, H3}, where by (8.19)
H,=RY —R%, Hy=R%+R3, Hz=-R%5+RY. (8.25)

Thus, the Cartan subalgebra § is spanned by the diagonal elements of RAB. For any super
Lie algebra, the Cartan subalgebra coincides with that of its bosonic subalgebra. The bosonic
subalgebras of the superconformal algebra psu(2,2|4) are su(2,2) and su(4). The representation
theory of the conformal algebra has extensively been studied in [124]. It is built on Wigner’s
classification of unitary representations of the Poincaré group [126] (see also [127]). The Cartan
subalgebra of the conformal algebra is generated by M, ° (a =), M aﬁ (& =f) and D. We
combine this with the Cartan subalgebra of su(4) and find the Cartan subalgebra of psu(2,2|4)

i = span(M,’ (= ), M%(a = B), (A= B), D). (8.26)

For a super Lie algebra, there is some freedom to distribute the simple fermionic roots in the
Dynkin diagram. Here we follow the convention of [128] and obtain the following associations
of generators to positive and negative roots
7+ = span(K®®, 55, 5%, M,% (o < 8), M%(a < ), Ry(A < B)), .
8.27
j_ = Span(PadaQéanAaMaﬁ(a > B),M%(Oé > 6)7RAB(A > B)) .
We denote the eigenvectors of the elements of the Cartan subalgebra i° by |A;3j,7; A1, A2, A3),
where A is the scaling dimension, i.e. the eigenvalue of the dilatation operator D. j and j are
the two Lorenz spins and Aj, A2 and A3 are the three su(4) Dynkin labels from before. Acting
with the dilatation generator on |A;j,7: A1, A2, A3) yields

D ’A7j7j;)\1;)\27)\3> =1A |A7j73;)\17>\27)‘3> . (828)

For the action of the Lorenz generators, we write the spin dependence explicitly, i.e.

1A, 7,75 M1, A2, A3) = ’A;>‘17)‘2>)‘3>a1---a2jvd1---d2j (529
and obtain
Mo 1AM A2 08 0y incin = 2000, 1A MA2 M) 1y cicin;
— o0 [A5A1L,A2,A3) 0 ag) 6oy (8.30)

= =27 |A; A1, A2, A3) 5

al...a2jd,(éé1...d2j_1 OCQJ)

M%|A;)\1,)\2,)\3)

Qaj...q2j,01...Q2;

—j5’8d!A;)\17)\2,>\3>

a1‘..a2j,d1.4.d2j :
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8. The Superconformal Algebra and its Unitary Representations

The round brackets indicate a symmetrization of indices. Finally, (8.19) gives the action of the

diagonal R-symmetry generators

. | -
Rll |A;]7.7;)\17A27)‘3> = Z(3T1 +2T2 +)\3) |A;]7J;)\1>)\27A3> 3

- 1 .
R%1A;5,75 M, M2, \3) = 1<_/\1 +2ro +A3) |As 4,51 A1, A2, A3) s31)
8.31
. 1 -

R0 5,750, X2, A3) = —1(/\14‘27’2 —A3) [A57,55 A1, A2, A3)

- 1 -
RY 1A 5,550, M2, \3) = _Z(Al +2r0+3r3) [A; 4,55 A1, A2, A3) -

By |A; j,j;)\l,)\g,)\;z,)hw we denote the highest weight vectors which are annihilated by all gen-
erators of j7. All unitary irreducible representations of the superconformal algebra psu(2,2(4)
are then constructed by iteratively acting with the generators of j~ on a highest weight vec-
tor \A;j,j;)\l,)\g,)\g)hw. As opposed to the highest weight representations of the simple Lie
algebra su(4), these representations are infinite-dimensional. Physically a highest weight vector

corresponds to the lowest energy state.

8.4. Unitarity

In the following, we are not interested in the entire infinite-dimensional unitary irreducible
representation associated to a highest weight vector |A; j,j;Al,)\g,)\3>hW but rather only the
supersymmetry multiplet of a highest weight state, which is obtained by the action of the
supersymmetry generators Qé and Qg4 on |A; j,j;)\l,)\g,)\g)hw. When no further restrictions
are applied, we call these multiplets long and denote them by A[A)\h NSWITEL where the indices
correspond to the eigenvalues of the highest weight states. Since the supersymmetry generators

are fermionic operators, the supersymmetry multiplet is finite-dimensional with [55]
: A 16 . =
dlm‘A[Al,Az,/\s](jJ) =27d(x po ) (27 1) (25 +1). (8.32)

Because there are only 16 supersymmetry generators, we can only act 16 times on the highest

weight state before one operator appears twice and we obtain zero.

Using (8.11), we can express the action of the supercharges Qﬁ and Qa4 on a state [A1, A2, )\3](3»5)

with conformal dimension A in terms of the change in the weight and spin. We have [55]

1 2 _
Qo [FL00 1 o) Qa~ [FLALO 1 ) (8.33)
3 ~[0,—1,4+1 Y —1 ‘
Qa [07 ’+ }(ﬂ:%,O)v Qa [0,0, ](:I:%,O)
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and

le ~ [_170)0] QdQ ~ [+17_170]

(0.£3)’

Qas ~ [0,+1,—1]

03)° (8.34)

) ) QO'A ~ [0707+1]

1 1\ -
0,45 (0,+3)

Every application of Qé or Qa4 increases the conformal dimension by % Representations with

negative Dynkin labels are zero. Thus, not every supercharge can act on every state.

In unitary representations, all states have non-negative norm. This restriction gives rise to a

so-called unitarity bound [125]!
1 -1
A > Ay =max (2+2j + 5(3)\1 +2X2+A3), 2+25+ 5()\1 +2Xo +3)\3)> . (8.35)

Multiplets that saturate the unitarity bound, i.e. where (8.35) is an equality, have states with
zero norm. These are called null states. They form a closed subrepresentation and hence
can be consistently removed from the multiplet [129]. In particular, the trivial representation
saturates the unitarity bound. Multiplets above the unitarity bound do not have any null
states. Consequently, multiplets saturating the unitarity bound are shorter than multiplets with

A > A4 and we call them short A-type multiplets.

8.5. Multiplet Shortening

Long multiplets can also be shortened by imposing BPS conditions on the highest weight state,
i.e. by demanding that

QA A7, 7 A A X)W =0 for a€{1,2} (8.36)

for some of the Qé. The operators corresponding to short multiplets, annihilated by some of
the supercharges, are called chiral. Since any highest weight state is also annihilated by the
superconformal charges S%, (8.8) implies that |A; j,j;)\l,)\g,)\{g)hw must be annihilated by all
M_,P. Then (8.30) implies that j = 0 and we get

{QA, 521 A0,5; A1, A0, Ag) ™ = —46.,° (;5ABD+RAB> 1A:0,7: 0, 00,03 =0 (8.37)
for B=1,2,3,4. We use (8.28) and (8.31) to solve this equation. For A =1 and B =1 we obtain

1
A= 5(3/\14-2/\24-)\3). (8.38)

See [122] for instructions on how to compute the unitarity bound.
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8. The Superconformal Algebra and its Unitary Representations

There are no further implications because all RlB for B > 1 are in jT and thus annihilate

’A;O,j;)\l,)\g,)\3>hw. Next we solve (8.37) for A =1,2. There are three equations to satisfy
Ag=5(BM+ 20+ s),
Ap= %(—)\14—2/\24—)\3)7 (8-39)
R% |50, 55 A, h0, )™ = B 450,55 A1, h0, A)™ = 0.

From the first two equations we obtain A1 = 0 and Ag = $(2A2 + A3). By (8.23) the third
equation is satisfied if Ay = 0. The index B indicates that the scaling dimension Ag belongs
to a short multiplet as opposed to a long mulitplet denoted A. We continue like this for the
cases A =1,2,3 and A =1,2,3,4. Let s be the fraction of supercharges for which (8.36) holds.

Summarizing the results we have

1 1
A=1 §=7 AB=§(3T1+2T2+)\3),
1 1
A=1,2 §=— AB:*(2T2+)\3), A1=0,
?, % (8.40)
A=1,2.3 s=°  Ap=-\s, A=A =0,
4 2
A:1,2,3,4 s=1 AB:O, /\1:)\2:)\320.

Similar to (8.36) we can also impose the condition
Qaald g i A Ae,Ag) ™ =0 for e {1,2}. (8.41)

This yields the following constraints (with j = 0)

1 1
A=4 §=1 AB:§(>\1+27~2+37~3),
1 1
A=3,4 §=— AB:*()\1+2’I"2), A3=0,
§ % (8.42)
A=23/4 §= - A==\, A =A3=0,
4 2
A=1,23,4 s=1 Ap=0, Al=X2=X3=0.

To construct all conformal primary states for complete supermultiplets, combining the results
for the @ and Q supercharges is necessary. If (8.40) and (8.42) are both applied, we must have
j =4 =0 and we denote these short multiplets by Bi\‘? A2, 23](0,0)° In general, there are only three
possible cases. The first is s=5=1, Ay = Ay = A3 = 0. This case corresponds to the trivial

vacuum representation since Ppg |0,0,0;0,0,0)hw = 0. The next case are the %—BPS multiplets

N

1
B[4 ,1,)\2)\3](0,0) ;. Ap=A1+2);. (8.43)

And finally, the third case are the %—BPS multiplets

11
B3, 000 AB=X2. (8.44)
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8.6. The Anomalous Dimension

unitary

non-unitary

non-unitary

Figure 8.1.: Unitarity structure of superconformal multiplets. Long multiplets exist for A > A 4 in the
green region. At the unitarity bound A = A 4 are the short A-type multiplets. Below the
unitarity bound, there is the forbidden region in red. However, at discrete values of the
conformal scaling dimension A = Ag, individual short (and semi-short) multiplets exist.

In particular these are the BPS multiplets [122, 129].

Besides the short B-type multiplets there are also semi-short multiplets obtained by imposing
[55]

(Qm + JHM%QZA> ;7,55 A1, A2, 3™ =0 with (¢ > B). (8.45)
Long multiplets can be decomposed into direct sums of semi-short and sometimes also short
multiplets. Comparing the scaling dimensions of the long and short multiplets, we notice that
A 4 > Ap. Thus, by imposing the BPS conditions on the highest weight state, we have found
supermultiplets with lower than initially allowed scaling dimensions which still belong to unitary
representations. We have summarized this in figure 8.1. The short and semi-short representa-
tions of the superconformal algebra for N'= 2 and N =4 in four dimensions have been extensively
studied in [55]. Unitary superconformal multiplets for 1 < A < 8 supersymmetries in d > 3 di-
mensions have also been studied in [129]. In particular, the authors of [129] have analyzed the

operator content of the various multiplets.

8.6. The Anomalous Dimension

In any supermultiplet, the scaling dimensions of the operators increase by a factor of % with each

level. When the primary operator has scaling dimension A its first descendants have scaling
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8. The Superconformal Algebra and its Unitary Representations

dimension A + % The second descendants have scaling dimension A+ 1 and so on. A priori, the
scaling dimension of any (primary) operator receives quantum corrections. These corrections
are called the anomalous dimension. However, since the superconformal symmetry of N/ =4
super Yang-Mills holds even at the quantum level, all operators in one supermultiplet have the

same anomalous dimension.

11
A particularly special kind of multiplets are the %—BPS multiplets 6[20:/2\270](070) with Ag = Ag. It
has been shown that the operators in these multiplets are subjected to a non-renormalization
theorem and do not receive any anomalous dimension [61]. This agrees with the results of per-
turbative calculations [56-60]. In particular, the vanishing of the anomalous dimension implies
11

that the %—BPS multiplets [%15270} 0,0) do not recombine into long multiplets [55].

8.7. Conformal Correlation Functions

In conformal field theories such as A = 4 super Yang-Mills, the form of the 2- and 3-point
functions of (quasi) primary operators O;(z;) are completely fixed up to a constant, the scal-
ing dimensions A; = A;(g) and its quantum corrections. For the 2-point function the scaling

dimensions must agree, A = Ay = Ay and the correlator is

Ci2

- ]a;l —3:2]2A '

(O1(21)O2(z2))),, (8.46)

with a constant C192 = Cj2(g) that can be normalized to 1. Similarly, the 3-point function reads

Chs
<<Ol (iUl)OQ (x2)02 (x3)>>9 T AIHA A3 At A3—AL A +Az—Ay )
T12 T23 Z13

(8.47)

where z;; = |z; — x| and Cia3 = Ci23(g) is also a constant. Thus, for operators in the 3-BPS
L
[0,X2,0](0,0)

classical results. 4-point functions are not protected.

multiplets B the exact expressions for the 2- and 3-point function are given by their
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We present the explicit field content of the stress tensor multiplet. The stress tensor multiplet
is the simplest non-trivial %—BPS multiplet in N' =4 super Yang-Mills. It contains the energy-
momentum tensor and the R-symmetry currents. Remarkably, its constituents do not acquire
an anomalous dimension. The main result of this chapter, i.e. the explicit field content of the
stress tensor multiplet, has not been published before. Abstractly the field content was studied
by Dolan and Osborn in [63].

In the first section, we briefly introduce the stress tensor multiplet and highlight some older
results. Furthermore, we recall some important equations. In section 9.2, we give a graphical
representation of the states in the stress tensor multiplet. Section 9.3 contains the main result
of this chapter, i.e. the explicit field content of the stress tensor multiplet. In section 9.4 we
explain how to compute correlation functions of general operators containing spinor fields with
the Nicolai map. Finally, in the last section, we outline the derivation of the field content in the
stress tensor multiplet by computing successive supersymmetry transformations of the primary
field.

9.1. Introduction

By Noether’s theorem to every continuous global symmetry of the action corresponds a conserved
current. The symmetry group of N =4 super Yang-Mills is of course PSU(2,2|4). Thus, for
every one of its generators, there is a conserved current. The conserved current associated with
translation invariance is the energy-momentum tensor (or stress-energy tensor) T),,. In classical
4-dimensional conformal field theories, the energy-momentum tensor is symmetric and traceless.
Since the superconformal symmetry of N' = 4 super Yang-Mills survives even at the quantum
level, the energy-momentum tensor remains traceless beyond the classical theory. This is not

the case in general field theories with classical conformal symmetry.

All conserved currents in N =4 super Yang-Mills are part of the same supermultiplet [67]. This

11

is the %—BPS multiplet [%g,o](o,o) [55]. In the following, we call it the stress tensor multiplet.
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9. The Stress Tensor Multiplet

It is the best-studied multiplet in A/ = 4 superconformal symmetries. It has connections to
many current topics in high energy physics such as scattering amplitudes, integrability and
conformal bootstrap (see [130] for a review). We have already listed some of the properties of
this multiplet in the previous chapter. In particular, recall that its constituents do not acquire
an anomalous dimension. Thus, the first correlation function to receive quantum corrections
is the 4-point function. It has been studied in a variety of ways. For example, it was shown
that the conformal symmetry relates the 4-point function of any four operators in the stress
tensor multiplet to the 4-point function of the primary field [62]. Superconformal symmetry has
also been used to express the 4-point correlation functions in terms of a single (yet unknown)
function of the two conformal invariants [63]. This result has, in particular, been applied to
the operator product expansion. Another direction of research are perturbative calculations at
weak coupling. The 4-point function has been computed to two-loops [131]. The integrand was
even given up to ten-loops [132]. Finally, the 4-point functions of the stress tensor multiplet
have also been studied in numerical bootstrap, see e.g. [133], where upper bounds on the scaling

dimensions and the operator product expansion coefficients have been computed.

In the future, we would like to study the stress tensor multiplet with the Nicolai map and
hopefully derive some non-perturbative results for the 4-point functions or operator product
expansions. However, this requires us to first know the explicit field content of the entire
multiplet and not only its primary field. Thus, in the following, we derive the entire field
content of the stress tensor multiplet and show how to compute correlation functions of mixed

bosonic and fermionic operators with the Nicolai map.

9.1.1. The N = 4 super Yang-Mills Action and Equations of Motion

Recall the N' =4 super Yang-Mills action with Weyl spinors (2.151)

4 4 _1 1228 w I ﬁ I .J
St = [ tre| = 5 Fu P — (Do) (D" + % 61, 6.116" 6]
(9.1)
—2i9* ot (D) — g[S por, vl —igaa 27 P¢! U] .

The expression has been simplified by writing the fields as Lie algebra valued objects, i.e. A, =
t“AZ, and taking the trace over the representation space, as in (2.8). Recall that u,v =0,...,3
are the spacetime indices, « =1,2 and & = 1,2 are the Weyl spinor indices, A,B=1,...,4 are the
SU(4) R-symmetry indices, counting the 4 supersymmetries, and I,J =1,...,6 are the SO(6)

indices. For more details on the spinor conventions and notation, see appendix A.

The N = 4 super Yang-Mills action is invariant under the action of the superconformal algebra
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9.2. The Stress Tensor Multiplet

psu(2,2]4), introduced in the previous chapter. The action of the supersymmetry transforma-

tions on the fields of the fundamental multiplet is given by
AL = ie® 0 0at i — i * 40,0485
595" = —(0") €8 iy, —i 7P (Daad!)"eh — S 1P Ehoel 6 65
Spga = 55A(5MV)BaFEu +i %% pe*P (Daadr)® — %fabczimiﬁcéacﬁwj : )
0¢F = —e S apeP — EaaSTPYEY,

where Ef and £44 are anti-commuting Weyl spinors. Since the supersymmetry of N' =4 super

Yang-Mills is realized only ‘on-shell,” the action of the supersymmetry algebra closes only up to

terms proportional to the equations of motion
D, F" =igl¢r, D"¢'] +g[v* ol ¥
DuD 61 =~ 65, 161,6")| = 210, Sranvl) — Lldan, S 08),
DAyl = —g[S7P ! U],
Dot} = =9[Zaper ¥a]

(9.3)

9.2. The Stress Tensor Multiplet

We give a diagrammatic representation of all states in the stress tensor multiplet. The highest
weight state of the stress tensor multiplet B[%o’é,o] 0,0) is of course [0,2,0](070). The irreducible
su(4) representation associated to the Dynkin label [0,2,0] has real dimension 20 and is denoted
by 20’. The prime is conventional since the irreducible representation associated to [2,0,0] is

also 20-dimensional.

The descendants of the highest weight state are found by acting with the supercharges. By
construction, the highest weight state is annihilated by the action of QL, @2, Qas and Qau
(see section 8.5). In (8.33) - (8.34) we have given the changes in the Dynkin labels and spin
generated by the action of the supercharges. For example acting with Q3 on the highest weight
state [0,2,0],0) gives

3 _
Q210,2,0](0,0) = [0, 1, 1](%’0). (9.4)
Acting again with Q% (with 8 # «) yields

Q3Q2[0,2,0](0,0)y = [0,0,2]0,0) - (9.5)

Alternatively, acting with Q% gives

Q5Q210,2,0](0,0) = [0,1,0] (1,0 [0,1,0] 0,0 (9.6)
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9. The Stress Tensor Multiplet

The red term vanishes. It would correspond to the trace over a single Lie algebra valued scalar
field ¢7, which is zero for gauge group SU(N). On (9.5), we can only act with Q% since acting
three times with Q2 gives zero. Similarly, on (9.6) we must act with Q%. In both cases, we

obtain
Q5Q5Qa10,2.000.0) = [0.0,1] 1 - (97)
Finally, we act one last time with Qg and obtain

Q5Q5Q3Q310,2,0](0,0) = [0,0,0](0,0) - (9.8)

Any further action with a supercharge Qé would give zero. Thus, we have obtained all states
1 1

0, 5 01(0,0) multiplet.

in one branch of the B2’

The entire stress tensor multiplet structure is given in the following diagram [55].

A
2 [0,2,0](0,0
% 01171 1 ,0) [171’0 (0 )
3 [O 0, 2](0 0) [1 0, 1 1 1) [2 0, 0](0 0)
[0’1,0](1 0) / \\ [0,1,0](0 1)
1 [0,0,1] 1 0) [1,0,0],,1, [0,0,1]1 1, [1,0,0]0,1,
4 [0,0,0](0,0) [0,0,0](1,1) [0,0,0](0,0)

Figure 9.1.: Diagrammatic representation of the stress tensor multiplet using Dynkin labels.

The / arrows denotes the action of Q4 and the \, arrows denotes the action of Q4. The first
row has conformal dimension A = 2. With every row, the conformal dimension increases by %

Moreover, the spin increases (or decreases) by % with every action of a supercharge.

09.3. The Field Content

We give the entire field content of the stress tensor multiplet in terms of the fundamental fields.

The primary field of the multiplet corresponding to the highest weight state [0,2,0] (0,0) is given
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9.3. The Field Content

o1 =tre(dros) — ftrc(¢K¢K) (9.9)

The field is symmetric, i.e. @r; = @5, and traceless, i.e. <pII = 0. Because the fundamental
scalar field ¢; has conformal dimension 1, ¢;; has conformal dimension 2. Similarly, there is a
field corresponding to each state in the %—BPS multiplet. Up to hermitian conjugates, the fields
in the stress tensor multiplet are'

o1y =tre(¢roy) — %trc(¢K¢K) ;

AB
C

Ui = tre(ord) — 5

(6K VS),
pAB —trc (waA¢a> - = trc ((ZIEJEK)AB¢I[¢J <Z5K])

Ltre (2B 08 — tre (61 (") e )|

I .
faﬂ:2

Joary = tre (wf(EIJ)ABIZaB) —itre ((Daa¢[1)¢J]) ;

v Zg <
A=t (") 0f F ) + 5 tre (5775008 [0!,641) |
1 y - i . B (9.10)
Xappa = ~5tle <(0M )JEwa%A) — 3 (EAB@ZJ(Q(D,B)B@))

i I B

1 )
@ i= St (Fy F™) 4 e (Ey )

titre (¥4 (Daath}) ) + ftrc (I6r.0s116".6")

1 .
Tupas = 5 e (") denin€(an () FuvFin)

+ % tre ((Diaath)¥p ) - %trc (Vie(Dinatbya))

1 1
+ 5 e (DD 818" ) = 5 tre (Diaadr) (D 6" -

This is the main result of this chapter and has not been published before. The paper [63] only
discusses the field constraints and supersymmetry transformations of the fields (9.10) but does
not provide the explicit expressions (9.10). In section 9.5, we show how to derive (9.10) from

the primary field (9.9).

The last field in (9.10) is, of course, the energy-momentum tensor 7' aBaf We colored the indices

to distinguish the two symmetrizations over the dotted and undotted indices (&) and (af3).

L As usual (ab) = %(ab—kba).
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9. The Stress Tensor Multiplet

The fact that T, 4,5 is separately symmetric in (@f) and (af3) follows from the symmetry and

tracelessness of T/w- ® is the SU(4) R-symmetry current.

Replacing the Dynkin labels in 9.1 with the respective fields gives [63]:

/\
/\/\

/ \ /W\ /’6\
/ \/ \_

Figure 9.2.: Diagrammatic representation of the stress tensor multiplet in terms of the fields.

The supersymmetry variations of the fields in the stress tensor multiplet are [63]
Sprg = —2e"8 4 1Y%, — 24 Az( PO,
SWa; = %(Daawa)EJAB + fapre” _lfaﬁJi}quécgﬂc
— B peeC — Jaar Sl ABES 4 6JanK2ABEBCEKCD Q@
5pAP = 2 UNB) iz, 057U DAy BT
5FL5 = — 200} 2D 5385 42X, 55 APEL — S pAE

— —
6Jad1J = QiSﬂAEAB[I\I’?] Dﬂd *i&ﬂAzAB[I\I]lJ?]ﬁDaa +256A(EIJ)ABXﬂad¢B (9 11)
+21Da5\Pa[[2J]ABE ZDaa\IJB[IEJ]ABE +2Xaa5(EIJ) AE%

< _ .
AL = el +i(fL377 D) SAPES + 2i Do p P ES

i i e
gf’yBEIBAD(ma\fi)y - ZD(a|g|J5)aIJ2{432JBC€g

)
IXaBaA = —§€'YBEIBADW To+
i I «JB 2y
+ED(a|d|Jﬁ)BIJEABE —|—T 5056
6B = 2igq s DYNA
DA

. SA =
0T 544 = 2" Di(aXagiya — 1€ Dia(aXig5))a ~ 2iX(0asLpsE " + X (a(aléPs)s)E
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9.4. General Correlation Functions with the Nicolai Map

These can be obtained without knowing the field representations. We know that under a super-
symmetry transformation, a field of conformal dimension A must transform into a linear com-
bination of fields of conformal dimension A —i—% and derivatives of fields of conformal dimension
A— % The coefficients and field constraints are found by demanding that the supersymmetry
algebra closes on the fields of the stress tensor multiplet up to terms proportional to the equa-
tions of motion. This analysis was first done in Dolan and Osborn. The equations of motion for

the fields are [63]

D*Jaars =0, D*X436=0, D*X,454=0, DT

s =0 (9.12)
They can be verified using the field expressions (9.10) and the N' =4 super Yang-Mills equations
of motion (9.3). The main properties of the fields are summarized in the following table taken

from [63].

SU(4) Rep | SU(4) Dim | (j,7) | Field Field Constraints | Field Dim
[0,2,0] 20R (0,0) | o1 Cr7=91s, 7 =0 20
[0,1,1] 20¢ (3,0) | v4, $Lp¥B, =0 40
[1,1,0] 20¢: (0,3) | v, S4Byl =0 40
[0,1,0] 6r (L,0) | fapr fapr = flap)r 18
[0,1,0] 6r 0.1 | i, Fig="Tan 18
[0,0,2] 10¢ (0,0) | pAB pAB = p(AB) 10
2,0,0] 10¢ (0,0) | pan PAB = P(AB) 10
(1,0,1] 15¢ (3:3) | Jaars Jaars = Jaairs) D*Jaars =0 45
[0,0,1] 4g (3,00 | A2
[1,0,0] 4o 0,3) | Aan
[1,0,0] Ag (1,3) | Xisa X5 = X(amar D**Xisa =10 16
[0,0,1] 4c (3,1) Xoapa | Xaapa = Xa(af)A: DwxmBA:o 16
[0,0,0] Ir (0,0) ® 1
[0,0,0] Ir (0,0) ) 1
[0,0,0] IR (L) | Topag | Tupas = Tiap)yas) DT, 545 =0 5

The index structure of the fields can be inferred from their field dimension and spin. The field

constraints are such that the field dimension matches the SU(4) dimension.

9.4. General Correlation Functions with the Nicolai Map

The inverse Nicolai map 7;*1 maps quantum correlation functions of bosonic operators to free

correlation functions

(O1(21)...On(@n)), = (T OV (1) . (Tg ' On)(wn))y - (9.13)
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9. The Stress Tensor Multiplet

However, except for the primary field ¢y all fields in the stress tensor multiplet (9.10) contain
spinors. Hence, we must adjust (9.13) to compute correlation functions of these operators.
Recall that we can always integrate out the fermions in a correlation function since they appear
only quadratically in the action (9.1). Similar to (2.105) we have for example (with Majorana

spinors)

(AL @)X )AG(2)), = (AL @M WA (), = (AL (@) SKp(w ), (9.14)

where & = (Aj, A7, B'). We then find

(AL @)X A5(2)), = (A (@) SEp(y,2.9)),,

(9.15)
= [ Post Mussslgs /) Arrlg; o) & Sl 155000 0) () Sl 3,51 7).

The fermion propagator only depends on the free bosonic propagator and the bosonic fields.

Hence, we find
(T, A (@) Sy, 2 T, ),
_ / Dot e mv[o;sz/]—zsgf [0,4/] (T, A)o () Sk (y, 2Ty ) (9.16)

= /DOQ{ T (Ty ) e~ Sy [0 Ty | —iSge[0, Ty 7 Aﬁ(a:)SﬁfB(y,z;sz%).

Thus, with the main theorem 5.1 we can conclude

(AL @)NAW)AB(2)), = i{(Ty  A)(@) SKp (5, 2Ty ) (9-17)

The generalization of this equality follows from Wick’s theorem and (9.13). We leave the cal-
culation of correlation functions for future study. Notice that we can only compute correlation

functions of operators containing spinors but we cannot compute their Nicolai map.

9.5. Supersymmetry Transformations of the Chiral Primary Field

The descendant fields of the stress tensor multiplet are obtained by successively computing the
supersymmetry transformations of the chiral primary field ¢ ;. In the following, we outline the
details of these calculations and give some examples. Our starting point is (9.11). The first two

descendants are found by

Spry = —tro(e*A 81 apB h ) —tro(¢re®? Sy apv ) + %]t (e 28y oK)
—tro(EanStPO%eT) — tro(¢ eanS B Y%) + néjtrc(aaAEAB¢B¢ ) (9.18)

= —2€OIAZAB(I\I/§)& - 25&ASGB\T}§)B
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9.5. Supersymmetry Transformations of the Chiral Primary Field

We can read off the expressions for \IJAI and Wl 424- We continue down the left branch of the

multiplet (see fig. 9.2). The supersymmetry variation of ¥4 oris

5\1101[ = —trele ( BBEIBC¢§¢Q> tre (EBBEBCTZJCwa) —tre ((ﬁ]O"uyﬁ FIW)

—itr, (QS[Ugdi?BS%(DMQZ)J)) *trc (¢IEABZBC6 [¢ ¢K])

YAByK yABRK

- ITBC tre (55D2K DE¢£J¢QC) ITBC tre (55D2DE1/’E¢Q ) (9.19)
SABRK DYy

+ITBCHC (d)KU’“’ﬁ BF )—HITBCUC (CﬁKUM £5Pep(D u‘z’J))

. AB
_19 %7850
&

> (6xELpE"PPenrlésbr]) .

By (9.11) this must be equivalent to

) 1 -
SWa = —g(DaaWJ)EJAB + fapre®* - gfaﬁJEf‘széc&BC
7 o i . | (9.20)
— B8 peel — Jaar 7 APES + éJanKE}L‘BEéCEKCD% :

First we focus on all the terms proportional to €4 and compare the respective terms on the

right-hand sides of (9.19) and (9.20)

1 _
fapre®® — *faﬁJEIABZéchC — B poel

G ( PBS pevl %) —tre (dmf””ﬁ FW) trc (¢12ABEBCE 47, ¢K])
(9.21)

yAByK YABYE
+ ITBCU“C (EﬁDEKDEwgwg) + ITBCU'C (Cz)KUgVﬁEgF;w)

EABZ 7
Z;TBCt <</)A’ZZ]702LDE5&E[¢J7(/)L]> .

The coloring is for later. We want to solve this equation for pA8 and fi - From the table in the
previous section we know that fi 5 must be symmetric in a and S and pA® must be symmetric
in A and B. The only combinations of fields appearing on the right-hand side of (9.21), which

are symmetric in « and 8 and match the index structure of fi 5 are
tre (VaShpvf) e (¢ (0")deysFu) (9.22)
where €,3 is the anti-symmetric tensor and (o) e,g is symmetric in o and . Similarly,
tre (v2iul) e ((Sr2s2k) P! [67,67]) (9.23)

are the only combinations symmetric in 4 and B. A term like tr(S48¢! (0#) Pega F) cannot
be part of pP as it is anti-symmetric in A and B. Thus, we assume that fiﬂ is a linear

combination of (9.22) and pAZ is a linear combination of (9.23). We compute the left-hand side

135



9. The Stress Tensor Multiplet

of (9.21) to fix the coefficients X;
— P8 poel

= Xjtre (WBAl/JE) SrBoes + Xotr ((EJEKEL)ABEIBC%CqﬁJWK ¢L]) (0.2
= Xjtrc (6521301#’801%4) —6Xotr. ((SJEK)AB55¢I[¢J7¢K]) .
+ Xotre (B2 S 2h) el os[0" 61

The green term must match the green term in (9.21). So we obtain X = —%. To find X; we
must first compute the terms with fiﬂ in (9.21)

fapre™® faﬂJEIBEBCE
= Xatre (V51 pov§e™) + Xatre (61(0") )l eype™ Fu)
—%trc(@u %y et £ N0
— %trC (qﬁj(a“”)QVG,Ygf]?BEéCaﬁCFW)
<X - }g) tre ( 5%52130%) - %trc (EﬁBZIBCTﬁgwf)

+ ?3’61“6 (5632130¢§¢g) + Xytr. (qb[O'gVBegFm,)

(9.25)

iABEJ
— X4%trc (gzﬁ,]afjl’ﬂegFm,) .

For the second equality we used E ECD —46 [05 Dl The blue term matches the blue term

in (9.21) if X4 = —1. To find the last two coefficients X; and X3 we write out the remaining
terms in (9.21), (9.24) and (9.25)

Xitre (ESZIBCWCQ%) <X3 - )g) tre ( ’BAngIBcwg)

3 X3

— 3 te <€5BEIBC¢g¢A) + 5t (5ﬂ32130¢’3¢g>
! SABnK
= —tr, (z—:ﬁBZch?ﬁngﬁ) %trc ( LYk DEVE VS )
In the second term on the right-hand side, we first commute £4Z and ¥

use LE NP = —4514[063[)]. Thus, (9.26) becomes

X3
Xitre (652130¢BC¢5) <X5 - 3> tr (e ( M@gzwcdg)

X X
- ?3‘61% (EBBEIBCWC%DQ‘) + ?Strc (EBBEIBC¢§¢5)
! 1
= —tr, (SBBEIBCﬂJgTZJf) +gtre <5BBEIBC¢g7/’£)
1
8B A C
_gtrc<€ ZIBC¢571)@)-

(9.26)

KC and subsequently

. (9.27)
+ § tre (EBAL/JEEI BC@g)
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9.5. Supersymmetry Transformations of the Chiral Primary Field

The red terms match if X3 = % Similarly the remaining black term match if X; = % since
BB C, A BB A C B BC, A\ _
tre (e EIBcl/Jﬁ 1/10{ +trele 2130¢5 wa +tre (e, Yoy 1/)6 =0. (9.28)
This can be seen by spelling out the left-hand side for all possible combinations of the indices «
and (. Thus, we have obtained the following expressions for pA? and fiﬁ

o = e (00408 — Lt (Br5500) 267 107,08])

iﬂ = %trc (1&32{43@&5) —tre (qﬁl(a’”)o?ewa,) )

(9.29)

Similarly, we can find J,477 by collecting all terms proportional to €54 in (9.19) and (9.20).

Following this same procedure, we work through the entire multiplet to determine the field
content at every level. The calculations become more tedious at every level and the field structure
becomes more complicated. For conciseness, we will not provide any further details of these
calculations here. Finally, the supersymmetry variations of the R-symmetry current ® and the
energy-momentum tensor T, 5, s do not reveal any new fields but give only derivatives of the

previously obtained fields. Thus, these variations act as tests for the entire calculation.
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10. Conclusion and Outlook

In this thesis, we have studied the Nicolai map in various supersymmetric field theories. Besides
a formal introduction to the subject, we have used the Nicolai map to compute the vacuum
expectation value of the infinite straight line Maldacena-Wilson loop in N = 4 super Yang-Mills
to order g®. Furthermore, we have calculated the entire field content of the A" = 4 super Yang-
Mills stress tensor multiplet. In the following, we review the new results obtained in this work

and name open questions and possible directions for future research.

10.1. Summary of Results

We have learned that supersymmetric theories can be characterized by the existence of a non-
linear and non-local transformation of the bosonic fields, called the Nicolai map, which maps the
interacting functional measure to that of a free theory such that the Jacobian determinant of the
map is equal to the product of the fermionic determinants. The Nicolai map is made possible

by the supersymmetric Ward identities relating bosonic and fermionic correlation functions.
Briefly summarized, the main results of this work are:

o The calculation of the Nicolai map (3.45) for the 2-dimensional Wess-Zumino model up to
the fifth order in the coupling.

« The introduction of ‘on- and off-shell’ Nicolai maps and Rg-operators.

o The calculation of the Nicolai map (4.5) for ‘off-shell’ A/ =1 super Yang-Mills in axial
gauge up to the second order in the coupling.

o The calculation of the Nicolai map (C.1) for ‘on-shell’ N/ =1 super Yang-Mills in d = 3, 4,
6 and 10 dimensions and Landau gauge up to the fourth order in the coupling.

e The calculation of the vacuum expectation value of the infinite straight line Maldacena-
Wilson loop in A/ =4 super Yang-Mills to order g°.

o The derivation of the entire field content of the N' = 4 super Yang-Mills stress tensor
multiplet.
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10.1. Summary of Results

We will now give some further details to these results.

The Nicolai map of the 2-dimensional Wess-Zumino model was first studied by Nicolai in [34-38].
Nicolai derived the corresponding Rjy-operator, i.e. the infinitesimal generator of the inverse
Nicolai map, and provided the first three orders of the perturbative expansion of the Nicolai
map. However, at the time the map was not systemically computed. For lower-order results,
this can work, but as we have seen already Nicolai’s third-order result differs from the one we
obtained by a systematic calculation. In chapter 3, we have explained how to derive the R -
operator and how to compute the Nicolai map. Our results show that the map can be obtained
to arbitrary order in perturbation theory. More than anything, the fifth-order result (3.45) is
a non-trivial proof of concept for the Nicolai map. Furthermore, we have given a pedagogical

proof of the main theorem governing the properties of the Nicolai map.

The most important result of this work was given in chapter 4. Namely, the introduction
of the ‘off-shell” Nicolai map [3]. For the first time, we were able to obtain a Nicolai map of a
supersymmetric gauge theory in general gauges. Despite countless attempts (see e.g. [41, 42, 48—
50]) all previous Nicolai maps of gauge theories were constrained to the Landau gauge (see e.g.
[34]). The crucial observation was to consider the ‘off-shell’ formulation of the theory and
rescaled fields le = gAj,. When using rescaled fields, the dependence of the action on the
coupling constant g factors out and also the supersymmetry transformations of the fields no
longer depend on the coupling. Hence, it becomes possible to write the ‘off-shell’ action of a
gauge theory as a supervariation without any gauge constraints. Subsequently, we obtained an
ﬁg—operator not restricted by a gauge choice. The second crucial observation was to act with
this ﬁg—operator on (%AZ) rather than fll‘j. This led us to the correct expression for the inverse
Nicolai map (E_lA)Z = (Tg(éfl))z This construction is universal to all supersymmetric gauge
theories with ‘off-shell’ supersymmetry. We have applied it to 4-dimensional N' =1 super Yang-

Mills and computed the Nicolai map in axial gauge (4.5) to the second order in the coupling.

Due to the presence of the field strength tensor in the ‘off-shell’ ﬁg—operator, the favored gauge
of the super Yang-Mills Nicolai maps is the Landau gauge. For a detailed explanation, see
section 4.7. Thus, for our next result in this thesis, we constrained ourselves to the Landau
gauge and computed the Nicolai map (C.1) for ‘on-shell’ N'=1 super Yang-Mills in d =3, 4, 6
and 10 dimensions up to the fourth order in the coupling [1, 3]. Thus, we have extended the
previously existing result from [34] by two orders. We also found an ambiguity specifically in
six dimensions [2] where up to the third order in the coupling, a simpler version of the Nicolai

map exists.

After extensively studying the Nicolai map in N/ =1 super Yang-Mills, we finally turned to
N = 4 super Yang-Mills in chapter 6. Since the N = 4 super Yang-Mills theory does not have
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10. Conclusion and Outlook

an ‘off-shell’ formulation with finitely many auxiliary fields and manifest V' = 4 supersymmetry,
the closest we can come to an ‘off-shell’ Nicolai map for the N'= 4 theory is the ‘off-shell’ Nicolai
map of maximally extended 4-dimensional N'=1 super Yang-Mills. In (6.13) - (6.14) we have
given the ‘off-shell’ ﬁg—operator of maximally extended 4-dimensional A" =1 super Yang-Mills
and in (6.22) - (6.23) we have given the ‘on-shell’ R‘;—Opera‘cor of N'= 4 super Yang-Mills. Since
both expressions are much more complicated than any of the R4-operators derived before, we
proved that the Nicolai map of N’ =4 super Yang-Mills can be obtained from the Nicolai map
of 10-dimensional N' = 1 super Yang-Mills by the means of dimensional reduction. This gave
us automatic access to the fourth-order Nicolai map in N' =4 super Yang-Mills. In [54] it was
shown that, when one dimensionally reduces the N'=1 R -operator to the N’ =4 R;l—operator,
there is some freedom in the realization of the SU(4) R-symmetry. Thus, there are several

possible Nicolai maps for A =4 super Yang-Mills. Our result corresponds to the case of full

SU(4) symmetry. Correlation functions do not depend on the choice of map.

In chapter 7, we have demonstrated a possible perturbative application of the Nicolai map. We
have computed the vacuum expectation value of the infinite straight line Maldacena-Wilson
loop in N = 4 super Yang-Mills to order g%. It is widely believed that the vacuum expectation
value of the infinite straight line Maldacena-Wilson loop is exactly equal to 1 [120]. However,
this has actually never been proven. In this work, we have extended the previous perturbative
calculation of [120] by one order. This result has first been published in [4]. We found that the

cancellations occurring at O(g%) are by no means trivial.

In this thesis, we have also commented on some general questions related to the Nicolai map. It is
well known that the perturbative expansion of most quantum field theories has vanishing radius
of convergence. The Nicolai map, however, is believed to have a non-zero radius of convergence in
all theories. However, thus far, it has only been proven for supersymmetric quantum mechanics
in [87]. Similar proofs for other supersymmetric field theories remain a challenge for future
research. Concerning the renormalization of Nicolai maps, we have shown that it fundamentally
hinges on the renormalization properties of the fermion and ghost propagators in the gauge field
background. In super Yang-Mills theories, this yields a non-linear renormalization of the Nicolai

map.

In the second part of this thesis, we have derived the entire field content of the A" =4 super Yang-
Mills stress tensor multiplet. This is a particularly interesting short multiplet as it contains all
the N'=4 currents and, in particular, the energy-momentum tensor. Moreover, it has been shown
[61] that the operators in the stress tensor multiplet do not acquire an anomalous dimension.
The structure of the stress tensor multiplet and the 2-, 3- and 4-point correlation functions of

its constituents have been extensively studied in [63]. However, the explicit expressions for the
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fields in the multiplet were not provided. We have filled this gap in chapter 9. With the explicit
field content at hand we can in the future investigate its correlation functions with the Nicolai
map. It will be interesting to see if and how the simplifications in the 2-, 3- and 4-point functions

of this mulitplet are visible through the Nicolai map.

Thus, to summarize, we now have a comprehensive understanding of the Nicolai map in a wide
range of supersymmetric field theories. In particular, we have addressed many open questions
from earlier research in the 1980s. Hopefully, this framework will assist us in the future when

we tackle some of the more fundamental questions in supersymmetric gauge theories.

10.2. QOutlook

There are several possible lines of future research on the Nicolai map and related topics. In the

following, we highlight a selected few.

The Nicolai maps presented in the chapters 3, 4 and 5 have been computed using Mathematica.
However, not much thought has gone into optimizing the calculations. A more efficient approach
could yield results far beyond the fourth- respectively fifth-order Nicolai maps presented in this
thesis. It would be interesting to see if calculations such as that of the five-loop anomalous

dimension of the Konishi operator [134] are also possible with the Nicolai map.

The Nicolai map in axial gauge (4.56) is significantly more complicated than its Landau gauge
counterpart (5.38). At the moment, there seem to be three possible paths to a more tractable
result. The first would be along the lines of section 5.7, i.e. to simply guess a simpler version of
the second-order Nicolai map in axial gauge. In [2] an algorithm is outlined which could produce
such a result. The advantage of this approach is that it would be relatively simple to implement.

However, it is not very likely that we could produce higher-order results this way.

A second, more promising approach is the introduction of a topological term in the action
similar to [135]. In Landau gauge, special values of § make the second order of the Nicolai
map vanish altogether and drastically reduce the number of terms in higher orders. We have
checked that the exact approach presented in [135] does not yield any simplifications in the axial
gauge. Furthermore, it is only permissible in Euclidean signature and thus not possible for the

light-cone gauge. Nevertheless, we still hope that the formalism can be appropriately modified.

A third possibility could be a modification of the gauge field along the lines of [32, 136]. Man-
delstam’s finiteness statements [13, 31] seem to only concern the transversal degrees of freedom

of the fields. Hence, there is room to modify the longitudinal degrees of freedom in accordance
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with the finiteness in the light-cone gauge. The hope is that such a modification in the /' =1

theory would cancel some of the terms in (4.5).

Another possibility for future research is to search for non-perturbative results in N' = 4 super
Yang-Mills with the Nicolai map. The most straightforward type of result would be to find
operators which are in the kernel of the R4-operator. A first study of the kernel of the R4-
operator in AN/ =1 super Yang-Mills was done by Lechtenfeld in his doctoral thesis [41]. He
showed that the (anti) self-dual field strength tensor is in the kernel of the ‘off-shell’ ﬁg-operator.
More generally, also operators for which the Nicolai map takes a closed form could potentially
be very interesting. These could give rise to all-order non-trivial perturbative results for vacuum
expectation values or correlation functions. A related goal is to give a non-perturbative proof
for the vanishing of quantum corrections in the vacuum expectation value of the infinite-straight

line Maldacena-Wilson loop.

Furthermore, studying the Nicolai map of correlation functions rather than individual operators
could also yield some interesting results. With the explicit field content of the stress tensor
multiplet (9.10) and the instructions for computing general correlation functions with the Nicolai
map from section 9.4, it is now possible to study the multiplet from a new angle. The hope
is to derive some non-perturbative statements for the 4-point functions or operator product

expansions.

And finally, there is string theory. So far, all the research on the Nicolai map has been done for
ordinary quantum field theories. However, supersymmetry is also present in theories of gravity,
such as string theory. It would be interesting to see if it is possible to derive a Nicolai map for
the superstring similar to the ones presented here. Maybe even new connections in the context

of the AdS/CFT correspondence are possible.
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A. Spinors

In this appendix, we list important properties of sigma and gamma matrices as well as spinors
in various dimensions. In the first two sections, we introduce sigma matrices in four and six
spacetime dimensions. In section A.3 we introduce gamma matrices in general dimension and
provide some explicit representations in four and ten dimensions. In the last four sections, we
introduce Weyl, Dirac, Majorana and Majorana-Weyl spinors. In particular, we give the Fierz

identities for Weyl and Majorana spinors in two and four dimensions.

A.1. Sigma Matrices in Four Dimensions

Four-dimensional sigma matrices carry two types of spinor indices a =1,2 and & =1,2. The

three Pauli matrices are

(1 d) () oY) wn

and the two times four sigma matrices are defined as o# = (13,0%) and o* := (1,—0"). Fur-

thermore, we introduce the anti-symmetric tensors e*? and ¢ with

cr=€e2=1, epa=€elt=-1, €1=ep=0. (A.2)
The barred and unbarred sigma matrices are related by
ghoa = edﬁeaﬁagﬂ. (A.3)
The Fierz identities for the o-matrices are
ogoﬁﬁ’g = 25@55,6;7 Uuadagg = 2€ap€45, 630‘6“’% = 2eBeh (A.4)

Usually, we will suppress the spinor indices. The metric tensor is n*¥ with mostly minus signature

(+,—,—,—). The sigma matrices satisfy the Clifford algebra

{057} = 23 (A.5)
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We define the anti-symmetric products

1 . .
(07) = {ohe5" " — e 5),

o4 (A.6)

_ 1,_.5 —va
(U#V)ﬁd — Z(J#MUZB _ Uuaao_ZB) .
These relations and definitions imply
FPoH = PR 4 np[u(}V] 7

oV gP = ghvP 4 0[“77”}”, (A.7)

(cta"o? —aPa" o) = it P gy

N

with the totally anti-symmetric symbol €123 = 1.

A.2. Sigma Matrices in Six Dimensions

In six dimensions, there is one type of spinor index A =1,2,3,4 and two times six sigma matrices

Zﬂ p and if‘B. The barred and unbarred sigma matrices are related by

1 _ _ 1
vhp = §eABCDEICD, S4B = §€ABCDZ[CD, (A.8)

with the totally anti-symmetric symbol €234 = 1. The six-dimensional sigma matrices satisfy

the Clifford algebra

(2! 27y =267 (A.9)
and the Fierz identities
SLpS¢P = —45 (96 S apSL, = —2eapcp, SABRICD — _9ABCD. (A.10)
Moreover, let
1
(EIJ)AB — Z(EI ZJCB Ej ZICB),
B 1 (A.11)
(EIJ)BA _ Z(EIACEéB EJACZI B)

These relations and definitions imply
SIZK _ S IK _ §I[J5K]

(A.12)
ZIJEK — EIJK _ E[Idj]K

Important trace relations are

tr(2187) = —4677
o (A.13)
tr(ZIEJZKEL) —_4 (51J6KL _§IE§IL 4 5IL5JK> '
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All these relations are independent of the sigma matrix representation. However, some appli-
cations require us to choose a representation. In that case, we define the two times six sigma

matrices via the real anti-symmetric matrices af4 p and Bi‘ g (with i =1,2,3)

agk = Eijk, af-'4 = fozf%i = —5; , ozf'l4 =0, (A14)
Bik = —€ijk, Biy=—PBy=-0], Bu=0,
which satisfy
{af,ad} =—20Y | [a},af] = 2ekak
o g o 3 o (A.15)
{/B’Laﬁj}:_26”7 [BZ7BJ] = _281]]6/6]{7 [0/75]] :O
Subsequently,
Sp =g, S = alip Y = —iBap, S5 =iBup. (A.16)
A.3. Gamma Matrices
Gamma matrices exist in every dimension d > 2. They carry one type of spinor index a =1,...,r,

where r is the dimension of the gamma matrix representation in question. For the majority of
this thesis, it is not necessary to specify a gamma matrix representation. In contrast to the spinor
indices for the sigma matrices, we will not distinguish between sub- or superscript spinor indices
for gamma matrices and write them all as subscripts. Usually, spinor indices are suppressed

altogether. Gamma matrices are defined through the Clifford algebra

A" =20 (A.17)
with the mostly minus Minkowski metric n** = (+,—,...,—). For the gamma matrices, we are
mostly interested in the trace relations

tr(+") =0,
n ) (A.18)
tr(yH . qtn) = Z(—l)l /i ] G LI e e (el
i=2

where the hat indicates that 4#¢ is excluded from the product. In particular, the trace over an
odd number of gamma matrices is zero. The anti-symmetrized product of two gamma matrices

is given by

'.Y'wj — (,YM,YV _ ,71’,7.“) . (Alg)
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This implies

AR = VP 4 77“[”7’)] ’

(A.20)
A AP — HP +fy[“77”}p _
Additionally, one may introduce the charge conjugation matrix C. It is defined via
CyrCt=—(y)7, (A.21)

where (-)T denotes the matrix transpose. The charge conjugation matrix satisfies C™1 = CT =

—CT =C. There are two special dimensions demanding some more attention.

A.3.1. Gamma Matrices in Four Dimensions

In four dimensions we have the additional y°-matrix v° :=i7%y'42~3. It anti-commutes with all

other gamma matrices, i.e.
("’ =0 (A.22)
and it obeys v°v° = 1. Moreover,
tr(7°) = tr(y°4#4") =0 (A.23)
and also the trace of an odd number of gamma matrices times v° is zero. For the dimensional

reduction of 10-dimensional A/ =1 super Yang-Mills to 4-dimensional N' = 4 super Yang-Mills,

we are required to choose a gamma matrix representation. Let

0 ot -1, O
VM—(JM O)a 75—(02 12>- (A.24)

In this representation, the charge conjugation matrix is C = ivsyg. It is straightforward to check

that these 4-dimensional gamma matrices satisfy the Clifford algebra (A.17).

A.3.2. Gamma Matrices in Ten Dimensions

In ten dimensions, the spacetime indices are M, N =0,...,9. The 10-dimensional gamma matri-

ces are defined via the a- and S-matrices (A.14) and the 4-dimensional gamma matrices (A.24)

' =9"x1s, p=0,1,2,3,
. 3 /L.

IR <_?o/ o ) , i=1,2,3, (A.25)
' i

réte ::75®</§)i 50)’ 1=1,2,3.

Furthermore, we introduce the 11th gamma matrix I'y; :=IT'g---I'9. The 10-dimensional charge

conjugation matrix is
Cio=C4®Cs with C4= Y270 and Cg= (1?4 %4> . (A.26)

Also, these 10-dimensional gamma matrices satisfy the Clifford algebra (A.17).
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A.4. Weyl Spinors in Four Dimensions

Weyl spinors exist in every even spacetime dimension. Here we state their properties in four
spacetime dimensions. They are anti-commuting objects v, (and 1)4) with one spinor index

a=1,2 (respectively & =1,2), that can be raised and lowered by

U}a = eaﬂwﬁa wa - eaﬁwﬂ (A27)

and respectively for ¢4. Usually, we suppress Weyl spinor indices via (¥x) = *Xq. The most

important relations of two-component Weyl spinors are

(¥x) = (x¥),
() = (x¥),
(x)' = (),
(Ya'x) = =(xa"¢), (A.28)

(Yo' )t = (wotx),
(Yot'a”x) = (xo"at1p),
(Wota"x)t = (va" o).

Here (-) denotes the conjugate transpose.

A.5. Dirac Spinors

Dirac spinors A, are labeled by a single spinor index « =1,...,r, where r is the dimension of
the corresponding Clifford algebra representation. Dirac spinors are complex and they exist in
any spacetime dimensions d > 1. In even spacetime dimensions, they have 2%/2 complex degrees
of freedom. In odd spacetime dimensions, they have 2(4=1/2 complex degrees of freedom. In

either case, the real degrees of freedom are twice that.

In any even number of spacetime dimensions, we can impose the Weyl condition

1
A= 5(]1—7‘”1))\ (A.29)

on a Dirac spinor. This reduces their degrees of freedom by a factor of 2. In any spacetime

dimension d =1,2,3,4 mod 8, we may impose the Majorana condition

A=(\T0), (A.30)
where C is the charge conjugation matrix. This also halves the degrees of freedom of the Dirac
spinor. Finally, if the dimension is d =2 mod 8, we may impose both the Majorana and Weyl

condition. These results are summarized in table A.1. In the following, we list further properties

of Majorana spinors.
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Dimension 2 3 4 5 6 7 8 9 10
Weyl Spinors X X X X X
Majorana Spinors X X X X X
Majorana-Weyl Spinors | x

Table A.1l.: Spacetime dimensions and their possible spinor representations.

A.6. Majorana Spinors

A Majorana spinor A, is a Dirac spinor that satisfies the Majorana condition (A.30). Majorana

(d-1)/2

spinors are real. They have 2%/2 (respectively 2 in odd spacetime dimensions) real degrees

of freedom.

A.6.1. Majorana Spinors in Two Dimensions

In two spacetime dimensions, the irreducible Clifford algebra representations are 2-dimensional.
The four matrices 1, v* and ¢y*” form a basis of the 2 x 2 matrices. On this basis, we have the

following identities for Majorana spinors

_ +(xMXN) M=1,
(AMx) = (A.31)
~(AMA) M=o, it

Furthermore, we can obtain the 2-dimensional Fierz identity

1 _
AaXp =5 0o (M0ax) with O = (1, 4", ir™) (A.32)
A

from these relations.

A.6.2. Majorana Spinors in Four Dimensions

In four spacetime dimensions, the irreducible Clifford algebra representations are 4-dimensional.
A basis of the 4 x 4 matrices is given by the 16 matrices 1, v5, v, 7,75 and ﬁf}/“l’ . On this

basis, we have the following identities for Majorana spinors

_ F(XMX) M =1, 75, iyt
(M) = (XMA) gl ‘ alael (A.33)
—(XMA) M=o, St

The Fierz identity in four dimensions is

_ 1 _ , , i
AaXp = ZZO?Q(AOAX) with 0% = (17 Y, A, i, ﬁv“ ) : (A.34)
A
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A.7. Majorana-Weyl Spinors in Ten Dimensions

Given the 4-dimensional gamma matrix representation (A.24) the Majorana spinors are written

in the Weyl basis
%)
Aa={a > A.35
(v (4.35)

where v, is a Weyl spinor.

A.7. Majorana-Weyl Spinors in Ten Dimensions

Dirac spinors in 10 spacetime dimensions have 2° = 32 complex components. Given the 10-

dimensional gamma matrix representation (A.25) and imposing the Majorana condition (A.30)
A= (ATCy), (A.36)
as well as the Weyl condition (A.29)

A= (]132—F11)A (A37)

N =

the Majorana-Weyl spinors take the form

0 W1 0
. i 0

A= (%) with y = 1/61 and ;= Zji 0=y (A.38)
P2 W4i 0

149



B. Functional Determinants

In this appendix, we give an introduction to the calculation of bosonic and fermionic functional

determinants.

B.1. Bosonic Functional Determinants
Our starting point for bosonic functional determinants is the Gaussian integral

/ de e—al@+b)? — \/? (B.1)
oo a

This can be generalized by considering the expression

(E/d5k> exp [ i §iAij&;

1,j=1

(B.2)

)

where A is a symmetric n X n matrix with non-zero eigenvalues a;. Then there exists an or-

thogonal matrix O, i.e. O~! =0T and det(O) = 1, such that O~'AO is diagonal. Thus, we can
= Z?:l OijZL‘j such that

perform a change of variables to coordinates x; with &;

(H /OO dfk) exp [— Z §iAii&i| = (H /OO dazk> exp[—Zaix?]
k=177 i,j=1 k=177 i=1
== - ~ d i eXp|—a; 12
izl_[l (/Oo x; exp[—a;x ])

_ & T /2 (e —1/2

_i:Hl\/;_ [det(A)] V2.

With this calculation in mind, it is easy to evaluate the bosonic path integral for a gauge theory

(B.4)

(B.3)

/DA o5 [ At AZM AN oAy 12,

where we have appropriately normalized the measure DA. det(M) is called the functional

determinant. The definitions for scalar theories and Euclidean space follow accordingly.
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B.2. Fermionic Functional Determinants

For anti-commuting variables, the functional integration behaves a little differently. It requires
the technique of the Berezin integral [47]. We start with the 1-dimensional case. Let 6 be a

Grassmann variable, i.e. §2 =0. Then the Berezin integral over @ is

o=1, [do=o0. (B.5)
/ /

Any function f(#) can be expanded in a Taylor series, which terminates after two terms since

6? = 0. Thus, we have f() = a+ b and

/de £(60) :/de (a+b0) =b. (B.6)

The generalization to multidimensional Grassman numbers 6, ...60, with 0;,0; = —0;0; and thus

60;0; = 0 (no summation over ¢) is immediate. For example, we have

/d&l/dﬁg 0102 = —/dGl/dGQ 020, = —/dGl 0 =-1. (B.7)

Let B be a anti-symmetric n X n matrix with matrix elements B;; and consider the integral
/del .d0, e 2= 1Bl (B.8)

It is not hard to see that I,(B) =0 for odd n since all terms in the Taylor series expansion of
the exponential come with an even number of s. So there are either more than n ;s which
gives zero since 6;60; =0 (no summation over i), or there are less than n 6;s in which case the

integral gives zero. For n even there exist a unitary matrix U such that

0 A\ - 0 0

. S I 0 0
c=vr'Bu=| : = .. . (B.9)

0 0 - 0 N\

0 0 -+ =X O

Then we introduce new Grassmann variables 7; in (B.8) via 6; = Z?Zl UijT;

I,(B) = /d91 ...dé, efZijleiBijej

1 _ n 7:Cls s
= [dn...dn, e = TCuT
det(U)/ TG

1

— dT1 - .dTn 6—2(/\17'17'2+...+/\n7'n_17'n)
det(U /

( n/2

det / dry...dm, ... H)\

n

B Vdet(C /7
det H Ai = det(U det(B

(B.10)
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One can use this Berezin integral as the definition of the Pfaffian of a complex n x n matrix B

0 n odd,
Pf(B) := (B.11)
det(B) mn even.

Thus, we have I,,(B) = Pf(B). These relations give us the functional determinant of a path

integral over Majorana spinors
/D)\ e~z A XM ey M). (B.12)
Again the normalization is hidden in the path integral measure.

Finally, we want to discuss the complex Berezin integral. To this end, we introduce the complex

Grassmann variables
1 . _ 1 .
77:72(91 +i2), 77272(191—292)7 (B.13)
such that
d91 d@Q = dﬁ d??. (B.14)

This definition easily extends to the n-dimensional case. Then let D be any n x n matrix with

entries D;; and consider the integral
J.(D) = / didny ... dif,dn, ¢ 2oia= D (B.15)

In the Taylor expansion of the exponential function, only the terms proportional to 7117 ... 7,1,
will survive. We find that

n

Jn(D) = (—1)n/d7_71d771.-- A dny My -t Y, sgn(o) [ [ Die,

oc€Sn i=1
n _ _ _ _ B.16
=(-1) /dmdm--- A7)y dnn 7101 - - Ty det(D) (B.16)
=det(D).
Thus, for the path integral over anti-commuting ghost fields C' and C' we obtain
/DC’ DC e~z A" CT MO _ qot(M). (B.17)

Here, too, the path integral measure has been appropriately normalized.
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C. The Fourth-Order Nicolai Map

We give the ‘on-shell’ A/ =1 super Yang-Mills Nicolai map (7 A)Z in Landau gauge up to and
including O(g*). The result is valid in all critical dimensions d = 3, 4, 6, 10. It was first obtained
in [3] and extends (5.38) by one order. We have checked that it satisfies all three tests from
section 5.6. Moreover, upon dimensional reduction, it agrees with the 2-dimensional result in
[88]. The inverse of the map given here has been used in [4] to compute the vacuum expectation

value of the infinite straight line Maldacena-Wilson loop to the sixth order.

In the expression below, anti-symmetrizations over five spacetime indices occur. These terms
vanish if the result is taken to be in d =3 or d =4 dimensions. In that sense, the Nicolai map
depends on the number of dimensions from the fourth order onwards. The fourth-order ‘on-shell’

N =1 super Yang-Mills Nicolai map in Landau gauge reads [3]

(Tg A)ju() = A () + g [ Ty 0°C(a —y) AL(Y) AL (y)
+ %f‘“”f”d@ dy d?z 9°C(x —y) AN ()8, C (y — 2) Afi(2) A5 ()
+ % fabepbdepefa [ gty a4z a%w 9°C (x —y)
x PC(y —2) AR (2)A°° (2)3),C y — w) Af, () AL (w)
gt et tiep o [aty atz dtw 97— AN ) {
— 970y —2) A5 (2)9],C (= = w) A, (w) A (w)
0,0y — 2) A5 ()07 C(z — w) Af) (w) A% (w) | (C.1)
+ % obe phde pdig [ qdy qd gl {

+60,C(x —y) A ()01 Oy — 2) A°7 ()9, C (2 — w) Af, (w) A, (w)

o]
~60°C(z —y) A5 ()0 C(y — 2) A7 ()1, 0z — w) Al (w) A2 (w)
— 68PC(LU — y)Ai (y)8[aC(y — Z) ,Z] (z)a[pC’(z _ w)Af’\(w)Ag o] (w)
+20°Cx—y) Af, ()9, Cy — 2) AN ()07 C (2 = w) Af (w) AZ (w)

= 0uC(2— )0 (A5(W)Cy — 2)) A ()07 C = — w) A (w) A (w) }

3
=S e [ty d's AL () Ol —y) AP ()0 Oy — 2)Af (2) A4 (2)
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4 )
+ %fabcfbdefdfgfchi ddy ddz ddw

x Oz —y) AN ()97 Oy — 2) AL (2) A§(2)0° Ol — ) AY () A} (w)

4 )
+9§fabcfbdefdfgfchz ddy a4z 44w a% 8’\C(x—y)8p(](y—z) {

—9A5(2)01P C (2 —w) AT 7 (w) AT ()3}, C(y — v) AR (v) AL (v)
+4A4°1(2)9171C (2 — w) AL () A7 M (w) Y, C(y —v) AL (v) AL (v)
—24°7(2)0y,,C (= — w) Af () AL ()8 Cly — v) Al (0) AT v)}

4 )
o %fabcfbdefdfgfchz ddy ddz ddw ddU auc(x_y)a C(y—z)

X A°P(2)0° C (2 — w) Al (w) A% (w)dT C (y —v) A (v) A} (v)

4 )
+%fabcfbdefdfgfchz ddy a4z 4w a% \C(z—1y) {

+ 0, C(y — 2) A5 ()07 C (2 = w) AT P (w) A9 ()07 Oy — v) Al (v) AL (v)
— 0P C(y—2)A°*(2)9,C (= —w) A} (w) A% ()7 Cy — v) Al (U)A,i,(v)}

4 .
+%fabcfbdefdfgfchz ddy a4z a%w 4% 8/\C(x—y) {

+ 33[pC(y —z)A® vl (2)9,C (2 — w)A{(w)AZ] ()07 C(y —v) Al (v) AL (v)

+8[)\C’(yfz)Aey(z)agC(zfw)A‘fa(w)Ag(w)(?pC(yfv)A ‘( )AL]( )}

4 )
_ %fabcfbdefdfgfehz ddSIZ' ddy ddZ ddw

X AS (2)C(x — y)0 Oy — 2) AL (2) A9 (2)0° C (y — w) Al (w) A} (w)

4 .
_ %fabcfbdefdfgfehz ddy ddz ddw dd’U BHC(x—y)

x 0 (AS(y)C(y — 2)) 8°C (2 — w) Al (w) AT ()97 C (2 — v) Al (v) Al (v)

4 )
+%fabcfbdefdfgfeh,z ddy a4z 44w 4% 8AC(x_y)ApC(y) {
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