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Abstract

Supersymmetric field theories can be characterized by the existence of a non-linear and non-local
transformation of the bosonic fields, called the Nicolai map. It maps the interacting functional
measure to that of a free theory such that the Jacobian determinant of the transformation
equals the product of the fermionic determinants. In this thesis, we study the Nicolai maps of
the 2-dimensional Wess-Zumino model, N = 1 super Yang-Mills and N = 4 super Yang-Mills.

We give a constructive proof for the existence of the Nicolai map in these theories. The proof
includes the derivation of the infinitesimal generator of the inverse Nicolai map, called the Rg-
operator. We use this operator to compute the Nicolai map of the 2-dimensional Wess-Zumino
model up to the fifth order in the coupling. In N = 1 super Yang-Mills, we introduce the
notion of ‘on- and off-shell’ Nicolai maps, corresponding to the ‘on-shell’ respectively ‘off-shell’
supersymmetry in the different versions of the theory. The ‘on-shell’ Nicolai map of N = 1 super
Yang-Mills exists in d= 3, 4, 6 and 10 dimensions but is constrained to the Landau gauge. We
compute this map up to the fourth order in the coupling. The ‘off-shell’ Nicolai map exists
only in d = 4 dimensions but for general gauges. We compute it in the axial gauge up to the
second order in the coupling. In N = 4 super Yang-Mills, we give the Rg-operator and use it to
show that the Nicolai map of N = 4 super Yang-Mills can be obtained from the Nicolai map of
10-dimensional N = 1 super Yang-Mills by dimensional reduction.

Inverse Nicolai maps have a remarkable property. They map quantum correlation functions of
bosonic observables to free correlation functions. Hence, Nicolai maps allow for a fermion (and
ghost) free quantization of supersymmetric (gauge) theories. We apply this property to the
10-dimensional N = 1 super Yang-Mills Nicolai map and compute the vacuum expectation value
of the infinite straight line Maldacena-Wilson loop in N = 4 super Yang-Mills to order g6. Thus
extending the previous perturbative result by one order.

In the second part of this thesis, we derive the explicit field content of the 1
2 -BPS stress tensor

multiplet in N = 4 super Yang-Mills, which in particular contains the R-symmetry current and
the energy-momentum tensor.
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1. Introduction

Quantum field theory is our most comprehensive theoretical framework to describe subatomic
particles and forces. It was largely developed in the 20th century and unifies the principles of
quantum mechanics and special relativity. In particular, the perturbative predictions of the Stan-
dard Model have an unprecedented accuracy. However, in general quantum field theory is hard
and to a large extent results beyond perturbation theory are unattainable. Thus, a considerable
part of modern-day research in quantum field theory revolves around possible simplifications
one can impose to make it more tractable. One such simplification is supersymmetry. Super-
symmetry is a spacetime symmetry between bosons and fermions. The constraints it imposes on
quantum field theory are strong enough to yield some additional non-perturbative results and
considerable simplifications while at the same time not prohibiting all the interesting dynamics
of regular quantum field theory. Mathematically, supersymmetry is a Z2-graded extension of the
Poincaré algebra, where the new anti-commuting generators relate bosonic states to fermionic
states and vice versa. We call this algebra the supersymmetry algebra. While every quantum
field theory is invariant under the action of the Poincaré algebra, every supersymmetric field
theory is invariant under the action of the supersymmetry algebra.

Supersymmetry was initially discovered in string theory in the early 1970s. The first super-
symmetric quantum field theory was the 4-dimensional Wess-Zumino model [5], introduced by
Wess and Zumino in 1974. It describes two scalar fields, a four-component Majorana spinor
and two auxiliary fields. Shortly after the first supersymmetric gauge theories were introduced,
first as a supersymmetric extension of quantum electrodynamics [6] and later as supersymmet-
ric extensions of Yang-Mills theories [7–9]. Today supersymmetric Yang-Mills theories and,
in particular, the maximally extended N = 4 super Yang-Mills theory [9, 10], are among the
best-studied examples of quantum field theories.

A key consequence of supersymmetry is the dramatic improvement it produces in the ultraviolet
behavior of quantum field theories. In theories with linearly realized supersymmetry, such as
the 4-dimensional Wess-Zumino model, there is a very powerful non-renormalization theorem,
stating that superpotentials of chiral superfields do not get renormalized [11, 12]. Moreover,
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1. Introduction

the mass and coupling constant do not receive any renormalization besides the wave-function
renormalization. Thus, the mass term is at most logarithmically divergent. In supersymmetric
gauge theories, the situation is a little more complicated as the renormalization constants become
gauge-dependent. However, there is a notable exception. It has been shown that the beta
function of N = 4 super Yang-Mills vanishes to all orders in perturbation theory [13, 14] (see
also [15–20]). This implies that the coupling constant does not get renormalized in any gauge
and allows the theory’s superconformal symmetry to extend to the quantum level. Furthermore,
it was argued that, in the light-cone gauge, the N = 4 theory is completely ultraviolet finite
[13, 16, 17, 21].

Another universal consequence of supersymmetry is the exact vanishing of the vacuum energy
[22]. Fermions and bosons contribute with opposite signs to the vacuum energy and since there
are just as many fermions as bosons in supersymmetric theories, their respective contributions
cancel to all orders in perturbation theory.

Among all the supersymmetric field theories one, in particular, stands out, namely N = 4 super
Yang-Mills. Beyond its finiteness properties and exact quantum conformal invariance, it is
ubiquitous in non-perturbative formulations of string theory (M-theory), either via the AdS/CFT
correspondence [23] or, in its dimensionally reduced form, via the maximally supersymmetric
d= 1 matrix model with gauge group SU(∞) [24, 25]. In the large N limit N = 4 super Yang-
Mills is even integrable (see [26] for a review). Moreover, being a 4-dimensional, non-abelian,
minimally coupled gauge theory, N = 4 super Yang-Mills is similar enough to more realistic
theories such as QCD that we can hope to deduce some approximations for these theories from
exact results in N = 4 super Yang-Mills. Thus, a sustained effort to study supersymmetric
Yang-Mills theories from all possible perspectives is more than justified.

Yet, despite the vast literature on supersymmetric gauge theories, and especially the N = 4
theory, important questions remain. For example, does the N = 4 theory exist beyond pertur-
bation theory as a non-trivial quantum theory or is it simply a free theory in disguise? Because
of the conformal invariance of the theory, even at the quantum level, it does not have a mass
gap. Thus, there are no asymptotic one-particle states and consequentially no S-matrix (at
least not in any conventional sense) whose non-triviality would affirm the non-triviality of the
theory. A more appropriate framework to establish the non-perturbative existence is provided
by the conformal bootstrap program (see e.g. [27]). Here the challenge is to compute exact
n-point (for n≥ 4) correlation functions and the associated conformal cross ratios. Considerable
progress in this direction has been made using integrability [26], amplitude calculations [28, 29],
and holographic duality [30].
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1.1. A First Example and Previous Results

Other issues revolve around the finiteness of N = 4 super Yang-Mills. Thus far, it has only
been established in the light-cone gauge and only for the transversal degrees of freedom [13, 31,
32]. In other gauges, the usual quantum field theoretical infinities appear and a wave function
renormalization has to be implemented [33]. Thus, a non-perturbative construction of the N = 4
theory would require a non-perturbative regularization both in the IR and the UV. However,
non-perturbative regularizations break supersymmetry at least partially; thus, it is unclear how
the supersymmetry can be utilized in a non-perturbative formulation of the theory.

This thesis is part of an ongoing effort to develop an alternative perspective on supersymmetric
quantum field theories in order to eventually address some of the above questions in a different
way. The importance of anti-commuting variables in quantizing supersymmetric field theories is
well known. Gauge theories, in particular, require the introduction of additional anti-commuting
virtual particles, the ghost fields, to allow for a consistent definition of the path integral. How-
ever, anti-commuting variables, both real and virtual, are difficult to work with, especially in
perturbation theory. Fortunately, supersymmetric field theories are overdetermined in the sense
that there exist Ward identities relating bosonic and fermionic correlation functions. This obser-
vation can be formalized, giving rise to a fermion (and ghost) free quantization of supersymmetric
field theories.

According to a theorem by Hermann Nicolai [34], supersymmetric field theories can be char-
acterized by the existence of a non-linear and non-local transformation of the bosonic fields,
called the Nicolai map Tg. It was first proposed by Nicolai in [34–38] and further developed by
Dietz, Flume and Lechtenfeld in [39–43]. The Nicolai map Tg maps the interacting functional
measure to that of a free theory such that the Jacobian determinant of Tg equals the product of
the fermionic determinants. The Nicolai map thus allows for a more economical, purely bosonic
formulation of the quantum theory of supersymmetric field theories.

1.1. A First Example and Previous Results

The Nicolai map is best understood from examples and the by far simplest example of a Nicolai
map is found in supersymmetric quantum mechanics. The theory describes a real scalar q(t)
and a pair of Grassman coordinates ψ(t), ψ̄(t). Its Euclidean action is given by [44, 45]

S =
∫

dt
[1

2 q̇
2 + q̇V (q)+ 1

2V (q)2 + ψ̄

( d
dt +V ′(q)

)
ψ

]
, (1.1)

where V (q) is some superpotential and the topological invariant q̇V (q) has been added for later
convenience. The Nicolai map of (1.1) is given by

(Tg q)(t) = q(t)+
∫

dt′ θ(t− t′)V (q(t′)) , (1.2)

3



1. Introduction

where θ(t) is the step function with d
dtθ(t− t′) = δ(t− t′). It can easily be checked that Tg indeed

maps the bosonic action to the free action∫
dt
[1

2
(

d
dt(Tg q)

)2
]

=
∫

dt
[1

2 q̇
2 + q̇V (q)+ 1

2V (q)2
]

(1.3)

and that its Jacobian determinant equals the fermionic determinant

det(J (Tg q)) = det
(
δ(t− t′)±θ(t− t′)V ′(q(t′))

)
= ∆MSS[q] . (1.4)

The fermionic (or Matthews-Salam-Seiler) determinant [46, 47] is defined by∫
Dψ̄ Dψ e−

∫
dt ψ̄( d

dt
+V ′(q))ψ = det

[(
d
dt +V ′(q(t))

)
δ(t− t′)

]
=: det

[
d
dtδ(t− t′)

]
∆MSS[q] . (1.5)

The Nicolai map of supersymmetric quantum mechanics is special in several ways. There is no
need for a formal derivation of the map (1.2) as it can be inferred from the action (1.1) and the
fermionic determinant (1.5). Moreover, it terminates after the first order. In general, Nicolai
maps require tedious derivations and are non-finite perturbative series without even a closed-
form formulation. Most of this work is dedicated to setting up formalisms to derive Nicolai maps
in various supersymmetric (gauge) theories.

However, before outlining the scope of this thesis, let us recollect some historical results. In
fact, a lot of work on the Nicolai map was done in the early 1980s until the research came to a
sudden hold with the beginning of the first superstring revolution. Many problems and incom-
plete results were left behind and have not been solved until the active research on the Nicolai
map continued very recently in 2020. A comprehensive overview of the state of research in the
mid-1980s can be found in the lecture notes of Nicolai [34] and the doctoral thesis of Lecht-
enfeld [41]. By 1984 Nicolai had formulated and proven his theorem capturing the properties
of the Nicolai map for the 2-dimensional Wess-Zumino model and 4-dimensional N = 1 super
Yang-Mills in the Landau gauge. A crucial addition to the proof in N = 1 super Yang-Mills was
made by Flume and Lechtenfeld [39] ensuring the distributivity of the infinitesimal generator of
the inverse Nicolai map. Moreover, Nicolai found explicit expressions for the Nicolai maps of
supersymmetric quantum mechanics, the 2-dimensional Wess-Zumino model and 4-dimensional
N = 1 super Yang-Mills in Landau gauge. However, neither of these Nicolai maps was system-
atically derived, but rather they were the result of guesswork. Hence, the Nicolai maps for the
2-dimensional Wess-Zumino model and N = 1 super Yang-Mills were limited to the lowest orders
of perturbation theory.

In [41, 42] Dietz and Lechtenfeld discovered that the inverse Nicolai map T −1
g maps interacting

correlation functions of bosonic operators Oi to free correlation functions
〈〈
O1(x1) . . .On(xn)

〉〉
g

=
〈
(T −1
g O1)(x1) . . .(T −1

g On)(xn)
〉

0 . (1.6)
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This statement is quite remarkable. While it, of course, does not render the computation of
interacting correlation functions trivial as the complexity is now hidden in the transformations
(T −1
g Oi), it allows us to obtain bosonic correlation functions in supersymmetric field theories

without the use of anti-commuting variables. Thus, one does not have to worry about the
fermion (and ghost) loops arising on the left-hand side of (1.6) in each order of perturbation
theory. But instead, simply compute the bosonic Wick contractions on the right-hand side.

Furthermore, there were several attempts to formulate a Nicolai map for N = 1 super Yang-Mills
in gauges other than the Landau gauge. Most notably, Dietz and Lechtenfeld came very close
to finding the Nicolai map in general gauges [41, 42]. As we have now learned almost 40 years
later, they have found the correct infinitesimal generator of the inverse map but used it in the
wrong way (for more details, see chapter 4). Also de Alfaro, Fubini, Furlan and Veneziano were
investigating a variation of the Nicolai map [48–50]. Their work displayed hints of a polynomial
form of the map for the N = 1 and N = 2 super Yang-Mills theories in the light-cone gauge,
and in terms of the light-cone components of the field strength. Unfortunately, an inspection of
the relevant formulas revealed that their Nicolai map does not apply to the ‘real’ super Yang-
Mills theory. Instead, one must simultaneously invoke the light-cone gauge (which exists only for
Lorentzian signature) and introduce a complexification of the basic fields, which for the fermions
would only be appropriate for Euclidean spinors. On the other hand, employing a time-like axial
gauge with Euclidean signature, a direct construction fails [51]. In fact, the map in [51] is an
expansion in powers of the covariant derivative rather than the coupling constant. Thus, it
is not applicable to (1.6). Moreover, it only works up to the quadratic order in the covariant
derivative.

1.2. Results of this Work

In this thesis, we continue the research of the 1980s and present a comprehensive study of the
Nicolai map in various supersymmetric (gauge) theories of increasing complexity. We address
the problems and open questions mentioned above and demonstrate a neat application of the
Nicolai map. The work presented here is mostly based on the author’s publications [1–4]. The
main results of this work are the systematic calculations of the Nicolai map for the 2-dimensional
Wess-Zumino model up the fifth order in the coupling, the Nicolai map of N = 1 super Yang-
Mills for general gauges and the second order in the coupling and the Nicolai map of N = 1
super Yang-Mills in the Landau gauge up to the fourth order in the coupling. Furthermore,
we use this last result to compute the vacuum expectation value of the infinite straight line
Maldacena-Wilson loop up to order g6. In a little more detail, the results of this thesis are as
follows.
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First, we study the Nicolai map for the 2-dimensional Wess-Zumino model. We give a ped-
agogical proof of Nicolai’s main theorem and compute the Nicolai map to the fifth order in
perturbation theory, thus extending the previous result [34] by three orders. The Nicolai map is
obtained in two simple steps. First, the inverse Nicolai map is constructed from its infinitesimal
generator, the Rg-operator. Then the actual Nicolai map is obtained by formal power series
inversion. The explicit expression for the map is subjected to two tests similar to (1.3) and (1.4).
While the 2-dimensional Wess-Zumino model by itself is not a particularly interesting theory,
it provides an excellent non-trivial example to understand the Nicolai map and its derivation.
Since the Wess-Zumino model is not a gauge theory, its supersymmetry is realized linearly. This
makes for a straightforward construction of the Rg-operator and gives us a benchmark of an
ideal non-trivial Nicolai map. These results have not been published before.

Then we introduce the Nicolai map and the Rg-operator for N = 1 super Yang-Mills. In partic-
ular, we introduce the notion of an ‘on-shell’ respectively ‘off-shell’ Nicolai map corresponding
to the ‘on-shell’ respectively ‘off-shell’ supersymmetry in the different formulations of the the-
ory. We state and prove according versions of the main theorem. In the presence of ‘off-shell’
supersymmetry, we are able to construct a Nicolai map in general gauges, satisfying the scaling
relation Ga[A] = gGa[g−1A]. The construction is universal to all gauge theories. We compute
the Nicolai map for 4-dimensional N = 1 super Yang-Mills in axial gauge. We find that the
axial gauge Nicolai map is considerably more complicated than the previously known Landau
gauge Nicolai map. This is in accord with the mixed success story of the axial gauge in quantum
field theory [52]. Moreover, ‘off-shell’ supersymmetry (with finitely many auxiliary fields) exists
for N = 1 super Yang-Mills only in 4 dimensions. Thus we subsequently resort to ‘on-shell’
supersymmetry. Here we are confined to the Landau gauge, but we can construct the Nicolai
map in d = 3, 4, 6 and 10 dimensions. The map is much simpler than in axial gauge and we
can compute and test it up to the fourth order in the coupling constant, thus extending the
previously known result [53] by two orders. Besides restricting the gauge parameter to ξ = 0 in
the Rξ type gauges, i.e. forcing us into the Landau gauge, the ‘on-shell-ness’ in the Nicolai map
is much less of a restriction than usual, where for example the equations of motion are required
to close the supersymmetry algebra. We have first published our work on the ‘on- and off-shell’
N = 1 super Yang-Mills Nicolai maps in [1] and [3].

Already very early in the research on the Nicolai map, it was discovered that finite perturbative
expansions of the map are not unique. This is because (in Landau gauge) Nicolai’s theorem only
makes statements about the derivative of the Nicolai map. In [2] we have found an alternative
formulation of the N = 1 super Yang-Mills Nicolai map specifically in 6 dimensions up to the
third order in perturbation theory. We briefly discuss the result and validate it.
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1.3. The Stress Tensor Multiplet

The third and last supersymmetric field theory we will discuss is N = 4 super Yang-Mills and
its cousin 4-dimensional maximally extended N = 1 super Yang-Mills. For the latter, we can
construct an ‘off-shell’ Nicolai map. For the former, however, it seems to be out of reach due
to the lack of an ‘off-shell’ formulation. Thus, as before, we are constrained to the Landau
gauge. Unfortunately, the formal construction of the Nicolai map via the Rg-operator in the
maximally extended N = 1 theory and the N = 4 theory is very sophisticated due to the large
number of (auxiliary) fields. Luckily, however, we are able to prove that the N = 4 Nicolai map
can be obtained from the 10-dimensional N = 1 super Yang-Mills Nicolai map by dimensional
reduction. Thus, we automatically get access to the fourth-order Nicolai map we computed
before. The N = 4 Nicolai map was first studied by Rupprecht in [54].

We close the discussion of the Nicolai map in this thesis by giving a neat example of its ap-
plication. We use (1.6) to compute the vacuum expectation value of the infinite-straight line
Maldacena-Wilson loop in N = 4 super Yang-Mills to order g6. The results are two-fold. Con-
trary to popular belief, the perturbative cancellations of the different contributions to the vacuum
expectation value of the Maldacena-Wilson loop are by no means trivial and seem to resemble
those of the circular Maldacena-Wilson loop at order g4. Furthermore, we argue that our ap-
proach to computing quantum correlation functions with the Nicolai map is competitive with
more standard diagrammatic techniques. This result was first published in [4] by the author of
this thesis.

1.3. The Stress Tensor Multiplet

If an operator is a fixed point of the inverse Nicolai map, i.e. if (T −1
g O) =O, then by (1.6) its

n-point correlation functions do not receive quantum corrections. The only known example of
such an operator is the (anti) self-dual field strength tensor in 4-dimensional N = 1 super Yang-
Mills with a topological term. However, in N = 4 super Yang-Mills, there are many operators
whose 2- and 3-point functions are entirely determined by their classical expressions. They
form several so-called short supermultiplets of the superconformal algebra. A long-term goal
is to study these short supermultiplets through the Nicolai map. However, this requires us to
know their explicit field content. In the second part of this thesis, we thus determine the entire
field content of one of these short multiplets, namely the stress tensor multiplet in N = 4 super
Yang-Mills.

The symmetry algebra of N = 4 super Yang-Mills is the superconformal algebra psu(2,2|4). A
set of fields forming a representation of the superconformal algebra is called a supermultiplet.
Understanding these supermultiplets is crucial for the study of many aspects of supersymmetric
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field theories. For example, the construction of the Rg-operator, i.e. the infinitesimal genera-
tor of the inverse Nicolai map, hinges on understanding the supermultiplet of the Lagrangian.
Given the primary field of a supermultiplet, its descendants are obtained by repeatedly acting
with the anti-commuting supersymmetry generators QAα and Q̄α̇A. In N = 4 super Yang-Mills,
there are 16 such generators. If the primary field is annihilated by the action of some of the
supersymmetry generators, then it lives in a so-called short or semi-short multiplet. In [55],
Dolan and Osborn have studied all short and-semi short representations of N = 2 and N = 4
superconformal symmetry. The most interesting short multiplet is the current (or stress tensor)
multiplet B

1
2 ,

1
2

[0,2,0](0,0). It contains the R-symmetry current as well as the energy-momentum ten-
sor. It was first discovered in perturbation theory [56–60] and later shown non-perturbatively
[61] that the elements of the stress tensor multiplet are subjected to a non-renormalization the-
orem and do not receive any anomalous dimension. Thus, their 2- and 3-point functions are
entirely determined by their classical expressions.

The first correlation functions to receive quantum corrections are the 4-point functions. They
have been studied in a variety of ways. In particular, it has been shown that all the 4-point
functions of the stress tensor multiplet are related by the superconformal algebra [62]. Moreover,
the 4-point correlation functions can be expressed in terms of a single function of the two
conformal invariants [63]. However, this function is not yet fully known.

In [63] Dolan and Osborn have given a list of all states in the N = 4 stress tensor multiplet
B

1
2 ,

1
2

[0,2,0](0,0). Moreover, they have found the field constraints as well as supersymmetry trans-
formations of all fields in the stress tensor multiplet. However, the explicit expression for the
fields corresponding to the states in the multiplet were not provided. When we want to study
the multiplet via the Nicolai map, we need to know its explicit field content. Thus, starting
from the chiral primary field of the stress tensor multiplet, we compute all descendant fields by
repeated action of the supersymmetry transformations. With our analysis we set the foundation
for future investigations of the stress tensor multiplet via the Nicolai map. This result has not
been published before.

1.4. Outline

This thesis is divided into two parts. In the first part, we discuss the Nicolai map and in the
second part, we discuss the stress tensor multiplet. The first part is organized as follows.

In chapter 2, we introduce the various supersymmetric quantum field theories studied in the sub-
sequent chapters. These are the 2-dimensional Wess-Zumino model, N = 1 super Yang-Mills in
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d= 3, 4, 6 and 10 spacetime dimensions and N = 4 as well as maximally extended 4-dimensional
N = 1 super Yang-Mills. In particular, we discuss their supersymmetry transformations, quan-
tization and, in the case of the Yang-Mills theories, gauge fixing procedure.

Chapters 3 - 6 each present the Nicolai map for one particular supersymmetric theory. We begin
with an extensive study of the Nicolai map for the 2-dimensional Wess-Zumino model in chapter
3. We formulate and prove the main theorem. In particular, we derive the Rg-operator and do a
step-by-step calculation of the first two orders of the Nicolai map. Moreover, we briefly introduce
an alternative approach to computing the Nicolai map developed by Lechtenfeld and Rupprecht.
Section 3.4 contains the main result, i.e. the Nicolai map for the Wess-Zumino model up to the
fifth order in the coupling constant. We briefly comment on the radius of convergence of the
Nicolai map. In the last part of this chapter, we verify our result by conducting two tests on it
similar to (1.3) and (1.4). They correspond to the two statements of the main theorem.

In chapter 4, we discuss the Nicolai map for ‘off-shell’ N = 1 super Yang-Mills in four dimensions.
Since super Yang-Mills is a gauge theory, we adjust the main theorem from before by demanding
that the Nicolai map is gauge invariant. The new theorem is then briefly proven. The ‘off-
shell’ supersymmetry necessitates the introduction of rescaled fields to derive the Rg-operator
in general gauges. The main result of this chapter is the second order ‘off-shell’ N = 1 super
Yang-Mills Nicolai map in axial gauge in section 4.5. Similar to the previous chapter, we verify
the result. In section 4.7, we discuss a potential simplification of the ‘off-shell’ Nicolai map.

In chapter 5, we repeat the discussions of the previous chapter but for N = 1 super Yang-Mills
with ‘on-shell’ supersymmetry. The ‘on-shell’ supersymmetry will restrict the Nicolai map to the
Landau gauge but allow for a construction in d= 3, 4, 6 and 10 dimensions. Moreover, there is
an extra step in constructing the Rg-operator where we have to prove that it acts distributively.
But we are no longer required a detour via rescaled fields to compute the Nicolai map. The
main result of this chapter is the fourth-order Nicolai map. The first three orders are given in
section 5.4 and the entire expression is provided in appendix C. Again the result is tested. In
section 5.5, we discuss the renormalization properties of the Rg-operator and the Nicolai map in
different supersymmetric theories. In section 5.7, we point out an ambiguity in the Nicolai map.
We show that a different map up to the third order exists specifically for d= 6 dimensions. In
the last section, we test this additional result.

In chapter 6, we discuss the Rg-operators and Nicolai maps for maximally extended N = 1 super
Yang-Mills and N = 4 super Yang-Mills. BothRg-operators are rather cumbersome compared to
the N = 1 super Yang-Mills Rg-operator from the previous chapters. Thus, we will not compute
any Nicolai maps. Instead, we prove that the ‘on-shell’ N = 4 super Yang-Mills Nicolai map
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can be obtained from the 10-dimensional ‘on-shell’ N = 1 super Yang-Mills Nicolai map by the
means of dimensional reduction. Furthermore, we comment on the calculation of correlation
functions, BPS operators and the large N limit in the context of the Nicolai map.

In chapter 7, we demonstrate a perturbative application of the Nicolai map. We use the previ-
ously obtained fourth-order Nicolai map to compute the vacuum expectation value of the infinite
straight line Maldacena-Wilson loop in N = 4 super Yang-Mills to order g6 (for all N). This
chapter marks the end of our discussion of the Nicolai map in this thesis.

The second part of this thesis is much shorter. It consists only of the two chapters 8 and 9. In
chapter 8 we introduce the superconformal algebra psu(2,2|4) and its unitary representations.
Moreover, we discuss multiplet shortening, anomalous dimensions and conformal correlation
functions. In chapter 9 we present the explicit field content of the N = 4 stress tensor multiplet.
Some general properties of the multiplet are discussed and we demonstrate how to obtain the
descendant fields in the multiplet from supersymmetry transformations of the primary field.
Furthermore, we derive a generalization of (1.6) for correlation functions including spinor fields.

In the final chapter 10, we briefly review our most important results and give an outlook into
the future of the Nicolai map.

There are three appendices. Appendix A contains our notation and conventions for spinors,
gamma and sigma matrices in various dimensions. Also, we collect some important formulae. In
appendix B we review the calculation of bosonic and fermionic functional determinants. Finally,
in appendix C, we present the N = 1 super Yang-Mills Nicolai map in Landau gauge and d= 3,
4, 6 and 10 dimensions up to the fourth order in the coupling.
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2. Aspects of Supersymmetric Field Theories

In this chapter we establish the technical foundation for the first part of this thesis. We begin
with a brief overview of the notation and conventions. Then we discuss the super Poincaré alge-
bra and its representations. Finally, we introduce three supersymmetric field theories. Namely
the 2-dimensional Wess-Zumino model, N = 1 super Yang-Mills and N = 4 super Yang-Mills.
Good references for the topics presented in this chapter are [64–67] and [68].

2.1. Notation and Conventions

In the following, we consider various supersymmetric field theories. Generally, we work in
Minkowski space and only for the 2-dimensional Wess-Zumino model in Euclidean space. In
Minkowski space we use the mostly minus metric ηµν with µ,ν = 0, . . . ,d− 1 and signature
(+,−, . . . ,−). The Clifford algebra is

{γµ,γν}= 2ηµν . (2.1)

In the case of the 2-dimensional Euclidean space ηµν is replaced by δµν and the metric is only plus,
i.e. (+,+). This change of the signature will have consequences on the subsequent definitions.
We will highlight them when discussing the Wess-Zumino model and stick with Minkowski space
for now.

In the first part of this thesis, we predominantly work with Majorana spinors. They carry
one spinor index α,β = 1, . . . , r, where r counts the number of ‘off-shell’ fermionic degrees of
freedom. Majorana spinors are real spinors with λ̄ = λTC, where C is the charge conjugation
matrix and λ̄= λ†γ0. In general we will suppress spinor indices by writing e.g. (λ̄λ)≡ λ̄αλα or
(λ̄γµλ) ≡ λ̄αγµαβλβ. All other spinor conventions and some useful formulae are summarized in
appendix A.

Traces over the spinor indices are denoted by tr with

tr1 = r . (2.2)
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The trace over a single gamma matrix vanishes. Traces over products of gamma matrices are
obtained recursively using the cyclicity of the trace

tr(γµ1 . . .γµn) =
n∑
i=2

(−1)i ηµ1µi tr(γµ2 . . . γ̂µi . . .γµn) , (2.3)

where the hat indicates that γ̂µi is excluded from the product.

In a non-abelian gauge theory, the fields carry an additional index a,b = 1, . . . , |G|, with G the
gauge Lie group and |G| the dimension of G. The generators of the Lie algebra g associated to
G are denoted by ta. fabc are the real totally anti-symmetric structure constants with

[ta, tb] = ifabctc . (2.4)

The structure constants satisfy the Jacobi identity

fabcfade+fabdfaec+fabefacd = 0 . (2.5)

The gauge group of super Yang-Mills field theories is usually U(N) or SU(N), depending on
the application. The dimension of U(N) is N2 and the dimension of SU(N) is N2−1. In either
case, the structure constants of the associated Lie algebras obey

fabcfabd =Nδcd . (2.6)

In the fundamental representation of u(N) (respectively su(N)), the generators ta are hermitian
N ×N matrices with

tata = CF1 (2.7)

and the quadratic Casimir CF = N
2 for u(N) (respectively CF = N2−1

2N for su(N)). Furthermore,
in the case of su(N) the ta are traceless. The trace over the representation space is denoted by
trc with

trc1 =N and trc(tatb) = 1
2δ

ab . (2.8)

The remaining pieces of notation are specific to the supersymmetric field theories and will be
introduced alongside the latter.

2.2. The super Poincaré Algebra

Any relativistic field theory is invariant under the Poincaré algebra

[Pµ,Pν ] = 0 ,

[Mµν ,Mρλ] = i(ηµρMνλ−ηµλMνρ−ηνρMµλ+ηνλMµρ) ,

[Mµν ,Pλ] = i(ηµλPν−ηλνPµ) ,

(2.9)
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where Pµ is the generator of translations and Mµν is the generator of Lorenz transformations.
The supersymmetric Poincaré algebra is a graded extension of the Poincaré algebra. It intro-
duces N generators of supersymmetric transformations QAα (with A= 1, . . . ,N ), which transform
bosonic states into fermionic states and vice versa, i.e.

Q |boson⟩= |fermion⟩ and Q |fermion⟩= |boson⟩ . (2.10)

The new relations to supplement (2.9) are

{QAα , Q̄Bβ }= δAB(γµ)αβPµ ,

{QAα ,QBβ }= {Q̄Aα , Q̄Bβ }= 0 ,

[Pµ,QAα ] = [Pµ, Q̄Aα ] = 0 ,

[Mµν ,Q
A
α ] =− i2(γµνQA)α ,

[Mµν , Q̄
A
α ] =− i2(Q̄A γµν)α .

(2.11)

Supersymmetric field theories are constructed from representations of the super Poincaré alge-
bra. Each of these representations contains an equal number of bosonic and fermionic states.
Furthermore, all states in one representation have the same mass. The set of states forming
a representation of the supersymmetry algebra is called a multiplet. In four dimensions, the
maximum amount of supersymmetry of a multiplet with spin ≤ 1 is N = 4. If we allow for spin
≤ 2 in our multiplet, we can go as high as N = 8 supersymmetry.

To formulate a supersymmetric field theory, we must represent the supersymmetry algebra on
fields. To this end, we introduce the Majorana spinors εAα with

{εAα ,εBβ }= {εAα ,QBβ }= . . .= [Pµ,εAα ] = 0 (2.12)

such that the superalgebra (2.11) can be expressed only in terms of commutators, i.e.

[(ε̄Q),(Q̄ε)] = (ε̄γµε)Pµ ,

[(ε̄Q),(ε̄Q)] = [(Q̄ε),(Q̄ε)] = 0 ,

[Pµ,(ε̄Q)] = [Pµ,(Q̄ε)] = 0 ,

[Mµν ,(ε̄Q)] =− i2(ε̄γµνQ) ,

[Mµν ,(Q̄ε)] =− i2(Q̄γµνε) .

(2.13)

We used (ε̄Q)≡ ε̄AαQAα . A (component) multiplet (A,ψ, . . .) is a set of fields on which we define
the infinitesimal supersymmetry transformation δ

δA := (ε̄Q+ Q̄ε)×A, δψ := (ε̄Q+ Q̄ε)×ψ , . . . (2.14)
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The supersymmetry generators QAα have mass dimension 1
2 . Thus a field of mass dimension l

transforms into fields of mass dimension l+ 1
2 and derivatives of fields of lower mass dimension.

The transformations are such that the supersymmetry algebra (2.13) closes on the multiplet

[δ1, δ2]A= [(ε̄1γ
µε2)− (ε̄2γ

µε1)]PµA=−i[(ε̄1γ
µε2)− (ε̄2γ

µε1)]∂µA, . . . (2.15)

Here we have used that Pµ =−i∂µ. We define bµ := [(ε̄2γ
µε1)− (ε̄1γ

µε2)] such that

[δ1, δ2]A= ibµ∂µA, . . . (2.16)

If the multiplet in question is a gauge multiplet, the supersymmetry algebra closes up to a gauge
transformation

[δ1, δ2]Aa = ibµ∂µA
a+ δgaugeA

a , . . . (2.17)

For some supersymmetric field theories, the supersymmetry algebra (2.16) will close only upon
evoking the field equations of motion. We will call such theories ‘on-shell’ supersymmetric field
theories. If the algebra closes without the equations of motion, we call the field theory ‘off-shell’
supersymmetric. For some theories such as N = 1 super Yang-Mills in 3, 6 and 10 dimensions or
N = 4 super Yang-Mills in 4 dimensions, there are no ‘off-shell’ formulations with finitely many
auxiliary fields1.

2.3. The Wess-Zumino Model

In this section, we discuss various aspects of the 2-dimensional Wess-Zumino model.

2.3.1. The Action

The Wess-Zumino model was first introduced in 1974 [5] as a 4-dimensional supersymmetric
field theory describing a scalar field A(x), a pseudoscalar field B(x), a four-component Majorana
spinor ψα(x) and two auxiliary fields F (x) and G(x). In its 2-dimensional version, the model
describes a scalar field A(x), a two-component Majorana spinor ψα(x) and one auxiliary field
F (x). Since Majorana spinors are real, the 2-dimensional Wess-Zumino model has two fermionic
and two bosonic degrees of freedom. The action is given by [70–72]

Swz = 1
2

∫
d2x

[
(∂µA)(∂µA)+2ip(A)F +F 2 +(ψ̄γµ∂µψ)+p′(A)(ψ̄ψ)

]
, (2.18)

where p(A) is some polynomial in A. The spinor indices have been suppressed by using the
shorthand notation ψ̄αψα ≡ (ψ̄ψ). For the Wess-Zumino model, we work in Euclidean spacetime

1Despite some serious attempts (see for example [69]) this has never been proven.
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where the gamma matrices satisfy the Clifford algebra relation {γµ,γν} = 2δµν with signature
(+,+). A priori, one would expect a factor of i in front of the fermionic terms in the action.
However, with the change in the signature, this factor gets absorbed in the definition of the
gamma matrices. Moreover, the Euclidean signature modifies the supersymmetry algebra (2.11)
such that there is an additional factor of i on the right-hand side. In particular, the first relation
becomes

{Qα, Q̄β}= i(γµ)αβPµ . (2.19)

Finally, we must adjust our notion of Majorana spinors because, in Euclidean spacetime, we
cannot have λ̄= λ†γ0. There are several approaches to this problem by Zumino [73], Schwinger
[74, 75] and Fubini, Hanson and Jackiw [76]. However, here we will follow the work of Nicolai
[34, 77] (see also [78] for a summary). Nicolai proposed to drop the usual hermiticity condition
of the Euclidean action introduced by Zumino in favor of Osterwalder-Schrader positivity [79].
This leads to λ̄ := λTC, with the 2-dimensional charge conjugation matrix C, as a definition of
λ̄. The advantage of this approach is that it preserves all the usual Majorana spinor relations
(see appendix A) as well as the supersymmetric Ward identities between fermions and bosons.
So, in particular, it is possible to translate between correlation functions in Euclidean spacetime
and Minkowski spacetime.

Thus we have discussed all peculiarities of Euclidean space and can now study the properties
of the action (2.18). First and foremost, it is invariant under the following supersymmetry
transformations

δA= (ψ̄ε) , δψα = (γµε)α∂µA− iεαF , δF =−i(ε̄γµ∂µψ) , (2.20)

where εα is a constant two-component Euclidean Majorana spinor. These variations satisfy the
supersymmetry algebra (2.19)

[δ1, δ2]A=−bµ∂µA, [δ1, δ2]ψα =−bµ∂µψα , [δ1, δ2]F =−bµ∂µF (2.21)

with bµ := [(ε̄2γ
µε1)− (ε̄1γ

µε2)] as above. To show this, one needs to use the Fierz identity for
2-dimensional gamma matrices (see appendix A). The relations (2.21) differ from (2.16) by a
factor of i.

The action (2.18) may be simplified by integrating out the auxiliary field F , i.e. we replace all
instances of F by their corresponding (algebraic) equation of motion

F =−ip(A) . (2.22)
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2. Aspects of Supersymmetric Field Theories

Furthermore, we choose the simplest non-trivial example p(A) = mA+λA3 for the polynomial
p(A), where m is the mass and λ is the coupling constant. Both m and λ are assumed to be
positive such that p′(A)> 0 for all A (see [35]). Hence the action (2.18) becomes

Swz = 1
2

∫
d2x

[
(∂µA)(∂µA)+(mA+λA3)2 +(ψ̄γµ∂µψ)+(m+3λA2)(ψ̄ψ)

]
. (2.23)

We distinguish between the ‘off-shell’ and ‘on-shell’ action by writing Swz[λ;A,F,ψ] for the
former and Swz[λ;A,ψ] for the latter. Thus the absence of the auxiliary field is immediately
evident. The ‘on-shell’ supersymmetry variations are

δA= (ψ̄ε) , δψα = (γµε)α∂µA−εα(mA+λA3) . (2.24)

With these variations, the supersymmetry algebra (2.19) closes only upon evoking the equations
of motion for ψα. The ‘on-shell’ action (2.23) has one fermionic and one bosonic degree of
freedom. Compared to (2.18), this is only half the fermionic and bosonic degrees of freedom.
The bosonic degrees of freedom are reduced by the elimination of the auxiliary field. The
fermionic degrees of freedom, on the other hand, are halved because ψα must obey its equation
of motion to close the supersymmetry algebra. Moreover, we obtain the expressions for the
bosonic and fermionic propagators from the action (2.23) by collecting the terms quadratic in
A respectively ψα. The free, i.e. λ= 0, bosonic propagator C(x−y) is defined via

(−□+m2)C(x−y) = δ(x−y) (2.25)

with the Laplacian □ = ∂µ∂
µ and

C(x) :=
∫ d2k

(2π)2
eikx

k2 +m2 . (2.26)

The fermion propagator ψ(x)ψ̄(y)≡ S(x,y;A) is defined via the Dirac equation

[
/∂+m+3λA2(x)

]
αγ
ψγ(x)ψ̄β(y) = δαβδ(x−y) . (2.27)

In the limit λ= 0, we obtain the free fermionic propagator

S0(x−y) = (−/∂+m)C(x−y) . (2.28)

The bosonic propagator is symmetric under the exchange of x and y, i.e. C(x−y) = C(y−x).
Derivatives act on the first argument unless indicated differently. In particular, we have

∂µC(x−y) = ∂

∂xµ
C(x−y) =− ∂

∂yµ
C(x−y) =− ∂

∂yµ
C(y−x) =−∂µC(y−x) . (2.29)
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2.3. The Wess-Zumino Model

2.3.2. Correlation Functions

The correlation function of a set of operators O1(x1) . . .On(xn) in the ‘on-shell’ Wess-Zumino
model is given by

⟨⟨O1(x1) . . .On(xn)⟩⟩λ :=
∫
DA Dψ e−Swz[λ;A,ψ] O1(x1) . . .On(xn) . (2.30)

The correlation function is automatically normalized to ⟨⟨1⟩⟩λ = 1. It was first shown by Zumino
in 1974 that this is a general feature of any supersymmetric field theory [22].

From now on, let us assume that the operators O1(x1) . . .On(xn) are purely bosonic, i.e. they do
not depend on the spinor field ψα. This motivates the introduction of the free bosonic correlation
function

⟨O1(x1) . . .On(xn)⟩0 =
∫
D0A e−Swz[0;A] O1(x1) . . .On(xn) , (2.31)

where D0A=DA det(/∂+m)1/2 is the free measure and Swz[0;A] denotes the bosonic part of the
action (2.23) at λ= 0. The normalization constant det(/∂+m)1/2 in the free measure is chosen
such that ⟨1⟩0 = 1, i.e.

⟨1⟩0 =
∫
D0A e−SB[0;A] =

∫
DA det(/∂+m)1/2 e−

1
2

∫
d2xA(−□+m2)A = 1 . (2.32)

In the last step, we computed the functional determinant∫
DA e−

1
2

∫
d2xA(−□+m2)A = det(−□+m2)−1/2 (2.33)

and used det(−□+m2)−1/2 = det(/∂+m)−1/2. See appendix B for an introduction to computing
functional determinants. Finally, if O1(x1) . . .On(xn) is not only bosonic but also independent
of the coupling λ we obtain

⟨⟨O1(x1) . . .On(xn)⟩⟩λ
∣∣∣
λ=0

= ⟨O1(x1) . . .On(xn)⟩0 . (2.34)

Free bosonic correlation functions are computed using Wick’s theorem

⟨A(x)A(y)⟩0 =A(x)A(y) = C(x−y) , (2.35)

where C(x) is the free bosonic propagator (2.26). The free bosonic correlation function of more
than two fields is the sum of all possible Wick contractions, where terms containing uncontracted
fields vanish. Because the Majorana spinor ψα appears only quadratically in the action (2.23) we
can integrate out the fermionic degrees of freedom in any correlation function. If the correlation
function in question is purely bosonic, we obtain∫

Dψ exp
[
−1

2

∫
d2x ψ̄(/∂+m+3λA2)ψ

]
= det(/∂+m+3λA2)1/2 = det(/∂+m)1/2 det(1+3λS0 ∗A2)1/2 ,

(2.36)
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2. Aspects of Supersymmetric Field Theories

where S0 is the free fermion propagator from (2.28) and ∗ denotes the convolution. The first
term is the normalization factor from above and the second term is the Matthews-Salam-Seiler
(MSS) determinant ∆MSS [46, 47]. This determinant will be key to the main part of this work.
In particular, we shall be interested in the perturbative expansion of its logarithm in powers of
the coupling constant λ. Using the well-known relation detM= exp(Tr(logM)) we find that

log(∆MSS[λ;A]) = 1
2Trlog

[
1+3λS0 ∗A2

]
. (2.37)

The capitalized trace Tr is over both the spinor indices and the convolution, i.e. in the pertur-
bative expansion of the logarithm it identifies the last variable with the first and integrates over
the remaining free variable. Expanding the right-hand side in powers of λ yields

1
2Trlog

[
1+3λS0 ∗A2

]
= 3λ

2 Tr
(
S0 ∗A2

)
− 9λ2

4 Tr
(
S0 ∗A2 ∗S0 ∗A2

)
+ 9λ3

2 Tr
(
S0 ∗A2 ∗S0 ∗A2 ∗S0 ∗A2

)
+ . . .

(2.38)

For the leading term, we obtain
3λ
2 Tr

(
S0 ∗A2

)
= 3λ

2

∫
d2x tr

[
−/∂+m

]
C(0)A2(x) = 3mλ

∫
d2x C(0)A2(x) . (2.39)

The propagator C(0) is formally divergent but can be regulated. For the second term, we find

− 9λ2

4 Tr
(
S0 ∗A2 ∗S0 ∗A2

)
=−9λ2

4

∫
d2x d2y tr

[(
−/∂+m

)
C(x−y)A2(y)

(
−/∂+m

)
C(y−x)A2(x)

]
=−9λ2

2

∫
d2x d2y ∂µC(x−y)A2(y)∂µC(y−x)A2(x)

− 9m2λ2

2

∫
d2x d2y C(x−y)A2(y)C(y−x)A2(x) .

(2.40)

The higher orders are computed accordingly.

A correlation function where the fermionic degrees of freedom have been integrated out is denoted
by a single bracket

⟨O1(x1) . . .On(xn)⟩λ =
∫
DλA e−Swz[λ;A] O1(x1) . . .On(xn) , (2.41)

with DλA = DA det(/∂ +m)1/2∆MSS[λ;A]. This definition is such that ⟨O1 . . .On⟩λ
∣∣
λ=0 =

⟨O1 . . .On⟩0 for a λ independent set of bosonic operators.

Finally, we may also integrate out the fermionic degrees of freedom in a correlation function
containing spinor fields. Consider the example〈〈

A(x)ψ(y)ψ̄(z)
〉〉
λ

=
〈
A(x)ψ(y)ψ̄(z)

〉
λ

=
〈
A(x)S(y,z;A)

〉
λ
. (2.42)

Again this is Wick’s theorem in action; however, when applying it to interacting, i.e. λ de-
pendent, correlation functions with fermions, the contractions refer to the interacting fermion
propagator S(x,y;A).
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2.3. The Wess-Zumino Model

2.3.3. Ward Identities

Ward identities can be thought of as the quantum version of Noether’s theorem. The invariance
of the Wess-Zumino action under the supersymmetry transformations leads to the conservation
of its correlation functions. Let X[A,ψ] be an arbitrary string of operators depending on the
scalar field A and the Majorana spinor ψα. We introduce the anti-commuting supersymmetry
variation δα via δ ≡ εαδα. The Ward identity is

⟨⟨δαX[A,ψ]⟩⟩λ = 0 . (2.43)

To prove the Ward identity, we first show that∫
DA Dψ δαX[A,ψ] = 0 . (2.44)

Using (2.24), we write the supersymmetry variation as the sum of a bosonic and a fermionic
derivative

δα ≡−ψ̄α
δ

δA
+
[
γµαβ(∂µA)− δαβ(mA+λA3)

] δ

δψβ
. (2.45)

Thus the integral becomes∫
DA Dψ δαX[A,ψ] =−

∫
Dψ ψ̄α

∫
DA δX[A,ψ]

δA

+
∫
DA

[
γµαβ(∂µA)− δαβ(mA+λA3)

]∫
Dψ δX[A,ψ]

δψβ
.

(2.46)

First, we consider the second term. Let θ be a Grasssmann variable. Recall that the Taylor
expansion of any function f(θ) terminates at the second order, i.e. f(θ) = a+ bθ. Moreover,
recall the Berezin integral (see appendix B)∫

dθ θ = 1 ,
∫

dθ = 0 . (2.47)

Thus it follows ∫
dθ d

dθf(θ) =
∫

dθ b= 0 . (2.48)

This statement extends to functional integrals and thus, the second term in (2.46) vanishes
because the integral over ψ is zero. Then we consider the first term. Here we have a total
derivative. Thus we expect to obtain a boundary term. However, we assume that all fields
vanish at the boundary. Hence we conclude∫

DA Dψ δαX[A,ψ] = 0 . (2.49)

In order to turn the left-hand side of (2.49) into a correlation function, we have to insert the
exponential of the action in the integral. Since δαSwz[λ;A,ψ] = 0 we get

e−Swz[λ;A,ψ] (δαX[A,ψ]) = δα
(
e−Swz[λ;A,ψ] X[A,ψ]

)
. (2.50)

Together with (2.49) this implies (2.43) and concludes the proof.
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2. Aspects of Supersymmetric Field Theories

2.4. N = 1 super Yang-Mills

This section discusses various aspects of N = 1 super Yang-Mills.

2.4.1. The Action

Four-dimensional N = 1 super Yang-Mills is a massless non-abelian gauge theory describing a
gauge field Aaµ, a four-component Majorana spinor λaα and a real auxiliary field Da [7, 8]. All the
fields are in the adjoint representation of the gauge group U(N) or SU(N). The gauge invariant
action is given by

S1
inv =

∫
d4x

[
−1

4F
a
µνF

aµν− i

2 λ̄
aγµ(Dµλ)a+ 1

2D
aDa

]
, (2.51)

with the standard definitions

F aµν := ∂µAν−∂νAµ+gfabcAbµA
c
ν , (2.52)

(Dµλα)a := ∂µλ
a
α+gfabcAbµλ

c
α (2.53)

for the field strength tensor and covariant derivative. The coupling constant is denoted by g.
The superscript 1 in S1

inv indicates the one supersymmetry (opposed to the four supersymmetries
in N = 4 super Yang-Mills). In its ‘off-shell’ version, N = 1 super Yang-Mills has four fermionic
degrees of freedom from the Majorana spinor and 3+1 bosonic degrees of freedom from the gauge
field and the auxiliary field. Notice that the gauge field only has three degrees of freedom and
not four because of the gauge condition. The action (2.51) is invariant under the supersymmetry
variations

δAaµ =−i(λ̄aγµε) , δλaα =−1
2(γµνε)αF aµν + i(γ5ε)αDa , δDa =−(ε̄γ5γµ(Dµλ

a)) . (2.54)

These variations satisfy the supersymmetry algebra

[δ1, δ2]Aaµ = ibνF aνµ , [δ1, δ2]λaα = ibµ(Dµλ)aα , [δ1, δ2]Da = ibµ(DµD)a . (2.55)

Notice that bνF aνµ = bν∂νA
a
µ− bν(DµAν)a in agreement with (2.16). Both the invariance of the

action under the supersymmetry transformations and the closing of the supersymmetry algebra
requires the 4-dimensional Fierz identities for Majorana spinors (see appendix A).

Similar to the Wess-Zumino model, it is possible to integrate out the auxiliary field Da in the
action (2.51). The relevant equation of motion is Da = 0 and we obtain

S1
inv =

∫
ddx

[
−1

4F
a
µνF

aµν− i

2 λ̄
aγµ(Dµλ)a

]
. (2.56)
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2.4. N = 1 super Yang-Mills

Spacetime Dimension Spinor Type
Real ‘on-shell’
fermionic DoF

3 Majorana 1
4 Majorana (or Weyl) 2
6 Weyl 4
10 Majorana-Weyl 8

Table 2.1.: Possible spacetime dimensions and their spinor types for ‘on-shell’ N = 1 super Yang-Mills.

One particular feature of the ‘on-shell’ N = 1 super Yang-Mills theory is that it also exists in
other spacetime dimensions than four [9]. To this end, let us assume for a moment that λaα is a
Dirac spinor. In even spacetime dimension d a Dirac spinor has 2 ·2d/2 real degrees of freedom,
i.e. twice as many as a Majorana spinor. In odd spacetime dimensions, a Dirac spinor has
2 · 2(d−1)/2 real degrees of freedom. Since we are in the ‘on-shell’ formulation λaα must obey
the Dirac equation to close the supersymmetry algebra. This halves its degrees of freedom and
the spinor now has 1

2 · 2 · 2d/2 = 2d/2 (respectively 2(d−1)/2 for odd d) real degrees of freedom.
The ‘on-shell’ gauge field, on the other hand, has d− 2 degrees of freedom. We see that these
numbers do not match for any d. Hence we must implement further constraints on the Dirac
spinor to reduce its degrees of freedom.

If the spacetime dimension is d≡ 1,2,3,4 mod 8 we may impose the Majorana condition

λ̄a = (λaTC) , (2.57)

rendering the spinor real and reducing its degrees of freedom by a factor of 2. In any even
number of spacetime dimensions, we may impose the Weyl condition

λa = 1
2(1−γd+1)λa , (2.58)

which also halves the number of degrees of freedom. Finally, we may impose both conditions
simultaneously if the spacetime dimension is d≡ 2 mod 8. This reduces the degrees of freedom
by a factor of 4. In table 2.1, we have summarized the spacetime dimensions for which we
can match the fermionic and bosonic degrees of freedom and which spinor constraints we have
to impose to do so. There are no solutions for d > 10 since the number of bosonic degrees of
freedom grows linearly while the number of fermionic degrees of freedom grows exponentially
and there are simply no other conditions to implement on the spinor. We conclude that ‘on-
shell’ N = 1 super Yang-Mills exists in d = 3, 4, 6 and 10 spacetime dimensions. Moreover,
the dimension of the corresponding Clifford algebra representation is related to the number of
spacetime dimensions by

r = 2(d−2) . (2.59)
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2. Aspects of Supersymmetric Field Theories

We will later re-derive this equation in the context of the Nicolai map. In the following, we want
to continue working with Majorana spinors only. Thus the case of d = 6 is formally excluded
from our derivations. However, let us emphasize that our results do not depend on the choice
of spinors and thus are also valid for d= 6. In particular, we may repeat all calculations using
Weyl spinors instead of Majorana spinors.

Upon using the appropriate Fierz identities, the ‘on-shell’ action (2.56) is invariant under the
following supersymmetry transformations

δAaµ =−i(λ̄aγµε) , δλaα =−1
2(γµνε)αF aµν . (2.60)

In the ‘on-shell’ formulation, the supersymmetry algebra

[δ1, δ2]Aaµ = ibνF aνµ , [δ1, δ2]λaα = ibµ(Dµλ)aα (2.61)

closes up to terms proportional to the equations of motion

(DνFµν)a = ig

2 f
abc(λ̄bγµλc) , γµ(Dµλ)a = 0 . (2.62)

The N = 1 super Yang-Mills fermion propagator iλa(x)λ̄b(y) ≡ Sab(x,y;A) is defined via the
Dirac equation

(γµDµλα)a(x)λ̄bβ(y) =−iδabδαβδ(x−y) . (2.63)

The limit g = 0 gives us the free massless fermionic propagator S0(x−y), which obeys

γµ∂µS0(x−y) = δ(x−y) . (2.64)

This implies S0(x−y) =−γµ∂µC(x−y), where C(x) is the free (massless) scalar propagator2

C(x) =
∫ ddk

(2π)d
eikx

k2 . (2.65)

The massless scalar propagator obeys −□C(x) = δ(x). The free bosonic (or Feynman) propa-
gator Cµν(x) is obtained from the first term in the action (2.56) at g = 0

−1
4

∫
ddx F aµνF aµν

∣∣∣
g=0

=−1
2

∫
ddx Aaµ [−ηµν□+∂µ∂ν ]Aaν . (2.66)

However, the d×d matrix [−ηµν□+∂µ∂ν ] is singular and cannot be inverted. The singularity
stems from the gauge invariance of the action. A general gauge transformation is of the form

Aaµ(x)→Aaµ(x)+(Dµα)a(x) . (2.67)

2We used the same symbols as for the massive propagators in the Wess-Zumino model, but it should always be
clear which one we refer to from the context.
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2.4. N = 1 super Yang-Mills

For all Aaµ(x) = (Dµα)a(x), the field strength tensor term of the action vanishes, thus making
the inverse Feynman propagator singular. Furthermore, also the path integral∫

DA e−iSinv[g;A,λ] (2.68)

is not well-defined because we are redundantly integrating over field configurations related by
gauge transformations (2.67). These two issues can be resolved by a gauge fixing procedure.

2.4.2. The Faddeev-Popov Procedure

In the following, we describe the Faddeev-Popov procedure [80]. It will fix the problem of
overcounting physically equivalent field configurations and subsequently make the Feynman
propagator and path integral well-defined.

Let Ga(A) be an arbitrary gauge function. Physically equivalent field configurations are removed
from the path integral by demanding that Ga(A) = 0. We insert a 1 in (2.68) in the following
way

1 =
∫
Dα δ(Ga(Aα))det

(
δGa(Aα)
δα

)
, (2.69)

where Aα is the gauge transformed field

(Aα)aµta = eigα
ata
[
Abµt

b+ i

g
∂µ

]
e−igα

ctc . (2.70)

The infinitesimal form of the transformation is (2.67)

(Aα)aµ =Aaµ+(Dµα)a . (2.71)

Since the super Yang-Mills action is gauge invariant, we can replace A by Aα in (2.68). Further-
more, also the path integral measure is invariant under this transformation, i.e. DA = DAα.
Thus we have∫

DA e−iSinv[g;A,λ] =
∫
Dα

∫
DAα e−iSinv[g;Aα,λ] δ(Ga(Aα))det

(
δGa(Aα)
δα

)
. (2.72)

Subsequently, we can rename Aα to A. For linear gauges the Faddeev-Popov determinant
det

(
δGa(Aα)

δα

)
does not depend on α and hence the α integration factors out. Thus

∫
Dα is just a

constant. To continue, we specify the gauge function a bit further. Let Ga(A) = GµAaµ(x)−ωa(x)
with some scalar function ωa(x). Then the Faddeev-Popov determinant becomes

det
(
δGa(Aα)
δα

)
= det(GµDµ) . (2.73)
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2. Aspects of Supersymmetric Field Theories

Similar to (2.32), we can express the determinant as a path integral. To this end, we introduce
the anti-commuting Faddeev-Popov ghost fields C and C̄ and write

det(GµDµ) =
∫
DC̄ DC exp

[
− i2

∫
ddx C̄aGµ(DµC)a

]
. (2.74)

See also appendix B for a derivation of this equation. Now (2.72) reads∫
DA e−iSinv[g;A,λ] =

[∫
Dα
]∫
DA DC̄ DC δ(GµAaµ−ωa)

×e−iSinv[g;A,λ]− i
2

∫
ddx C̄aGµ(DµC)a

.

(2.75)

This equation is true for any ω. Hence we can integrate over all ωa(x), with a Gaussian weighting
function centered on ωa = 0, provided we introduce a normalization constant N(ξ). Thus we
obtain∫

DA e−iSinv[g;A,λ] =N(ξ)
[∫
Dα
]∫
Dω e

− i
2ξ

∫
ddx ωaωa

∫
DA DC̄ DC δ(GµAaµ−ωa)

×e−iSinv[g;A,λ]− i
2

∫
ddx C̄aGµ(DµC)a

=N(ξ)
[∫
Dα
]∫
DA DC̄ DC

×e−iSinv[g;A,λ]− i
2ξ

∫
ddx (GµAa

µ)(GνAa
ν)− i

2

∫
ddx C̄aGµ(DµC)a

,

(2.76)

where ξ is an arbitrary constant. In the second step, we used the delta function to integrate over
ωa. For convenience, we will remove the unimportant normalization constant N(ξ) [

∫
Dα] by

simply redefining the path integral measure. Furthermore, we introduce the gauge-fixing action

Sgf =
∫

ddx
[ 1

2ξ (GµAaµ)(GνAaν)+ 1
2 C̄

aGµ(DµC)a
]
. (2.77)

When computing correlation functions, we must add this term to the gauge-invariant action
(2.56) to obtain a finite result. Thus the ‘on-shell’ correlation function of some operators
O1(x1) . . .On(xn) is given by

⟨⟨O1(x1) . . .On(xn)⟩⟩g :=
∫
DA Dλ DC̄ DC e−iS

1
inv[g;A,λ]−iSgf [g;A,C,C̄] O1(x1) . . .On(xn) . (2.78)

The ‘off-shell’ version of this definition has an additional path integral over the auxiliary field
Da and the corresponding ‘off-shell’ action in the exponent. Integrating out the auxiliary field
simply yields ∫

DD e−
i
2

∫
d4x DaDa = 1 . (2.79)

Furthermore, the gauge fixing action introduces the ghost propagator Ca(x)C̄b(y)≡Gab(x,y;A).
It is defined via

Gµ(DµC)a(x)C̄b(y) = δabδ(x−y) . (2.80)

In the limit g = 0, we obtain the free ghost propagator G0(x−y). The explicit form of the ghost
propagator depends on the choice of gauge.
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2.4. N = 1 super Yang-Mills

2.4.3. Choosing a Gauge

We review several common gauge choices and their implications. Popular gauge choices where
the Faddeev-Popov determinant does not depend on α are the Rξ type gauges Ga(A) = ∂µAaµ and
the axial gauge Ga(A) = nµAaµ with nµn

µ = 1. If nµnµ = 0, the axial gauge is called light-cone
gauge. In the following, we simplify the notation by writing Ga(A) ≡ GµAaµ with Gµ = ∂µ or
Gµ = nµ depending on the type of gauge in question.

At first, consider the Rξ type gauges. When adding the gauge fixing term (2.77) to the action
(2.56) the defining equation for the Feynman propagator becomes[

−ηµν□+
(

1− 1
ξ

)
∂µ∂ν

]
Cνλ(x−y) = δµλδ(x−y) . (2.81)

This equation is well-defined and solved by

Cµν(x−y) =
[
ηµν− (1− ξ)∂µ∂ν

□

]
C(x−y) . (2.82)

So far, we have kept the gauge parameter ξ arbitrary. The Feynman propagator becomes
particularly simple in the Feynman gauge ξ = 1. When computing correlation functions, this is
usually the preferred choice.

Another common choice is the Landau gauge ξ = 0. In the limit ξ→ 0 the functional

e
− i

2ξ

∫
ddx (∂µAa

µ)2
(2.83)

oscillates very rapidly, except near ∂µAaµ = 0. Thus in the ‘on-shell’ formulation (i.e. when
minimizing the action), the functional acts like a delta function imposing the gauge condition.

Now consider the axial type gauges Gµ = nµ. In this type of gauge, the Feynman propagator
becomes

Cµν(x−y) =
[
ηµν−

nµ∂ν +nν∂µ
(∂ ·n) + n2− ξ□

(∂ ·n)2 ∂µ∂ν

]
C(x−y) . (2.84)

Compared to the Feynman propagator in the Rξ type gauges, this is a very complicated expres-
sion. However, there are also advantages to using axial type gauges. For example, the ghost
fields decouple from the gauge field and can thus always be integrated out in the path integral.
This is because for nµAaµ = 0

1
2

∫
ddx C̄anµ(DµC)a = 1

2

∫
ddx C̄anµ(∂µC)a . (2.85)

So there is no dependence on the gauge field. Furthermore, the light-cone gauge (n2 = 0) has
been used to prove the ultraviolet finiteness of N = 4 super Yang-Mills [13, 14].
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2.4.4. Correlation Functions

Recall the ‘on-shell’ correlation function of some operators O1(x1) . . .On(xn)

⟨⟨O1(x1) . . .On(xn)⟩⟩g =
∫
DA Dλ DC DC̄ e−iS

1
inv[g;A,λ]−iSgf [g;A,C,C̄] O1(x1) . . .On(xn) . (2.86)

Similar to the Wess-Zumino model also the super Yang-Mills correlation function is automatically
normalized to ⟨⟨1⟩⟩g = 1. This remains true even for ‘on-shell’ supersymmetry.

For a purely bosonic string of operators O1(x1) . . .On(xn) we introduce

⟨O1(x1) . . .On(xn)⟩0 =
∫
D0A e−iS

1
B[0;A] O1(x1) . . .On(xn) , (2.87)

with the free measure D0A=DA det(□)r/4 det(Gµ∂µ) and the free bosonic action

S1
inv[0;A] =

∫
ddx

[
−1

4(∂µAaν−∂νAaµ)(∂µAaν−∂νAaµ)+ 1
2ξ (GµAaµ)(GνAaν)

]
. (2.88)

The free measure is chosen such that ⟨1⟩0 = 1. If, furthermore, the set of operators does not
depend on the coupling g, we have

⟨⟨O1(x1) . . .On(xn)⟩⟩g
∣∣∣
g=0

= ⟨O1(x1) . . .On(xn)⟩0 . (2.89)

Free bosonic correlation functions are computed using Wick’s theorem. For example, we have

〈
Aaµ(x)Abν(y)

〉
0 =Aaµ(x)Abν(y) = δabCµν(x−y) , (2.90)

where Cµν(x−y) is the gauge dependent Feynman propagator. In the Feynman gauge, the free
correlator is particularly simple. Integrating out the fermion and ghost fields in a purely bosonic
correlation function is straightforward. For the fermions, we obtain the Matthews-Salam-Seiler
determinant ∆MSS∫

Dλ exp
[
−1

2

∫
ddx λ̄aγµ(Dµλ)a

]
= det( /D)1/2 = det(/∂)1/2 det(1−Y)1/2 , (2.91)

with the integration kernel

Yab
αβ(x,y;A) = gfabc(γµγν)αβ ∂µC(x−y)Acν(y) . (2.92)

Y is obtained by observing that /∂ is the inverse of the free fermion propagator S0(x−y) from
(2.64). Again we are interested in the perturbative expansion of the logarithm of the Matthews-
Salam-Seiler determinant. We use the well-known relation detM= exp(Tr(logM)) and obtain

log(∆MSS[g;A]) = 1
2Trlog [1−Y] . (2.93)
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2.4. N = 1 super Yang-Mills

The factor 1
2 comes from the square root in (2.91). The trace Tr is over all indices and variables

of Yab
αβ(x,y;A). In particular, it integrates over the remaining free variable. Subsequently, we

find

log(∆MSS[g;A]) =−g2f
aab tr(γµγν)

∫
ddx ∂µC(x−x)Abν(x)

− g
2

4 f
abcf bad tr(γµγνγργλ)

∫
ddx ddy

×∂µC(x−y)Acν(y)∂ρC(y−x)Adλ(x)

− g
3

6 f
abcf bdefdam tr(γµγνγργλγσγτ )

∫
ddx ddy ddz

×∂µC(x−y)Acν(y)∂ρC(y−z)Aeλ(z)∂σC(z−x)Amτ (x)

+O(g4) .

(2.94)

The first term cancels since faab = 0. For the second term we use fabcf bae =−Nδce. In the third
order, the structure constants do not simplify. Computing the traces over the gamma matrices
yields the final result

log(∆MSS[g;A]) = rg2N

4

∫
ddx ddy

{
+2∂µC(x−y)Aaµ(y)∂ρC(y−x)Aaρ(x)

−∂µC(x−y)Aaρ(y)∂µC(y−x)Aaρ(x)
}

+ rg3

6 fadmf bemf cde
∫

ddx ddy ddz
{

−6∂µC(x−y)Abµ(y)∂ρC(y−z)Acλ(z)∂ρC(z−x)Aaλ(x)

+2∂µC(x−y)Abρ(y)∂ρC(y−z)Acλ(z)∂λC(z−x)Aaµ(x)

+3∂µC(x−y)Abρ(y)∂ρC(y−z)Acµ(z)∂λC(z−x)Aaλ(x)

−∂µC(x−y)Abρ(y)∂λC(y−z)Acµ(z)∂ρC(z−x)Aaλ(x)

+3∂µC(x−y)Abρ(y)∂λC(y−z)Acµ(z)∂λC(z−x)Aaρ(x)
}

+O(g4) .

(2.95)

The MSS determinant is invariant under the choice of gauge. The ghost (or Faddeev-Popov)
determinant, on the other hand, is gauge-dependent. However, its calculation is much simpler.
In the Rξ type gauges, we find∫

DC̄ DC exp
[
−1

2

∫
ddx C̄a∂µ(DµC)a

]
= det(∂µDµ) = det(□)det(1−X) (2.96)

with

Xab(x,y;A) = gfabcC(x−y)Acµ(y)∂µy . (2.97)
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2. Aspects of Supersymmetric Field Theories

Here the relevant observation is that in the Rξ type gauges the free ghost propagator is given
by G0(x−y) =−C(x−y). The logarithm of the Faddeev-Popov determinant is given by

log(∆FP[g;A]) = Trlog[1−X] . (2.98)

Expanding the logarithm and computing the trace yields

log(∆FP[g;A]) =−gfaab
∫

ddx ∂µC(x−x)Abµ(x)

+ g2N

2

∫
ddx ddy ∂µC(x−y)Aaρ(y)∂ρC(y−x)Aaµ(x)

− g
3

3 f
abcf bdefdam

∫
ddx ddy ddz

×∂ρC(x−y)Acµ(y)∂µC(y−z)Aeν(z)∂νC(z−x)Amρ (x)

+O(g4) .

(2.99)

Again the first term vanishes since faab = 0. In the axial type gauges, the integration kernel for
the Faddeev-Popov determinant is given by

Xab(x,y;A) = gfabcG0(x−y)n ·Ac(y) , (2.100)

where G0(x−y) is the free axial ghost propagator. It solves the equation

nµ∂µG0(x−y) = δ(x−y) . (2.101)

In four dimensions and for nµnµ = 1 it is given by

G0(x) = ε(n ·x)δ(3)(x⊥) =−G0(−x) , (2.102)

where ε(x) is the anti-symmetric step function ε(x) := Θ(x)− 1
2 and x⊥µ is the transverse coor-

dinate x⊥µ := nµ(n ·x). Expanding the logarithm of the Faddeev-Popov determinant in the axial
gauge, we obtain

log(∆FP[g;A]) =−gfaab
∫

ddx G0(x−x)n ·Ab(x)

+ g2N

2

∫
ddx ddy G0(x−y)n ·Aa(y)G0(y−x)n ·Aa(x)

+O(g3) .

(2.103)

Once more, the first term vanishes since faab = 0. Restricting ourselves to the gauge surface,
i.e. Ga(A) = 0, the Faddeev-Popov determinant in axial gauge becomes trivial. In the Rξ type
gauges, it remains unchanged.

As before, a correlation function where we have integrated out the anti-commuting degrees of
freedom is denoted by a single bracket

⟨O1(x1) . . .On(xn)⟩g =
∫
DgA e−iS

1
inv[g;A]−iSgf [g;A] O1(x1) . . .On(xn) , (2.104)
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2.4. N = 1 super Yang-Mills

with DgA = DA det(□)r/4 det(Gµ∂µ)∆MSS[g;A]∆FP[g;A]. This definition is such that in the
limit ⟨O1 . . .On⟩g

∣∣
g=0 = ⟨O1 . . .On⟩0 for a g independent set of bosonic operators.

Furthermore, we may also integrate out the anti-commuting degrees of freedom in any correlation
function containing spinor or ghost fields. To this end, consider the examples〈〈

Aaµ(x)λb(y)λ̄c(z)
〉〉
g

= i
〈
Aaµ(x)λb(y)λ̄c(z)

〉
g

=
〈
Aaµ(x)Sbc(y,z;A)

〉
g

(2.105)

and 〈〈
Aaµ(x)Cb(y)C̄c(z)

〉〉
g

=−i
〈
Aaµ(x)Cb(y)C̄c(z)

〉
g

=−i
〈
Aaµ(x)Gbc(y,z;A)

〉
g
. (2.106)

Notice that each contraction of two spinor fields produces a factor of i and each contraction of
two ghost fields produces a factor of (−i). This is due to different normalizations of the spinor
and ghost path integrals (see appendix B for details). Using Wick’s theorem, the generalization
to multiple spinor and ghost fields is immediate.

2.4.5. BRST Variations and Ward Identities

We want to construct a Ward identity for N = 1 super Yang-Mills similar to (2.43) for the
Wess-Zumino model. However, the complete N = 1 super Yang-Mills action

S1 = S1
inv +Sgf , (2.107)

which is used for computing correlation functions, is not invariant under the supersymmetry
transformations (2.54) (respectively (2.60)). In particular δαSgf ̸= 0. Thus the expression (2.43)
must be modified for the super Yang-Mills field theory.

Combining the ‘off-shell’ supersymmetry variations (2.54) into a single equation, we obtain

δα ≡ i(λ̄aγµ)α
δ

δAaµ
−
(1

2(γµν)βαF aµν− i(γ5)βαDa
)

δ

δλaβ
− ((Dµλ̄)aγµγ5)α

δ

δDa
. (2.108)

There is no susy partner for the ghost field. Hence it transforms trivially under the supersym-
metry variation. Now let X[A,D,λ,C,C̄] be an arbitrary string of operators. Repeating the
argument about integrals over fermionic and bosonic derivatives from subsection 2.3.3, we obtain∫

DA DD Dλ DC̄ DC δαX[A,D,λ,C̄,C] = 0 . (2.109)

Completing the integral to a correlation function, we obtain〈〈
δαX[A,D,C̄,C]

〉〉
g

=
∫
DA DD Dλ DC̄ DC e−iS

1
inv−iSgf δαX[A,D,λ,C̄,C]

=
∫
DA DD Dλ DC̄ DC δα

(
e−iS

1
inv−iSgf X[A,D,λ,C̄,C]

)
+ i

∫
DA DD Dλ DC̄ DC e−iS

1
inv−iSgf (δαSgf)X[A,D,λ,C̄,C]

= i
〈〈

(δαSgf)X[A,D,λ,C̄,C]
〉〉
g
.

(2.110)
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2. Aspects of Supersymmetric Field Theories

Hence the super Yang-Mills Ward identity reads〈〈
δαX[A,D,λ,C̄,C]

〉〉
g

= i
〈〈

(δαSgf)X[A,D,λ,C̄,C]
〉〉
g
. (2.111)

In an attempt to develop a mathematically rigorous quantization of gauge theories, Becchi,
Rouet, Stora and Tyutin have introduced the so-called BRST (or Slavnov) variations [81–83]
which leave the entire super Yang-Mills action (2.107) invariant. For ‘off-shell’ N = 1 super
Yang-Mills, the BRST variations are

sAaµ = (DµC)a , sDa = gfabcDbCc , sλa =−gfabcλbCc ,

s C̄a =−1
ξ
Ga(A) , sCa =−g2f

abcCbCc .
(2.112)

The Slavnov operator s is fermionic, i.e. it anti-commutes with other fermionic quantities, and
it is nilpotent, i.e. s2 = 0. Since s(S1) = 0 the Ward identity for the Slavnov variations reads〈〈

sX[A,D,λ,C̄,C]
〉〉
g

= 0 . (2.113)

Moreover, we observe that

δαSgf =−s
∫

ddx C̄a (δαGa(A)) . (2.114)

So we can further modify (2.111) and obtain〈〈
δαX[A,D,C̄,C]

〉〉
g

= i
〈〈(∫

ddx C̄a (δαGa(A))
)
s(X[A,D,λ,C̄,C])

〉〉
g
. (2.115)

2.5. N = 4 super Yang-Mills

In this section, we discuss various aspects of N = 4 super Yang-Mills relevant to the first part
of this thesis. Further properties of the theory specific to the second part of the thesis are given
in chapter 8 and 9.

2.5.1. The Action

The 4-dimensional N = 4 super Yang-Mills theory was originally introduced as the dimensional
reduction of 10-dimensional N = 1 super Yang-Mills [9, 10]. It describes a gauge field Aaµ,
three scalar fields Aai (i, j = 1,2,3), three pseudoscalar fields Ba

i and four Majorana spinors λaαA
(A,B = 1, . . . ,4). The gauge invariant action is given by

S4
inv =

∫
d4x

[
− 1

4F
a
µνF

aµν− 1
2(DµAi)a(DµAi)a− 1

2(DµBi)a(DµBi)a

− i

2 λ̄
a
Aγ

µ(DµλA)a+ g

2f
abcλ̄aA(αiABAbi + iγ5β

i
ABB

b
i )λcB

− g
2

4 f
abcfade

(
AbiA

c
jA

diAej +Bb
iB

c
jB

diBej +2AbiBc
jA

diBej
)]
,

(2.116)
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2.5. N = 4 super Yang-Mills

where the field strength tensor F aµν and the covariant derivative are defined as before. The real
anti-symmetric 4×4 matrices αi and βi satisfy

{αi,αj}=−2δij , [αi,αj ] = 2εijkαk ,

{βi,βj}=−2δij , [βi,βj ] =−2εijkβk , [αi,βj ] = 0 .
(2.117)

While working with Majorana spinors, we do not distinguish between subscript and superscript
spinor indices A,B = 1, . . . ,4. The action (2.116) is invariant under the supersymmetry trans-
formations

δAaµ = i(ε̄AγµλaA) , δAai =−(ε̄AαABi λaB) , δBa
i =−i(ε̄Aγ5β

AB
i λaB) ,

δλaαA =−1
2(γµνεA)αF aµν− i(γµαiABεB)α(DµAi)a− (γ5γ

µβiABεB)α(DµBi)a

− g2f
abc
((
αiABA

b
i − iγ5β

i
ABB

b
i

)(
αjBCA

c
j + iγ5β

j
BCB

c
j

)
εC
)
α
.

(2.118)

Using the 4-dimensional Fierz identity for Majorana spinors and the definition

ca :=
[
ε̄2
A(αiABAai + iγ5β

i
ABB

a
i )ε1

B− ε̄1
A(αiABAai + iγ5β

i
ABB

a
i )ε2

B

]
(2.119)

we can show that the supersymmetry algebra (2.118) closes ‘on-shell’. Hence up to terms pro-
portional to the equations of motion, we have

[δ1, δ2]Aaµ = ibνF aνµ− (Dµc)a , [δ1, δ2]λaAα = ibµ(DµλAα)a+gfabccbλcAα ,

[δ1, δ2]Aai = ibµ(DµAi)a+gfabccbAci , [δ1, δ2]Ba
i = ibµ(DµBi)a+gfabccbBc

i .
(2.120)

Since the supersymmetry is only ‘on-shell’, the theory (2.116) has 2 + 3 + 3 bosonic and 4 · 2
fermionic degrees of freedom.

The fermion propagator of the four Majorana spinors in the action (2.116) is

iλaA(x)λ̄bB(y)≡ SabAB(x,y;A ) , (2.121)

where A = (Aaµ,Aai ,Ba
i ) is the set of bosonic fields in (2.116). The Dirac equation then reads[

δACδ
acγµDµ+ igfaecαiACA

e
i (x)−gfaecγ5β

i
ACB

e
i (x)

]
ScbBC(x,y;A ) = δABδ

abδ(x−y) . (2.122)

The corresponding free fermion propagator is the same as for the N = 1 theory.

2.5.2. Dimensional Reduction

We describe how to obtain the action (2.116) via dimensional reduction of the 10-dimensional
N = 1 super Yang-Mills action (2.56). Recall

S1
inv =

∫
d10w

[
−1

4F
a
MNFaMN − i

2Λ̄aΓM (DMΛ)a
]
, (2.123)
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2. Aspects of Supersymmetric Field Theories

where M,N = 0, . . . ,9. This action is ‘on-shell’ invariant under the supersymmetry transforma-
tions (2.60)

δAaM =−i(Λ̄aΓMε10) , δΛaα =−1
2
(
ΓMNε10

)
α
FaMN , (2.124)

where ϵ10 is a 10-dimensional Majorana-Weyl spinor (see appendix A). The first step of the
dimensional reduction is to set

∂3+i = ∂6+i = 0 for i= 1,2,3 . (2.125)

This breaks the O(1,9) Lorentz symmetry of the 10-dimensional theory (2.123) down to a
O(1,3)⊗O(6) ≃ SL(2,C)⊗SU(4) symmetry. Moreover, it implies the split of the spacetime
indices M = (µ,i,j). Likewise, we decompose the coordinates wM = (xµ,yi,zj) and the gauge
field

AaM (x,y,z) = (Aaµ(x),Aai (x),Ba
j (x)) . (2.126)

Notice that the dependence on the internal coordinates yi and zj is dropped. To decompose the
spinor field, we choose a particular representation of the 10-dimensional 32×32 Γ-matrices

Γµ := γµ⊗18 , µ= 0,1,2,3 ,

Γ3+i := γ5⊗
(

0 iαi

−iαi 0

)
, i= 1,2,3 ,

Γ6+i := γ5⊗
(

0 βi

βi 0

)
, i= 1,2,3 .

(2.127)

The γ-matrices are given by

γµ :=
(

0 σµ

σ̄µ 0
)
, γ5 =

(
−12 0

0 12

)
, (2.128)

with σµ := (12,σ
µ) and σ̄µ := (12,−σi). They satisfy the Clifford algebra relation {γµ,γν}= 2ηµν .

The αi and βi matrices are defined as

αjik := εijk , αji4 =−αj4i :=−δji , αi44 := 0 ,

βjik :=−εijk , βji4 =−βj4i :=−δji , βi44 := 0 .
(2.129)

They satisfy (2.117). All of these definitions are such that the ΓM satisfy the 10-dimensional
Clifford algebra relation {ΓM ,ΓN} = 2ηMN . The eleventh gamma matrix is defined as Γ11 :=
Γ0 · · ·Γ9 and the 10-dimensional charge conjugation matrix is

C10 = C4⊗
(

0 14
14 0

)
, (2.130)

where C4 = iγ2γ0 is the 4-dimensional charge conjugation matrix. Γ11 commutes with all the
other gamma matrices and

C10ΓMC−1
10 =−ΓTM . (2.131)
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The given representation of the 10-dimensional gamma matrices implies

Λa =
(
χa

χ̄a

)
with χa =

 0
ψa1
0
ψa2

 and ψai =

ω
a
1i
ωa2i
ωa3i
ωa4i

 , 0 =

0
0
0
0

 . (2.132)

This 32-component spinor satisfies the Majorana condition Λ̄a = ΛaTC10 as well as the Weyl
condition Λa = 1

2 (132−Γ11)Λa. It decomposes into four 4-dimensional Majorana spinors

λaA =

 ωaA1
ωaA2
−ω̄aA2
ω̄aA1

 . (2.133)

Subsequently, we find

Λ̄aΓµ(DµΛ)a = λ̄aAγ
µ(DµλA)a ,

Λ̄aΓ3+i(D3+iΛ)a = igfabcλ̄aAα
i
ABA

b
iλ
c
B ,

Λ̄aΓ6+i(D6+iΛ)a =−gfabcλ̄aAγ5β
i
ABB

b
iλ
c
B

(2.134)

and

FamnFamn = F aµνF
aµν +2(DµAi)a(DµAi)a+2(DµBi)a(DµBi)a

+g2fabcfade
(
AbiA

c
jA

diAej +Bb
iB

c
jB

diBej +2AbiBc
jA

diBej
)
.

(2.135)

Hence the 10-dimensional N = 1 action (2.123) decomposes into the 4-dimensional N = 4 action
(2.116). Furthermore the 10-dimensional N = 1 supersymmetry variations (2.124) imply the
4-dimensional N = 4 supersymmetry variations (2.118).

2.5.3. Maximally extended N = 1 super Yang-Mills

A different way of deriving the N = 4 super Yang-Mills action is through maximally extended
4-dimensional N = 1 super Yang-Mills. From the superspace formulation of N = 1 super Yang-
Mills, it is evident that we can couple it to three copies of the 4-dimensional Wess-Zumino
model. We will not go into the details here, but in the end, the action reads (see [84] or [67] for
a review)

Smax
inv =

∫
d4x

[
− 1

4F
a
µνF

aµν− i

2 λ̄
aγµ(Dµλ)a+ 1

2D
aDa

+ 1
2(DµAi)a(DµAi)a+ 1

2(DµBi)a(DµBi)a+ 1
2F

a
i F

a
i + 1

2G
a
iG

a
i

− i

2 χ̄
a
i γ

µ(Dµχi)a−gfabc
(
DaAbiB

c
i +(χ̄ai (Abi + iγ5B

b
i )λc)

)
+εijkgf

abc
(1

2 χ̄
a
i (Abj− iγ5B

b
j)χck−

1
2F

a
i (AbjAck−Bb

jB
c
k)−GaiAbjBc

k

)]
.

(2.136)
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This action is invariant under the supersymmetry transformations

δAaµ = iε̄γµλ
a , δλaα =−1

2(γµνε)αF aµν + i(γ5ε)αDa , δDa =−ε̄γ5γ
µ(Dµλ)a ,

δAai = ε̄χai , δBa
i = iε̄γ5χ

a
i ,

δF ai = iε̄γµ(Dµχi)a+gfabcε̄(Abi + iγ5B
b
i )λc ,

δGai =−ε̄γ5γ
µ(Dµχi)a−gfabcε̄(Bb

j − iγ5A
b
i)λc ,

δχaiα = i(γµε)α(DµAi)a+(γ5γ
µε)α(DµBi)a+F ai εα+ i(γ5ε)αGai .

(2.137)

In order to turn the N = 1 supersymmetry into a N = 4 supersymmetry we integrate out the
auxiliary fields Da, F ai and Gai . Their algebraic equations of motion are

Da = gfabcAbiB
c
i , F ai = g

2f
abcεijk

(
AbjA

c
k−Bb

jB
c
k

)
, Gai = gfabcεijkA

b
jB

c
k . (2.138)

Plugging this back into the action, we use the Jacobi identity (2.5) to obtain

S4
inv =

∫
d4x

[
− 1

4F
a
µνF

aµν + 1
2(DµAi)a(DµAi)a+ 1

2(DµBi)a(DµBi)a

− i

2 λ̄
aγµ(Dµλ)a− i

2 χ̄
a
i γ

µ(Dµχi)a−gfabcχ̄ai (Abi + iγ5B
b
i )λc

+ g

2εijkf
abcχ̄ai (Abj− iγ5B

b
j)χck

− g
2

4 f
abcfade

(
AbiA

c
jA

d
iA

e
j +Bb

iB
c
jB

d
i B

e
j +2AbiBc

jA
d
iB

e
j

)]
.

(2.139)

This is almost the correct result. To write it in the form (2.116) we introduce the four Majorana
spinors λaA with

λai := χai for i= 1,2,3 and λa4 := λa (2.140)

and the matrices αi and βi defined as in (2.129). These identifications also imply the maximally
extended N = 1 version of the fermion propagator (2.121) and Dirac equation (2.122).

2.5.4. Gauge Fixing, Correlation Functions and Ward Identities

Since the 4-dimensional N = 4 super Yang-Mills theory can be obtained from 10-dimensional
N = 1 super Yang-Mills, it also inherits many properties from N = 1 super Yang-Mills. For
example, the gauge fixing procedure of N = 4 super Yang-Mills is identical to that of N = 1
super Yang-Mills. Hence the action (2.116) is supplemented by the same gauge fixing term as
before, i.e.

S4 = S4
inv +Sgf (2.141)
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with

Sgf =
∫

d4x

[ 1
2ξ (GµAaµ)(GνAaν)+ 1

2 C̄
aGµ(DµC)a

]
. (2.142)

The combined action is invariant under the BRST variations

sAaµ = (DµC)a , sAai = gfabcAbiC
c , sBa

i = gfabcBb
iC

c ,

sλaA =−gfabcλbACc , s C̄a =−1
ξ
Ga(Ã) , sCa =−g2f

abcCbCc .
(2.143)

Thus, correlation functions in N = 4 super Yang-Mills are defined in the same way as in N = 1
super Yang-Mills. Moreover, also the Ward identities (2.113) and (2.115) remain unchanged.
All definitions for maximally extended N = 1 super Yang-Mills arise accordingly.

2.5.5. The N = 4 Action with Weyl Spinors

For some applications, it can be useful to write the N = 4 super Yang-Mills action with Weyl
spinors. We have summarized our notation and conventions for Weyl spinors in appendix A.
First, we combine the 3 + 3 scalar and pseudoscalar fields Aai and Ba

i into the six scalar fields
ϕaI via

ϕai :=Aai , ϕai+3 :=Ba
i , i= 1,2,3 . (2.144)

Moreover, we introduce the six anti-symmetric 4×4 sigma matrices

Σi
AB := αiAB , Σ̄AB

i := αABi Σi+3
AB :=−iβiAB , Σ̄AB

i+3 := iβABi , i= 1,2,3 . (2.145)

They satisfy the Clifford algebra {ΣI , Σ̄J}=−2δIJ with I,J = 1, . . . ,6. We write the Majorana
spinors and gamma matrices in the Weyl basis, i.e.

λaA =
(
ψaα
ψ̄α̇

)
, γµ =

(
0 σµ

σ̄µ 0
)
, γ5 =

(
−12 0

0 12

)
. (2.146)

Together with the above definitions (2.144) and (2.145) this implies

λ̄αAγ
µ(DµλA)a = 2ψαAσµαα̇(Dµψ̄

α̇
A)a (2.147)

and

fabcλ̄aA

(
αiABA

b
i + iγ5β

i
ABB

b
i

)
λcB = fabc

(
ψaAΣI

ABϕ
b
Iψ

cB
)

+fabc
(
ψ̄aAΣ̄AB

I ϕbI ψ̄cB

)
. (2.148)

In contrast to Majorana spinors, the subscript and superscript placement of the spinor indices
A,B = 1, . . . ,4 matters for Weyl spinors.

Furthermore, recall that the gauge group of N = 4 super Yang-Mills is U(N) or SU(N). The
generators of the fundamental representation of the associated Lie algebra are denoted by ta.
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Given an element u of u(N) (respectively su(N)) the unitary transformation utau−1 must be a
linear combination of the generators tb, i.e.

utau−1 = tbRba , (2.149)

where Rba is a real N2×N2 (respectively (N2− 1)× (N2− 1)) matrix. It can be shown that
the Rba are elements of the adjoint representation of u(N) (respectively su(N)). Thus we
can write any field Xa as an element of the gauge Lie algebra u(N) (respectively su(N)) via
X = taXa. For any gauge Lie algebra element u we have uXu−1 = tbRbaXa. Hence the quantity
Xa = 2δabtrc(tbX) transforms in the adjoint representation of the gauge Lie algebra

Xa→ 2δabtrc(tbuXu−1) = 2δabtrc(tbtcRcdXd) =RabXb . (2.150)

Since all the fields in N = 4 super Yang-Mills are in the adjoint representation of the gauge Lie
algebra, we can write them as Lie algebra valued objects ϕ= taϕa. In the case of the gauge field
Aµ = taAaµ is called the gauge potential.

Subsequently, the action (2.116), written in terms of the Lie algebra valued objects with Weyl
spinors and the six scalar fields ϕI , becomes

S4
inv =

∫
d4x trc

[
− 1

2FµνF
µν− (DµϕI)(DµϕI)+ g2

4 [ϕI ,ϕJ ][ϕI ,ϕJ ]

−2iψαAσµαα̇(Dµψ̄
α̇
A)− igψαA[ΣI

ABϕI ,ψ
B
α ]− ig ψ̄α̇A[Σ̄AB

I ϕI , ψ̄α̇B]
]
.

(2.151)

We will introduce the supersymmetry variations and equations of motion for this action in
chapter 9.
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3. The Wess-Zumino Model

In this chapter, we introduce the Nicolai map for the 2-dimensional Wess-Zumino model. Most
of the content presented here has been developed by Nicolai in a series of papers [35–38] with
a comprehensive summary given in [34]. However, we will also expand the previously existing
results by providing an explicit expression for the Nicolai map up to and including the fifth
order in the coupling constant.

In the first section, we recall the 2-dimensional Wess-Zumino model and state the main theo-
rem capturing the map’s properties. Furthermore, we explain the practical application of the
theorem. In section 3.2 we derive the infinitesimal generator of the inverse Nicolai map, called
the Rλ-operator and compute the inverse Nicolai map to second order. Moreover, we briefly
introduce an alternative approach to computing the Nicolai map developed by Lechtenfeld and
Rupprecht. In section 3.3 we prove the main theorem. Section 3.4 contains the Nicolai map and
a discussion of the result. Finally, in the last section, we test the Nicolai map.

3.1. Introduction and Main Theorem

In this chapter, we work in 2-dimensional Euclidean space. Recall the action of the ‘on-shell’
2-dimensional Wess-Zumino model (2.23)

Swz = 1
2

∫
d2x

[
(∂µA)(∂µA)+(mA+λA3)2 +(ψ̄γµ∂µψ)+(m+3λA2)(ψ̄ψ)

]
, (3.1)

where m is the mass and λ is the coupling constant. The action is invariant under the super-
symmetry variations (2.24)

δA= (ψ̄ε) , δψα = (γµε)α∂µA−εα(mA+λA3) . (3.2)

The central result is summarized in the following theorem [34, 37].

Main Theorem 3.1.
The 2-dimensional Wess-Zumino model is characterized by the existence of a non-linear and
non-local transformation Tλ of the bosonic field

Tλ :A(x) 7→A′(x,m,λ;A) ,
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3. The Wess-Zumino Model

which is invertible, at least in the sense of a formal power series such that

i) The bosonic Wess-Zumino action is mapped to the abelian action,

Swz[λ;A] = Swz[0;TλA] ,

where Swz[λ;A] is the bosonic part of the action Swz[λ;A,ψ] and Swz[0;A] denotes the free
bosonic action, i.e. Swz[λ;A] at λ= 0.

ii) The Jacobian determinant of Tλ equals the Matthews-Salam-Seiler determinant, i.e.

J (TλA) = ∆MSS[λ;A]

at least order by order in perturbation theory.

In the following sections, we give a constructive proof of the main theorem by deriving the
Nicolai map Tλ and checking that it satisfies i) and ii).

However, first, let us investigate the implication of the theorem. Assume that we have indeed
found the map Tλ and its inverse T −1

λ . We will later see that the inverse map acts on bosonic
monomials X[A] by T −1

λ X[A] = X[T −1
λ A]. Computing the free bosonic vacuum expectation

value of such a monomial we find〈
X[T −1

λ A]
〉

0 =
∫
D0A e−Swz[0;A] X[T −1

λ A] =
∫
D0A J (TλA) e−Swz[0;TλA] X[A] . (3.3)

In the second step, we have performed a change of variables from A to TλA. On the other hand,
integrating out the fermionic degrees of freedom in the interacting vacuum expectation value of
X[A] yields〈〈

X[A]
〉〉
λ

=
∫
DA Dψ e−Swz[λ;A,ψ] X[A] =

∫
D0A ∆MSS[λ;A] e−Swz[λ;A] X[A] . (3.4)

If we now assume that Tλ satisfies i) and ii) from the main theorem we obtain〈〈
X[A]

〉〉
λ

=
〈
X[T −1

λ A]
〉

0 . (3.5)

Notice that this transformation does not render the vacuum expectation value trivial. The com-
plexity is hidden in the perturbative expansion of the non-linear and non-local transformation
T −1
λ . Using the linearity of the correlation function ⟨⟨. . .⟩⟩λ and T −1

λ X[A] = X[T −1
λ A] we can

extend (3.5) to n-point correlators of bosonic operators Oi(xi), i.e.〈〈
O1(x1) . . .On(xn)

〉〉
λ

=
〈
(T −1
λ O1)(x1) . . .(T −1

λ On)(xn)
〉

0 . (3.6)

So instead of computing interacting n-point correlation functions of the Wess-Zumino model
(with fermions), we can simply compute the free correlation function of the transformed oper-
ators. After working out the transformations (T −1

λ O)(x) to the desired order in the coupling,
we use Wick’s theorem to obtain the free correlator. This property of the Nicolai map was first
discovered by Dietz and Lechtenfeld in [40–42].
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3.2. The Rλ-Operator

3.2. The Rλ-Operator

The inverse Nicolai map T −1
λ is obtained from its infinitesimal generator Rλ, a non-local func-

tional differential operator, i.e.

(T −1
λ A)(x) :=

∞∑
n=0

λn

n! (RnλA)(x)
∣∣
λ=0 . (3.7)

The actual map (TλA)(x) is then obtained order by order in λ by formally inverting the power
series. For an arbitrary monomial of bosonic operators X[A], the linear response of its vacuum
expectation value to a change in the coupling constant is given by

d
dλ ⟨⟨X[A]⟩⟩λ =

〈〈dX[A]
dλ

〉〉
λ
−
〈〈dSwz[λ;A,ψ]

dλ X[A]
〉〉
λ

=: ⟨RλX[A]⟩λ . (3.8)

At this point, it is crucial that the correlation function is automatically properly normalized due
to supersymmetry, and we do not have to divide it by a λ dependent constant. If this were not
the case, it would spoil the simple form of the λ derivative above. Making use of supersymmetry,
we want to rewrite the right-hand side in terms of a derivational operator Rλ. Luckily even
for the ‘on-shell’ version of the Wess-Zumino model, the action still is the top component of a
supersymmetry multiplet, which does not rely on the equations of motion to close. Thus we
obtain

dSwz[λ;A,ψ]
dλ =−δα∆α with ∆α := 1

2

∫
d2x ψα(x)A3(x) . (3.9)

Recall that δα anti-commutes with other anti-commuting operators. Using the supersymmetry
Ward identity (2.43)

⟨⟨δαY ⟩⟩λ = 0 (3.10)

for an arbitrary string of operators Y , we then obtain〈〈dSwz[λ;A,ψ]
dλ X[A]

〉〉
λ

=−⟨⟨δα∆αX[A]⟩⟩λ =−⟨⟨∆α δαX[A]⟩⟩λ . (3.11)

Subsequently, we integrate out the fermionic degrees of freedom and obtain the Rλ-operator

RλX[A] = dX[A]
dλ +∆α δαX[A] , (3.12)

which is now a purely bosonic expression. The Rλ-operator acts distributively

Rλ(XY ) =Rλ(X)Y +XRλ(Y ) . (3.13)

Plugging in the definition for ∆α and the supersymmetry variation for A(x) we arrive at

Rλ = d
dλ −

1
2

∫
d2x d2y ψα(x)ψ̄α(y)A3(y) δ

δA(x) . (3.14)
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We recognize the fermionic propagator ψ(x)ψ̄(y)≡ S(x,y;A). From its definition (2.27)

[
γµ∂µ+m+3λA2(x)

]
αγ
ψγ(x)ψ̄β(y) = δαβδ(x−y) (3.15)

we obtain the identities
dS(x,y;A)

dλ =−3
∫

d2z S(x,z;A)A2(z)S(z,y;A) (3.16)

and
δS(x,y;A)
δA(z) =−6λ

∫
d2z S(x,z;A)A(z)S(z,y;A) . (3.17)

Subsequently the Rλ-operator (3.14) becomes

Rλ = d
dλ −

1
2

∫
d2x d2y tr[S(x,y;A)]A3(y) δ

δA(x) . (3.18)

In the limit λ= 0 the propagator S(x,y;A) gets replaced by the free fermion propagator (2.28)

S0(x−y) = (−/∂+m)C(x−y) . (3.19)

After iteratively computing (RnλA)(x) to any desired order n, we set λ= 0 and obtain (T −1
λ A)(x)

at O(λn). The actual map Tλ is obtained from its inverse by formal power series inversion. Let

(TλA) =
∞∑
n=0

λn

n! (TnA) . (3.20)

Expanding T −1
λ Tλ = id in powers of λ and matching coefficients we readily obtain

(T0A) =A,

(TnA) =−
n−1∑
i=0

(
n

i

)
Rnλ(TiA)

∣∣∣
λ=0

.
(3.21)

3.2.1. The Inverse Nicolai Map

To gain a better understanding of theRλ-operator we compute (T −1
λ A)(x) up to order λ2. Hence

we have to act twice with Rλ on A(x). The first application of the Rλ-operator yields

(RλA)(x) =−1
2

∫
d2y tr[S(x,y;A)]A3(y) . (3.22)

When acting again, we must remember that S(x,y;A) depends on both λ and A(x), thus, it
contributes two terms to the second order. A third term comes from the action of Rλ on A3(y)

(R2
λA)(x) = 3

2

∫
d2y tr[S(x,z;A)A2(z)S(z,y;A)]A3(y)

− 3λ
2

∫
d2y d2z d2w tr[S(x,z;A)A2(z)S(z,y;A)]A3(y)tr[S(y,w;A)]A3(w)

+ 3
4

∫
d2y d2z tr[S(x,y;A)]A2(y)tr[S(y,z;A)]A3(z) .

(3.23)
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3.2. The Rλ-Operator

We set λ= 0

(RλA)(x)
∣∣∣
λ=0

=−1
2

∫
d2y tr[(m−γµ∂µ)C(x−y)]A3(y) ,

(R2
λA)(x)

∣∣∣
λ=0

= 3
2

∫
d2y tr[(m−γµ∂µ)C(x−z)A2(z)(m−γν∂ν)C(z−y)]A3(y)

+ 3
4

∫
d2y d2z tr[(m−γµ∂µ)C(x−y)]

×A2(y)tr[(m−γν∂ν)C(y−z)]A3(z) .

(3.24)

Computing the traces (with tr1 = 2) and simplifying the results we subsequently obtain

(T −1
λ A)(x) =A(x)−mλ

∫
d2y C(x−y)A3(y)

+3m2λ2
∫

d2y d2z C(x−y)A2(y)C(y−z)A3(z)

+ 3λ2

2

∫
d2y d2z ∂µC(x−y)A2(y)∂µC(y−z)A3(z) .

(3.25)

This result can now be inverted using the steps explained above. The explicit expression for
(TλA)(x) up to O(λ5) is presented in section 3.4.

3.2.2. An Alternative Construction of the Nicolai Map

To close this section, let us remark that there exists an alternative but equivalent construction
of the Nicolai map developed by Lechtenfeld and Rupprecht in [85]. It is based on earlier work
of Lechtenfeld (see for example [41]). In this construction, one does not need the main theorem
3.1 but rather starts with the equation

〈〈
X[A]

〉〉
λ

=
〈
X[T −1

λ A]
〉

0 (3.26)

as a defining property of the inverse Nicolai map. Differentiating (3.26) with respect to λ yields

d
dλ
〈〈
X[A]

〉〉
λ

=
〈〈( d

dλ −
dSwz[λ;A,ψ]

dλ

)
X[A]

〉〉
λ

=
〈( d

dλ + Řλ
)
X[A]

〉
λ

(3.27)

with the functional differential operator

Řλ =
∫

d2x
(
∂λT −1

λ ◦Tλ
)
A(x) δ

δA(x) . (3.28)

The Řλ-operator differs from the Rλ-operator introduced above by the λ derivative, i.e. Rλ =
d

dλ + Řλ. By setting X[A] = TλA in (3.26) we derive the relation( d
dλ + Řλ

)
TλA= 0 . (3.29)

The solution to this equation is the path-ordered exponential

(TλA)(x) =
→
P exp

[
−
∫ λ

0
dh Řh

]
A(x) . (3.30)
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The inverse Nicolai map is given by

(T −1
λ A)(x) =

←
P exp

[∫ λ

0
dh Řh

]
A(x) . (3.31)

In the end, one finds from (3.27)

Řλ =−1
2

∫
d2x d2y tr[S(x,y;A)]A3(y) δ

δA(x) . (3.32)

Compared to (3.7) the λ derivatives have now been traded for integrals. However, this con-
struction allows us to obtain the Nicolai map directly without passing through its inverse first.
Furthermore, this construction not only works for scalar theories, such as the Wess-Zumino
model but also for gauge theories. For more details, see [85].

Finally, Lechtenfeld and Rupprecht have also developed a graphical representation of the Nicolai
map, see section 4 of [1] and [86].

3.3. Proof of the Main Theorem

In this section, we prove the main theorem 3.1. Large parts of the proof are universal to all
the supersymmetric field theories discussed in this thesis and will thus not be repeated in the
subsequent chapters. The existence, non-locality and non-linearity, as well as the inversion
property of Tλ are all given by the explicit construction in the previous section. Hence we only
need to show that Tλ has the properties i) and ii).

3.3.1. Part i)

For part i) we need to show that Swz[λ;A] = Swz[0;TλA]. This is equivalent to showing that
Swz[λ;T −1

λ A] = Swz[0;A]. Thus we write

Swz[λ;A] = S0[A]+λS1[A]+λ2S2[A] (3.33)

and Taylor expand Swz[λ;T −1
λ A] around λ= 0

Swz[λ;T −1
λ A] = Swz[λ;T −1

λ A]
∣∣∣
λ=0

+
∞∑
n=1

λn

n!

[ dn
dλnSwz[λ;T −1

λ A]
∣∣∣
λ=0

]

= S0[A]+
∞∑
n=1

λn

n!

[ dn
dλnS0[T −1

λ A]
∣∣∣
λ=0

]

+
∞∑
n=2

λn

n!

[
dn−1

dλn−1S1[T −1
λ A]

∣∣∣
λ=0

]
+
∞∑
n=3

λn

n!

[
dn−2

dλn−2S2[T −1
λ A]

∣∣∣
λ=0

]
.

(3.34)
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Inserting the definition of T −1
λ into the second term yields

S0[T −1
λ A] =

∫
d2x

( ∞∑
n=0

λn

n!

[
∂µ(RnA)(x)

∣∣∣
λ=0

])( ∞∑
n=0

λn

n!

[
∂µ(RnA)(x)

∣∣∣
λ=0

])

+m
∞∑
n=0

λn

n!

[
(RnA)(x)

∣∣∣
λ=0

]
.

(3.35)

Taking the derivative with respect to λ gives dn

dλnS0[T −1
λ A]|λ=0 = Rnλ(S0[A])|λ=0 and similar

relations for the other two terms. Subsequently we conclude

Swz[λ;T −1
λ A] = S0[A]+

∞∑
n=1

λn

n!
[
Rnλ(S0[A])+Rnλ(λS1[A])+Rnλ(λ2S2[A])

] ∣∣∣
λ=0

= S0[A]+
∞∑
n=1

λn

n!R
n
λ(Swz[λ;A])

∣∣∣
λ=0

.

(3.36)

It remains to be shown thatRλ(Swz[λ;A]) = 0. This requires the explicit form of theRλ-operator
given in (3.12). We find

Rλ(Swz[λ;A]) = d
dλ

(1
2

∫
d2x

[
(∂µA)(∂µA)+(mA+λA3)2

])
− 1

4

∫
d2x d2y d2z tr[S(x,y;A)]A3(y) δ(∂µA(z))(∂µA(z))

δA(x)

− 1
4

∫
d2x d2y d2z tr[S(x,y;A)]A3(y) δ(mA(z)+λA3(z))2

δA(x)

=
∫

d2x
[
mA4(x)+λA6(x)

]
+ 1

2

∫
d2x d2y □A(x)tr[S(x,y;A)]A3(y)

− 1
2

∫
d2x d2y (mA(x)+λA3(x))(m+3λA2(x))tr[S(x,y;A)]A3(y) ,

(3.37)

with the Laplacian □ = ∂µ∂
µ. In the third term, we use the Dirac equation (2.27)

(m+3λA2(x))tr[S(x,y;A)] =−tr[/∂S(x,y;A)]+2δ(x−y) (3.38)

such that

Rλ(Swz[λ;A]) =
∫

d2x
[
mA4(x)+λA6(x)

]
+ 1

2

∫
d2x d2y □A(x)tr[S(x,y;A)]A3(y)

+ 1
2

∫
d2x d2y (mA(x)+λA3(x))tr[/∂S(x,y;A)]A3(y)

−
∫

d2x
[
mA4(x)+λA6(x)

]
.

(3.39)
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The two blue terms cancel. In the two remaining terms, we use integration by parts and the
relation □ = ∂µ∂

µ = /∂ /∂

Rλ(Swz[λ;A]) =−1
2

∫
d2x d2y tr

[
/∂A(x)/∂S(x,y;A)

]
A3(y)

− 1
2

∫
d2x d2y tr

[
/∂(mA(x)+λA3(x))S(x,y;A)

]
A3(y)

=−1
2

∫
d2x d2y tr

[
/∂A(x)(/∂+m+3λA2(x))S(x,y;A)

]
A3(y)

=−1
2

∫
d2x d2y tr

[
/∂A(x)δ(x−y)

]
A3(y)

= 0 .

(3.40)

In the second step, we have again used (2.27). The last equality follows from tr(γµ) = 0. Thus
we have proven that Swz[λ;T −1

λ A] = Swz[0;A].

Equations (3.33) - (3.36) are universal to all supersymmetric field theories, which are at most
quadratic in the coupling. Only the proof of Rλ(Swz[λ;A]) = 0 was specific to the Wess-Zumino
model and has to be repeated for other field theories.

3.3.2. Part ii)

For the proof of part ii) consider the Taylor expansion

⟨⟨X[A]⟩⟩λ =
∞∑
n=0

λn

n!

[ dn
dλn ⟨⟨X[A]⟩⟩λ

∣∣∣
λ=0

]
. (3.41)

Inserting the definition of the Rλ-operator and the expectation value yields

⟨⟨X[A]⟩⟩λ =
∞∑
n=0

λn

n!

[
⟨RnX[A]⟩λ

∣∣∣
λ=0

]
=
∫
D0A e−Swz[0;A]

∞∑
n=0

λn

n!

[
RnX[A]

∣∣∣
λ=0

]
=
∫
D0A e−Swz[0;A]X[T −1

λ A] =
∫
D0A J (TλA)e−Swz[0;TλA]X[A] .

(3.42)

In the second step, we have used ∆MSS[λ = 0;A] = 1. On the other hand, integrating out
the fermionic degrees of freedom in the correlation function yields the Matthews-Salam-Seiler
determinant, i.e.

⟨⟨X[A]⟩⟩λ =
∫
DA Dψ e−Swz[λ;A,ψ]X[A] =

∫
D0A ∆MSS[λ;A]e−Swz[λ;A]X[A] . (3.43)

From part i) we know that Swz[0;TλA] = Swz[λ;A] and since these two equations hold for all
bosonic monomials X[A] we can deduce that

J (TλA) = ∆MSS[λ;A] (3.44)

at least order by order in perturbation theory. These steps are universal to any scalar super-
symmetric field theory. However, for gauge theories, we will obtain an additional term from the
Faddeev-Popov determinant. This concludes the proof.
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3.4. Result and Discussion

We present the explicit formula for the Nicolai map up to O(λ5) extending the previously
existing result by three orders. The first two lines correspond to the result obtained in [34]1. In
the following section, we will verify that this result satisfies both statements of the main theorem
3.1, providing a highly non-trivial test. The map reads2

(TλA)(x) = A(x) + mλ

∫
d2y C(x − y)A3(y)

− 3λ2

2

∫
d2y d2z ∂µC(x − y)A2(y)∂µC(y − z)A3(z)

+ mλ3

2

∫
d2y d2z d2w ∂µC(x − y)

{
− 2A(y)∂µC(y − z)A3(z)C(y − w)A3(w)

+ 3A2(y)∂µC(y − z)A2(z)C(z − w)A3(w)

+ 6A2(y)C(y − z)A2(z)∂µC(z − w)A3(w)
}

− m2λ4

4

∫
d2y d2z d2w d2v ∂µC(x − y)

× ∂µC(y − z)A3(z)C(y − w)A3(w)C(y − v)A3(v)

+ 3m2λ4

2

∫
d2y d2z d2w d2v ∂µC(x − y)A(y)

{
+ ∂µC(y − z)A3(z)C(y − w)A2(w)C(w − v)A3(v)

+ C(y − z)A3(z)C(y − w)A2(w)∂µC(w − v)A3(v)
}

+ 3m2λ4

4

∫
d2y d2z d2w d2v ∂µC(x − y)A2(y)

{
+ ∂µC(y − z)A(z)C(z − w)A3(w)C(z − v)A3(v)

+ 2C(y − z)A(z)∂µC(z − w)A3(w)C(z − v)A3(v)

+ 3∂µC(y − z)A2(z)C(z − w)A2(w)C(w − v)A3(v)

− 6C(y − z)A2(z)∂µC(z − w)A2(w)C(w − v)A3(v)

− 9C(y − z)A2(z)C(z − w)A2(w)∂µC(w − v)A3(v)
}

+ 9λ4

4

∫
d2y d2z d2w d2v ∂µC(x − y)A(y)

× ∂µC(y − z)A3(z)∂νC(y − w)A2(w)∂νC(w − v)A3(v)

+ 27λ4

8

∫
d2y d2z d2w d2v ∂µC(x − y)A2(y)

{
− ∂µC(y − z)A2(z)∂νC(z − w)A2(w)∂νC(w − v)A3(v)

+ 4∂νC(y − z)A2(z)∂[µC(z − w)A2(w)∂ν]C(w − v)A3(v)
}

(3.45)

1A different result up to O(λ3) obtained in [35] via trial and error hints towards an ambiguity in the map Tλ.
However, we do not expect this result to hold up in higher-order calculations. A similar case for N = 1 super
Yang-Mills in six dimensions is discussed in section 5.7.

2As usual, all anti-symmetrizations are with strength one, such that e.g. [ab] = 1
2! (ab − ba).
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+ 3m3λ5

5

∫
d2y d2z d2w d2v d2u ∂µC(x − y)

× ∂µC(y − z)A(z)3C(y − w)A(w)3C(y − v)A(v)2C(v − u)A(u)3

+ 3m3λ5

10

∫
d2y d2z d2w d2v d2u ∂µC(x − y)A(y)

{
− 3∂µC(y − z)A(z)2C(z − w)A(w)3C(y − v)A(v)2C(v − u)A(u)3

+ 6∂µC(y − z)A(z)2C(y − w)A(w)3C(y − v)A(v)2C(v − u)A(u)3

+ 2∂µC(y − z)A(z)3C(y − w)A(w)C(w − v)A(v)3C(w − u)A(u)3

− 9∂µC(y − z)A(z)3C(y − w)A(w)2C(w − v)A(v)2C(v − u)A(u)3

+ C(y − z)A(z)3∂µC(y − w)A(w)C(w − v)A(v)3C(w − u)A(u)3

+ 3C(y − z)A(z)3∂µC(y − w)A(w)2C(w − v)A(v)2C(v − u)A(u)3

− 9C(y − z)A(z)2∂µC(z − w)A(w)3C(y − v)A(v)2C(v − u)A(u)3

− 3C(y − z)A(z)3C(y − w)A(w)2∂µC(w − v)A(v)2C(v − u)A(u)3

+ 4C(y − z)A(z)3C(y − w)A(w)∂µC(w − v)A(v)3C(w − u)A(u)3

− 9C(y − z)A(z)3C(y − w)A(w)2C(w − v)A(v)2∂µC(v − u)A(u)3
}

+ 3m3λ5

20

∫
d2y d2z d2w d2v d2u ∂µC(x − y)A(y)2

{
+ ∂µC(y − z)C(z − w)A(w)3C(y − v)A(v)3C(y − u)A(u)3

+ ∂µC(y − z)C(z − w)A(w)3C(z − v)A(v)3C(z − u)A(u)3

+ 27∂µC(y − z)A(z)2C(z − w)A(w)2C(w − v)A(v)2C(v − u)A(u)3

− 6∂µC(y − z)A(z)2C(z − w)A(w)C(w − v)A(v)3C(w − u)A(u)3

+ 2C(y − z)∂µC(z − w)A(w)3C(z − v)A(v)3C(z − u)A(u)3

− 18C(y − z)A(z)∂µC(z − w)A(w)3C(z − v)A(v)2C(v − u)A(u)3

− 12C(y − z)A(z)2∂µC(z − w)A(w)C(w − v)A(v)3C(w − u)A(u)3

+ 54C(y − z)A(z)2∂µC(z − w)A(w)2C(w − v)A(v)2C(v − u)A(u)3

− 6C(y − z)A(z)C(z − w)A(w)3∂µC(z − v)A(v)2C(v − u)A(u)3

− 18C(y − z)A(z)2C(z − w)A(w)∂µC(w − v)A(v)3C(w − u)A(u)3

+ 81C(y − z)A(z)2C(z − w)A(w)2∂µC(w − v)A(v)2C(v − u)A(u)3

− 18C(y − z)A(z)C(z − w)A(w)3C(z − v)A(v)2∂µC(v − u)A(u)3

+ 108C(y − z)A(z)2C(z − w)A(w)2C(w − v)A(v)2∂µC(v − u)A(u)3
}
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+ 21mλ5

20

∫
d2y d2z d2w d2v d2u ∂µC(x − y)

× ∂µC(y − z)A(z)3C(y − w)A(w)3∂νC(y − v)A(v)2∂νC(v − u)A(u)3

+ 9mλ5

20

∫
d2y d2z d2w d2v d2u ∂µC(x − y)A(y)

{
− 8∂µC(y − z)A(z)3C(y − w)A(w)2∂νC(w − v)A(v)2∂νC(v − u)A(u)3

− 12∂µC(y − z)A(z)3∂νC(y − w)A(w)2C(w − v)A(v)2∂νC(v − u)A(u)3

− 9∂µC(y − z)A(z)3∂νC(y − w)A(w)2∂νC(w − v)A(v)2C(v − u)A(u)3

+ 2∂µC(y − z)A(z)3∂νC(y − w)A(w)∂νC(w − v)A(v)3C(w − u)A(u)3

− ∂µC(y − z)A(z)2C(z − w)A(w)3∂νC(y − v)A(v)2∂νC(v − u)A(u)3

+ C(y − z)A(z)3∂µC(y − w)A(w)2∂νC(w − v)A(v)2∂νC(v − u)A(u)3

+ 12C(y − z)A(z)3∂νC(y − w)A(w)2∂[µC(w − v)A(v)2∂ν]C(v − u)A(u)3

− 8C(y − z)A(z)2∂µC(z − w)A(w)3∂νC(y − v)A(v)2∂νC(v − u)A(u)3
}

+ 9mλ5

40

∫
d2y d2z d2w d2v d2u ∂µC(x − y)A(y)2

{
− 14∂µC(y − z)A(z)C(z − w)A(w)3∂νC(z − v)A(v)2∂νC(v − u)A(u)3

+ 24∂µC(y − z)A(v)2C(z − w)A(w)2∂νC(w − v)A(v)2∂νC(v − u)A(u)3

+ 27∂µC(y − z)A(z)2∂νC(z − w)A(w)2∂νC(w − v)A(v)2C(v − u)A(u)3

− 6∂µC(y − z)A(z)2∂νC(z − w)A(w)∂νC(w − v)A(v)3C(w − u)A(u)3

+ 36∂µC(y − z)A(z)2∂νC(z − w)A(w)2C(w − v)A(v)2∂νC(v − u)A(u)3

− 16C(y − z)A(z)∂µC(z − w)A(w)3∂νC(z − v)A(v)2∂νC(v − u)A(u)3

+ 48C(y − z)A(z)2∂µC(z − w)A(w)2∂νC(w − v)A(v)2∂νC(v − u)A(u)3

+ 12∂νC(y − z)A(z)2∂µC(z − w)A(w)∂νC(w − v)A(v)3C(w − u)A(u)3

− 108∂νC(y − z)A(z)2∂[µC(z − w)A(w)2∂ν]C(w − v)A(v)2C(v − u)A(u)3

− 144∂νC(y − z)A(z)2∂[µC(z − w)A(w)2C(w − v)A(v)2∂ν]C(v − u)A(u)3

− 144C(y − z)A(z)2∂νC(z − w)A(w)2∂[µC(w − v)A(v)2∂ν]C(v − u)A(u)3

− 144∂νC(y − z)A(z)2C(z − w)A(w)2∂[µC(w − v)A(v)2∂ν]C(v − u)A(u)3

− 13∂νC(y − z)A(z)2∂νC(z − w)A(w)∂µC(w − v)A(v)3C(w − u)A(u)3

+ 24∂νC(y − z)A(z)C(z − w)A(w)3∂[µC(z − v)A(v)2∂ν]C(v − u)A(u)3
}

+ O(λ6) .
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Technically, it is possible to compute the Nicolai map to arbitrary order in the coupling constant
λ. However, as can be seen above, the number of terms grows very fast. In particular, we do not
expect to obtain a closed-form expression of the map like in supersymmetric quantum mechanics
(c.f. section 1.1 or [34]).

3.4.1. The ‘Off-Shell’ Nicolai Map

Instead of considering the ‘on-shell’ Wess-Zumino action (2.23) and ‘on-shell’ supersymmetry
variations (2.24), we could have also considered the respective ‘off-shell’ expressions (2.18) and
(2.20). Remarkably, we notice that even in the ‘off-shell’ case (3.9) remains true with the
same expression for ∆α as in the ‘on-shell’ case. Thus we immediately obtain the ‘off-shell’
Rλ-operator

Rλ = d
dλ −

1
2

∫
d2x d2y tr[S(x,y;A)]A3(y) δ

δA(x)

− i

2

∫
d2x d2y tr[γµ∂µS(x,y;A)]A3(y) δ

δF (x) .
(3.46)

This Rλ-operator gives rise to two Nicolai maps. One for A(x) and one for F (x). Since the first
line of the ‘off-shell’ Rλ-operator is free of the auxiliary field F (x) the ‘off-shell’ Nicolai map for
A(x) coincides with its ‘on-shell’ counterpart (3.45).

3.4.2. The Radius of Convergence

A few remarks on the radius of convergence of the map (TλA) are in order. For supersymmetric
quantum mechanics with a topological θ term, it has been shown by Lechtenfeld that, at suf-
ficiently small coupling, the Nicolai map converges to a mathematically well-defined functional
[87]. Unfortunately, the gamma trace in the Rλ-operator (3.18) complicates the situation for
the Wess-Zumino model. The trace is similar to an additional loop structure in spinor space
attached to the tree diagrams and leads to spacetime index contractions between partial deriva-
tives distributed all over the tree. Consequently, with these additional terms, the estimations in
[87] are not good enough to give a finite radius of convergence for the Wess-Zumino model. In
[34], it was speculated, but not proven, that the Wess-Zumino Nicolai map should converge.

A different approach to finding the radius of convergence of the Nicolai map was given in [88].
Lechtenfeld and Nicolai demonstrated that in supermembrane theory, the Jacobian of the Nicolai
map has a non-zero radius of convergence. Moreover, the authors argued that, with appropriate
UV and IR regularization, also the Jacobian of the Nicolai map in super Yang-Mills theories
(at least in the axial gauge) has a finite radius of convergence. However, the finite radius of
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convergence of the Jacobian does not imply a finite radius of convergence of the map itself. But
it at least constrains the series expansion.

So, while still unproven, a finite radius of convergence also for the Nicolai map of the Wess-
Zumino model is very likely. Finally, let us remark that in any supersymmetric theory, a finite
radius of convergence of the Nicolai map does, of course, not imply a finite radius of convergence
for the perturbative expansion of the theory itself. For example, it has been shown by Balian,
Itzykson, Parisi and Zuber in a series of papers [89–91] (and also generally argued by Dyson
[92]), that the perturbative expansion of quantum electrodynamics has a vanishing radius of
convergence. However, in our formalism, the usual perturbation expansion is split into two
steps. In the first step, the calculation of (T −1

λ A), the radius of convergence is finite and then
at the second step, the computation of correlators and thus production of loop diagrams, it is
not.

3.5. Tests

In this section, we show that the Nicolai map (3.45) satisfies part i) and ii) of the main theorem
3.1 order by order in λ. Thus providing two highly non-trivial tests for our main result (3.45).
To keep this section concise, we however only consider the first three orders. The calculations
at higher orders follow accordingly and yield the expected results.

3.5.1. The Free Action

By the first statement in the main theorem, the bosonic action is mapped to the abelian action.
Hence the transformed bosonic field A′ ≡ (TλA) from (3.45) must satisfy

1
2

∫
d2x A′(−□+m2)A′ != 1

2

∫
d2x

[
(∂µA)(∂µA)+(mA+λA3)2

]
+O(λ6) . (3.47)

At the leading order, there is nothing to do. At the first order we plug A′(x)|O(λ) into the
left-hand side of (3.47) and integrate the second term by parts

mλ

2

∫
d2x d2y

[
A(x)(−□+m2)C(x−y)A3(y)+C(x−y)A3(y)(−□+m2)A(x)

]
=mλ

∫
d2x d2y A(x)(−□+m2)C(x−y)A3(y)

=mλ

∫
d2x d2y A(x)δ(x−y)A3(y)

=mλ

∫
d2x A4(x) .

(3.48)
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In the second step, we have used the definition of the free massive scalar propagator C(x).
Collecting the terms of O(λ) on the right-hand side of (3.47), we find agreement with (3.48).
Similarly, we use integration by parts and the definition of the free scalar propagator at O(λ2)
to obtain

− 3λ2

4

∫
d2x d2y d2z A(x)(−□+m2)∂µC(x−y)A2(y)∂µC(y−z)A3(z)

− 3λ2

4

∫
d2x d2y d2z ∂µC(x−y)A2(y)∂µC(y−z)A3(z)(−□+m2)A(x)

+ m2λ2

2

∫
d2x d2y d2z C(x−y)A3(y)(−□+m2)C(x−z)A3(z)

= 3λ2

2

∫
d2x d2y d2z ∂µA(x)(−□+m2)C(x−y)A2(y)∂µC(y−z)A3(z)

+ m2λ2

2

∫
d2x d2y A3(x)C(x−y)A3(y)

= λ2

2

∫
d2x d2y ∂µA

3(x)∂µC(x−y)A3(y)

+ m2λ2

2

∫
d2x d2y A3(x)C(x−y)A3(y)

= λ2

2

∫
d2x d2y A3(x)(−□+m2)C(x−y)A3(y)

= λ2

2

∫
d2x A6(x) .

(3.49)

Again this agrees with the right-hand side of (3.47). In every subsequent order, the general
procedure remains the same. By partial integration, we seek to obtain factors of (−□+m2)C(x−
y) = δ(x−y) to cancel terms with fewer scalar propagators. At O(λ3) we have for the left-hand
side of (3.47)

mλ3

2

∫
d2x d2y d2z d2w

{
−3∂µC(x−y)A2(y)∂µC(y−z)A3(z)(−□+m2)C(x−w)A3(w)

−2∂µC(x−y)A(y)∂µC(y−z)A3(z)C(y−w)A3(w)(−□+m2)A(x)

+3∂µC(x−y)A2(y)∂µC(y−z)A2(z)C(z−w)A3(w)(−□+m2)A(x)

+6∂µC(x−y)A2(y)C(y−z)A2(z)∂µC(z−w)A3(w)(−□+m2)A(x)
}

= mλ3

2

∫
d2x d2y d2z

{
−A3(x)∂µC(x−y)A2(y)∂µC(y−z)A3(z)

−A2(x)□C(x−y)A3(y)C(x−z)A3(z)

−A2(x)∂µC(x−y)A3(y)∂µC(x−z)A3(z)

+A3(x)□C(x−y)A2(y)C(y−z)A3(z)
}

= 0 .

(3.50)
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For the last equality, we have exchanged x↔ y in the third and fourth term and used □C(x−y) =
□C(y−x) as well as ∂µC(y−x) = −∂µC(x− y) to cancel them against the first two terms. A
similar calculation at O(λ4) and O(λ5) also agrees with (3.47). It is worth pointing out here
that the very existence of a non-local field transformation mapping one local action to another
local action is a remarkable fact in itself, independently of supersymmetry (but in the absence
of supersymmetry, locality would be spoilt by the Jacobian).

3.5.2. Jacobian and Fermion Determinant

We need to show that the Jacobian determinant is equal to the Matthews-Salam-Seiler determi-
nant at least order by order in perturbation theory. This is done by considering the logarithms
of the determinants rather than the determinants themselves, i.e.

logJ (A′) = logdet
(
δA′(x)
δA(y)

)
!= log(∆MSS[λ;A]) . (3.51)

Up to O(λ3) the logarithm of the MSS determinant (2.37) is

log(∆MSS[λ;A]) = 1
2Trlog

[
1+3λS0 ∗A2

]
= 3mλ

∫
d2x C(0)A2(x)

− 9λ2

2

∫
d2x d2y ∂µC(x−y)A2(y)∂µC(y−x)A2(x)

− 9m2λ2

2

∫
d2x d2y C(x−y)A2(y)C(y−x)A2(x)

+9mλ3
∫

d2x d2y d2z
{

+3∂µC(x−y)A2(y)∂µC(y−z)A2(z)C(z−x)A2(x)

+m2C(x−y)A2(y)C(y−z)A2(z)C(z−x)A2(x)
}

+O(λ4) .

(3.52)

The coloring is for later convenience. Recall that C(0) can be regulated. The Jacobian determi-
nant is of the form 1+X, where X is a power series in the coupling λ starting at O(λ1). Hence,
the logarithm of the Jacobian determinant is given by

log(1+X) =−
∞∑
n=1

(−1)n
n

Xn . (3.53)

We must keep this equation in mind when collecting the terms at each order in λ. In particular,
we see that there is no contribution at the leading order. At O(λ) we find

logdet
(
δA′(x)
δA(y)

)∣∣∣∣
O(λ1)

= Tr
[
δA′

δA

∣∣∣∣
O(λ1)

]
. (3.54)
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3. The Wess-Zumino Model

The final trace is done by setting y = x and integrating over x. The computation is straightfor-
ward, and we find

logdet
(
δA′(x)
δA(y)

)∣∣∣∣
λ=0

= 3mλ
∫

d2x C(0)A2(x) , (3.55)

which matches the red term in (3.52). In the second order, we find

logdet
(
δA′(x)
δA(y)

)∣∣∣∣
O(λ2)

= Tr
[
δA′

δA

∣∣∣∣
O(λ2)

]
− 1

2Tr
[
δA′

δA

∣∣∣∣
O(λ1)

δA′

δA

∣∣∣∣
O(λ1)

]

=−9λ2

2

∫
d2x d2y ∂µC(x−y)A2(y)∂µC(y−x)A2(x)

− 9m2λ2

2

∫
d2x d2y C(x−y)A2(y)C(y−x)A2(x) .

(3.56)

Again this agrees with (3.52). Finally, at O(λ3) we have

logdet
(
δA′(x)
δA(y)

)∣∣∣∣
O(λ3)

= Tr
[
δA′

δA

∣∣∣∣
O(λ3)

]
−
(

2 · 12

)
Tr
[
δA′

δA

∣∣∣∣
O(λ2)

δA′

δA

∣∣∣∣
O(λ1)

]

+ 1
3 Tr

[
δA′

δA

∣∣∣∣
O(λ1)

δA′

δA

∣∣∣∣
O(λ1)

δA′

δA

∣∣∣∣
O(λ1)

]
.

(3.57)

For the first term, on the right-hand side, we find

Tr
[
δA′

δA

∣∣∣∣
O(λ3)

]
= 9m

∫
d2x d2y d2z

{
+A(x)C(x−y)∂µC(x−y)A(y)2∂µC(x−z)A(z)3

+ 3
2A(x)2∂µC(x−y)A(y)2C(y−z)A(z)2∂µC(z−x)

}
.

(3.58)

The second term gives

−
(

2 · 12

)
Tr
[
δA′

δA

∣∣∣∣
O(λ2)

δA′

δA

∣∣∣∣
O(λ1)

]

= 9m
∫

d2x d2y d2z
{

−A(x)C(x−y)∂µC(x−y)A(y)2∂µC(x−z)A(z)3

+ 3
2A(x)2∂µC(x−y)A(y)2C(y−z)A(z)2∂µC(z−x)

}
.

(3.59)

Finally, the last term gives

1
3 Tr

[
δA′

δA

∣∣∣∣
O(λ1)

δA′

δA

∣∣∣∣
O(λ1)

δA′

δA

∣∣∣∣
O(λ1)

]

= 9m3
∫

d2x d2y d2z A2(x)C(x−y)A2(y)C(y−z)A3(z)C(z−x) .
(3.60)
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Adding these three terms gives

logdet
(
δA′(x)
δA(y)

)∣∣∣∣
O(λ3)

= 9m
∫

d2x d2y d2z
{

+3A(x)2∂µC(x−y)A(y)2C(y−z)A(z)2∂µC(z−x)

+m2A2(x)C(x−y)A2(y)C(y−z)A3(z)C(z−x)
}
,

(3.61)

which matches the green terms in (3.52). The calculation for the fourth and fifth order work
accordingly and yield the expected results. Thus we have shown that the map (3.45) satisfies
i) and ii) from the main theorem 3.1. This concludes our discussion of the Nicolai map for the
2-dimensional Wess-Zumino model.
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4. Off-Shell N = 1 super Yang-Mills

In this chapter, we discuss the construction of the Nicolai map for ‘off-shell’ N = 1 super Yang-
Mills in four dimensions. ‘Off-shell’ meaning that the auxiliary field is present in the action
and the supersymmetry algebra closes without evoking the equations of motion. The ‘off-shell’
supersymmetry is crucial to the existence of the Nicolai map in general gauges.

In the first section, we recall the relevant notation and introduce rescaled fields. Furthermore,
we state the ‘off-shell’ N = 1 super Yang-Mills version of the main theorem 3.1. In section 4.2
we derive the R̃g-operator and in section 4.3, we prove the new main theorem. In the following
two sections, we discuss properties of the R̃g-operator and give the Nicolai map in axial gauge
up to the second order in the coupling constant g. In section 4.6 we test the Nicolai map from
the previous section. The last section discusses a potential simplification of the Nicolai map by
resorting to the ‘on-shell’ formulation of N = 1 super Yang-Mills and the Landau gauge. This
will motivate the construction presented in the next chapter.

This chapter is mostly based on the author’s publication [3]. However, the R̃g-operator given
in section 4.2 was first derived by Dietz and Lechtenfeld in [40–42].

4.1. Introduction and Main Theorem

Recall the 4-dimensional gauge invariant ‘off-shell’ N = 1 super Yang-Mills action (2.51)

S1
inv =

∫
d4x

[
−1

4F
a
µνF

aµν− i

2 λ̄
aγµ(Dµλ)a+ 1

2D
aDa

]
, (4.1)

with the standard definitions

F aµν := ∂µA
a
ν−∂νAaµ+gfabcAbµA

c
ν , (4.2)

(Dµλ)a := ∂µλ
a+gfabcAbµλ

c , (4.3)

for the field strength tensor and covariant derivative. The action (4.1) is invariant under the
supersymmetry variations (2.54)

δAaµ =−i(λ̄aγµε) , δλaα =−1
2(γµνε)αF aµν + i(γ5ε)αDa , δDa =−(ε̄γ5γµ(Dµλ

a)) . (4.4)
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4.1. Introduction and Main Theorem

Thanks to the presence of the auxiliary field, the supersymmetric action (4.1) can be written as
a supervariation

Sinv = δα∆α (4.5)

with the gauge invariant functional

∆α :=
∫

d4x

[
− 1

16(γµνλa)αF aµν−
i

8(γ5λa)αDa
]
. (4.6)

When computing path integrals, we have to add a gauge fixing term to the action (4.1) to
prevent the over-counting of physically equivalent paths

Sgf =
∫

d4x

[ 1
2ξ (GµAaµ)(GνAaν)+ 1

2 C̄
aGµ(DµC)a

]
. (4.7)

In the following, we restrict the choice of gauge fixing functionals to Gµ = ∂µ for the Rξ type
gauges and Gµ =nµ for the axial type gauges (including the light-cone gauge with nµnµ = 0). The
most general gauge fixing functional compatible with the subsequent discussion is any functional
obeying the scaling relation [3]

Ga(A) = gGa(g−1A) . (4.8)

The complete ‘off-shell’ N = 1 super Yang-Mills action S1 = S1
inv +Sgf is invariant under the

following BRST (or Slavnov) variations (2.112)

sAaµ = (DµC)a , sDa = gfabcDbCc , sλa =−gfabcλbCc ,

s C̄a =−1
ξ
GµAaµ , sCa =−g2f

abcCbCc .
(4.9)

The derivation of the ‘off-shell’ Rg-operator will necessitate a ‘detour’ via a reformulation of the
theory in terms of rescaled fields

Ãaµ = gAaµ , λ̃a = gλa , D̃a = gDa , C̃a = gCa , ¯̃Ca = g C̄a , (4.10)

such that the coupling constant appears only as an overall factor outside the action (4.1)

S̃1
inv = 1

g2

∫
d4x

[
−1

4 F̃
a
µνF̃

aµν− i

2
¯̃λaγµ(Dµλ̃)a+ 1

2D̃
aD̃a

]
, (4.11)

where now

F̃ aµν ≡ ∂µÃ
a
ν−∂νÃaµ+fabcÃbµÃ

c
ν , (4.12)

(Dµλ̃)a ≡ ∂µλ̃
a+fabcÃbµλ̃

c . (4.13)

The ghost action S̃gf as well as the supersymmetry and the BRST transformations are obtained
from (4.7), (4.4) and (4.9) by dropping g and putting tildes on all fields; idem for (4.5) and (4.6)
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4. Off-Shell N = 1 super Yang-Mills

(it is here that we would need the scaling relation (4.8)). For clarity of notation, we always
put tildes on all quantities involving rescaled fields. Correlation functions of tilded and untilded
monomials of, for example, the gauge field are related by

〈〈
Ãa1
µ1(x1) . . . Ãan

µn
(xn)

〉〉
g

= gn
〈〈
Aa1
µ1(x1) . . .Aan

µn
(xn)

〉〉
g
. (4.14)

Finally, let us comment on the limit g→ 0 in both the tilded and untilded version of the theory.
For the untilded version, the limit of S1

inv + Sgf is simply the free supersymmetric Maxwell
theory. By contrast, the g→ 0 limit of S̃1

inv + S̃gf localizes the bosonic Yang-Mills action on zero
curvature configurations. Here we will be concerned with the former case and make use of the
tilded formulation only as an intermediate device.

Subsequently, we can formulate the main theorem [3].

Main Theorem 4.1.
‘Off-shell’ 4-dimensional N = 1 super Yang-Mills is characterized by the existence of a non-linear
and non-local transformation Tg of the bosonic fields Φ = (Aaµ,Da)

Tg : Φ(x) 7→ Φ′(x,g;Φ) ,

which is invertible, at least in the sense of a formal power series such that

i) The gauge-fixing function GµAaµ is a fixed point of the map Tg.

ii) The bosonic Yang-Mills action without gauge-fixing terms is mapped to the abelian action,

S1
inv[g;Φ] = S1

inv[0;TgΦ] .

iii) The Jacobian determinant of Tg is equal to the product of the Matthews-Salam-Seiler and
Faddeev-Popov determinants, i.e.

J (TgΦ) = ∆MSS[g;Φ]∆FP[g;Φ]

at least order by order in perturbation theory.

Similarly to the previous chapter, we give a constructive proof of the theorem by deriving Tg
and showing that it satisfies i) - iii).

However, first, we show that the relation between free and interacting correlation functions (3.6)
we have derived for the Wess-Zumino model extends to gauge theories. The N = 1 super Yang-
Mills Nicolai map has similar properties as the Wess-Zumino Model Nicolai map. In particular

56



4.2. The R̃g-Operator

its inverse acts on bosonic monomials X[Φ] by T −1
g X[Φ] =X[T −1

g Φ]. Computing the free bosonic
vacuum expectation value of such a monomial and performing a change of variables gives〈

X[T −1
g Φ]

〉
0 =

∫
D0Φ e−iS

1
inv[0;Φ]−iSgf [g;Φ] X[T −1

g Φ]

=
∫
D0Φ J (TgΦ)e−iS1

inv[0;TgΦ]−iSgf [0;TgΦ] X[Φ] .
(4.15)

On the other hand, integrating out the fermionic degrees of freedom in the interacting vacuum
expectation value of X[Φ] yields〈〈

X[Φ]
〉〉
g

=
∫
DΦ DΨ e−iS

1
inv[g;Φ,Ψ]−iSgf [g;Φ,Ψ] X[Φ]

=
∫
D0Φ ∆MSS[g;Φ]∆FP[g;Φ]e−iS1

inv[g;Φ]−iSgf [g;Φ] X[Φ] .
(4.16)

Notice the appearance of the Faddeev-Popov determinant from integrating out the ghost fields.
Assuming that Tg satisfies i) - iii) of the main theorem above we conclude that〈〈

X[Φ]
〉〉
g

=
〈
X[T −1

g Φ]
〉

0 . (4.17)

Again the generalization to n-point correlation functions of arbitrary bosonic operators Oi(xi)
is immediate and we conclude〈〈

O1(x1) . . .On(xn)
〉〉
g

=
〈
(T −1
g O1)(x1) . . .(T −1

g On)(xn)
〉

0 . (4.18)

Remember that this does not render the correlation function trivial since the complexity lives
on in the perturbative expansion of the inverse Nicolai map.

4.2. The R̃g-Operator

Similar to the discussion in the previous chapter, we construct the inverse map T −1
g via its

infinitesimal generator R̃g. For ‘off-shell’ super Yang-Mills, this construction was first done in
1984 by Dietz and Lechtenfeld [40–42]. However, they were not able to obtain the correct inverse
Nicolai map from the R̃g-operator since they did not realize at the time that one must act with
the R̃g-operator on Aaµ(x) = 1

g Ã
a
µ(x) and Da(x) = 1

g D̃
a rather than Ãaµ(x) and D̃a. The correct

power series for the inverse Nicolai map of Aaµ(x) was first published in [3] (and [93])

(
T −1
g A

)a
µ
(x)≡

(
T̃ −1
g

(1
g Ã
))a
µ
(x) :=

∞∑
n=0

gn

n!

[(
R̃ng
(1
g Ã
))a
µ
(x)

∣∣∣
Φ̃=gΦ

∣∣∣
g=0

]
. (4.19)

By swapping Aaµ(x) and Da(x), we obtain the corresponding map for the auxiliary field. For a
bosonic monomial, X ≡X[Φ] the linear response of its vacuum expectation value to a change
in the coupling constant is given by

d
dg
〈〈
X
〉〉
g

=
〈〈dX

dg

〉〉
g

− i
〈〈

d(S̃inv + S̃gf)
dg X

〉〉
g

=:
〈
R̃gX

〉
g
. (4.20)
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4. Off-Shell N = 1 super Yang-Mills

Notice the factor of i from the definition of the correlation function in (2.86). Because the g
dependence appears only as an overall factor in the action S̃1 = S̃1

inv + S̃gf we have

dS̃inv
dg =−2S̃inv

g
=− 2

g3 δ̃α∆̃α , (4.21)

where ∆α is defined in (4.6) and ∆̃α refers to the expression with all fields rescaled. δ̃α is the
supersymmetry variation for rescaled fields. So

d
dg
〈〈
X
〉〉
g

=
〈〈dX

dg

〉〉
g

+ 2i
g3
〈〈

(δ̃α∆̃α)X
〉〉
g

+ 2i
g

〈〈
S̃gf X

〉〉
g
. (4.22)

We want to rewrite

〈〈
(δ̃α∆̃α)X

〉〉
g

=
〈〈
δ̃α
(
∆̃αX

)〉〉
g

+
〈〈

∆̃α(δ̃αX)
〉〉
g

(4.23)

using the supersymmetry Ward identity (2.115)

〈〈
δ̃αY

〉〉
g

= i

〈〈 1
g2

∫
d4x ¯̃Ca δ̃α(GµÃaµ)s(Y )

〉〉
g

(4.24)

applied to Y = ∆̃αX. Because ∆̃α is gauge invariant we have s(∆̃α) = 0 and thus s(∆̃αX) =
−∆̃α s(X) (the minus sign here appears because s anti-commutes with fermionic expressions
such as ∆̃α). For the third term on the right-hand side of (4.22) we use

S̃gf = s

(
− 1

2g2

∫
d4x ¯̃Ca (GµÃaµ)

)
(4.25)

and the BRST Ward identity (2.113) such that

〈〈
S̃gf X

〉〉
g

=
〈〈
− 1

2g2

∫
d4x ¯̃Ca (GµÃaµ)s(X)

〉〉
g

. (4.26)

Subsequently, we put everything back together and obtain

d
dg
〈〈
X
〉〉
g

=
〈〈dX

dg

〉〉
g

+ 2i
g3
〈〈

∆̃α(δ̃αX)
〉〉
g

+ 2
g5

〈〈∫
d4x ¯̃Ca(x) δ̃α(GµÃaµ)∆̃α s(X)

〉〉
g

− i

g3

〈〈∫
d4x ¯̃Ca(x)(GµÃaµ)s(X)

〉〉
g
.

(4.27)

Finally, we integrate over the fermionic degrees of freedom. Recall that each spinor field con-
traction comes with a factor of i and each ghost field contraction comes with a factor of (−i).
Due to the rescaling of the fields, both contractions furthermore come with an additional factor
of g2. Subsequently, we arrive at

R̃gX = dX
dg −

2
g

∆̃α(δ̃αX)+ 2
g

∫
d4x ¯̃Ca(x) δ̃α(GµÃaµ)∆̃α s(X)

− 1
g

∫
d4x ¯̃Ca(x)(GµÃaµ)s(X) .

(4.28)
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4.2. The R̃g-Operator

This operator is manifestly distributive. We use the definitions of the fermion and ghost prop-
agators

iλ̃a(x)¯̃λb(y)≡ S̃ab(x,y;Ã) , C̃a(x) ¯̃Cb(y)≡ G̃ab(x,y;Ã) (4.29)

as well as the definition of ∆̃α from (4.6) and the supersymmetry and BRST transformations
(4.4) and (4.9) to obtain the final form

R̃g = R̃inv + R̃gf (4.30)

with

R̃inv = d
dg + 1

8g

∫
d4x d4y tr

(
γµS̃

ab(x,y;Ã)γρλ
)
F̃ bρλ(y) δ

δÃaµ(x)

+ i

4g

∫
d4x d4y tr

(
γ5γµS̃

ab(x,y;Ã)
)
D̃b(y) δ

δÃaµ(x)

+ 1
g

∫
d4x D̃a(x) δ

δD̃a(x)

(4.31)

and

R̃gf =−g
∫

d4x d4y (DµG̃)ab(x,y;Ã)R̃inv
(

1
g G

µÃbµ(y)
) δ

δÃaµ(x)

+gfabc
∫

d4x d4y G̃bd(x,y;Ã)R̃inv
(

1
g G

µÃbµ(y)
)
D̃c(x) δ

δD̃a(x)
.

(4.32)

Like the super Yang-Mills action, also the R̃g-operator is divided into a gauge invariant and a
gauge fixing part. Since the gauge fixing part is constructed from the two terms with BRST
variations in (4.28), its action on any gauge invariant operator Oinv is trivial, i.e. (R̃gfOinv) = 0.
Furthermore, since the other term of the R̃g-operator is gauge invariant also (R̃invOinv) is gauge
invariant. This can significantly simplify the calculation of the Nicolai map for gauge invariant
operators.

From the definition of the N = 1 super Yang-Mills fermion propagator (2.63) we obtain

δS̃ab(x,y;Ã)
δÃmµ (z)

=−f cmdS̃ac(x,z;Ã)γµS̃db(z,y;Ã) . (4.33)

Similarly, we obtain from (2.80) for the ghost propagator

δG̃ab(x,y;Ã)
δÃmµ (z)

= f cmdG̃ac(x,z;Ã)←−∂µz G̃db(z,y;Ã) . (4.34)

In their rescaled formulations, neither one of these propagators depends on the coupling constant
g. For practical calculations, it is sometimes useful to write out these equations in Dyson-
Schwinger (integrated) form

S̃ab(x,y;Ã) = δabS0(x−y)−facd
∫

d4z S0(x−z)γµÃcµ(z)S̃db(z,y;Ã) ,

G̃ab(x,y;Ã) = δabG0(x−y)−facd
∫

d4z G0(x−z)GµÃcµ(z)G̃db(z,y;Ã) .
(4.35)
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4. Off-Shell N = 1 super Yang-Mills

These identities can be obtained by multiplying the equation of motion for S̃ab(x,y;Ã) (respec-
tively G̃ab(x,y;Ã)) with S0(y−z) (respectively G0(x−y)) and integrating over y.

Like in the previous chapter, the actual Nicolai map is obtained by power series inversion. The
relevant equations are (3.20) and (3.21). However, one must be careful to rescale the fields in
the expansion of (T −1

g A)aµ before again acting with the R̃g-operator. Subsequently, we obtain

(TgA)aµ =
∞∑
n=0

gn

n! (TnA)aµ ≡
∞∑
n=0

gn

n! (T̃n(1
g Ã))aµ (4.36)

with

(T0A)aµ =Aaµ ,

(TnA)aµ =−
n−1∑
i=0

(
n

i

)
(R̃ng (T̃i(1

g Ã)))aµ
∣∣∣
Φ̃=gΦ

∣∣∣
g=0

.
(4.37)

The corresponding expressions for (TgD)a follow immediately.

4.3. Proof of the Main Theorem

As we have pointed out in the last chapter, large parts of the proof are universal to all the
supersymmetric field theories in this thesis. Hence, in this chapter we shall only discuss the
steps differing from the previous discussion. The first difference is the new part i) in the main
theorem 4.1.

4.3.1. Part i)

The gauge fixing functional being a fixed point of the Nicolai map is equivalent to it being
annihilated by the R̃g-operator. This follows directly from (4.19). We write

R̃g = R̃inv−g
∫

d4x d4y (DµG̃)ab(x,y;Ã)R̃inv
(

1
g G

µÃbµ(y)
) δ

δÃaµ(x)

+gfabc
∫

d4x d4y G̃bd(x,y;Ã)R̃inv
(

1
g G

µÃbµ(y)
)
D̃c(x) δ

δD̃a(x)
.

(4.38)

Hence, we find

R̃g
(

1
gG

µÃaµ(z)
)

= R̃inv
(

1
gG

µÃaµ(z)
)

−
∫

d4x d4y
δ(GµÃaµ(z))
δÃbµ(x)

(DµG̃)bc(x,y;Ã)R̃inv
(

1
g G

µÃaµ(y)
)

= 0 .

(4.39)
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4.3. Proof of the Main Theorem

4.3.2. Part ii)

For the proof of part ii) we must now only show that R̃g-operator annihilates the bosonic part
of the gauge invariant N = 1 super Yang-Mills action. A direct calculation yields

R̃inv
(
S̃1

inv[g; Φ̃]
)

= d
dg

( 1
g2

∫
d4x

[
−1

4 F̃
a
µν(x)F̃ aµν(x)+ 1

2D̃
a(x)D̃a(x)

])

− 1
32g3

∫
d4x d4y d4z tr

(
γµS̃

ab(x,y;Ã)γρλ
)
F̃ bρλ(y)

δ
(
F̃ cστ (z)F̃ cστ (z)

)
δÃaµ(x)

− i

16g3

∫
d4x d4y d4z tr

(
γ5γµS̃

ab(x,y;Ã)
)
D̃b(y)

δ
(
F̃ cνλ(z)F̃ cνλ(z)

)
δÃaµ(x)

+ 1
2g3

∫
d4x d4y D̃a(x) δD̃

b(y)D̃b(y)
δD̃a(x)

=− 2
g3

∫
d4x

[
−1

4 F̃
a
µν(x)F̃ aµν(x)+ 1

2D̃
a(x)D̃a(x)

]
+ 1

8g3

∫
d4x d4y tr

(
γµS̃ab(x,y;Ã)γρλ

)
F̃ bρλ(y)(DνF̃νµ)a(x)

+ i

4g3

∫
d4x d4y tr

(
γ5γµS̃ab(x,y;Ã)

)
D̃b(y)(DνF̃νµ)a(x)

+ 1
g3

∫
d4x D̃a(x)D̃a(x) .

(4.40)

The blue terms cancel. In the two green terms we use

γµ(DνF̃νµ)a(x) = γ[µην]ρ(DσF̃νµ)a(x) = 1
2γ

µνγρ(DρF̃νµ)a(x)− 1
2γ

µνρ(DρF̃νµ)a(x) . (4.41)

Due to the Bianchi identity γµνρ(DρF̃νµ)a = 0. Subsequently, we integrate by parts and obtain

R̃inv
(
S̃1

inv[g; Φ̃]
)

= 1
2g3

∫
d4x F̃ aµν(x)F̃ aµν(x)

− 1
16g3

∫
d4x d4y tr

(
γµνγσ(DσS̃)ab(x,y;Ã)γρλ

)
F̃ bρλ(y)F̃ aνµ(x)

− i

8g3

∫
d4x d4y tr

(
γ5γµνγσ(DσS̃)ab(x,y;Ã)

)
D̃b(y)F̃ aνµ(x) .

(4.42)

We identify the Dirac equation γσ(DσS̃)ab(x,y;Ã) = δabδ(x−y) and thus get

R̃inv
(
S̃1

inv[g; Φ̃]
)

= 1
2g3

∫
d4x F̃ aµν(x)F̃ aµν(x)− 1

16g3

∫
d4x tr

(
γµνγρλ

)
F̃ aρλ(x)F̃ aνµ(x)

− i

8g3

∫
d4x tr

(
γ5γµν

)
D̃b(y)F̃ aνµ(x)

= 0 .

(4.43)

The red terms cancel upon taking the trace. The remaining term vanishes since tr(γ5γµν) = 0.
Furthermore, we notice that the R̃g-operator annihilates the two terms of the gauge invariant
bosonic action separately. This concludes the proof of part i).
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4.3.3. Part iii)

The proof of part iii) is again largely similar to the discussion in the previous chapter. The only
difference is the appearance of the Faddeev-Popov determinant from the integration over the
ghost fields, i.e.

〈〈
X[Φ]

〉〉
g

=
∫
DΦ DΨ e−iS

1
inv[g;Φ,Ψ]−iSgf [g;Φ,Ψ]X[Φ]

=
∫
D0Φ ∆MSS[Φ]∆FP[Φ]e−iS1

inv[g;Φ]−iSgf [g,Φ]X[Φ] .
(4.44)

Thus we obtain

J (TλΦ) = ∆MSS[Φ]∆FP[Φ] (4.45)

at least order by order in perturbation theory. This concludes the proof.

4.4. Properties of the R̃g-Operator

In the proof of the main theorem 4.1, we have seen that R̃g annihilates the two terms of the gauge
invariant bosonic action separately. Furthermore, neither the gauge condition nor the Matthews-
Salam-Seiler or Faddeev-Popov determinant depend on the auxiliary field D̃a. Hence, we shall
disregard all terms involving the auxiliary field in the remainder of this chapter. Nevertheless
the Nicolai map (TgA)aµ still satisfies i) - iii) of the main theorem 4.1 for any gauge with the
scaling property (4.8). Finally, let us point out that when considering ‘on-shell’ supersymmetry,
the auxiliary field will drop out anyway.

Furthermore, we want to study the well-definedness of (4.19). A priori it is not obvious that
the limit g → 0 in

(
R̃ng
(1
g Ã
))a
µ
(x)

∣∣
Φ̃=gΦ

∣∣
g=0 exists. When computing the inverse Nicolai map

T −1
g to some arbitrary order in the coupling we must act with R̃g on (1

g Ã
a
µ), the fermion

propagator S̃ab(x,y;Ã) and the ghost propagator G̃ab(x,y;Ã). We want to check that each
of these calculations gives a finite result when replacing Ãaµ = gAaµ and taking the limit g→ 0.
Therefore let us rewrite (4.27) and (4.28) by means of the identity [41]

γρλF̃ bρλ = 2γργλ(DρÃλ)b−2∂λÃbλ−f bdeγρλÃdρÃeλ , (4.46)

leaving the gauge functional arbitrary. Integrating by parts, so Dρ acts on the fermionic propa-
gator to give a δ-function, then leads to the new representation

R̃g = R̃0 + R̃1 + R̃2 (4.47)
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with the counting operator (now with D̃a = 0)

R̃0 := d
dg + 1

g

∫
d4x Ãaµ(x) δ

δÃaµ(x)
. (4.48)

The other two operators are given by

R̃1 :=− 1
8g

∫
d4x d4y tr

(
γµS̃

ab(x,y;Ã)γρλ
)
f bcdÃcρ(y)Ãdλ(y) δ

δÃaµ(x)

− 1
8g

∫
d4x d4y d4z (DµG̃)ae(x,z;Ã)tr

(
γνGν S̃eb(z,y;Ã)γρλ

)
×f bcdÃcρ(y)Ãdλ(y) δ

δÃaµ(x)

(4.49)

and

R̃2 :=− 1
4g

∫
d4x d4y tr

(
γµS̃

ab(x,y;Ã)
)
∂λÃbλ(y) δ

δÃaµ(x)

+ 1
4g

∫
d4x d4y d4z (DµG̃)ab(x,y;Ã)tr

(
γνGν S̃bc(y,z;Ã)

)
∂λÃcλ(z) δ

δÃaµ(x)
.

(4.50)

The counting operator R̃0 obeys

R̃0(Aaµ)≡ R̃0
(

1
g Ã

a
µ

)
= 0 (4.51)

as well as relations like

R̃0
(
S̃ab(x,y;Ã)

)
=−f cde

∫
d4z S̃ac(x,z;Ã)γµÃdµ(z)S̃eb(z,y;Ã) etc. (4.52)

Counting the powers of Ã shows that also R̃1 gives finite results for (1
g Ã

a
µ), S̃ab(x,y;Ã) and

G̃ab(x,y;Ã) in the limit A = gÃ and g → 0. For R̃2, we need to be a bit more careful. We
consider the potentially singular zeroth order contributions in both integrands of (4.50), using
the Dyson-Schwinger identities (4.35),

S̃ab(x,y;Ã) =−δabγρ∂ρC(x−y)+O(Ã) ,

G̃ab(x,y;Ã) = δabG0(x−y)+O(Ã) ,
(4.53)

where C(x) is the free scalar propagator obeying □C(x) =−δ(x). We can ignore the O(Ã) terms
since they are non-singular as g→ 0. If we had chosen a more general gauge in agreement with
(4.8), the second term in (4.50) would potentially have another Ã dependence in front of the
fermion propagator. However, it also follows from (4.8) that

δGa[Ã](x)
δÃbµ(y)

= δabGµδ(x−y)+O(Ã) . (4.54)
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Hence, this does not harm the g→ 0 limit. For the Landau gauge (Gµ = ∂µ) the cancellation
of the singular term follows easily upon use of γµ∂µS0(x) = δ(x) and G0(x) = −C(x). For the
axial gauge (Gµ = nµ), we compute

tr(γµnµS0(y−z)) =−4nµ∂µC(y−z) , (4.55)

integrate by parts, and use the defining equation for the free ghost propagator nµ∂µGab0 (x) =
δabδ(x) to show that these contributions cancel again (as we pointed out, higher order terms in
the gauge functional do not affect this argument). All remaining terms in (4.50) are at least of
order Ã and therefore possess a well-defined limit for g→ 0.
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4.5. The Nicolai Map in Axial Gauge

We present the expansion of the Nicolai map (TgA)aµ(x) in axial gauge GµAaµ = nµAaµ up to the
second order in the coupling [3]1

(Tg A)a
µ (x) = Aa

µ(x) + gfabc

∫
d4y d4z (ηµνδ(x − y) − ∂µG0(x − y)nν)

×
{

Abν(y)C(y − z)∂ ·Ac(z) + ∂λC(y − z)Abν(z)Ac
λ(z)

}
+ 2gfabc

∫
d4y d4z d4w (ηµνδ(x − y) − ∂µG0(x − y)nν)

× ∂λC(y − z)Ab [ν(z)∂λ]C(z − w)∂ ·Ac(w)

+ g2

2 fabcfbde

∫
d4y d4z d4w (ηµνδ(x − y) − ∂µG0(x − y)nν)

{
− 2Acν(y)C(y − z)Ad

λ(z)∂λC(z − w)∂ ·Ae(w)

− Acν(y)C(y − z)∂ ·Ad(z)C(z − w)∂ ·Ae(w)

− 1
2C(y − z)∂ ·Ac(z)∂λC(z − w)Adν(w)Ae

λ(w)

+ 1
2C(y − z)∂ ·Ac(z)∂λC(y − w)Adν(w)Ae

λ(w)

− 1
2C(y − z)Adν(z)Ae

λ(z)∂λC(z − w)∂ ·Ac(w)

+ 1
2∂λC(y − z)Adν(z)Ae

λ(z)C(z − w)∂ ·Ac(w)

− 2∂λC(y − z)Ac [ν(z)Adλ](z)C(z − w)∂ ·Ae(w)

+ 3∂ρC(y − z)Ac
λ(z)∂[νC(z − w)Adλ(w)Aeρ](w)

}
+ g2

2 fabcfbde

∫
d4y d4z d4w d4v (ηµνδ(x − y) − ∂µG0(x − y)nν)

{
− C(y − z)Ad [ν(z)∂λ]C(z − w)∂ ·Ae(w)∂λC(z − v)∂ ·Ac(v)

− C(y − z)∂ ·Ac(z)∂λC(z − w)Ad [ν(w)∂λ]C(w − v)∂ ·Ae(v)

+ C(y − z)∂ ·Ac(z)∂λC(y − w)Ad [ν(w)∂λ]C(w − v)∂ ·Ae(v)

− ∂λC(y − z)Ad [ν(z)∂λ]C(z − w)∂ ·Ae(w)C(z − v)∂ ·Ac(v)

− ∂λC(y − z)∂νC(z − w)∂ ·Ac(w)∂ρC(z − v)Ad
λ(v)Ae

ρ(v)

+ 2∂λC(y − z)∂[νAdλ](z)C(z − w)∂ ·Ae(w)C(z − v)∂ ·Ac(v)

− 2∂λC(y − z)Ac [ν(z)∂λ]C(z − w)∂ ·Ad(w)C(w − v)∂ ·Ae(v)

− 4∂λC(y − z)Ac [ν(z)∂λ]C(z − w)Ad
ρ(w)∂ρC(w − v)∂ ·Ae(v)

+ 6∂ρC(y − z)Ac
λ(z)∂[νC(z − w)Adλ(w)∂ρ]C(w − v)∂ ·Ae(v)

}
− g2fabcfbde

∫
d4y d4z d4w d4v d4u (ηµνδ(x − y) − ∂µG0(x − y)nν)

× ∂λC(y − z)∂νC(z − w)∂ ·Ac(w)∂ρC(z − v)Ad
[λ(v)∂ρ]C(v − u)∂ ·Ae(u)

+ O(g3) .

(4.56)

1As explained above we have disregarded all terms containing the auxiliary field Da.
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4. Off-Shell N = 1 super Yang-Mills

We point out that this result is, in principle, valid for all nµ, regardless of whether they are time-
like, space-like or null. It, therefore, applies to the light-cone gauge as well. However, (4.56) is
substantially more complicated than the corresponding expression for the Wess-Zumino model
(3.45). There the first and second order each only consisted of a single term. In section 4.7 we
explain how to simplify this result when accepting some restrictions.

Recall that the free axial gauge ghost propagator from (2.102) satisfies

nµ∂µG0(x−y) = δ(x−y) . (4.57)

In writing the above result, we have regrouped the terms in such a way that they all appear
with the axial projector

Πµν(x) := ηµνδ(x)−∂µG0(x)nν (4.58)

in front. This projector obeys nµΠµν(x) = 0 (but Πµν(x)nν ̸= 0). By (4.8) we further have
∫

d4y Πµν(x−y)∂νF (y) = 0 (4.59)

for any function F . Hence, the second order result in axial gauge can be written in such a way
that it differs from the result in the Rξ type gauges only by the insertion of this projector, since
all terms of type (4.59) drop out.

4.6. Tests

There are three tests we can perform on (4.56). They correspond to the three main properties
of the Nicolai map from the theorem 4.1. In the following let A′aµ ≡ (TgA)aµ.

4.6.1. The Gauge Condition

The preservation of the gauge condition

nµA′aµ (x) = nµAaµ(x)+O(g3) (4.60)

is trivially satisfied up to the order considered. This is because the axial projector obeys
nµΠµν(x) = 0. So in particular nµA′aµ (x) = nµAaµ(x).
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4.6.2. The Free Action

By the second statement in the main theorem, the bosonic Yang-Mills action without gauge-
fixing terms is mapped to the abelian action. We integrate the abelian action by parts and
obtain

1
2

∫
d4x A′aµ (−□ηµν +∂µ∂ν)A′aν

!= 1
4

∫
d4x F aµνF

aµν +O(g3) . (4.61)

In the leading order, the statement is trivial. We notice that any term which can be written
as a total derivative ∂xµ (. . .) does not contribute by the gauge invariance of the free action. In
particular this reduces the axial projector Πµν(x− y) = ηµνδ(x− y)−∂µG0(x− y)nν to simply
ηµνδ(x−y). In the first order, we find for the left-hand side of (4.61)

1
2

∫
d4x A′aµ (x)(−□ηµν +∂µ∂ν)A′aν (x)

∣∣∣∣
O(g1)

= gfabc
∫

d4x d4y Abµ(x)C(x−y)∂ ·Ac(y)(−□ηµν +∂µ∂ν)Aaν(x)

+gfabc
∫

d4x d4y ∂λC(x−y)Abµ(y)Acλ(y)(−□ηµν +∂µ∂ν)Aaν(x)

+2gfabc
∫

d4x d4y d4z ∂λC(x−y)Ab[µ(y)∂λ]C(y−z)∂ ·Ac(z)(−□ηµν +∂µ∂ν)Aaν(x) .

(4.62)

We integrate by parts and remove anti-symmetric terms

1
2

∫
d4x A′aµ (x)(−□ηµν +∂µ∂ν)A′aν (x)

∣∣∣∣
O(g1)

=−gfabc
∫

d4x ∂λA
a
µ(x)Abµ(x)Acλ(x)

+gfabc
∫

d4x d4y
{

−□Aaµ(x)Abµ(x)C(x−y)∂ ·Ac(y)

+∂µ∂ ·Aa(x)Abµ(x)C(x−y)∂ ·Ac(y)

−2∂λAaµ(x)Ab [µ(x)∂λ]C(x−y)∂ ·Ac(y)
}

= gfabc
∫

d4x ∂µA
a
λ(x)Abµ(x)Acλ(x)

= 1
4

∫
d4x F aµν(x)F aµν(x)

∣∣∣∣
O(g1)

.

(4.63)

In the second order, the steps are generally the same. However, we will need to use the Jacobi
identity (2.5)

fabcfade+fabdfaec+fabefacd = 0 . (4.64)

Furthermore, we can again disregard half the terms because of the axial projector Πµν(x− y).
After carefully collecting all the terms contributing to the left-hand side of (4.61) at O(g2), we
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4. Off-Shell N = 1 super Yang-Mills

perform similar partial integrations as above and obtain

1
2

∫
d4x A′aµ (x)(−□ηµν +∂µ∂ν)A′aν (x)

∣∣∣∣
O(g2)

=
∫

d4x A′aµ (x)
∣∣
O(g2)(−□η

µν +∂µ∂ν)A′aν (x)
∣∣
O(g0)

+ 1
2

∫
d4x A′aµ (x)

∣∣
O(g1)(−□η

µν +∂µ∂ν)A′aν (x)
∣∣
O(g1)

=−g
2

4 f
abcf bde

∫
d4x Aaµ(x)Acλ(x)Adµ(x)Aeλ(x)

− g
2

2

∫
d4x d4y Aaµ(x)Aeλ(x)∂λAdµ(x)C(x−y)∂ ·Ac(y)

×
(
fabcf bde+febaf bdc+f cbef bda

)
= g2

4 f
abcfade

∫
d4x Abµ(x)Acλ(x)Adµ(x)Aeλ(x)

= 1
4

∫
d4x F aµν(x)F aµν(x)

∣∣∣∣
O(g2)

.

(4.65)

Thus (4.61) is satisfied. These relations are independent of dimension.

4.6.3. Jacobian, Fermion and Ghost Determinant

Finally, we need to perturbatively show that the Jacobian determinant is equal to the product
of the MSS and FP determinants. This is done order by order by considering the logarithms of
the determinants rather than the determinants themselves, i.e.

logJ (TgA) = logdet
(
δA′aµ (x)
δAbν(y)

)
!= log(∆MSS[g;A]∆FP[g;A]) . (4.66)

For the logarithm on the right-hand side, remember that log(a · b) = log(a) + log(b). In section
2.4.4 we have discussed how to obtain the Matthews-Salam-Seiler and Faddeev-Popov determi-
nants. Recall the results for the MSS determinant (2.95)

log(∆MSS[g;A]) = g2N

∫
d2x d4y

{
+2∂µC(x−y)Aaµ(y)∂ρC(y−x)Aaρ(x)

−∂µC(x−y)Aaρ(y)∂µC(y−x)Aaρ(x)
}

+O(g3) .

(4.67)

And the FP determinant in axial gauge (2.103)

log(∆FP[g;A]) = g2N

2

∫
d4x d4y G0(x−y)n ·Ac(y)G0(y−x)n ·Ad(x)+O(g3) . (4.68)

In the leading order, there is no contribution from the Jacobian determinant since log1 = 0. At
O(g), the logarithm of the Jacobian determinant is proportional to faab = 0. Also, the MSS and
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FP determinants have no contribution in this order. At O(g2) the logarithm of the Jacobian
determinant consists of two terms

logdet
(
δA′aµ (x)
δAbν(y)

)∣∣∣∣∣
O(g2)

= Tr
[
δA′

δA

∣∣∣∣
O(g2)

]
− 1

2Tr
[
δA′

δA

∣∣∣∣
O(g1)

δA′

δA

∣∣∣∣
O(g1)

]
, (4.69)

where the trace is done by setting ν = µ, b= a, y = x and integrating over x. The computation
is straightforward, but we must be careful with formally divergent terms. The first term gives

tr
[
δA′

δA

∣∣∣∣
O(g2)

]
= g2N

∫
d4x d4y

{
−∂µC(x−y)Aaν(y)∂µC(y−x)Aaν(x)

−C(x−y)∂µ
(
Aaµ(y)G0(y−x)

)
n·Aa(x)

+ 1
4C(x−y)∂ ·Aa(y)(C(y−x)−2C(0)) ∂ ·Aa(x)

}
+g2N

∫
d4x d4y d4z

{
+ 1

4G0(x−z)nµC(z−x)∂ ·Aa(y)∂µC(y−x)∂ ·Aa(x)

+2G0(x−z)∂µC(z−x)∂ ·Aa(y)nν∂{νC(y−x)Aaµ}(x)

−2G0(x−z)∂µC(z−y)Aaν(y)nλ∂ν∂{λC(y−x)Aaµ}(x)

+ 3
2δ(0)C(z−y)∂ ·Aa(y)C(z−x)∂ ·Aa(x)

}
.

(4.70)

The second term gives

−1
2tr

[
δA′

δA

∣∣∣∣
O(g1)

δA′

δA

∣∣∣∣
O(g1)

]
= g2N

∫
d4x d4y

{
+2∂µC(x−y)Aaµ(y)∂νC(x−y)Aaν(x)

+ 1
2G0(x−y)n·Aa(y)G0(y−x)n·Aa(x)

+C(x−y)∂µ
(
Aaµ(y)G0(y−x)

)
n·Aa(x)

− 1
4C(x−y)∂ ·Aa(y)(C(y−x)−2C(0)) ∂ ·Aa(x)

}
+g2N

∫
d4x d4y d4z

{
− 1

4G0(x−z)nµC(z−x)∂ ·Aa(y)∂µC(y−x)∂ ·Aa(x)

−2G0(x−z)∂µC(z−x)∂ ·Aa(y)nν∂{νC(y−x)Aaµ}(x)

+2G0(x−z)∂µC(z−y)Aaν(y)nλ∂ν∂{λC(y−x)Aaµ}(x)

− 3
2δ(0)C(z−y)∂ ·Aa(y)C(z−x)∂ ·Aa(x)

}
.

(4.71)

Carefully collecting all the blue terms, we see that they cancel. Notice that this also applies to
the formally divergent terms, including a factor of δ(0) (which can be appropriately regularized).
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The three remaining black terms in (4.70) and (4.71) match the three terms from (4.67) and
(4.68). This concludes the determinant test.

Notably, the determinant test also works in general dimensions d for which r= 2(d−2). However,
we do not expect this lucky coincidence to survive in higher orders. Furthermore, we have also
checked that the determinant test is passed in the Rξ type gauges.

4.7. Going ‘On-Shell’

From the ‘off-shell’ N = 1 super Yang-Mills Nicolai map (4.56) in axial gauge, we can easily
obtain the corresponding result in Landau gauge. We must simply make the substitution

∂µG0(x−y)nν → −∂µC(x−y)∂ν . (4.72)

This is because, in Landau gauge, the free ghost propagator is G0(x) = −C(x) and Gµ = ∂µ.
After the substitution, some terms will drop out as they are now anti-symmetric under the
exchange of two spacetime indices. Furthermore, recall that in Landau gauge ξ→ 0. Thus the
bosonic part of the gauge fixing action behaves like a delta function forcing us on the gauge
surface ∂µAaµ = 0. Most terms in (4.56) are proportional to the gauge condition Ga(A) = ∂µAaµ.
Thus when going ‘on-shell’, these terms drop out and we obtain

(TgA)aµ (x) =Aaµ(x)+gfabc
∫

d4y ∂ρC(x−y)Abµ(y)Acρ(y)

+ 3g2

2 fabcf bde
∫

d4y d4z ∂ρC(x−y)Acλ(y)∂[ρC(y−z)Adµ(z)Aeλ](z)

+O(g3) .

(4.73)

This result is much simpler than (4.56). However, it only exists in the Landau gauge. Going ‘on-
shell’ in the axial or light-cone gauge, i.e. considering the limit ξ→ 0, does not simplify (4.56).
It appears that the Landau gauge is the preferred gauge of super Yang-Mills field theories. In
section 4.4 we have reformulated the R̃g-operator (4.30) using the identity

γρλF̃ bρλ = 2γργλ(DρÃλ)b−2∂λÃbλ−f bdeγρλÃdρÃeλ , (4.74)

This led to a formulation of the R̃g-operator where the term R̃2 was proportional to the Landau
gauge condition. Thus we suspect that the favoritism of super Yang-Mills field theories for the
Landau gauge stems from the form of the field strength tensor.

In any kind of practical calculation, we will only consider correlation functions of gauge invariant
operators Oi(xi). Thus for

〈〈
O1(x1) . . .On(xn)

〉〉
g

=
〈
(T −1
g O1)(x1) . . .(T −1

g On)(xn)
〉

0 (4.75)
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4.7. Going ‘On-Shell’

it does not make a difference whether we use the inverse of (4.56) or (4.73). However, from a
practical point of view, it is much simpler to use (4.73). In the next chapter, we will show how
to obtain (4.73) without the detour through a rescaled field formulation. Furthermore, we will
be able to obtain the Nicolai map for a wider range of super Yang-Mills field theories, which
do not have an ‘off-shell’ formulation with (finitely many) auxiliary fields. Namely, these are
N = 1 super Yang-Mills in 3, 6 and 10 dimensions and N = 4 super Yang-Mills in 4 dimensions.
However, we will also see that the ‘on-shell’ formulation requires the Landau gauge.
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5. On-Shell N = 1 super Yang-Mills

In this chapter we present the ‘on-shell’ N = 1 super Yang-Mills Nicolai map in d= 3, 4, 6 and 10
dimensions up to the third order, with the fourth-order result given in appendix C. We will learn
that the ‘on-shell‘ construction of the Rg-operator requires the Landau gauge but in return no
detour via rescaled fields. However, the ‘on-shell‘ version of the N = 1 super Yang-Mills Nicolai
map is much simpler than the corresponding ‘off-shell’ map. In particular, we will rederive the
‘on-shell’ map (4.73) in a more direct fashion.

This chapter is organized as follows. In the first section, we recall the relevant notation and state
the main theorem. In particular, we highlight the differences to the ‘off-shell’ formulation of the
theorem from the previous chapter. In section 5.2 we derive the Rg-operator before proving the
main theorem in section 5.3. In section 5.4 we give the Nicolai map to third order in Landau
gauge and discuss the history of this result. In section 5.5 we comment on the renormalization of
the Rg-operator and Nicolai map. Section 5.6 contains the tests for the Nicolai map. In section
5.7 we point out an ambiguity in the Nicolai map. We show that a different map up to the third
order exists specifically for d= 6 dimensions, which also passes the three tests from section 5.6.

This chapter is heavily based on [1] and [2]. The fourth-order Nicolai map was first published
in [3].

5.1. Introduction and Main Theorem

Recall the ‘on-shell’ d-dimensional N = 1 super Yang-Mills action (2.56)

S1
inv =

∫
ddx

[
−1

4F
a
µνF

aµν− i

2 λ̄
aγµ(Dµλ)a

]
. (5.1)

The action is invariant under the supersymmetry transformations (2.60)

δAaµ =−i(λ̄aγµε) , δλaα =−1
2(γµνε)αF aµν . (5.2)

When computing correlation functions, the gauge-invariant action (5.1) must be amended by a
gauge fixing term (2.77)

Sgf =
∫

ddx
[ 1

2ξ (GµAaµ)(GνAaν)+ 1
2 C̄

aGµ(DµC)a
]
. (5.3)
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5.1. Introduction and Main Theorem

The complete action S = S1
inv +Sgf is invariant under the BRST transformations (2.112)

sAaµ = (DµC)a , sλa =−gfabcλbCc , C̄a =−1
ξ
GµAaµ , sCa =−g2f

abcCbCc . (5.4)

In this chapter, we present a more direct construction of the Nicolai map with only ‘on-shell’
supersymmetry and without passing through the rescaled fields. This construction necessitates
the Landau gauge GµAaµ = ∂µAaµ. However, the ‘on-shellness’ is much less of a restriction for
the Nicolai map than, for example, for the supersymmetry algebra. Still, the third part of
the main theorem 4.1 from the previous chapter has to be adapted to allow the matching of
determinants to be modulo terms proportional to the gauge fixing functional. At the same time
we can generalize from 4 spacetime dimensions to d spacetime dimensions.

Main Theorem 5.1.
‘On-shell’ d-dimensional N = 1 super Yang-Mills is characterized by the existence of a non-linear
and non-local transformation Tg of the gauge field

Tg :Aaµ(x) 7→A′aµ (x,g;A) ,

which is invertible, at least in the sense of a formal power series such that

i) The Landau gauge-fixing function GµAaµ = ∂µAaµ is a fixed point of the map Tg.

ii) The bosonic Yang-Mills action without gauge-fixing terms is mapped to the abelian action,

S1
inv[g;A] = S1

inv[0;TgA] .

iii) Modulo terms proportional to the gauge fixing functional GµAaµ = ∂µAaµ, the Jacobian de-
terminant of Tg is equal to the product of the Matthews-Salam-Seiler and Faddeev-Popov
determinants, i.e.

J (TgA) = ∆MSS[g;A]∆FP[g;A]

at least order by order in perturbation theory.

Regardless of the changes to the theorem, it still implies the important relation

〈〈
O1(x1) . . .On(xn)

〉〉
g

=
〈
(T −1
g O1)(x1) . . .(T −1

g On)(xn)
〉

0 . (5.5)

However, this time restricted to the Landau gauge. If the operators Oi(xi) are gauge invariant,
this restriction is unimportant.
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5. On-Shell N = 1 super Yang-Mills

5.2. The Rg-Operator

We derive the ‘on-shell’ Rg-operator. Since we work with Majorana spinors, this Rg-operator
is technically only valid in d = 3, 4 and 10 dimensions. However, the Nicolai map itself is
independent of the spinor choice and is thus also valid in 6 dimensions1. Without passing
through the rescaled fields, the inverse Nicolai map is defined as

(
T −1
g A

)a
µ
(x) :=

∞∑
n=0

gn

n!

[
(Rng A)aµ(x)

∣∣∣
g=0

]
. (5.6)

The Nicolai map is obtained from its inverse by power series inversion, see (3.20) - (3.21).
The Rg-operator was first introduced specifically for d = 4 in [39, 40, 42]. Only recently the
construction has been generalized to d = 3, 4, 6 and 10 dimensions [1]. As usual, we construct
the Rg-operator from the linear response of the vacuum expectation value of a bosonic monomial
X[A] to changes in the coupling constant

d
dg
〈〈
X
〉〉
g

=
〈〈dX

dg

〉〉
g

− i
〈〈d(Sinv +Sgf)

dg X

〉〉
g

=:
〈
RgX

〉
g
. (5.7)

In the previous chapter, the ‘off-shell’ supersymmetry allowed us to write the action Sinv as a
supervariation. In the ‘on-shell’ formulation, this is no longer possible. We find

dS1
inv[g;A,λ]

dg = δα∆α− i
(1

2 −
d−1
r

)
fabc

∫
ddx

(
λ̄aγµAbµλ

c
)

(5.8)

with

∆α =− 1
2rf

abc
∫

ddx
(
γρλλa

)
α
AbρA

c
λ . (5.9)

We want to rewrite
〈〈

(δα∆α)X
〉〉
g

=
〈〈
δα
(
∆αX

)〉〉
g

+
〈〈

∆α(δαX)
〉〉
g

(5.10)

using the supersymmetry Ward identity (2.115)
〈〈
δαY

〉〉
g

= i

〈〈∫
ddx C̄a δα(∂µAaµ)s(Y )

〉〉
g

(5.11)

applied to Y = ∆αX. Since ∆α is not gauge invariant in the ‘on-shell’ formulation, its BRST
variation does not vanish. Using the Jacobi identity (2.5) we find

s(∆α) = 1
r
fabc

∫
ddx (γρλλa)α∂ρCbAcλ . (5.12)

For the g derivative of Sgf (in Landau gauge) we obtain

dS1
gf [g;A,λ]

dg = fabc
∫

ddx C̄a∂µ(AbµCc) . (5.13)

1An Rg-operator with Weyl spinors is, for example, derived in [41].
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5.2. The Rg-Operator

Thus, putting everything back together, we have

d
dg
〈〈
X
〉〉
g

=
〈〈dX

dg

〉〉
g

− i⟨⟨∆α (δαX)⟩⟩+
〈〈∫

ddx C̄a δα(∂µAaµ)∆α s(X)
〉〉
g

+ ⟨⟨Z X⟩⟩g (5.14)

with

Z :=
(∫

ddy C̄a(y)δα(∂µAaµ(y))
) 1
r
fabc

∫
ddx

(
γρλλa(x)

)
α
∂ρC

b(x)Acλ(x)

−
(1

2 −
d−1
r

)
fabc

∫
ddx

(
λ̄a(x)γµAbµ(x)λc(x)

)
− ifabc

∫
ddx C̄a(x)∂µ(Abµ(x)Cc(x)) .

(5.15)

In the next subsection, we will show that Z vanishes upon integrating out the fermionic degrees
of freedom. We show that this is true only in the Landau gauge. The Rg-operator then reads2

RgX := dX
dg +∆α (δαX)+

∫
ddx C̄a δα(∂µAaµ)∆α s(X)+ZX . (5.16)

Without the vanishing of Z this operator would not act distributively. Neglecting the multi-
plicative term, we can plug in the definition of ∆α as well as the fermion and ghost propagators
to obtain

Rg = d
dg −

1
2r

∫
ddx ddy tr(γµSab(x,y;A)γρλ)f bcdAcρ(y)Adλ(y) δ

δAaµ(x)

+ 1
2r

∫
ddx ddy ddz (DµG)ae(x,z;A)tr(γν∂νSeb(z,y;A)γρλ)f bcdAcρ(y)Adλ(y) δ

δAaµ(x) .
(5.17)

Compared to the R̃g-operator (4.27) there is no inherently gauge invariant part (other than the
g derivative) in this Rg-operator. Thus, when computing the inverse Nicolai map (5.6), we must
always act with the entire Rg-operator even on gauge invariant operators. This is because, from
the second application of the Rg-operator onward, it will start to act on itself. Since ∆α is not
gauge invariant, there will be contributions from the second line in (5.17) acting on the first.

Nevertheless, we might still simplify (5.17) by introducing the covariant transversal projector

P abµν(x,z;A) = δabδµνδ(x−z)− (DµG)ab(x,z;A)∂zν (5.18)

obeying P ∗P = P and ∂µP abµν = 0. This is the non-abelian version of (4.58). They differ by the
appearance of the gauge covariant derivative and a non-linear dependence on Aaµ. It allows for a
non-standard (non-linear) separation between transversal and longitudinal degrees of freedom,
with

Aa⊥µ (x) :=
∫

ddy P abµν(x,y;A)Abν(y) and Aa∥µ (x) :=
∫

ddy (DµG)ab(x,y;A)∂νAbν(y) , (5.19)

2We have put a factor of i for each integration over two spinor fields and a factor of (−i) for each integration
over two ghost fields.
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5. On-Shell N = 1 super Yang-Mills

such that the more standard abelian (linear) split of Aaµ(x) into transversal and longitudinal
parts is recovered by setting g = 0. Subsequently, we find

Rg = d
dg −

1
2r

∫
ddx ddy ddz P aeµν(x,z)tr(γνSeb(z,y;A)γρλ)f bcdAcρ(y)Adλ(y) δ

δAaµ(x) . (5.20)

This means that the Rg-operator acts only on the ‘covariantly transversal’ part of its argument.
Consequently, the map Tg and its inverse T −1

g affect only the transverse degrees of freedom
of the gauge field, whereas they do not change its longitudinal component, which is therefore
effectively the same as in the free theory.

From the definition of the N = 1 super Yang-Mills fermion propagator (2.63) we obtain

dSab(x,y;A)
dg =−f cde

∫
ddz Sac(x,z;A)Adµ(z)Seb(z,y;A) (5.21)

and

δSab(x,y;A)
δAdµ(z) =−gf cdeSac(x,z;A)γµSdb(z,y;A) . (5.22)

Similarly, we obtain from (2.80) for the ghost propagator

dGab(x,y;A)
dg = f cde

∫
ddz Gac(x,z)←−∂µzAdµ(z)Geb(z,y;A) (5.23)

and

δGab(x,y;A)
δAdµ(z) = f cdeGac(x,z;A)←−∂µzGdb(z,y;A) . (5.24)

Finally, recall that in the previous chapter we have expressed the R̃g-operator as a sum of
three operators R̃g = R̃0 +R̃1 +R̃2. The ‘on-shell’ counterpart to R̃0 is simply the g derivative.
Artificially removing the rescaling from R̃1 in (4.49) we see that in 4 dimensions

Rg = d
dg +R1 . (5.25)

This is as expected since the Rg-operator must also be compatible with switching between the
rescaled and non-rescaled version of the theory. Furthermore, we argue that R̃2 does not have
an ‘on-shell’ counterpart since it is proportional to ∂µAaµ and we are in Landau gauge, i.e.
∂µAaµ = 0.

5.2.1. Distributivity of the Rg-Operator

We show that Z vanishes in the Landau gauge upon integrating out the fermionic degrees of
freedom. The following calculation was first sketched by Flume and Lechtenfeld in [39]. A
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5.2. The Rg-Operator

more detailed version was first given in [1]. Recall that the Landau gauge does not only require
GµAaµ = ∂µAaµ but also ξ→ 0, i.e. forcing us onto the gauge surface. Integrating out the anti-
commuting degrees of freedom in (5.15) gives

Z = i

r

∫
ddy C̄a(y)(∂yµλ̄a(y)γµ)αfabc

∫
ddx (γρλλa(x))α∂ρCb(x)Acλ(x)

− i
(1

2 −
d−1
r

)
fabc

∫
ddx λ̄aα(x)γµαβA

b
µ(x)λcβ(x)

+fabc
∫

ddx C̄a(x)Abµ(x)∂µCc(x) .

(5.26)

In the last term, we used the Landau gauge condition ∂µAbµ(x) = 0 to move the derivative
past the vector field. Moreover, we use the identity γρλ = 1

2(γργλ− γλγρ) = −γλγρ + ηρλ and
reorder the contracted terms such that we can identify any contraction with a fermion or ghost
propagator (in the presence of the gauge-field background) to get

Z = 1
r
f bcd

∫
ddx ddy tr

(
∂xρG

da(x,y;A)γµγργλ∂yµSba(x,y;A)
)
Acλ(x)

− 1
r
f bcd

∫
ddx ddy tr

(
∂xρG

da(x,y;A)γµδρλ∂yµSba(x,y;A)
)
Acλ(x)

+
(1

2 −
d−1
r

)
fabc

∫
ddx tr(Sca(x,x;A)γµ)Abµ(x)

−fabc
∫

ddx ∂µxGca(x,x;A)Abµ(x) .

(5.27)

The formally singular terms with coinciding arguments can be appropriately regulated if needed.
Then we need the following Landau gauge versions of the Dyson-Schwinger identities (4.35)

Sba(x,y;A) = δbaS0(x−y)+gf bmn
∫

ddz S0(x−z)Anν (z)γνSma(z,y;A) ,

γρ∂xρG
da(x,y;A) = δdaS0(x−y)+gfdmn

∫
ddz S0(x−z)Anρ (z)∂ρzGma(z,y;A) .

(5.28)

Integrating by parts and using γµ∂yµS0(x−y) =−δ(x−y) in Z yields

Z = 1
r
f bca

∫
ddx tr

(
γµSba(x,x;A)

)
Acµ(x)

+ g

r
f bcdfdmn

∫
ddx ddy ddz

× tr
(
S0(x−z)Anρ (z)∂ρzGma(z,y;A)γλ∂yµSba(x,y;A)γµ

)
Acλ(x)

+facd
∫

ddx ∂µxGda(x,x;A)Acµ(x)

− g
r
f bcdf bmn

∫
ddx ddy ddz

× tr
(
∂ρxG

da(x,y;A)S0(x−z)γνAnν (z)∂yµSma(z,y;A)γµ
)
Acρ(x)

+
(1

2 −
d−1
r

)
fabc

∫
ddx tr(Sca(x,x;A)γµ)Abµ(x)

−fabc
∫

ddx ∂µxGca(x,x;A)Abµ(x) .

(5.29)
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5. On-Shell N = 1 super Yang-Mills

The pure fermion loops (blue terms) cancel, provided r = 2(d− 2) with d = 3, 4, 6 or 10. The
pure ghost loops (green terms) cancel independently of dimension. Finally, we use S0(x− z) =
−S0(z−x) to cancel the two remaining terms

Z = g

r
f bcdfdmn

∫
ddx ddy ddz

× tr
(
S0(x−z)Anρ (z)∂ρzGma(z,y;A)γλ∂yµSba(x,y;A)γµ

)
Acλ(x)

− g
r
f bcdf bmn

∫
ddx ddy ddz

× tr
(
∂ρxG

da(x,y;A)S0(x−z)γνAnν (z)∂yµSma(z,y;A)γµ
)
Acρ(x)

= 0 .

(5.30)

Without the relation between the free fermion and the free ghost propagator that only exists in
the Rξ type gauges and without using ∂µAbµ(x) = 0 in the first step, this proof would not have
worked. Thus, without the Landau gauge, the Rg-operator would not act distributively.

5.3. Proof of the Main Theorem

The proof of the theorem 5.1 follows the same steps as the proof in the previous chapter. For
part i) of the main theorem 5.1 we simply get

Rg(∂µAaµ(x)) = 1
2r

∫
ddy ddz ∂µP aeµν(x,z)tr(γν∂νSeb(z,y;A)γρλ)f bcdAcρ(y)Adλ(y) = 0 (5.31)

since ∂µP abµν = 0. For part ii) we show that Rg(S1
inv[g;A]) = 0

Rg
(
S1

inv[g;A]
)

= d
dg

(
−1

4

∫
ddx F aµν(x)F aµν(x)

)
+ 1

4r

∫
ddx ddy ddz ddw P aeµν(x,z)tr(γνSeb(z,y;A)γρλ)

×f bcdAcρ(y)Adλ(y)δF
m
στ (w)Fmστ (w)
δAaµ(x)

=−1
2f

abc
∫

ddx F aµν(x)Abµ(x)Acν(x)

− 1
r

∫
ddx ddy ddz (DσF

σµ)a(x)P aeµν(x,z)tr(γνSeb(z,y;A)γρλ)

×f bcdAcρ(y)Adλ(y) .

(5.32)

In the second term, the projector P aeµν can be replaced by the identity since∫
ddx (DσF

σµ)a(x)(DµG)ae(x,z;A) . . .=−
∫

ddx (DµDσF
σµ)a(x)Gae(x,z;A) . . .= 0 . (5.33)

Thus we have

Rg
(
S1

inv[g;A]
)

=−1
2f

abc
∫

ddx F aµν(x)Abµ(x)Acν(x)

− 1
r
f bcd

∫
ddx ddy (DνFνµ)a(x)tr(γµSab(x,y;A)γρλ)Acρ(y)Adλ(y) .

(5.34)
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Like in the previous chapter, we use (4.41)

γµ(DνFνµ)a(x) = γ[µην]ρ(DσFνµ)a(x) = 1
2γ

µνγρ(DρFνµ)a(x)− 1
2γ

µνρ(DρFνµ)a(x) . (5.35)

and subsequently the Bianchi identity γµνρ(DρFνµ)a = 0. Moreover, we integrate by parts and
use the Dirac equation (2.63) to get

Rg
(
S1

inv[g;A]
)

=−1
2f

abc
∫

ddx F aµν(x)Abµ(x)Acν(x)

+ 1
2rf

bcd
∫

ddx ddy F aνµ(x)tr(γµνγρ(DρS)ab(x,y;A)γρλ)Acρ(y)Adλ(y)

=−1
2f

abc
∫

ddx F aµν(x)Abµ(x)Acν(x)

+ 1
2rf

acd
∫

ddx F aνµ(x)tr(γµνγρλ)Acρ(x)Adλ(x)

= 0 .

(5.36)

The proof of part iii) remains largely unchanged from the ‘off-shell’ version. However, the limit
ξ→ 0 in the path integral implies that

J (TgA) = ∆MSS[g;A]∆FP[g;A] (5.37)

must now only hold up to terms proportional to ∂µAaµ. This concludes the proof.
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5. On-Shell N = 1 super Yang-Mills

5.4. Result and Discussion

We present the explicit formula for the Nicolai map Tg to cubic order [1]

(TgA)aµ(x) =Aaµ(x)+gfabc
∫

ddy ∂ρC(x−y)Abµ(y)Acρ(y)

+ 3g2

2 fabcf bde
∫

ddy ddz ∂ρC(x−y)Acλ(y)∂[ρC(y−z)Adµ(z)Aeλ](z)

+ g3

2 f
abcf bdef cfg

∫
ddy ddz ddw ∂ρC(x−y)

×∂λC(y−z)Adλ(z)Aeσ(z)∂[ρC(y−w)Afµ(w)Agσ](w)

+g3fabcf bdefdfg
∫

ddy ddz ddw ∂ρC(x−y)Acλ(y)
{

−∂σC(y−z)Aeσ(z)∂[ρC(z−w)Afµ(w)Agλ](w)

+∂[ρC(y−z)Aeµ(z)∂σC(z−w)Afλ](w)Agσ(w)
}

+ g3

3 f
abcf bdefdfg

∫
ddy ddz ddw

{
+6∂ρC(x−y)Acλ(y)∂[ρC(y−z)Aeσ](z)∂[λC(z−w)Afµ(w)Agσ](w)

−6∂ρC(x−y)Acλ(y)∂[λC(y−z)Aeσ](z)∂[ρC(z−w)Afµ(w)Agσ](w)

−6∂ρC(x−y)Acλ(y)∂[σC(y−z)Aeµ](z)∂[ρC(z−w)Af λ(w)Aσ]g(w)

+2∂ρC(x−y)Ac[ρ(y)∂µ]C(y−z)Aeλ(z)∂σC(z−w)Afλ(w)Agσ(w)

−∂µC(x−y)∂ρ
(
Acρ(y)C(y−z)

)
Aeλ(z)∂σC(z−w)Afλ(w)Agσ(w)

}
− g

3

3 f
abcf bdefdfg

∫
ddy ddz Acµ(x)C(x−y)Aeρ(y)∂λC(y−z)Afρ(z)Agλ(z)

+O(g4) .

(5.38)

The map up to O(g4) is given in appendix C. The first two lines of (5.38) were first obtained
for d= 4 dimensions already in 1980 [37]. Much later, it was shown in [53] that the same result
also holds for d= 3, 6 and 10 dimensions. Shortly after, the third [1] and fourth order [3] were
computed. While the map up to O(g2) was originally obtained by trial and error, this becomes
tricky at higher orders because the number of terms is significantly larger at O(g3) and above.
In section 5.6, we will verify that this result satisfies all three statements of the main theorem
5.1 simultaneously, providing a highly non-trivial test.

5.5. Renormalization

While the 2-dimensional Wess-Zumino model is finite [72], the 4-dimensional Wess-Zumino model
and (most) super Yang-Mills theories are not and require renormalization. We restrict the

80



5.5. Renormalization

following discussion to 4-dimensional theories since quantum field theories in more than four
dimensions are generally not renormalizable.

For pure supersymmetric field theories, there is a beautiful non-renormalization theorem stating
that superpotentials of chiral superfields do not get renormalized [11, 12]. For the 4-dimensional
Wess-Zumino model, this implies that all fields are renormalized with a single renormalization
constant Z1/2 and that the coupling constant and the mass do not receive any renormalization
besides the wave function renormalization, i.e. λ = Z−3/2λr and m = Z−1mr [94, 95]. This
remains true even in the ‘on-shell’ version of the theory. Subsequently, n-point correlation
functions Γ(n)(x1, . . . ,xn;m,λ) of fundamental fields are simply renormalized by

Γ(n)
r (x1, . . . ,xn;mr,λr) = Z−n/2Γ(n)(x1, . . . ,xn;m,λ) . (5.39)

This is similar to the renormalization in the ϕ4 theory (see e.g. [66]). Moreover, one finds that
both the Rλ-operator and the Nicolai map Tλ of the 4-dimensional Wess-Zumino model are
renormalized by a global factor. For instance, we get

(TλrA)(x,mr,λr;Ar) = Z−1/2(TλA)(x,m,λ;A) . (5.40)

This is compatible with (5.39). Moreover, the 4-dimensional Wess-Zumino model can be regular-
ized such that the supersymmetry is preserved [94, 96]. Hence, regularization and construction
of the Rλ-operator are interchangeable.

Unfortunately, the regularization of super Yang-Mills theories is more complicated. All known
regularization procedures of supersymmetric gauge theories break supersymmetry at least par-
tially. In particular, this applies to the popular dimensional regularization and regularization
by dimensional reduction [97–99]. Hence, we must fist construct the Rg-operator and then
manually regularize the integrals.

Moreover, also the renormalization exhibits extra difficulties. The usual Wess-Zumino gauge of
the N = 1 super Yang-Mills vector superfield breaks the linear realization of supersymmetry by
introducing a gauge transformation. Thus the non-renormalization theorem of chiral superfields
no longer applies to N = 1 super Yang-Mills. In particular, the gauge field and the fermion
receive different renormalizations even though they belong to the same supermultiplet [100, 101].
Only the auxiliary field Da does not get renormalized because it enters the action (2.51) only
quadratically. Hence, there is no difference in the renormalization of the ‘off-shell’ and ‘on-shell’
N = 1 theory. The other renormalization constants are gauge-dependent. In [100] it was shown
that in Landau gauge only three renormalization constants are needed because ZC = ZC̄ and

ZgZ
1/2
A ZC = 1 . (5.41)
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5. On-Shell N = 1 super Yang-Mills

These renormalization constants have been computed to third order in [33] and [100]. The
renormalization of the Nicolai map is best understood by studying the renormalization of the
Rg-operator. For simplicity, we consider the ‘on-shell’ Landau gauge. The central building blocks
of the Rg-operator (5.17) are the fermion and ghost propagator. Recall that (with dimensional
regularization)

Sab(x,y;A)

= δabS0(x−y)+gfabc
∫

d2ωz1 S0(x−z1)γµ1Acµ1(z1)S0(z1−y)

+g2fadcfdbe
∫

d2ωz1 d2ωz2 S0(x−z1)γµ1Acµ1(z1)S0(z1−z2)γµ2Aeµ2(z2)S0(z2−y)+ . . .

(5.42)

The free fermion propagator receives its renormalization from the fermion, i.e.

S0(x−y) = ZλS0r(x−y) . (5.43)

Thus with (5.41) we find for (5.42)

Sab(x,y;A)

= Zλδ
abS0r(x−y)+Z2

λZ
−1
C grf

abc
∫

d2ωz1 S0r(x−z1)γµ1Acµ1 r(z1)S0r(z1−y)

+Z3
λZ
−2
C g2

rf
adcfdbe

∫
d2ωz1 d2ωz2 S0r(x−z1)γµ1Acµ1 r(z1)

×S0r(z1−z2)γµ2Aeµ2 r(z2)S0r(z2−y)+ . . .

(5.44)

The renormalization is not homogeneous. For the ghost propagator, on the other hand, we find
a homogeneous renormalization to all orders

Gab(x,y;A)

= ZC δ
abG0r(x−y)+ZC grf

abc
∫

d2ωz1 G0r(x−z1)∂µ1(Acµ1 r(z1)G0r(z1−y))

+ZC g
2
rf

adcfdbe
∫

d2ωz1 d2ωz2 G0r(x−z1)∂µ1(Acµ1 r(z1)G0r(z1−z2))

×∂µ2(Aeµ2 r(z2)G0r(z2−y))+ . . .

= ZCG
ab
r (x,y;A) .

(5.45)

The renormalization of the g derivative in the Rg-operator (5.17) is

d
dg = Z−1

g

d
dgr

. (5.46)

Similarly, the renormalization of the gauge field term is

Acρ(y)Adλ(y) δ

δAaµ(x) = Z
1/2
A Acρr(y)Adλr(y) δ

δAaµr(x) (5.47)
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Finally, also the covariant derivative in the second line of (5.17) must be properly renormalized.
Altogether this gives the inhomogeneous renormalization of the Rg-operator and subsequently
the Nicolai map.

In N = 4 super Yang-Mills the situation is largely similar. It has been shown that the theory
exhibits ultraviolet finiteness in the light cone gauge [13, 14]. However, it was already pointed
out by Mandelstam in [13] that the wave function renormalizations are gauge dependent and,
generally, not trivial. Only the vanishing of the beta function is a gauge invariant statement
and thus Zg = 1 is true in all gauges. Structurally the N = 4 R4

g-operator will be very similar
to the N = 1 Rg-operator (5.17). Thus, also its renormalization will be similar to the N = 1
renormalization discussed above. For the Rξ type gauges, the N = 4 super Yang-Mills renormal-
ization constants have been computed up to three loops in [33]. However, despite the non-trivial
renormalization in general gauges we expect that vacuum expectation values and correlation
functions of well-defined gauge invariant operators are finite due to the finiteness of the N = 4
theory.

5.6. Tests

We perform the three tests corresponding to the three parts of the main theorem 5.1 for the
‘on-shell’ Nicolai map (5.38) up to O(g3). Let A′aµ ≡ (TgA)aµ.

5.6.1. The Gauge Condition

We first verify that ∂µA′aµ (x) = ∂µA
a
µ(x)+O(g4). Applying ∂µ to (5.38) and removing all terms

that are manifestly anti-symmetric under the exchange of two spacetime indices yields

∂µA′aµ (x) = ∂µAaµ(x)+ g3

3 f
abcf bdefdfg

∫
ddy ddz ddw

{
+6∂µ∂ρC(x−y)Acλ(y)∂[ρC(y−z)Aσ] (z)∂[λC(z−w)Afµ(w)Agσ](w)

−6∂µ∂ρC(x−y)Acλ(y)∂[σC(y−z)Aeµ](z)∂[ρC(z−w)Aλf (w)Aσ]g(w) (5.48)

−□C(x−y)∂ρ
(
Acρ(y)C(y−z)

)
Aλe(z)∂σC(z−w)Afλ(w)Agσ(w)

}
− g

3

3 f
abcf bdefdfg

∫
ddy ddz ∂µ

(
Acµ(x)C(x−y)

)
Aρe(y)∂λC(y−z)Afρ(z)Agλ(z)

+O(g4) .
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5. On-Shell N = 1 super Yang-Mills

The two blue terms cancel each other. In the second to last term we use □C(x−y) =−δ(x−y).
It is then easy to see that

∂µA′aµ (x) = ∂µAaµ(x)+ g3

3 f
abcf bdefdfg

∫
ddy ddz

{
+∂ρ

(
Acρ(x)C(x−y)

)
Aλe(y)∂σC(y−z)Afλ(z)Agσ(z)

−∂µ
(
Acµ(x)C(x−y)

)
Aρe(y)∂λC(y−z)Afρ(z)Agλ(z)

}
+O(g4)

= ∂µAaµ(x)+O(g4) .

(5.49)

5.6.2. The Free Action

By the second statement in the main theorem, the transformed gauge field must satisfy

1
2

∫
ddx A′aµ (□ηµν−∂µ∂ν)A′aν

!=−1
4

∫
ddx F aµνF aµν +O(g4) . (5.50)

We stress that, unlike the matching of determinants, the fulfillment of this condition will not
depend on the dimension d. Because of the previous subsection, we can ignore the second term
on the left-hand side from order g onward. At the leading order, the statement (5.50) is trivial.
At order g, we find

1
2

∫
ddx A′aµ (x)(□ηµν−∂µ∂ν)A′aν (x)

∣∣∣
O(g1)

= gfabc
∫

ddx ddy ∂νC(x−y)Abµ(y)Acν(y)□Aaµ(x)

= gfabc
∫

ddx ∂νAaµ(x)Abµ(x)Acν(x)

=−1
4

∫
ddx F aµν(x)F aµν(x)

∣∣∣
O(g1)

.

(5.51)

At order g2, we find

1
2

∫
ddx A′aµ (x)(□ηµν−∂µ∂ν)A′aν (x)

∣∣∣
O(g2)

= g2fabcfade
∫

ddx ddy ddz ∂νC(x−y)Abµ(y)Acν(y)∂λ□C(x−z)Adµ(z)Aeλ(z)

+3g2fabcf bde
∫

ddx ddy ddz ∂νC(x−y)Acλ(y)∂[νC(y−z)Adµ(z)Aeλ](z)□Aaµ(x)

= g2fabcfade
∫

ddx ddy ∂λ∂νC(x−y)Abµ(y)Acν(y)Adµ(x)Aeλ(x)

+3g2fabcf bde
∫

ddx ddy ∂νAaµ(x)Acλ(x)∂[νC(x−y)Adµ(y)Aeλ](y) .

(5.52)

Since the second term is symmetric under the simultaneous exchange of a↔ c and ν ↔ λ we
can replace ∂νAaµ(x)Acλ(x) by 1

2∂ν(Aaµ(x)Acλ(x)). Then we integrate by parts and expand
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the anti-symmetrization in the second term

1
2

∫
ddx A′aµ (x)(□ηµν−∂µ∂ν)A′aν (x)

∣∣∣
O(g2)

= g2fabcfade
∫

ddx ddy ∂λ∂νC(x−y)Abµ(y)Acν(y)Adµ(x)Aeλ(x)

− 3
2g

2fabcf bde
∫

ddx ddy Aaµ(x)Acλ(x)∂ν∂[νC(x−y)Adµ(y)Aeλ](y)

= g2fabcfade
∫

ddx ddy ∂λ∂νC(x−y)Abµ(y)Acν(y)Adµ(x)Aeλ(x)

− g
2

2 f
abcf bde

∫
ddx ddy Aaµ(x)Acλ(x)□C(x−y)Adµ(y)Aeλ(y)

+g2fabcf bde
∫

ddx ddy Aaµ(x)Acλ(x)∂ν∂µC(x−y)Adν(y)Aeλ(y)

= g2

2 f
abcf bde

∫
ddx ddy Aaµ(x)Acλ(x)Adµ(x)Aeλ(x)

=−1
4

∫
ddx F aµν(x)F aµν(x)

∣∣∣
O(g2)

.

(5.53)

The two blue terms cancel. In the third order, there are many more terms, but the steps of the
calculation remain largely the same. We find for the left-hand side of (5.50)

1
2

∫
ddx A′aµ (x)(□ηµν−∂µ∂ν)A′aν (x)

∣∣∣
O(g3)

= g3

2 f
abcf bdef cfg

∫
ddx ddy ddz ddw ∂ρC(x−y)

×∂λC(y−z)Adλ(z)Aeσ(z)∂[ρC(y−w)Afµ(w)Agσ](w)□Aaµ(x)

+g3fabcf bdefdfg
∫

ddx ddy ddz ddw ∂ρC(x−y)Acλ(y)
{

−∂σC(y−z)Aeσ(z)∂[ρC(z−w)Afµ(w)Agλ](w)□Aaµ(x)

+∂[ρC(y−z)Aeµ(z)∂σC(z−w)Afλ](w)Agσ(w)□Aaµ(x)
}

+ g3

3 f
abcf bdefdfg

∫
ddx ddy ddz ddw

{
+6∂ρC(x−y)Acλ(y)∂[ρC(y−z)Aeσ](z)∂[λC(z−w)Afµ(w)Agσ](w)□Aaµ(x)

−6∂ρC(x−y)Acλ(y)∂[λC(y−z)Aeσ](z)∂[ρC(z−w)Afµ(w)Agσ](w)□Aaµ(x)

−6∂ρC(x−y)Acλ(y)∂[σC(y−z)Aeµ](z)∂[ρC(z−w)Af λ(w)Aσ]g(w)□Aaµ(x)

+2∂ρC(x−y)Ac[ρ(y)∂µ]C(y−z)Aeλ(z)∂σC(z−w)Afλ(w)Agσ(w)□Aaµ(x)

−∂µC(x−y)∂ρ
(
Acρ(y)C(y−z)

)
Aeλ(z)∂σC(z−w)Afλ(w)Agσ(w)□Aaµ(x)

}
− g

3

3 f
abcf bdefdfg

∫
ddx ddy ddzAcµ(x)C(x−y)Aeρ(y)∂λC(y−z)Afρ(z)Agλ(z)□Aaµ(x)

+ 3g3

2 fabcf bde
∫

ddx ddy ddz ddw ∂ρC(x−y)Acλ(y)∂[µC(y−z)Adλ(z)Aeρ](z)

×□
(
fafg∂σC(x−w)Af µ(w)Agσ(w)

)
.

(5.54)
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We follow the same steps of integrating by parts and using □C(x−y) =−δ(x−y) as above and
arrive at

1
2

∫
ddx A′aµ (x)(□ηµν−∂µ∂ν)A′aν (x)

∣∣∣
O(g3)

= g3fabcf bdef cfg
∫

ddx ddy ddz
{

− 1
2A

aµ(x)∂ρ∂λC(x−y)Adλ(y)Aeσ(y)∂[ρC(x−z)Afµ(z)Agσ](z)

− 1
2A

aµ(x)∂λC(x−y)Adλ(y)Aeσ(y)∂ρ∂[ρC(x−z)Afµ(z)Agσ](z)
}

+g3fabcf bdefdfg
∫

ddx ddy ddz
{

+ 1
2A

aµ(x)Acλ(x)∂ρ∂σC(x−y)Aeσ(y)∂[ρC(y−z)Afµ(z)Agλ](z)

− 1
2A

aµ(x)Acλ(x)∂ρ∂[ρC(x−y)Aeµ(y)∂σC(y−z)Afλ](z)A
g
σ(z)

−Aaµ(x)Acλ(x)∂ρ∂[ρC(x−y)Aeσ](y)∂[λC(y−z)Afµ(z)Agσ](z)

+2Aaµ(x)Acλ(x)∂ρ∂[λC(x−y)Aeσ](y)∂[ρC(y−z)Afµ(z)Agσ](z)

+ 2
3 ∂

ρAaµ(x)Ac[ρ(x)∂µ]C(x−y)Aeλ(y)∂σC(y−z)Afλ(z)Agσ(z)

− 1
3∂µA

aµ(x)∂ρ
(
Acρ(x)C(x−y)

)
Aeλ(y)∂σC(y−z)Afλ(z)Agσ(z)

− 1
3□A

aµ(x)Acµ(x)C(x−y)Aeρ(y)∂λC(y−z)Afρ(z)Agλ(z)
}

+ 3g3

2 fabcf bdefafg
∫

ddx ddy ddz

×Af µ(x)Agσ(x)∂ρ∂σC(x−y)Acλ(y)∂[µC(y−z)Adλ(z)Aeρ](z) .

(5.55)

The blue, red and black terms cancel upon renaming some variables. The green terms combine
to give

g3

2 f
abcf bdefdfg

∫
ddx ddy Aaµ(x)Acλ(x)Aeσ(x)∂[λC(x−y)Afµ(y)Agσ](y)

= g3

6
(
fabcf bde+febaf bdc+f cbef bda

)
fdfg

∫
ddx ddy

×Aaµ(x)Acλ(x)Aeσ(x)∂[λC(x−y)Afµ(y)Agσ](y)

= 0 .

(5.56)

Here we used the Jacobi identity (2.5). Subsequently, we conclude

1
2

∫
ddx A′aµ (x)(□ηµν−∂µ∂ν)A′aν (x)

∣∣∣
O(g3)

= 0 . (5.57)

Thus, the condition (5.50) holds up to and including O(g3).
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5.6.3. Jacobian, Fermion and Ghost Determinant

Finally, we need to show that the logarithm of the Jacobian determinant matches the logarithm
of the product of the Matthews–Salam–Seiler and Faddeev–Popov determinant up to the third
order, i.e.

logJ (TgA) = logdet
(
δA′aµ (x)
δAbν(y)

)
!= log(∆MSS[g;A]∆FP[g;A]) . (5.58)

Recall the logarithm of the Matthews–Salam–Seiler determinant (2.95) for general Clifford al-
gebra dimension r and spacetime dimension d

log(∆MSS[g;A]) = rg2

4

∫
ddx ddy

{
+2∂µC(x−y)Aaµ(y)∂ρC(y−x)Aaρ(x)

−∂µC(x−y)Aaρ(y)∂µC(y−x)Aaρ(x)
}

+ rg3

6 fadmf bemf cde
∫

ddx ddy ddz
{

−6∂µC(x−y)Abµ(y)∂ρC(y−z)Acλ(z)∂ρC(z−x)Aaλ(x)

+2∂µC(x−y)Abρ(y)∂ρC(y−z)Acλ(z)∂λC(z−x)Aaµ(x)

+3∂µC(x−y)Abρ(y)∂ρC(y−z)Acµ(z)∂λC(z−x)Aaλ(x)

−∂µC(x−y)Abρ(y)∂λC(y−z)Acµ(z)∂ρC(z−x)Aaλ(x)

+3∂µC(x−y)Abρ(y)∂λC(y−z)Acµ(z)∂λC(z−x)Aaρ(x)
}

+O(g4) .

(5.59)

The coloring is for later convenience. Also, recall the logarithm of the Faddeev–Popov determi-
nant (2.99) (in Landau gauge)

log(∆FP[g;A]) = g2N

2 fabcf bad
∫

ddx ddy ∂µC(x−y)Aaρ(y)∂ρC(y−x)Aaµ(x)

− g
3

3 f
abcf bdefdam

∫
ddx ddy ddz

×∂ρC(x−y)Acµ(y)∂µC(y−z)Aeν(z)∂νC(z−x)Amρ (x)

+O(g4) .

(5.60)

Like in the previous chapter, there is nothing to compute at order g. At order g2, there are two
terms contributing to the logarithm of the Jacobian determinant

logdet
(
δA′aµ (x)
δAbν(y)

)∣∣∣∣∣
O(g2)

= Tr
[
δA′

δA

∣∣∣∣
O(g2)

]
− 1

2Tr
[
δA′

δA

∣∣∣∣
O(g1)

δA′

δA

∣∣∣∣
O(g1)

]
. (5.61)
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As always, the trace Tr is done by setting ν = µ, b = a, y = x and integrating over x. After a
brief calculation, we arrive at

logdet
(
δA′aµ (x)
δAbν(y)

)∣∣∣∣∣
O(g2)

=−3−2d
2 g2N

∫
ddx ddy ∂µC(x−y)Aaµ(y)∂ρC(y−x)Aaρ(x)

+ 2−d
2 g2N

∫
ddx ddy ∂µC(x−y)Aaρ(y)∂µC(y−x)Aaρ(x) .

(5.62)

This matches the sum of the black terms in (5.60) and (5.59) if r = 2(d−2) because then

r

2 −
1
2 =−3−2d

2 and − r4 = 2−d
2 . (5.63)

At O(g3) the logarithm of the Jacobian determinant schematically consists of three terms

logdet
(
δA′aµ (x)
δAbν(y)

)∣∣∣∣∣
O(g3)

= tr
[
δA′

δA

∣∣∣∣
O(g3)

]
−
(

2 · 12

)
tr
[
δA′

δA

∣∣∣∣
O(g2)

δA′

δA

∣∣∣∣
O(g1)

]

+ 1
3tr

[
δA′

δA

∣∣∣∣
O(g1)

δA′

δA

∣∣∣∣
O(g1)

δA′

δA

∣∣∣∣
O(g1)

]
.

(5.64)

The computation of each one of these terms is straightforward. For the third term, we find

1
3tr

[
δA′

δA

∣∣∣∣
O(g1)

δA′

δA

∣∣∣∣
O(g1)

δA′

δA

∣∣∣∣
O(g1)

]

= g3fadmf bemf cde
∫

ddx ddy ddz
{

− 3−d
3 ∂µC(x−y)Abρ(y)∂ρC(y−z)Acλ(z)∂λC(z−x)Aaµ(x)

+∂µC(x−y)Abρ(y)∂ρC(y−z)Acµ(z)∂λC(z−x)Aaλ(x)

− 1
3 ∂

µC(x−y)Abρ(y)∂λC(y−z)Acµ(z)∂ρC(z−x)Aaλ(x)
}
.

(5.65)

The second term gives

−
(

2 · 12

)
tr
[
δA′

δA

∣∣∣∣
O(g2)

δA′

δA

∣∣∣∣
O(g1)

]

= g3fadmf bemf cde
∫

ddx ddy ddz
{

+ 1−d
2 ∂µC(x−y)Abµ(y)∂ρC(y−z)Acλ(z)∂ρC(z−x)Aaλ(x)

+ 1
2 ∂

µC(x−y)Abρ(y)∂ρC(y−z)Acλ(z)∂λC(z−x)Aaµ(x)

− 3−d
2 ∂µC(x−y)Abρ(y)∂ρC(y−z)Acµ(z)∂λC(z−x)Aaλ(x)

+ 1
2 ∂

µC(x−y)Abρ(y)∂λC(y−z)Acµ(z)∂λC(z−x)Aaρ(x)
}
.

(5.66)
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Finally, the first term gives

tr
[
δA′

δA

∣∣∣∣
O(g3)

]

= g3fadmf bemf cde
∫

ddx ddy ddz
{

+ 7−3d
2 ∂µC(x−y)Abµ(y)∂ρC(y−z)Acλ(z)∂ρC(z−x)Aaλ(x)

− 3−2d
6 ∂µC(x−y)Abρ(y)∂ρC(y−z)Acλ(z)∂λC(z−x)Aaµ(x)

− 3−d
2 ∂µC(x−y)Abρ(y)∂ρC(y−z)Acµ(z)∂λC(z−x)Aaλ(x)

+ 3−d
3 ∂µC(x−y)Abρ(y)∂λC(y−z)Acµ(z)∂ρC(z−x)Aaλ(x)

− 5−2d
2 ∂µC(x−y)Abρ(y)∂λC(y−z)Acµ(z)∂λC(z−x)Aaρ(x)

}
− 2g3

3 faemf bdef cdm
∫

ddx ddy Abµ(x)Acρ(x)C(x−y)∂ρC(x−y)Aaµ(y)

+ g3

3 f
admf bcefdem

∫
ddx ddy ddz Aaµ(x)(∂ρC(x−y))2∂λC(y−z)Abλ(z)Acµ(z)

− g
3

3 f
admf bcefdem

∫
ddx ddy C(0)Aaµ(x)∂ρC(x−y)Abρ(y)Acµ(y) .

(5.67)

To obtain this last term, we had to use the Landau gauge condition ∂µAaµ = 0. Before addressing
the black terms, let us show that the colored terms match the respectively colored terms in the
MSS and FP determinants. Imposing r = 2(d−2) we obtain

−r = 1−d
2 + 7−3d

2 = 4−2d,
r+1

3 =−3−d
3 + 1

2 −
3−2d

6 = 2d−3
3 ,

r

2 = 1− 3−d
2 − 3−d

2 = d−2 ,

−r6 =−1
3 + 3−d

3 = 2−d
3 ,

r

2 = 1
2 −

5−2d
2 = d−2 .

(5.68)

All five equations are happily satisfied. We turn to the three black terms in (5.67). Using the
Jacobi identity in the first term and fabcfabd =Nδcd in the latter two yields

− g
3N

3 fabc
∫

ddx ddy Abµ(x)Acρ(x)C(x−y)∂ρC(x−y)Aaµ(y)

+ g3N

3 fabc
∫

ddx ddy ddz Aaµ(x)(∂ρC(x−y))2∂λC(y−z)Abλ(z)Acµ(z)

− g
3N

3 fabc
∫

ddx ddy C(0)Aaµ(x)∂ρC(x−y)Abρ(y)Acµ(y) .

(5.69)

The second term is rewritten using the identity

□(C2(x−y)) =−2C(0)δ(x−y)+2∂ρC(x−y)∂ρC(x−y) . (5.70)
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5. On-Shell N = 1 super Yang-Mills

This simplifies the expression above to

− g
3N

3 fabc
∫

ddx ddy Abµ(x)Acρ(x)C(x−y)∂ρC(x−y)Aaµ(y)

+ g3N

6 fabc
∫

ddx ddy ddz Aaµ(x)□(C2(x−y))∂λC(y−z)Abλ(z)Acµ(z)

+ g3N

3 fabc
∫

ddx ddy C(0)Aaµ(x)∂ρC(x−y)Abρ(y)Acµ(y)

− g
3N

3 fabc
∫

ddx ddy C(0)Aaµ(x)∂ρC(x−y)Abρ(y)Acµ(y)

= 0 .

(5.71)

Thus, (5.58) is satisfied. Showing that the Nicolai map passes these three tests in the fourth
order follows the same steps. However, given the size of the fourth-order result, there are, of
course, many more terms to consider.

5.7. An Ambiguity in Six Dimensions

The first Nicolai maps in [34–38] were not obtained by a systematic construction via the Rg-
operator but rather by trial and error. For lower orders in perturbation theory, this is possible
because here the map is rather constrained. However, at higher orders, the number of terms
grows rapidly. In this section, we present another trial and error Nicolai map for 6-dimensional
N = 1 super Yang-Mills [2]

(ŤgA)aµ(x) =Aaµ(x)+gfabc
∫

d6y ∂ρC(x−y)Abµ(y)Acρ(y)

+ 3g2

2 fabcf bde
∫

d6y d6z ∂ρC(x−y)Acλ(y)∂[ρC(y−z)Adµ(z)Aeλ](z)

+ 3g3

2 fabcf bdefdfg
∫

d6y d6z d6w ∂ρC(x−y)Acλ(y)
{

+∂λC(y−z)Aeσ(z)∂[µC(z−w)Afρ(w)Agσ](w)

−∂µC(y−z)Aeσ(z)∂[λC(z−w)Afρ(w)Agσ](w)

−∂ρC(y−z)Aeσ(z)∂[µC(z−w)Afλ(w)Agσ](w)
}

−g3fabcf bdefdfg
∫

d6y d6z d6w ∂ρC(x−y)Acλ(y)
{

+∂σC(y−z)Aeσ(z)∂[µC(z−w)Afλ(w)Agρ](w)

−∂σC(y−z)Aeρ(z)∂[µC(z−w)Afλ(w)Agσ](w)

+∂σC(y−z)Aeµ(z)∂[ρC(z−w)Afλ(w)Agσ](w)

+∂σC(y−z)Aeλ(z)∂[µC(z−w)Afρ(w)Agσ](w)
}

+O(g4) .

(5.72)
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5.8. Tests in Six Dimensions

We found this Nicolai map while working on the calculations presented in section 5.6. Since
this is a trial-and-error expression, there is no systematic way to obtain it. In particular, there
is no Rg-operator to generate the inverse Nicolai map. Up to O(g2) (5.72) agrees with (5.38).
However, in the third order, the two expressions differ. (5.72) is shorter than (5.38) and the
structure of the terms is more homogeneous in (5.72). In particular, the last and second to last
term from (5.38) are absent here.

There is no guarantee that the map (5.72) has an extension to higher orders. The freedom in
finding different Nicolai maps at any given order stems from the fact that the main theorem
5.1 only makes statements about the derivatives of the map. Another example of a map that
differs from the one obtained via the Rg-operator, is the third-order map for the 2-dimensional
Wess-Zumino model proposed in [35]. When computing a Nicolai map via the Rg-operator, the
result is always unique. So all order Nicolai maps are expected to be unique.

5.8. Tests in Six Dimensions

We show that (5.72) satisfies the three tests from section 5.6. We will see that the determinant
test only works for d= 6 dimensions. The other two tests work in any dimension. Since the new
result agrees with (5.38) up to O(g2), we only have to perform the tests in the third order.

5.8.1. The Gauge Condition

Let Ǎ′aµ ≡ (ŤgA)aµ. Acting with a derivative on (5.72) yields

∂µǍ′aµ (x) = ∂µAaµ(x)+ 3g3

2 fabcf bdefdfg
∫

d6y d6z d6w ∂µ∂ρC(x−y)Acλ(y)
{

+∂λC(y−z)Aeσ(z)∂[µC(z−w)Afρ(w)Agσ](w)

−∂µC(y−z)Aeσ(z)∂[λC(z−w)Afρ(w)Agσ](w)

−∂ρC(y−z)Aeσ(z)∂[µC(z−w)Afλ(w)Agσ](w)
}

−g3fabcf bdefdfg
∫

d6y d6z d6w ∂µ∂ρC(x−y)Acλ(y)
{

+∂σC(y−z)Aeσ(z)∂[µC(z−w)Afλ(w)Agρ](w)

−∂σC(y−z)Aeρ(z)∂[µC(z−w)Afλ(w)Agσ](w)

+∂σC(y−z)Aeµ(z)∂[ρC(z−w)Afλ(w)Agσ](w)

+∂σC(y−z)Aeλ(z)∂[µC(z−w)Afρ(w)Agσ](w)
}

+O(g4)

= ∂µAaµ(x)+O(g4) .

(5.73)
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5. On-Shell N = 1 super Yang-Mills

The blue and red terms cancel respectively. The other terms are anti-symmetric in µ and ρ.

5.8.2. The Free Action

The calculation of the free action (5.50) is also straightforward
1
2

∫
d6x Ǎ′aµ (x)(□ηµν−∂µ∂ν)Ǎ′aν (x)

∣∣∣
O(g3)

= 3g3

2 fabcf bdefdfg
∫

d6x d6y d6z d6w ∂ρC(x−y)Acλ(y)
{

+∂λC(y−z)Aeσ(z)∂[µC(z−w)Afρ(w)Agσ](w)□Aaµ(x)

−∂µC(y−z)Aeσ(z)∂[λC(z−w)Afρ(w)Agσ](w)□Aaµ(x)

−∂ρC(y−z)Aeσ(z)∂[µC(z−w)Afλ(w)Agσ](w)□Aaµ(x)
}

−g3fabcf bdefdfg
∫

d6x d6y d6z d6w ∂ρC(x−y)Acλ(y)
{

+∂σC(y−z)Aeσ(z)∂[µC(z−w)Afλ(w)Agρ](w)□Aaµ(x)

−∂σC(y−z)Aeρ(z)∂[µC(z−w)Afλ(w)Agσ](w)□Aaµ(x)

+∂σC(y−z)Aeµ(z)∂[ρC(z−w)Afλ(w)Agσ](w)□Aaµ(x)

+∂σC(y−z)Aeλ(z)∂[µC(z−w)Afρ(w)Agσ](w)□Aaµ(x)
}

+ 3g3

2 fabcf bde
∫

d6x d6y d6z d6w ∂ρC(x−y)Acλ(y)∂[µC(y−z)Adλ(z)Aeρ](z)

×□
(
fafg∂σC(x−w)Af µ(w)Agσ(w)

)
.

(5.74)

We integrate by parts and obtain
1
2

∫
d6x Ǎ′aµ (x)(□ηµν−∂µ∂ν)Ǎ′aν (x)

∣∣∣
O(g3)

= 3g3

2 fabcf bdefdfg
∫

d6x d6y d6z
{

−Aaµ(x)Acλ(x)∂ρ∂λC(x−y)Aeσ(y)∂[µC(y−z)Afρ(z)Agσ](z)

+ 1
2A

a
µ(x)Acλ(x)□C(x−y)Aeσ(y)∂[µC(y−z)Afλ(z)Agσ](z)

}
−g3fabcf bdefdfg

∫
d6x d6y d6z

{
− 1

2A
a
µ(x)Acλ(x)∂ρ∂σC(x−y)Aeσ(y)∂[µC(y−z)Afλ(z)Agρ](z)

+ 1
2A

a
µ(x)Acλ(x)∂ρ∂σC(x−y)Aeρ(y)∂[µC(y−z)Afλ(z)Agσ](z)

−Aaµ(x)Acλ(x)∂ρ∂σC(x−y)Aeµ(y)∂[ρC(y−z)Afλ(z)Agσ](z)
}

+ 3g3

2 fabcf bdefafg
∫

d6x d6y d6z

×Af µ(x)Agσ(x)∂σ∂ρC(x−y)Acλ(y)∂[µC(y−z)Adλ(z)Aeρ](z) .

(5.75)
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5.8. Tests in Six Dimensions

Again the blue and red terms cancel respectively. The green term is anti-symmetric under the
exchange of ρ and σ. In the remaining black term we use □C(x−y) =−δ(x−y) and the Jacobi
identity (2.5)

1
2

∫
d6x Ǎ′aµ (x)(□ηµν−∂µ∂ν)Ǎ′aν (x)

∣∣∣
O(g3)

=−3g3

4 fabcf bdefdfg
∫

d6x d6y Aaµ(x)Acλ(x)Aeσ(x)∂[µC(x−y)Afλ(y)Agσ](y)

=−g
3

4
(
fabcf bde+febaf bdc+f cbef bda

)
fdfg

∫
d6x d6y

×Aaµ(x)Acλ(x)Aeσ(x)∂[µC(x−y)Afλ(y)Agσ](y)

= 0 .

(5.76)

5.8.3. Jacobian, Fermion and Ghost Determinants

Let us, for a moment, assume that (5.72) exists in d dimensions. Then we compute the logarithm
of the Jacobian determinant at O(g3) using (5.64)

logdet
(
δǍ′aµ (x)
δAbν(y)

)∣∣∣∣∣
O(g3)

= tr
[
δǍ′

δA

∣∣∣∣
O(g3)

]
−
(

2 · 12

)
tr
[
δǍ′

δA

∣∣∣∣
O(g2)

δǍ′

δA

∣∣∣∣
O(g1)

]

+ 1
3tr

[
δǍ′

δA

∣∣∣∣
O(g1)

δǍ′

δA

∣∣∣∣
O(g1)

δǍ′

δA

∣∣∣∣
O(g1)

]
.

(5.77)

We find for (5.72) (in d dimensions)

tr
[
δǍ′

δA

∣∣∣∣
O(g3)

]
= g3fadmf bemf cde

∫
ddx ddy ddz

{
+ 27−10d

6 ∂µC(x−y)Abµ(y)∂ρC(y−z)Acλ(z)∂ρC(z−x)Aaλ(x)

− 3−d
2 ∂µC(x−y)Abρ(y)∂ρC(y−z)Acλ(z)∂λC(z−x)Aaµ(x)

− 3−2d
6 ∂µC(x−y)Abρ(y)∂ρC(y−z)Acµ(z)∂λC(z−x)Aaλ(x)

+ 3−d
3 ∂µC(x−y)Abρ(y)∂λC(y−z)Acµ(z)∂ρC(z−x)Aaλ(x)

− 21−7d
6 ∂µC(x−y)Abρ(y)∂λC(y−z)Acµ(z)∂λC(z−x)Aaρ(x)

}
.

(5.78)

Compared to (5.67), there are no additional terms here that require extra work to vanish. Since
(5.72) is identical to (5.38) up to the second order, the other two terms in (5.77) give the same
result as before, i.e. (5.65) and (5.66). Comparing these terms to the sum of the logarithm of the
Matthews-Salam-Seiler determinant (5.59) and the logarithm of the Faddeev-Popov determinant
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5. On-Shell N = 1 super Yang-Mills

(5.60) at O(g3) yields

−r = 1−d
2 + 27−10d

6 = 30−13d
6 ,

r+1
3 =−3−d

3 + 1
2 −

3−d
2 =−12−5d

6 ,

r

2 = 1− 3−d
2 − 3−2d

6 =−6−5d
6 ,

−r6 =−1
3 −

21−7d
6 = 2−d

3 ,

r

2 = 1
2 −

21−7d
6 =−18−7d

6 .

(5.79)

All of these equations are simultaneously satisfied for d = 6 and r = 2(6− 2) = 8. Thus we see
that (5.72) is only valid in six dimensions. Unlike for the Nicolai map (5.38), we could not find
a fourth-order result compatible with this 6-dimensional third-order result. However, it might
still exist.
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6. N = 4 super Yang-Mills

In this chapter, we discuss the Rg-operators and Nicolai maps for maximally extended 4-
dimensional N = 1 super Yang-Mills and N = 4 super Yang-Mills. Both Rg-operators are rather
cumbersome compared to the N = 1 super Yang-Mills Rg-operator from the previous chapter.
Thus, we will show that the N = 4 super Yang-Mills Nicolai map can be obtained from the
10-dimensional N = 1 super Yang-Mills Nicolai map by the means of dimensional reduction.

In section 6.1 we present the ‘off-shell’ R̃max
g -operator for maximally extended 4-dimensional

N = 1 super Yang-Mills. In section 6.2, we give the ‘on-shell’ R4
g-operator of N = 4 super Yang-

Mills and discuss the dimensional reduction of Rg-operators and Nicolai maps. Furthermore,
we give the first two orders of the N = 4 super Yang-Mills Nicolai maps. In the last section, we
discuss N = 4 correlation functions, BPS operators and the large N limit in the context of the
Nicolai map.

Most of this chapter is based on unpublished work by the author of this thesis. However, the
Rg-operators of maximally extended N = 1 super Yang-Mills and N = 4 super Yang-Mills have
first been derived by Rupprecht in [54]. The N = 4 super Yang-Mills Nicolai map was first given
by Nicolai and Plefka in [102].

6.1. ‘Off-Shell’ Supersymmetry

The closest we can get to an ‘off-shell’ formulation of the Nicolai map in N = 4 super Yang-Mills
is the ‘off-shell’ Nicolai map of maximally extended N = 1 super Yang-Mills in four dimensions.
Since this extended super Yang-Mills theory is a gauge theory with ‘off-shell’ supersymmetry, the
main theorem governing the properties of the Nicolai map is identical to the main theorem 4.1.
‘Off-shell’ supersymmetry allows us to write the action (2.136) as a supervariation. Moreover,
the gauge fixing procedure and the Ward identities are identical to those of regular N = 1 super
Yang-Mills. Hence, we may adopt the universal form of the Nicolai map from chapter 4 and
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6. N = 4 super Yang-Mills

write

R̃max
g X = dX

dg −
2
g

∆̃α(δ̃αX)+ 2
g

∫
d4x ¯̃Ca(x) δ̃α(GµÃaµ)∆̃α s(X)

− 1
g

∫
d4x ¯̃Ca(x)(GµÃaµ)s(X) .

(6.1)

This R̃max
g -operator inherits all its relevant properties from the R̃g-operator (4.28). Thus, we

will not repeat the proof of theorem 4.1 from section 4.3. In particular, the R̃max
g -operator

preserves the gauge condition, and it maps the bosonic part of the gauge invariant action to the
abelian action. As before, we split the R̃max

g -operator into a gauge invariant term and a gauge
fixing term R̃max

g = R̃max
inv + R̃max

gf with

R̃max
inv X = dX

dg −
2
g

∆̃α(δ̃αX) (6.2)

and

R̃max
gf X = g

∫
d4x ¯̃Ca(x)R̃inv

(
1
g G

µÃaµ

)
s(X) . (6.3)

Subsequently, the inverse Nicolai map of the gauge field is obtained by (4.19)

(
T −1
g A

)a
µ
(x)≡

(
T̃ −1
g

(1
g Ã
))a
µ
(x) :=

∞∑
n=0

gn

n!

[(
(R̃max

g )n
(1
g Ã
))a
µ
(x)

∣∣∣
Φ̃=gΦ

∣∣∣
g=0

]
, (6.4)

where Φ = (Aaµ,Aai ,Ba
i ,D

a,F ai ,G
a
i ) are the bosonic fields in the action (2.136). Thus, technically,

there are now 14 Nicolai maps for the 14 bosonic fields.

To find the explicit form of (6.1), we need the maximally extended N = 1 super Yang-Mills
action and its supersymmetry and BRST variations. Recall the action (2.136)

S̃max
inv = 1

g2

∫
d4x

[
− 1

4 F̃
a
µνF̃

aµν− i

2
¯̃λaγµ(Dµλ̃)a+ 1

2D̃
aD̃a

+ 1
2(DµÃi)a(DµÃi)a+ 1

2(DµB̃i)a(DµB̃i)a+ 1
2 F̃

a
i F̃

a
i + 1

2G̃
a
i G̃

a
i

− i

2 χ̄
a
i γ

µ(Dµχi)a−gfabc
(
D̃aÃbiB̃

c
i +(¯̃χai (Ãbi + iγ5B̃

b
i )λ̃c)

)
+εijkgf

abc
(1

2
¯̃χai (Ãbj− iγ5B̃

b
j)χck−

1
2 F̃

a
i (ÃbjÃck− B̃b

j B̃
c
k)− G̃ai ÃbjB̃c

k

)]
.

(6.5)

It is invariant under the supersymmetry transformations (2.137)

δ̃Ãaµ = iε̄γµλ̃
a , δ̃λ̃aα =−1

2(γµνε)αF̃ aµν + i(γ5ε)αD̃a , δ̃D̃a =−ε̄γ5γ
µ(Dµλ̃)a ,

δ̃Ãai = ε̄χ̃ai , δ̃B̃a
i = iε̄γ5χ̃

a
i ,

δ̃F̃ ai = iε̄γµ(Dµχ̃i)a+fabcε̄(Ãbi + iγ5B̃
b
i )λ̃c ,

δ̃G̃ai =−ε̄γ5γ
µ(Dµχ̃i)a−fabcε̄(B̃b

j − iγ5Ã
b
i)λ̃c ,

δ̃χ̃aiα = i(γµε)α(DµÃi)a+(γ5γ
µε)α(DµB̃i)a+ F̃ ai εα+ i(γ5ε)αG̃ai .

(6.6)
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6.1. ‘Off-Shell’ Supersymmetry

We utilize the ‘off-shell’ supersymmetry and write

S̃max
inv = δ̃α∆̃max

α (6.7)

with [54]

∆̃max
α =

∫
d4x

[
− 1

16(γµν λ̃a)αF̃ aµν−
i

8(γ5λ̃a)αD̃a− 1
8 χ̃

a
iαF̃

a
i −

i

8(γ5χ̃i)αG̃ai

− 1
8(γ5γµχ̃ai )α(DµB̃i)a−

i

8(γµχ̃ai )α(DµÃi)a+ i

4f
abc(γ5λ̃

a)αÃbjB̃c
j

+εijkf
abc
(
−1

8 χ̃
a
iα(ÃbjÃck− B̃b

j B̃
c
k)+ i

4(γ5χ̃ai )αÃbjB̃c
k

)]
.

(6.8)

Given the action (6.5) and the supersymmetry transformations (6.6), it is not very complicated
to guess the form of (6.8) up to the coefficients. The first two terms are the same as in the regular
N = 1 super Yang-Mills version of ∆̃max

α (4.6). The next two terms are simply the analog of the
second term for the other two auxiliary fields, and all the remaining terms are the analog of the
first term for the new scalar fields Aai and Ba

i . The coefficients are then determined from (6.7).

The action (6.5) is subjected to the same gauge fixing procedure as the regular N = 1 super
Yang-Mills action. Thus, we add to (6.5) the gauge fixing term (2.77)

S̃gf = 1
g2

∫
d4x

[ 1
2ξ (GµÃaµ)(GνÃaν)+ 1

2
¯̃CaGµ(DµC̃)a

]
. (6.9)

The combined action S̃max = S̃max
inv + S̃gf is invariant under the BRST transformations

sÃaµ = (DµC̃)a , sF̃ aµν = fabcF̃ bµνC̃
c , sλ̃a =−fabcλ̃bC̃c ,

sÃai = fabcÃbi C̃
c , sB̃a

i = fabcB̃b
i C̃

c , sχ̃ai =−fabcC̃bi C̃c ,

sD̃a = fabcD̃bC̃c , sF̃ ai = fabcF̃ bi C̃
c , sG̃ai = fabcG̃bi C̃

c ,

s C̃a =−1
2f

abcC̃bC̃c , s ˜̄Ca =−1
ξ
GµÃaµ .

(6.10)

The definition of the fermion propagator follows from (2.121)

iλ̃a(x)¯̃λb(y)≡ S̃ab44(x,y;Ã ) , iλ̃a(x) ¯̃χbi(y)≡ S̃ab4i (x,y;Ã ) ,

iχ̃ai (x)¯̃λb(y)≡ S̃abi4 (x,y;Ã ) , iχ̃ai (x) ¯̃χbj(y)≡ S̃abij (x,y;Ã ) ,
(6.11)

with Ã = (Ãaµ, Ãai , B̃a
i ). The propagator obeys the Dirac equation

γµ(DµS̃4A)ab(x,y;Ã )+ ifaec
(
Ãei (x)+ iγ5B̃

e
i (x)

)
S̃cbiA(x,y;Ã ) = δ4Aδ

abδ(x−y) ,

γµ(DµS̃iA)ab(x,y;Ã )+ iεijkf
aec
(
Ãej(x)− iγ5B̃

e
j (x)

)
S̃cbkA(x,y;Ã ) = δiAδ

abδ(x−y) ,
(6.12)

where A = 1,2,3,4. The ghost propagator remains unchanged from the one for N = 1 super
Yang-Mills in (4.29). Thus, we have collected all the relevant equations to obtain the explicit

97



6. N = 4 super Yang-Mills

form of the R̃max
g -operator (6.1). The initial result may be simplified slightly by using the Dirac

equation (6.12). Subsequently, the gauge invariant part of the R̃max
g -operator reads

R̃max
inv = d

dg
+ 1

8g

∫
d4x d4y tr

[
γµS̃ab

44(x,y;Ã )γρλ
]

F̃ b
ρλ(y) δ

δÃa
µ(x)

− i

4g

∫
d4x d4y tr

[
γµS̃ab

44(x,y;Ã )γ5

]
D̃b(y) δ

δÃa
µ(x)

− 1
4g

∫
d4x d4y tr

[
γµS̃ab

4i (x,y;Ã )
(

F̃ b
i (y) + iγ5G̃b

i (y)
)]

δ

δÃa
µ(x)

− i

8g

∫
d4x d4y tr

[
S̃ab

i4 (x,y)γµν F̃ b
µν(y)

(
δ

δÃa
i (x)

+ iγ5
δ

δB̃a
i (x)

)]
+ 1

4g

∫
d4x d4y tr

[
γ5S̃ab

i4 (x,y;Ã )D̃b(y)
(

δ

δÃa
i (x)

+ iγ5
δ

δB̃a
i (x)

)]
− i

4g

∫
d4x d4y tr

[
S̃ab

ij (x,y;Ã )
(

F̃ b
j (y) + iγ5G̃b

j(y)
)(

δ

δÃa
i (x)

+ iγ5
δ

δB̃a
i (x)

)]
+ 1

g

∫
d4x

[
Ãa

i (x) δ

δÃa
i (x)

+ B̃a
i (x) δ

δB̃a
i (x)

]
− i

8g

∫
d4x d4y tr

[
γ5γµ(DµS̃44)ab(x,y;Ã )γρλ

]
F̃ b

ρλ(y) δ

δD̃a(x)

+ 1
4g

∫
d4x d4y tr

[
γµ(DµS̃44)ab(x,y;Ã )

]
D̃b(y) δ

δD̃a(x)

− i

4g

∫
d4x d4y tr

[
γ5γµ(DµS̃4i)ab(x,y;Ã )

(
F̃ b

i (y) + iγ5G̃b
i (y)

)]
δ

δD̃a(x)

+ 1
8g

∫
d4x d4y tr

[
γµ(DµS̃i4)ab(x,y)γρλF̃ b

ρλ(y)
(

δ

δF̃ a
i (x)

+ iγ5
δ

δG̃a
i (x)

)]
− i

4g

∫
d4x d4y tr

[
γ5γµ(DµS̃i4)ab(x,y;Ã )D̃b(y)

(
δ

δF̃ a
i (x)

+ iγ5
δ

δG̃a
i (x)

)]
+ 1

4g

∫
d4x d4y tr

[
γµ(DµS̃ij)ab(x,y;Ã )

(
F̃ b

j (y) + iγ5G̃b
j(y)

)(
δ

δF̃ a
i (x)

+ iγ5
δ

δG̃a
i (x)

)]
+ i

8g
fabc

∫
d4x d4y tr

[
(Ãc

i (x) + iγ5B̃c
i (x))S̃bd

44(x,y;Ã )γρλF̃ d
ρλ(y)

(
δ

δF̃ a
i (x)

+ iγ5
δ

δG̃a
i (x)

)]
− 1

4g
fabc

∫
d4x d4y tr

[
(Ãc

i (x) + iγ5B̃c
i (x))S̃ad

44 (x,y;Ã )γ5D̃d(y)
(

δ

δF̃ a
i (x)

+ iγ5
δ

δG̃a
i (x)

)]
+ i

4g
fabc

∫
d4x d4y

× tr
[

(Ãc
i (x) + iγ5B̃c

i (x))S̃ae
4j (x,y;Ã )

(
F̃ e

j (y) − iγ5G̃e
j(y)

)( δ

δF̃ a
i (x)

+ iγ5
δ

δG̃a
i (x)

)]
.

(6.13)
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Likewise, the gauge fixing term is given by

R̃max
gf = −g

∫
d4x d4y (DµG̃)ab(x,y;Ã)R̃inv

(
1
g GµAb

µ(y)
)

δ

δÃa
µ(x)

+ gfabc

∫
d4x d4y G̃bd(x,y;Ã)R̃inv

(
1
g GµAd

µ(y)
)

Ãc
i (x) δ

δÃa
i (x)

+ gfabc

∫
d4x d4y G̃bd(x,y;Ã)R̃inv

(
1
g GµAd

µ(y)
)

B̃c
i (x) δ

δB̃a
i (x)

+ gfabc

∫
d4x d4y G̃bd(x,y;Ã)R̃inv

(
1
g GµAd

µ(y)
)

D̃c(x) δ

δD̃a(x)

+ gfabc

∫
d4x d4y G̃bd(x,y;Ã)R̃inv

(
1
g GµAd

µ(y)
)

F̃ c
i (x) δ

δF̃ a
i (x)

+ gfabc

∫
d4x d4y G̃bd(x,y;Ã)R̃inv

(
1
g GµAd

µ(y)
)

G̃c
i (x) δ

δG̃a
i (x)

.

(6.14)

Without any explicit calculations, we can already tell that the Nicolai maps corresponding to
this R̃max

g -operator will be highly complicated. Even though physical observables do not depend
on the auxiliary fields, these will be present in the Nicolai maps of all bosonic fields.

6.2. ‘On-Shell’ Supersymmetry

We consider the ‘on-shell’ formulation of maximally extendedN = 1 super Yang-Mills, i.e. N = 4
super Yang-Mills, in the hope of a more concise Rg-operator and Nicolai map. The R4

g-operator
of N = 4 super Yang-Mills is derived exactly like the ‘on-shell’ N = 1 super Yang-Mills Rg-
operator in the previous chapter. Due to the similarity between N = 1 super Yang-Mills and
N = 4 super Yang-Mills, we can once again immediately predict the structure of the N = 4 super
Yang-Mills R4

g-operator

R4
gX := dX

dg +∆αA (δαAX)+
∫

d4x C̄a δαA(∂µAaµ)∆αA s(X)+Z4X . (6.15)

Notice that the supersymmetry variation and ∆αA carry an additional index A = 1,2,3,4 like
the four Majorana fermions λaαA. The multiplicative contribution Z4 again only vanishes in the
Landau gauge. This can be seen from a direct calculation or by dimensionally reducing the
10-dimensional Z from (5.15).

So, as before, we must now only figure out the supersymmetry and BRST variations as well as
the explicit expression of ∆αA to give the explicit form of (6.15). To this end, recall the gauge
invariant N = 4 super Yang-Mills action with Majorana spinors (2.116)

S4
inv =

∫
d4x

[
− 1

4F
a
µνF

aµν− 1
2(DµAi)a(DµAi)a− 1

2(DµBi)a(DµBi)a

− i

2 λ̄
a
Aγ

µ(DµλA)a+ g

2f
abcλ̄aA(αiABAbi + iγ5β

i
ABB

b
i )λcB

− g
2

4 f
abcfade

(
AbiA

c
jA

diAej +Bb
iB

c
jB

diBej +2AbiBc
jA

diBej
)]
.

(6.16)
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The action is invariant under the supersymmetry transformations (2.118)

δAaµ = i(ε̄AγµλaA) , δAai =−(ε̄AαiABλaB) , δBa
i =−i(ε̄Aγ5βiABλ

a
B) ,

δλaαA =−1
2(γµνεA)αF aµν− i(γµαiABεB)α(DµAi)a− (γ5γ

µβiABεB)α(DµBi)a

− g2f
abc
((
αiABA

b
i − iγ5β

i
ABB

b
i

)(
αjBCA

c
j + iγ5β

j
BCB

c
j

)
εC
)
α
.

(6.17)

The gauge fixing term is the non-rescaled version of (6.9) and the BRST transformations are
the non-rescaled version of (6.10) without the auxiliary fields. Subsequently, we find that the
N = 4 super Yang-Mills versions of (5.9) and (5.15) are given by [54]

∆αA =− 1
16f

abc
∫

d4x

[1
2(γµνλaA)αAbµAcν + i(γµAaµ(αiABAbi + iγ5β

i
ABB

b
i )λcB)α

+ 1
2
[(
αiABA

a
i − iγ5β

i
ABB

a
i

)(
αjBCA

b
j + iγ5β

j
BCB

b
j

)
λcC

]
α

] (6.18)

and

Z = 1
16

∫
d4y C̄a(y)δAα

(
∂ρAaρ(y)

)
fabc

∫
d4x (γµνλaA(x))α∂µCb(x)Acν(x)

− i

16

∫
d4y C̄a(y)δAα

(
∂ρAaρ(y)

)
×fabc

∫
d4x (γµ∂µCa(x)(αiABAbi(x)− iγ5β

i
ABB

b
i (x))λcB(x))α

+ 1
16f

abc
∫

d4x λ̄aA(x)γµAbµ(x)λcA(x)

+ i

16f
abc
∫

d4x λ̄aA(x)(αiABAbi(x)+ iγ5β
i
ABB

b
i (x))λcB(x)

− ifabc
∫

d4x C̄a(x)∂µ
(
Abµ(x)Cc(x)

)
.

(6.19)

The fermion propagator iλaA(x)λ̄bB(y)≡ SabAB(x,y;A ) and Dirac equation

(
δACδ

acγµDµ+ igfaecαiACA
e
i (x)−gfaecγ5β

i
ACB

e
i (x)

)
ScbCB(x,y;A ) = δABδ

abδ(x−y) (6.20)

for N = 4 super Yang-Mills with A = (Aaµ,Aai ,Ba
i ) were defined in (2.121) and (2.122).

To obtain a compact expression for the Rg-operator, we would like to write the gauge fixing
term as a function of the remaining R4

g-operator, i.e. the ‘on-shell’ analog of (6.14). In chapter
5, we have obtained a more compact form by introducing the transversal projector (5.18). In
N = 4 super Yang-Mills, it appears that it is advantageous to write the Rg-operator as

R4
g = d

dg +R4
inv +R4

gf (6.21)
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with

R4
inv = − 1

32fbde

∫
d4x d4y tr

[
γµSab

AA(x,y;A )γρλ
]
Ad

ρ(y)Ae
λ(y) δ

δAa
µ(x)

− i

16fbde

∫
d4x d4y tr

[
γµSab

AB(x,y;A )
(

αi
BAAd

i (y) + iγ5βi
BABd

i (y)
)

γρAe
ρ(y)

]
δ

δAa
µ(x)

− i

32

∫
d4x d4y tr

[
γµSab

AB(x,y;A )
(

αj
BA(DρAj)b(y) + iγ5βj

BA(DρBj)b(y)
)

γρ
]

δ

δAa
µ(x)

+ i

32fbde

∫
d4x d4y tr

[
Sab

AB(x,y,A )γµνAd
µ(y)Ae

ν(y)
(

αi
BA

δ

δAa
i (x) + iγ5βi

BA
δ

δBa
i (x)

)]
− 1

16fbde

∫
d4x d4y tr

[
Sab

AB(x,y;A )
(

αj
BCAd

j (y) + iγ5βj
BCBd

j (y)
)

γρAe
ρ(y)

×
(

αi
CA

δ

δAa
i (x) + iγ5βi

CA
δ

δBa
i (x)

)]
− 1

32

∫
d4x d4y tr

[
Sab

AB(x,y;A )
(

αk
BC(DρAk)b(y) + iγ5βk

BC(DρBk)b(y)
)

γρ

×
(

αi
CA

δ

δAa
i (x) + iγ5βi

CA
δ

δBa
i (x)

)]
− 1

2

∫
d4x tr

[
Aa

i (x) δ

δAa
i (x) + Ba

i (x) δ

δBa
i (x)

]

(6.22)

and

R4
gf =−

∫
d4x d4y (DµG)ab(x,y;A )Rinv

(
∂ρAbρ(y)

) δ

δAaµ(x)

+gfabc
∫

d4x d4y Gbd(x,y;A )Rinv
(
∂ρAdρ(y)

)
Aci (x) δ

δAai (x)

+gfabc
∫

d4x d4y Gbd(x,y;A )Rinv
(
∂ρAdρ(y)

)
Bc
i (x) δ

δBa
i (x) .

(6.23)

These expressions are already much more concise than (6.13) - (6.14). However, compared to the
N = 1 super Yang-Mills Rg-operator (5.20), they are still rather complicated. Hence, we want
to show that the construction of the Rg-operator is compatible with the dimensional reduction
of 10-dimensional N = 1 super Yang-Mills to 4-dimensional N = 4 super Yang-Mills. This would
allow us to circumvent the N = 4 super Yang-Mills R4

g-operator altogether. Instead, we could
simply apply the dimensional reduction to the 10-dimensional N = 1 super Yang-Mills Nicolai
map (5.38).

6.2.1. The Dimensional Reduction of the 10-dimensional Rg-Operator

We compute the dimensional reduction of the 10-dimensional Rg-operator (5.16). Recall that

RgX := dX
dg +∆10

τ (δτX)+
∫

d10x C̄a δτ (∂MAaM )∆10
τ s(X)+ZX . (6.24)

with M = 0, . . . ,9, τ = 1, . . . ,32 and

∆10
τ =− 1

64f
abc
∫

d10x
(
ΓMNΛa

)
τ
AbMAcN . (6.25)
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In section 2.5.2, we have explained how to dimensionally reduce the 10-dimensional N = 1
super Yang-Mills action to the 4-dimensional N = 4 super Yang-Mills action. The cost of this
calculation was that we had to choose an explicit spinor representation (2.127)

Γµ := γµ⊗18 , µ= 0,1,2,3 ,

Γ3+i := γ5⊗
(

0 iαi

−iαi 0

)
, i= 1,2,3 ,

Γ6+i := γ5⊗
(

0 βi

βi 0

)
, i= 1,2,3 .

(6.26)

These gamma matrices fix the form of a general 10-dimensional Majorana-Weyl spinor to (2.132)

Λa =
(
χa

χ̄a

)
with χa =

 0
ψa1
0
ψa2

 and ψai =

ω
a
1i
ωa2i
ωa3i
ωa4i

 , 0 =

0
0
0
0

 . (6.27)

During the dimensional reduction, this 32-component Majorana-Weyl spinor decomposes into
four 4-component Majorana spinors

λaA =

 ωaA1
ωaA2
−ω̄aA2
ω̄aA1

 . (6.28)

We already know from section 2.5.2 that the dimensional reduction of the 10-dimensional su-
persymmetry variations implies the 4-dimensional supersymmetry variations (6.17). Thus, it
remains to be shown that ∆10

τ is related to the ∆αA in the same way that Λaτ is related to the
λaαA. A brief calculation indeed reveals that

∆10
4+A = ∆1A , ∆10

12+A = ∆2A , ∆10
16+A =−∆3A , ∆10

24+A =−∆4A (6.29)

for all A = 1,2,3,4. Hence, we can conclude that R10
g is equivalent to R4

g upon dimensional
reduction. Thus, instead of computing the N = 4 super Yang-Mills Nicolai map via the Rg-
operator (6.21), we can take the 10-dimensional N = 1 super Yang-Mills Nicolai map from (5.38)
and imply the dimensional reduction. Furthermore, this allows us to obtain the map directly
for the six scalar fields ϕaI instead of the 3+3 scalar and pseudoscalar fields Aai and Ba

i , without
passing through a Weyl spinor formulation of the R4

g-operator. Up to the second order in the
coupling, we find [102]

(TgA)aµ(x) =Aaµ(x)+gfabc
∫

d4y ∂ρC(x−y)Abµ(y)Acρ(y)

+ 3g2

2 fabcf bde
∫

d4y d4z ∂ρC(x−y)Acλ(y)∂[ρC(y−z)Adµ(z)Aeλ](z)

+g2fabcf bde
∫

d4y d4z ∂ρC(x−y)ϕcI(y)∂[ρC(y−z)Adµ](z)ϕeI(z)

+O(g3)

(6.30)
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and

(Tg ϕ)aI (x) =Aaµ(x)+gfabc
∫

d4y ∂ρC(x−y)ϕbI(y)Acρ(y)

−g2fabcf bde
∫

d4y d4z ∂ρC(x−y)Acλ(y)∂[ρC(y−z)Adλ](z)ϕeI(z)

− g
2

2 f
abcf bde

∫
d4y d4z ∂ρC(x−y)ϕcJ(y)∂ρC(y−z)ϕdJ(z)ϕeI(z)

+O(g3) .

(6.31)

In the next chapter, we will see yet another approach to the Nicolai map in N = 4 super Yang-
Mills. We will compute the vacuum expectation value of a N = 4 Wilson loop by expressing it
in terms of 10-dimensional N = 1 fields. This is the most effective method of computing N = 4
super Yang-Mills correlation functions or vacuum expectation values with the Nicolai map since
it allows us to directly use the N = 1 Nicolai map (5.38). A Nicolai map which is simpler than
any map we have found in this chapter.

6.3. Correlation Functions and the Nicolai Map

In [102] Nicolai and Plefka have used the Nicolai maps (6.30) and (6.31) to compute all scalar
2-, 3-, and 4-point functions in N = 4 super Yang-Mills up to O(g2). As expected, their results
agree with the previous calculation from e.g. [103]. Furthermore, they constructed the one-loop
dilatation operator matching the result from [104].

In the last chapter of [102], the authors also speculate about a possible invariance of (certain)
Wilson loops under the action of the R4

g-operator (6.15). However, it turns out that no Wilson
loop is invariant under the action of the R4

g-operator. This can be seen by a direct calculation.
More generally, the statement that the vacuum expectation value of some operator O does not
receive quantum corrections is much weaker than the operator being invariant under the action
of the R4

g-operator as this would imply that also all n-point functions ⟨⟨O . . .O⟩⟩g of the operator
O do not receive any quantum corrections. The statement follows from the simple observation
that R4

gO = 0 implies T −1
g O =O and thus

⟨⟨O . . .O⟩⟩g =
〈
T −1
g O . . .T −1

g O
〉

0 = ⟨O . . .O⟩0 . (6.32)

This is clearly not the case for Wilson loops, as has been demonstrated in [105] for straight
anti-parallel lines and in [106] for circles.

So far, the examples of operators annihilated by the Rg-operator are scarce. In [34] Nicolai
showed that if the Rg-operator (5.16) is restricted to 4 dimensions and modified by letting

∆α→∆±α = 1
2(1±γ5)αβ∆β (6.33)

103



6. N = 4 super Yang-Mills

it annihilates the (anti) self-dual field strength

F a±µν (x) = 1
2F

a
µν(x)± 1

4ϵµνρλF
aρλ(x) (6.34)

on the gauge surface. For the N = 4 super Yang-Mills R4
g-operator, this is no longer true. The

next best prospect are operators which are not annihilated by the R4
g-operator but whose Nicolai

map gives rise to some simplifications. A natural candidate in N = 4 super Yang-Mills would
be BPS operators. These are operators corresponding to states which are annihilated by some
of the supersymmetry generators (see chapters 8 and 9 for details). In N = 4 super Yang-Mills,
some of these BPS operators are so strongly protected that their 2- and 3-point functions do not
receive any quantum corrections. Unfortunately, however, the Nicolai maps of these operators
are not significantly simpler than the maps for similar non-BPS operators. For example compare
the Nicolai map of the unprotected Konishi operator K = trc(ϕIϕI) to the Nicolai map of the
1
2 -BPS operator φIJ := trc(ϕIϕJ)− ηIJ

6 trc(ϕKϕK) by using (6.31). We suspect this is because the
4-point functions of BPS operators are not protected. Nevertheless, the 2- and 3-point functions
computed with the Nicolai map reveal the expected simplifications. Thus possibly a focus on
correlation functions of BPS operators via the Nicolai map rather than the study of the Nicolai
maps of the operators themselves is more fruitful. However, this is left for the future.

6.3.1. The Large N Limit

In [107] ‘t Hooft showed that the SU(N) symmetry structure of N = 4 super Yang-Mills allows
us to interpret N as an additional coupling constant and consider correlation functions as ex-
pansions in powers of 1/N . A particularly interesting case arises in the large N (or ‘t Hooft)
limit N →∞, g→ 0 and g2N fixed. In this limit, only planar Feynman diagrams survive, and
the theory is believed to be integrable [104, 108–110]. Moreover, the planar limit is important
in the context of the AdS/CFT correspondence [23] (see also [26] for a review). In its strongest
version, the correspondence claims that there is an exact equivalence between 4-dimensional
N = 4 super Yang-Mills and type IIB superstring theory on the AdS5×S5 background. How-
ever, profound tests of the correspondence, such as comparing the anomalous dimension of the
dilatation operator [111] to certain solitonic closed-string solutions [112], are constrained to the
large N limit of the gauge theory.

Thus, one might wonder about the large N limit in the context of the Nicolai map. After all,
the image of the map is a free, i.e. integrable field theory. However, the Nicolai map itself
(6.30) - (6.31) does not depend on N but merely the structure constants fabc. Thus, the large
N expansion becomes visible only when computing vacuum expectation values or correlation
functions. We obtain factors of N via contractions of the type fabcfabd = Nδcd. In general,

104



6.3. Correlation Functions and the Nicolai Map

all terms in the Nicolai map contribute to all orders of the 1/N expansion through their Wick
contractions with each other. This appears to rule out the existence of a large N Nicolai map.
Moreover, neither the N = 4 super Yang-Mills action nor the supersymmetry variations are
altered by resorting to the large N limit. Thus, also the construction of R4

g will not change in
this limit.
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In this chapter, we demonstrate an application of the Nicolai map by computing the vacuum
expectation value of the infinite straight line Maldacena-Wilson loop in N = 4 super Yang-Mills
to order g6 (for all N). Thus, we extend the previous perturbative result by one order. The
results of this chapter are twofold. The perturbative cancellations of the different contributions
to the Maldacena-Wilson loop are by no means trivial and seem to resemble those of the circular
Maldacena-Wilson loop at order g4. Furthermore, we argue that our approach to computing
quantum correlation functions is competitive with more standard diagrammatic techniques.

The chapter is organized as follows. In the first section, we introduce the Maldacena-Wilson
loop and briefly review previous results and their importance in the AdS/CFT correspondence.
In the second section, we outline our strategy for the perturbative calculation of the vacuum
expectation value. In section 7.3, we discuss the possible divergences arising in the calculation.
Section 7.4 contains the details of the perturbative calculation of the vacuum expectation value.
In particular, we show that all quantum corrections vanish up to O(g6).

This chapter is heavily based on the author’s publication [4].

7.1. Introduction

Wilson loops are gauge invariant operators describing the parallel transport of a gauge field
around a closed loop [113]. Thus, they are essentially path dependent phase factors. In a pure
gauge theory, they form an over-complete basis of gauge invariant operators [114]. In gauge
theories containing matter, open Wilson loops (or Wilson lines) can be thought of as parallel
transport operators used to compare two quark fields ψ(x) and ψ(y), transforming under the
fundamental representation of the gauge group, at two different points x and y (see e.g. [65] for
details).

In super Yang-Mills field theories, the Wilson line along some curve C from a to b is defined as

WC(a,b) = P exp
(
ig

∫
C

dxµAµ(x)
)
, (7.1)
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where Aµ(x) = taAaµ(x) is the Lie algebra valued gauge potential, with ta the traceless hermitian
generators of the fundamental representation of su(N). P denotes the path ordering. Given a
parametrization xµ(τ) of the curve C with x(0) = a and x(1) = b (7.1) becomes

WC(a,b) = P exp
(
ig

∫ 1

0
dτ Aµ(x)ẋµ

)
, (7.2)

where we have abbreviated ẋµ ≡ dx(τ)
dτ and x≡ x(τ). The path ordering is such that larger values

of τ stand to the right. When we take the trace of a Wilson line along a closed curve C, we
obtain the gauge invariant Wilson loop

W(C) = 1
N

trcP exp
(
ig

∮
C

dτ Aµ(x)ẋµ
)
. (7.3)

For the conventions on the trace, see section 2.1. The factor of 1
N is to normalize the large N

expansion of the vacuum expectation value.

In [115], Maldacena generalized the definition of the Wilson loop for N = 4 super Yang-Mills by
additionally coupling it to the scalar fields. The (gauge invariant) Euclidean Maldacena-Wilson
loop is defined as

WM (C) = 1
N

trcP exp
(
ig

∮
C

dτ
(
Aµ(x)ẋµ+ iϕI(x)|ẋ|θI

))
, (7.4)

where θI describes a point on the unit 5-sphere, i.e. θIθI = 1, and x(τ) parametrizes the curve
C. In general θI can depend on τ . However, in the following, we will restrict ourselves to
the simpler case of constant θI . The Maldacena-Wilson loop plays an important role in the
context of the AdS/CFT correspondence as its vacuum expectation value is believed to be dual
to the area of the minimal surface of a disk in supergravity [115, 116]. However, the instances
of good tests for the AdS/CFT correspondence are scarce. Usually, the problem is that the
gauge theory limit of large N and large g2N is not attainable in perturbation theory. Thus, for
a long time, most tests of the AdS/CFT correspondence have been restricted to operators so
protected by supersymmetry that they do not receive any quantum corrections (see chapters 8
and 9). However, in a series of papers, Erickson, Drukker, Gross, Pestun, Semenoff and Zarembo
found an exact expression for the vacuum expectation value of a circular Maldacena-Wilson loop
to all orders in the coupling constant [105, 116, 117]. After an initial conjecture by Erickson,
Semenoff and Zarembo, who summed only certain types of Feynman diagrams to obtain the
vacuum expectation value, Drukker, Gross and Pestun used the technique of localization to
obtain the vacuum expectation value of the circular Maldacena-Wilson loop from that of the
infinite straight line. The idea behind the proof is that the infinite straight line and the circle are
related by a special conformal transformation and that the difference of the vacuum expectation
values for Maldacena-Wilson loops of these two shapes depends merely on the one point of the
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circle that gets sent to infinity during the special conformal transformation turning it into an
infinite straight line. The all-order gauge theory result has been successfully tested up to the
second order in string theory [118–121].

Unfortunately, however, there is a problem with this very nice result. While it is widely believed
that the vacuum expectation value of the infinite straight line Maldacena-Wilson loop is exactly
equal to one, i.e.

〈〈
W(−)

〉〉
g

= 1 (7.5)

this has not been proven. In [120], Zarembo showed that the infinite straight line Maldacena-
Wilson loop is a 1

2 -BPS object, i.e. it preserves 1
2 of the N = 4 supersymmetries. But contrary

to the type of BPS operators we will meet in the next two chapters, this does not imply anything
regarding the vacuum expectation value of the Maldacena-Wilson loop. Thus, for now, we are
limited to perturbation theory in which the vacuum expectation value of the infinite straight line
Maldacena-Wilson loop has previously only been computed to O(g4N2) [120]. In the following,
we want to show how to use our fourth-order N = 1 super Yang-Mills Nicolai map (C.1) to
obtain the vacuum expectation value of the infinite straight line Maldacena-Wilson loop up to
O(g6) (for all N).

7.2. The Wilson Loop and the Nicolai Map

In this chapter we use the Euclidean metric. We parametrize the infinite straight line Maldacena-
Wilson loop by xµ(τ) = (τ,0,0,0)

WM (−) = 1
N

trcP exp
(
ig

∫ ∞
−∞

dτ
(
Aµ(x)ẋµ+ iϕI(x)|ẋ|θI

))
. (7.6)

Due to the work of Dietz and Lechtenfeld, we know that the Nicolai map provides a ghost
and fermion free quantization of supersymmetric Yang-Mills theories [40–42]. Recall that the
vacuum expectation value of any bosonic monomial X[Φ] is given by

⟨⟨X[Φ]⟩⟩g =
〈
X[T −1

g Φ]
〉

0 , (7.7)

where T −1
g is the inverse Nicolai map. Using the linearity of

〈〈
. . .
〉〉
g

and T −1
g X[Φ] = X[T −1

g Φ]
we can extend (7.7) to n-point correlators of bosonic operators Oi(xi), i.e.

〈〈
O1(x1) . . .On(xn)

〉〉
g

=
〈
(T −1
g O1)(x1) . . .(T −1

g On)(xn)
〉

0 . (7.8)

A priori, there are several ways to compute the vacuum expectation value of the infinite straight
line Maldacena-Wilson loop (7.6) with the Nicolai map. The naive approach is to first compute
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the inverse Nicolai transformation of (7.6) and then use (7.7) to find the vacuum expectation
value. However, unfortunately, the Nicolai transform of (7.6) is by no means a trivial expression
and thus, the intermediate expressions in the calculation would be unnecessarily cumbersome.

So instead of the 4-dimensionalN = 4 super Yang-Mills Maldacena-Wilson loop (7.6) we consider
the 10-dimensional N = 1 super Yang-Mills Wilson loop

WM (−) = 1
N

trcP exp
(
ig

∫ ∞
−∞

dτ AM (z)żM
)
, (7.9)

with the 10-dimensional gauge field AM (z) = taAaM (z) and żM = (ẋµ, ẏI) = (ẋµ, i|ẋ|θI). We
abbreviate zi ≡ z(τi). For an infinite straight line żMi satisfies

δMN ż
M
i ż

N
j = ẋi · ẋj−|ẋi||ẋj |= 0 . (7.10)

Furthermore, we will not apply the inverse Nicolai map to (7.9) directly but rather first expand
the vacuum expectation value of (7.9) in powers of the coupling g. Then we obtain simple
n-point correlation functions of the 10-dimensional gauge field AaM , which are computed by the
means of (7.8) and Wick’s theorem. Up to the second order, the inverse of the 10-dimensional
Nicolai map (C.1) is given by

(T −1
g A)aM (z) =AaM (z)−gfabc

∫
d10v ∂NC(z−v)AbM (v)AcN (v)

+ g

2f
abcf bde

∫
d10v d10w

{
+3∂NC(z−v)AcL(v)∂[MC(v−w)AdN (w)AeL](w)

−4∂NC(z−v)Ac[M (v)∂LC(v−w)AdN ](w)AeL(w)
}

+O(g3) .

(7.11)

For n-point quantum correlation functions, we define

〈〈
O1(x1) . . .On(xn)

〉〉
m

:=
〈〈
O1(x1) . . .On(xn)

〉〉
g

∣∣∣∣
O(gm)

, (7.12)

with
〈〈
O1(x1) . . .On(xn)

〉〉
0 =

〈
O1(x1) . . .On(xn)

〉
0.

7.3. Divergences and Dimensional Reduction

Starting at order g2, the vacuum expectation value of a general Maldacena-Wilson loop is di-
vergent when two or more space-time arguments approach each other. However, in [118], it was
argued that these linear divergences cancel for loops of the type (7.4), which are parametrized
by a four-vector xµ and a point on the unit 5-sphere θI . For an explicit proof at O(g4) see
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[105]. In the case of the infinite straight line, the situation is even simpler since up to O(g4) all
divergent terms are proportional to ẋµẋµ−|ẋ||ẋ|= 0. However, we will see that at order g6, this
simplicity ceases to exist as the internal structure of, in particular, the 2- and 3-point correlation
functions becomes more involved. We expect to obtain two UV divergent contributions from
these correlation functions, which cancel each other when they are summed up.

Moreover, partial contributions of, for example, fermion or ghost loops to any n-point function
are generally highly divergent. Luckily, the Nicolai map completely sidesteps the use of fermion
and ghost fields in the computation of bosonic correlation functions. Thus, we will not see any
divergences related to such loops.

Since intermediate results in our calculations are UV divergent, regularization by dimensional
reduction is in order. Our starting point is N = 1 super Yang-Mills in 10 dimensions, where
we denote the spacetime indices by M,N = 0, . . . ,9. Dimensionally reducing the 10-dimensional
N = 1 theory to N = 4 super Yang-Mills in 2ω dimensions, we split the spacetime indices
M = (µ,I), where µ,ν = 0, . . . ,2ω− 1 and I,J = 1, . . . ,10− 2ω. Likewise we decompose the
coordinates zM = (xµ,yI) and the gauge field

AaM (x,y) =
(
Aaµ(x),ϕaI (x)

)
. (7.13)

Notice that the dependence on the internal coordinates yI is dropped. The scalar propagator in
2ω dimensions is (with the Laplacian □≡ ∂µ∂µ)

C(x) =
∫ d2ωk

(2π)2ω
eikx

k2 . (7.14)

It satisfies −□C(x) = δ(x) with the 2ω-dimensional delta function δ(x)≡ δ2ω(x). In 2ω dimen-
sions, we have

C(x) = Γ(ω−1)
4πω

1
[x2]ω−1 . (7.15)

In 10 dimensions, the gauge field propagator is (2.90)

〈
AaM (x)AbN (y)

〉
0 = δab

(
δMN − (1− ξ)∂M∂N

□

)
C(x−y) . (7.16)

Here ξ is the gauge parameter. We argue that we can compute the inverse Nicolai map in
Landau gauge (ξ = 0) whilst using the Feynman gauge (ξ = 1) for the propagator because the
Wilson loop is gauge invariant. When computing its vacuum expectation value, all terms coming
from the gauge parameter dependent term in the propagator must vanish. Thus, without loss
of generality, we choose ξ = 1 and the propagator becomes

〈
AaM (x)AbN (y)

〉
0 = δabδMNC(x−y) . (7.17)

110



7.4. Perturbation Theory

7.4. Perturbation Theory

In perturbation theory, the vacuum expectation value of (7.9) is given by

〈〈
W(−)

〉〉
g

= 1+ ig

N

∫ ∞
−∞

dτ1 ż
M
1 trc

〈〈
AM (z1)

〉〉
g

+ i2g2

2!N

∫ ∞
−∞

dτ1 dτ2 ż
M
1 żN2 trcP ⟨⟨AM (z1)AN (z2)⟩⟩g

+ i3g3

3!N

∫ ∞
−∞

dτ1 dτ2 dτ3 ż
M
1 żN2 ż

L
3 trcP

〈〈
AM (z1)AN (z2)AL(z3)

〉〉
g

+ . . . .

(7.18)

The expectation value has been computed perturbatively up to order g4N2 by Erickson, Semenoff
and Zarembo in [105, 120]. We have checked that their result also holds for all N . In the
following, we show how to compute the next nontrivial order of (7.18) by the means of the
Nicolai map. Expanding the vacuum expectation value at order g6, we obtain〈〈

W(−)
〉〉

6

= ig

N

∫ ∞
−∞

dτ1 ż
M
1 trc

〈〈
AM (z1)

〉〉
5

+ i2g2

2!N

∫ ∞
−∞

dτ1 dτ2 ż
M
1 żN2 trcP

〈〈
AM (z1)AN (z2)

〉〉
4

+ i3g3

3!N

∫ ∞
−∞

dτ1 dτ2 dτ3 ż
M
1 żN2 ż

L
3 trcP

〈〈
AM (z1)AN (z2)AL(z3)

〉〉
3

+ i4g4

4!N

∫ ∞
−∞

dτ1 dτ2 dτ3 dτ4 ż
M
1 żN2 ż

L
3 ż

P
4 trcP

〈〈
AM (z1)AN (z2)AL(z3)AP (z4)

〉〉
2

+ i5g5

5!N

∫ ∞
−∞

dτ1 dτ2 dτ3 dτ4 dτ5

× żM1 żN2 ż
L
3 ż

P
4 ż

Q
5 trcP

〈〈
AM (z1)AN (z2)AL(z3)AP (z4)AQ(z5)

〉〉
1

+ i6g6

6!N

∫ ∞
−∞

dτ1 dτ2 dτ3 dτ4 dτ5 dτ6

× żM1 żN2 ż
L
3 ż

P
4 ż

Q
5 ż

R
6 trcP

〈〈
AM (z1)AN (z2)AL(z3)AP (z4)AQ(z5)AR(z6)

〉〉
0 .

(7.19)

We briefly discuss the terms which vanish more or less trivially. The trace over the 1-point
function is zero since for ta ∈ su(N)

trc
〈〈
AM (z1)

〉〉
5 = trc(ta)

〈〈
AaM (z1)

〉〉
5 = 0 . (7.20)

For the 4-point function, we need to expand the inverse Nicolai map (7.11) up to O(g2). Then
we use (7.8) and collect all terms of O(g2). Computing the Wick contractions, we obtain several
non-vanishing terms. However, once we multiply the correlation function with żM1 żN2 ż

L
3 ż

P
4 and

insert the parametrization of the straight line, everything cancels. The vanishing of the last
two terms is rather simple. In both cases, there are Wick contractions of two untransformed
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fields. These produce terms which are proportional to żM iż
M
j = 0. Thus, only the 2- and 3-point

functions need to be discussed in detail.

7.4.1. 2-Point Function

To compute the two-loop correction to the 2-point function, we need to expand the inverse
Nicolai map (7.11) up to O(g4)1. At the fourth-order (T −1

g A)aM has about 500 terms. We apply
(7.8) to the 2-point function and collect all terms of O(g4), i.e.

Σ1 = i2g2

2!N

∫ ∞
−∞

dτ1 dτ2 ż
M
1 żN2 trcP

〈〈
AM (z1)AN (z2)

〉〉
4

=− g6

2N trc(tatb)
∫ ∞
−∞

dτ1 dτ2 ż
M
1 żN2

〈
(T −1
g A)aM (z1)(T −1

g A)bN (z2)
〉

0

∣∣∣
O(g4)

.

(7.21)

Because trc(tatb) = trc(tbta) the path ordering is trivial. After computing the free field expecta-
tion value of the transformed fields and some basic simplifications, such as enforcing faab = 0,
we obtain roughly 650 terms. Approximately a third of them are proportional to δMN ż

M
1 żN2 = 0.

We observe that most of the remaining terms are proportional to∫ ∞
−∞

dτ1 dτ2 ż
M
1 żN2

∫
d10y1 d10y2 d10y3 d10y4

×C(z1−y1)∂MC(y1−y3)∂PC(y1−y4)C(y3−y4)∂PC(y4−y2)∂NC(y3−y2)C(y2−z2) ,
(7.22)

where the four derivatives may sit at any of the seven propagators. Using integration by parts, it
is always possible to rearrange the contracted derivatives such that they act on two propagators
both, depending on either y1, y3 or y4. In this situation, we use∫

d10y4 ∂
PC(y1−y4)C(y3−y4)∂PC(y4−y2)

= 1
2

∫
d10y4

{
−C(y1−y4)□C(y3−y4)C(y4−y2)

+□C(y1−y4)C(y3−y4)C(y4−y2)

+C(y1−y4)C(y3−y4)□C(y4−y2)
}

(7.23)

and □C(x−y) =−δ(x−y). Thus, (7.22) becomes

1
4

∫ ∞
−∞

dτ1 dτ2 ż
M
1 żN2

∫
d10y1 d10y2 d10y3

{
+ 1

2C(z1−y1)∂MC(y1−y3)2∂NC(y3−y2)2C(y2−z2)

−C(z1−y1)∂MC(y1−y3)2C(y1−y2)∂NC(y3−y2)C(y2−z2)

−C(z1−y1)∂MC(y1−y3)C(y1−y2)∂NC(y3−y2)2C(y2−z2)
}
.

(7.24)

1When computing the inverse map in Landau gauge it is necessary to explicitly enforce the gauge condition
∂µAµ = 0 in all terms. This is similar to the determinant test for the Nicolai map in Landau gauge (see [1]).
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The first term turns out to be a total derivative. Integrating by parts we obtain∫ ∞
−∞

dτ1 ż
M
1 ∂MC(z1−y1) [. . .] =

∫ ∞
−∞

dτ1
∂

∂τ1
C(z1−y1) [. . .] = 0 . (7.25)

The other two terms can be combined using the observation∫
d10y3 ∂MC(y1−y3)2∂NC(y3−y2) =

∫
d10y3 ∂MC(y1−y3)∂NC(y3−y2)2 . (7.26)

We repeat these steps on the other 400 non-vanishing terms. Subsequently, we perform the
dimensional reduction and obtain the now very simple expression

Σ1 = i2g2

2!N

∫ ∞
−∞

dτ1 dτ2 ż
M
1 żN2 trcP

〈〈
AM (z1)AN (z2)

〉〉
4

= g6N(N2−1)
∫ ∞
−∞

dτ1 dτ2 ẋ
µ
1 ẋ

ν
2

∫
d2ωy1 d2ωy2 d2ωy3

{
+∂µ∂νC(x1−y1)C(x1−y2)C(x2−y1)C(y1−y3)C(y2−y3)2

+ 3
2∂µC(x1−y1)C(x1−y2)C(x2−y3)C(y1−y2)C(y1−y3)∂νC(y2−y3)

}
.

(7.27)

Neither of these terms is a total derivative as there are two x1 dependencies in each. Thus, we
must cancel Σ1 against the 3-point function.

7.4.2. 3-Point Function

For the 3-point function, the procedure is much the same as for the 2-point function. For the
trace and path ordering, we find

Σ2 = i3g3

3!N

∫ ∞
−∞

dτ1 dτ2 dτ3 ż
M
1 żN2 ż

L
3 trcP

〈〈
AM (z1)AN (z2)AL(z3)

〉〉
3

=− ig3

24N dabc
∫ ∞
−∞

dτ1 dτ2 dτ3 ż
M
1 żN2 ż

L
3
〈〈
AaM (z1)AbN (z2)AcL(z3)

〉〉
3

+ g3

24N fabc
∫ ∞
−∞

dτ1 dτ2 dτ3 ϵ(τ1, τ2, τ3) żM1 żN2 ż
L
3
〈〈
AaM (z1)AbN (z2)AcL(z3)

〉〉
3 ,

(7.28)

where dabc is totally symmetric and

ϵ(τ1, τ2, τ3) = [θ(τ1− τ2)−θ(τ2− τ1)] [θ(τ1− τ3)−θ(τ3− τ1)] [θ(τ2− τ3)−θ(τ3− τ2)] . (7.29)

So ϵ(τ1, τ2, τ3) = 1 for τ1 > τ2 > τ3 and anti-symmetric under the transposition of any two τi.
The first term will cancel because the 3-point correlation function at O(g3) is anti-symmetric
in a, b and c. This time we only need the inverse Nicolai map up to O(g3). However, since we
now compute a 3-point function instead of a 2-point function, we end up with about the same
number of terms as before. But two-thirds of the terms are proportional to δMN , δML or δNL and
thus cancel. The remaining terms are simplified using the same integration by parts relations
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as above. However, for the 3-point function, there are no total derivatives. Subsequently, we
perform the dimensional reduction and obtain the 15 terms

Σ2 =−g
6N(N2−1)

12

∫ ∞
−∞

dτ1 dτ2 dτ3 ϵ(τ1, τ2, τ3) ẋµ1 ẋν2 ẋ
ρ
3

∫
d2ωy1 d2ωy2 d2ωy3

{
+∂µ∂ν∂λC(x1−y1)C(x2−y1)C(x3−y2)C(y1−y3)C(y2−y3)2

+∂µ∂νC(x1−y1)∂λC(x2−y1)C(x3−y2)C(y1−y3)C(y2−y3)2

+permutations
}

+ g6N(N2−1)
8

∫ ∞
−∞

dτ1 dτ2 dτ3 ϵ(τ1, τ2, τ3) ẋµ1 ẋν2 ẋ
ρ
3

∫
d2ωy1 d2ωy2 d2ωy3

{
+∂µ∂νC(x1−y1)C(x2−y2)C(x3−y3)C(y1−y2)C(y1−y3)∂λC(y2−y3)

−C(x1−y1)∂ν∂λC(x2−y2)C(x3−y3)C(y1−y2)∂µC(y1−y3)C(y2−y3)

+C(x1−y1)C(x2−y2)∂λ∂µC(x3−y3)∂νC(y1−y2)C(y1−y3)C(y2−y3)
}
.

(7.30)

All these terms have a factor of the form

ẋµi ∂µC(xi−y) = ∂

∂τi
C(xi−y) (7.31)

and this is their only dependence on xi. Thus, we can integrate by parts and use
∂

∂τ1
ϵ(τ1, τ2, τ3) = 2δ(τ1− τ2)−2δ(τ1− τ3) . (7.32)

After integrating over the delta functions and renaming the variables, we obtain

Σ2 = g6N(N2−1)
∫ ∞
−∞

dτ1 dτ2 ẋ
µ
1 ẋ

ν
2

∫
d2ωy1 d2ωy2 d2ωy3

{
+∂µ∂νC(x1−y1)C(x1−y1)C(x2−y2)C(y1−y3)C(y2−y3)2

−∂µ∂νC(x1−y1)C(x1−y2)C(x2−y1)C(y1−y3)C(y2−y3)2

+∂νC(x1−y1)∂µC(x1−y1)C(x2−y2)C(y1−y3)C(y2−y3)2

−∂µC(x1−y1)C(x1−y2)∂νC(x2−y1)C(y1−y3)C(y2−y3)2

− 3
2∂µC(x1−y1)C(x1−y2)C(x2−y3)C(y1−y2)C(y1−y3)∂νC(y2−y3)

}
.

(7.33)

The first and third term can be combined to give a total derivative. Also, the fourth term is a
total derivative. Subsequently, we conclude

Σ2 =−g6N(N2−1)
∫ ∞
−∞

dτ1 dτ2 ẋ
µ
1 ẋ

ν
2

∫
d2ωy1 d2ωy2 d2ωy3

{
+∂µ∂νC(x1−y1)C(x2−y1)C(x1−y2)C(y1−y3)C(y2−y3)2

+ 3
2∂µC(x1−y1)C(x1−y2)C(x2−y3)C(y1−y2)C(y1−y3)∂νC(y2−y3)

}
.

(7.34)

We see that Σ1 and Σ2 cancel

Σ1 +Σ2 = 0 . (7.35)
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Thus, we have shown that for a Maldacena-Wilson loop operator of an infinite straight line

〈〈
W(−)

〉〉
g

= 1+O(g8) (7.36)

for all N . Although the infinite straight line Maldacena-Wilson loop is a 1
2 -BPS operator, the

cancellation of the perturbative corrections at the sixth order is far from trivial. They seem to
resemble the cancellations of the fourth-order perturbative corrections for the expectation value
of the circular Maldacena-Wilson loop (see [105]). All correlation functions have been computed
using the Nicolai map. Despite the complexity of intermediate results, such as the non-linear
and non-local transformation of the gauge field to fourth order in [3], the general procedure is
rather simple as it completely circumvents the use of anti-commuting variables. In the future, it
will be interesting to see if the Nicolai map can also be used to obtain non-perturbative results
for certain Wilson loop operators.
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8. The Superconformal Algebra and its Unitary
Representations

In this chapter, we introduce the superconformal algebra psu(2,2|4) and its unitary represen-
tations. psu(2,2|4) is the symmetry algebra of N = 4 super Yang-Mills. Due to the vanishing
of the beta function to all orders, the superconformal symmetry is preserved even at the quan-
tum level. Moreover, the superconformal symmetry puts very strong restrictions on the 2- and
3-point functions of certain BPS operators protecting them from receiving any quantum correc-
tions. This chapter aims to establish the technical foundation for the subsequent chapter, where
we discuss the stress-tensor multiplet.

The chapter is organized as follows. In section 8.1 we introduce the superconformal algebra
psu(2,2|4). Then, in section 8.2, we discuss the representation theory of the R-symmetry al-
gebra su(4) and subsequently, in section 8.3, the unitary irreducible representations of the su-
perconformal algebra. In section 8.4, we study the implications of unitarity on the psu(2,2|4)
representations and then, in section 8.5, the shortening of supermultiplets. Finally, in the last
two sections, we briefly discuss the anomalous dimension and 2- and 3-point correlation functions
in conformal field theories.

The representation theory of the superconformal algebra has been studied by Dolan and Osborn
in [55]. In this chapter, we closely follow their work and notation. See also [122] for a more
pedagogical and less technical introduction to the representation theory of the superconformal
algebra. For a general mathematical introduction to the representation theory of Lie algebras,
see [123] and for everything on conformal field theory, including the representation theory of the
conformal algebra see [124].

8.1. The Superconformal Algebra

We first introduce the algebra su(2,2|4). Its bosonic subalgebras are the conformal algebra
su(2,2) and the R-symmetry algebra u(4). As before, we work in 4-dimensional Minkowski
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8.1. The Superconformal Algebra

space, where the metric ηµν (µ,ν = 0,1,2,3) has mostly minus signature (+,−,−,−). The 4-
dimensional conformal algebra su(2,2) ≃ so(2,4) is an extension of the Poincaré algebra. We
have already introduced the Poincaré algebra in chapter 2. Recall that it consists of the four-
momentum generators Pµ and the six anti-symmetric Lorenz generators Mµν

[Pµ,Pν ] = 0 ,

[Mµν ,Mρλ] = i(ηµρMνλ−ηµλMνρ−ηνρMµλ+ηνλMµρ) ,

[Mµν ,Pλ] = i(ηµλPν−ηλνPµ) .

(8.1)

To obtain the conformal algebra, su(2,2), the Poincaré algebra is supplemented by the dilata-
tion generator D and the generators of special conformal transformations Kµ. The additional
relations are

[D,Pµ] = iPµ , [D,Mµν ] = 0 , [D,Kµ] =−iKµ ,

[Pµ,Kν ] =−2i(Mµν−ηµνD) , [Kµ,Kν ] = 0 ,

[Mµν ,Kλ] = i(ηµλKν−ηνλKµ) .

(8.2)

For the subsequent discussion, it is advantageous to switch to a spinor basis, eliminating all
spacetime indices. We choose to work with Weyl spinors. The spinor indices are α = 1,2 and
α̇= 1,2. For all other conventions and some useful relations involving Weyl spinors, see appendix
A. We define

Pαα̇ := σµαα̇Pµ , Kα̇α := (σ̄µ)α̇αKµ ,

M β
α :=− i4(σµσ̄ν) β

α Mµν , M̄ α̇
β̇

:=− i4(σ̄µσν)α̇
β̇
Mµν .

(8.3)

Subsequently, the Poincaré algebra (8.1) becomes

[Pαα̇,Pββ̇] = 0 ,

[M β
α ,M δ

γ ] = δ β
γ M

δ
α − δ δ

αM
β
γ , [M̄ α̇

β̇
,M̄ γ̇

δ̇
] =−δα̇

δ̇
M̄ γ̇

β̇
+ δγ̇

β̇
M̄ α̇

δ̇
,

[M β
α ,Pγγ̇ ] = δ β

γ Pαγ̇−
1
2δ

β
α Pγγ̇ , [M̄ α̇

β̇
,Pγγ̇ ] = δα̇γ̇Pγβ̇−

1
2δ

α̇
β̇
Pγγ̇ .

(8.4)

Similarly, the rest of the conformal algebra (8.2) now reads

[D,Pαα̇] = iPαα̇ , [D,M β
α ] = 0 , [D,M̄ α̇

β̇
] = 0 , [D,Kα̇α] =−iKαα̇ ,

[Pαα̇,K β̇β ] =−4(δ β
α M̄

β̇
α̇+ δβ̇α̇M

β
α + δ β

α δ
β̇
α̇D) , [Kα̇α,K β̇β ] = 0 ,

[M β
α ,K γ̇γ ] =−δ γ

α K
γ̇β + 1

2δ
β
α K

γ̇γ , [M̄ α̇
β̇
,K γ̇γ ] =−δγ̇

β̇
Kα̇γ + 1

2δ
α̇
β̇
K γ̇γ .

(8.5)

Then the 16 supercharges QAα and Q̄α̇A (A= 1,2,3,4) as well as the 16 superconformal charges
SαA and S̄α̇A are introduced via

{QAα , Q̄β̇B}= 2δABPαβ̇ , {S̄α̇A,SβB}= 2δABKα̇β ,

{QAα ,QBβ }= {Q̄α̇A, Q̄β̇B}= 0 , {SαA,S
β
B}= {S̄α̇A, S̄β̇B}= 0 .

(8.6)
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8. The Superconformal Algebra and its Unitary Representations

The Lie brackets with the generators of the conformal algebra are

[Pαα̇,QAβ ] = 0 , [Pαα̇,SβA] =−2δ β
α Q̄α̇A ,

[Pαα̇, Q̄β̇A] = 0 , [Pαα̇, S̄β̇A] = 2δβ̇α̇QAα ,

[M β
α ,QAγ ] = δ β

γ Q
A
α −

1
2δ

β
α Q

A
γ , [M β

α ,SγA] =−δ γ
α S

β
A+ 1

2δ
β
α S

γ
A ,

[M̄ α̇
β̇
, Q̄γ̇A] =−δα̇γ̇Q̄β̇A+ 1

2δ
α̇
β̇
Q̄γ̇A , [M̄ α̇

β̇
, S̄γ̇A] = δγ̇

β̇
S̄α̇A− 1

2δ
α̇
β̇
S̄γ̇A ,

[M β
α , Q̄γ̇A] = 0 , [M β

α , S̄γ̇A] = 0 ,

[M̄ α̇
β̇
,QAγ ] = 0 , [M̄ α̇

β̇
,SγA] = 0

[D,QAα ] = i

2Q
A
α , [D,SαA] =− i2S

α
A ,

[D,Q̄α̇A] = i

2Q̄α̇A , [D,S̄α̇A] =− i2 S̄
α̇A ,

[Kα̇α,QAβ ] = 2δ α
β S̄

α̇A , [Kα̇α,SβA] = 0 ,

[Kα̇α, Q̄β̇A] =−2δα̇
β̇
SαA , [Kα̇α, S̄A

β̇
] = 0 .

(8.7)

The two columns are anti-symmetric under the simultaneous exchange of Pαα̇ and Kα̇α as well
as QAα and SαA. The supercharges anti-commute with the superconformal charges as follows

{QAα ,S
β
B}= 4

(
δABM

β
α −

i

2δ
A
Bδ

β
α D− δ β

α R
A
B

)
,

{S̄α̇A, Q̄β̇B}= 4
(
δABM̄

α̇
β̇

+ i

2δ
A
Bδ

α̇
β̇
D− δα̇

β̇
RAB

)
,

{QAα , S̄β̇B}= {SαA, Q̄β̇B}= 0 .

(8.8)

The RAB are the generators of the R-symmetry. They form the bosonic subalgebra u(4)

[RAB,RCD] = δCBR
A
D− δADRCB . (8.9)

The R-symmetry generators commute with all generators of the conformal subalgebra

[RAB,Pµ] = 0 , [RAB,Mµν ] = 0 , [RAB,D] = 0 , [RAB,Kµ] = 0 . (8.10)

Finally, the Lie brackets of RAB with the supercharges and superconformal charges are

[RAB,QCα ] = δCBQ
A
α −

1
4δ

A
BQ

C
α , [RAB,SαC ] =−δACSαB + 1

4δ
A
BS

α
C ,

[RAB, Q̄α̇C ] =−δCBQ̄α̇A+ 1
4δ

A
BW̄α̇C , [RAB, S̄α̇C ] = δCBS̄

α̇A− 1
4δ

A
BS̄

α̇C .
(8.11)

We notice that RAA (summation over A) is in the center of su(2,2|4). Upon setting RAA = 0 the
R-symmetry algebra u(4) becomes su(4)≃ so(6) and thus the superconfromal algebra su(2,2|4)
becomes psu(2,2|4). In other words the superconformal algebra psu(2,2|4) is defined through
the short exact sequence

0 −→ u(1) −→ su(2,2|4) −→ psu(2,2|4) −→ 0 . (8.12)
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8.2. Representations of su(4)

This concludes the introduction of the superconformal algebra and its 56 generators

(Pαα̇,M β
α ,M̄ α̇

β̇
,Kα̇α,D | QAα , Q̄α̇A,SαA, S̄α̇A,RAB) . (8.13)

Demanding hermiticity of the operators associated to the generators imposes the following ad-
ditional conditions

(M β
α )† = M̄ β̇

α̇ , (RAB)† =RBA , (QAα )† = Q̄α̇A , (SαA)† = S̄α̇A . (8.14)

8.2. Representations of su(4)

Before discussing the representation theory of the superconformal algebra, we briefly study the
representation theory of the R-symmetry algebra su(4). Recall that su(4) is a complex simple
Lie algebra of rank 3. Thus, all of its irreducible finite-dimensional representations are uniquely
classified by a highest weight. We decompose the su(4) generators into the Chevalley basis to
find these highest weight representations. For each of the three simple roots of su(4) there is a
su(2) algebra generated by Hi and E±i (i= 1,2,3) with

[Hi,Hj ] = 0 , [E+
i ,E

−
j ] = δijHj , [Hi,E

±
j ] =±KjiE

±
j no sum over j , (8.15)

where Kji are the elements of the Cartan matrix

K =
( 2 −1 0
−1 2 −1
0 −1 2

)
. (8.16)

The Chevalley basis is the Cartan-Weyl basis but with a different normalization. The Hi are
the Cartan generators. Furthermore, the generators E±i satisfy the Serre relations

(adE±
i

)1−Kji(E±j ) = [E±i , [. . . [E±i︸ ︷︷ ︸
(1−Kji) times

,E±j ] . . .]] = 0 , i ̸= j . (8.17)

All remaining commutation relations are determined using (8.15), (8.17) and the Jacobi identity.
Since su(4) is also a compact Lie algebra, we may further impose the hermiticity conditions

H†i =Hi , E+†
i = E−i , i= 1,2,3 . (8.18)

Subsequently, we find that the following decomposition of the su(4) generators RAB satisfies
(8.9) and RAA = 0

R =


1
4 (3H1 + 2H2 + H3) E+

1 [E+
1 ,E+

2 ] [E+
1 , [E+

2 ,E+
3 ]]

E−
1

1
4 (−H1 + 2H2 + H3) E+

2 [E+
2 ,E+

3 ]
−[E−

1 ,E−
2 ] E−

2 − 1
4 (H1 + 2H2 − H3) E+

3
[E−

1 , [E−
2 ,E−

3 ]] −[E−
2 ,E−

3 ] E−
3 − 1

4 (H1 + 2H2 + 3H3)

 . (8.19)
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8. The Superconformal Algebra and its Unitary Representations

Let h = {H1,H2,H3} be the Cartan subalgebra of su(4) and let n± = {E±1 ,E±2 ,E±3 }. From the
discussion above it follows that su(4) = h⊕n−⊕n+. Further let V be a representation of su(4).
Then v ∈ V is called of weight λ ∈H∗ if v ̸= 0 and h.v = λ(h)v for all h ∈ h. The weight space
for λ is

V [λ] := {v ∈ V | v is a vector of weight λ} . (8.20)

If V [λ] ̸= {0}, then λ is called weight of V . Subsequently, V ̸= {0} is a highest weight represen-
tation of weight λ if V is generated by some v ∈ V [λ] (v ̸= 0) and n+v = {0}. As stated above,
every irreducible finite-dimensional representation of su(4) is a highest weight representation.
For the following discussion, we choose the eigenvectors of the Hi as generators of the weight
space. In common physics notation, the eigenvectors are labeled by their three eigenvalues with
respect to the action of the three Hi, i.e.

Hi |λ1,λ2,λ3⟩= λi |λ1,λ2,λ3⟩ . (8.21)

In this notation we write |λ1,λ2,λ3⟩hw for the non-zero highest weight vector annihilated by the
E+
i

E+
i |λ1,λ2,λ3⟩hw = 0 , λi ≥ 0 . (8.22)

Every highest weight representation, i.e. every irreducible finite-dimensional representation of
su(4), is uniquely characterized by its highest weight vector |λ1,λ2,λ3⟩hw and thus by its Dynkin
labels [λ1,λ2,λ3]. The remaining basis vectors for the given representation are obtained by the
successive action of E−i on the highest weight vector. In particular

E−i |λ1,λ2,λ3⟩hw = 0 if λi = 0 . (8.23)

In general an irreducible finite dimensional su(4) representation with Dynkin labels [λ1,λ2,λ3]
has complex dimensions [123]

d(λ1,λ2,λ3) = 1
12(λ1 +λ2 +λ3 +3)(λ1 +λ2 +2)(λ2 +λ3 +2)(λ1 +1)(λ2 +1)(λ3 +1) . (8.24)

This result is obtained using the Weyl dimension formula. For some representations, the dimen-
sion will reduce by a factor of two since they are real.

8.3. Unitary Representations of psu(2,2|4)

Building on the discussion above, we construct all unitary irreducible representations of the
superconformal algebra psu(2,2|4). Since the superconformal algebra contains the connected,
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8.3. Unitary Representations of psu(2,2|4)

simple, non-compact Poincaré algebra, it has no non-trivial finite-dimensional unitary represen-
tations [125]. Thus, all unitary representations are necessarily infinite-dimensional.

In the previous section, the starting point to finding all the irreducible finite-dimensional repre-
sentations of su(4) was the Cartan subalgebra h = {H1,H2,H3}, where by (8.19)

H1 =R1
1−R2

2 , H2 =R2
2 +R3

3 , H3 =−R3
3 +R4

4 . (8.25)

Thus, the Cartan subalgebra h is spanned by the diagonal elements of RAB. For any super
Lie algebra, the Cartan subalgebra coincides with that of its bosonic subalgebra. The bosonic
subalgebras of the superconformal algebra psu(2,2|4) are su(2,2) and su(4). The representation
theory of the conformal algebra has extensively been studied in [124]. It is built on Wigner’s
classification of unitary representations of the Poincaré group [126] (see also [127]). The Cartan
subalgebra of the conformal algebra is generated by M β

α (α = β), M̄ α̇
β̇

(α̇ = β̇) and D. We
combine this with the Cartan subalgebra of su(4) and find the Cartan subalgebra of psu(2,2|4)

j0 = span(M β
α (α= β),M̄ α̇

β̇
(α̇= β̇),RAB(A=B),D) . (8.26)

For a super Lie algebra, there is some freedom to distribute the simple fermionic roots in the
Dynkin diagram. Here we follow the convention of [128] and obtain the following associations
of generators to positive and negative roots

j+ = span(Kα̇α,SαA, S̄
α̇A,M β

α (α < β),M̄ α̇
β̇
(α̇ < β̇),RAB(A<B)) ,

j− = span(Pαα̇,QAα , Q̄α̇A,M β
α (α > β),M̄ α̇

β̇
(α̇ > β̇),RAB(A>B)) .

(8.27)

We denote the eigenvectors of the elements of the Cartan subalgebra j0 by |∆;j, j̄;λ1,λ2,λ3⟩,
where ∆ is the scaling dimension, i.e. the eigenvalue of the dilatation operator D. j and j̄ are
the two Lorenz spins and λ1, λ2 and λ3 are the three su(4) Dynkin labels from before. Acting
with the dilatation generator on |∆;j, j̄;λ1,λ2,λ3⟩ yields

D |∆, j, j̄;λ1,λ2,λ3⟩= i∆ |∆, j, j̄;λ1,λ2,λ3⟩ . (8.28)

For the action of the Lorenz generators, we write the spin dependence explicitly, i.e.

|∆, j, j̄;λ1,λ2,λ3⟩= |∆;λ1,λ2,λ3⟩α1...α2j ,α̇1...α̇2j
(8.29)

and obtain

M β
α |∆;λ1,λ2,λ3⟩α1...α2j ,α̇1...α̇2j

= 2jδ β
(α1
|∆;λ1,λ2,λ3⟩α1...α2j)α,α̇1...α̇2j

− jδ β
α |∆;λ1,λ2,λ3⟩α1...α2j ,α̇1...α̇2j

,

M̄ β̇
α̇ |∆;λ1,λ2,λ3⟩α1...α2j ,α̇1...α̇2j

=−2j̄ |∆;λ1,λ2,λ3⟩α1...α2j α̇,(α̇1...α̇2j−1
δβ̇α̇2j)

− jδβ̇α̇ |∆;λ1,λ2,λ3⟩α1...α2j ,α̇1...α̇2j
.

(8.30)
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8. The Superconformal Algebra and its Unitary Representations

The round brackets indicate a symmetrization of indices. Finally, (8.19) gives the action of the
diagonal R-symmetry generators

R1
1 |∆;j, j̄;λ1,λ2,λ3⟩= 1

4(3r1 +2r2 +λ3) |∆;j, j̄;λ1,λ2,λ3⟩ ,

R2
2 |∆;j, j̄;λ1,λ2,λ3⟩= 1

4(−λ1 +2r2 +λ3) |∆;j, j̄;λ1,λ2,λ3⟩ ,

R3
3 |∆;j, j̄;λ1,λ2,λ3⟩=−1

4(λ1 +2r2−λ3) |∆;j, j̄;λ1,λ2,λ3⟩ ,

R4
4 |∆;j, j̄;λ1,λ2,λ3⟩=−1

4(λ1 +2r2 +3r3) |∆;j, j̄;λ1,λ2,λ3⟩ .

(8.31)

By |∆;j, j̄;λ1,λ2,λ3⟩
hw we denote the highest weight vectors which are annihilated by all gen-

erators of j+. All unitary irreducible representations of the superconformal algebra psu(2,2|4)
are then constructed by iteratively acting with the generators of j− on a highest weight vec-
tor |∆;j, j̄;λ1,λ2,λ3⟩

hw. As opposed to the highest weight representations of the simple Lie
algebra su(4), these representations are infinite-dimensional. Physically a highest weight vector
corresponds to the lowest energy state.

8.4. Unitarity

In the following, we are not interested in the entire infinite-dimensional unitary irreducible
representation associated to a highest weight vector |∆;j, j̄;λ1,λ2,λ3⟩

hw but rather only the
supersymmetry multiplet of a highest weight state, which is obtained by the action of the
supersymmetry generators QAα and Q̄α̇A on |∆;j, j̄;λ1,λ2,λ3⟩

hw. When no further restrictions
are applied, we call these multiplets long and denote them by A∆

[λ1,λ2,λ3](j,j̄), where the indices
correspond to the eigenvalues of the highest weight states. Since the supersymmetry generators
are fermionic operators, the supersymmetry multiplet is finite-dimensional with [55]

dimA∆
[λ1,λ2,λ3](j,j̄) = 216d(λ1,λ2,λ3)(2j+1)(2j̄+1) . (8.32)

Because there are only 16 supersymmetry generators, we can only act 16 times on the highest
weight state before one operator appears twice and we obtain zero.

Using (8.11), we can express the action of the supercharges QAα and Q̄α̇A on a state [λ1,λ2,λ3](j,j̄)
with conformal dimension ∆ in terms of the change in the weight and spin. We have [55]

Q1
α ∼ [+1,0,0]

(±1
2 ,0) , Q2

α ∼ [−1,+1,0]
(±1

2 ,0) ,

Q3
α ∼ [0,−1,+1]

(±1
2 ,0) , Q4

α ∼ [0,0,−1]
(±1

2 ,0)
(8.33)
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and

Q̄α̇1 ∼ [−1,0,0]
(0,±1

2) , Q̄α̇2 ∼ [+1,−1,0]
(0,±1

2) ,

Q̄α̇3 ∼ [0,+1,−1]
(0,±1

2) , Q̄α̇4 ∼ [0,0,+1]
(0,±1

2) .
(8.34)

Every application of QAα or Q̄α̇A increases the conformal dimension by 1
2 . Representations with

negative Dynkin labels are zero. Thus, not every supercharge can act on every state.

In unitary representations, all states have non-negative norm. This restriction gives rise to a
so-called unitarity bound [125]1

∆≥∆A = max
(

2+2j+ 1
2(3λ1 +2λ2 +λ3), 2+2j̄+ 1

2(λ1 +2λ2 +3λ3)
)
. (8.35)

Multiplets that saturate the unitarity bound, i.e. where (8.35) is an equality, have states with
zero norm. These are called null states. They form a closed subrepresentation and hence
can be consistently removed from the multiplet [129]. In particular, the trivial representation
saturates the unitarity bound. Multiplets above the unitarity bound do not have any null
states. Consequently, multiplets saturating the unitarity bound are shorter than multiplets with
∆>∆A and we call them short A-type multiplets.

8.5. Multiplet Shortening

Long multiplets can also be shortened by imposing BPS conditions on the highest weight state,
i.e. by demanding that

QAα |∆;j, j̄;λ1,λ2,λ3⟩
hw = 0 for α ∈ {1,2} (8.36)

for some of the QAα . The operators corresponding to short multiplets, annihilated by some of
the supercharges, are called chiral. Since any highest weight state is also annihilated by the
superconformal charges SαA, (8.8) implies that |∆;j, j̄;λ1,λ2,λ3⟩

hw must be annihilated by all
M β
α . Then (8.30) implies that j = 0 and we get

{QAα ,S
β
B}|∆;0, j̄;λ1,λ2,λ3⟩

hw =−4δ β
α

(
i

2δ
A
BD+RAB

)
|∆;0, j̄;λ1,λ2,λ3⟩

hw = 0 (8.37)

for B = 1,2,3,4. We use (8.28) and (8.31) to solve this equation. For A= 1 and B = 1 we obtain

∆ = 1
2(3λ1 +2λ2 +λ3) . (8.38)

1See [122] for instructions on how to compute the unitarity bound.
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8. The Superconformal Algebra and its Unitary Representations

There are no further implications because all R1
B for B > 1 are in j+ and thus annihilate

|∆;0, j̄;λ1,λ2,λ3⟩
hw. Next we solve (8.37) for A= 1,2. There are three equations to satisfy

∆B = 1
2(3λ1 +2λ2 +λ3) ,

∆B = 1
2(−λ1 +2λ2 +λ3) ,

R2
1 |∆;0, j̄;λ1,λ2,λ3⟩

hw = E−1 |∆;0, j̄;λ1,λ2,λ3⟩
hw = 0 .

(8.39)

From the first two equations we obtain λ1 = 0 and ∆B = 1
2(2λ2 + λ3). By (8.23) the third

equation is satisfied if λ1 = 0. The index B indicates that the scaling dimension ∆B belongs
to a short multiplet as opposed to a long mulitplet denoted A. We continue like this for the
cases A = 1,2,3 and A = 1,2,3,4. Let s be the fraction of supercharges for which (8.36) holds.
Summarizing the results we have

A= 1 s= 1
4 ∆B = 1

2(3r1 +2r2 +λ3) ,

A= 1,2 s= 1
2 ∆B = 1

2(2r2 +λ3) , λ1 = 0 ,

A= 1,2,3 s= 3
4 ∆B = 1

2λ3 , λ1 = λ2 = 0 ,

A= 1,2,3,4 s= 1 ∆B = 0 , λ1 = λ2 = λ3 = 0 .

(8.40)

Similar to (8.36) we can also impose the condition

Q̄α̇A |∆, j, j̄;λ1,λ2,λ3⟩
hw = 0 for α̇ ∈ {1,2} . (8.41)

This yields the following constraints (with j̄ = 0)

A= 4 s̄= 1
4 ∆B = 1

2(λ1 +2r2 +3r3) ,

A= 3,4 s̄= 1
2 ∆B = 1

2(λ1 +2r2) , λ3 = 0 ,

A= 2,3,4 s̄= 3
4 ∆B = 1

2λ1 , λ2 = λ3 = 0 ,

A= 1,2,3,4 s̄= 1 ∆B = 0 , λ1 = λ2 = λ3 = 0 .

(8.42)

To construct all conformal primary states for complete supermultiplets, combining the results
for the Q and Q̄ supercharges is necessary. If (8.40) and (8.42) are both applied, we must have
j = j̄ = 0 and we denote these short multiplets by Bs,s̄[λ1,λ2,λ3](0,0). In general, there are only three
possible cases. The first is s = s̄ = 1, λ1 = λ2 = λ3 = 0. This case corresponds to the trivial
vacuum representation since Pαα̇ |0,0,0;0,0,0⟩hw = 0. The next case are the 1

4 -BPS multiplets

B
1
4 ,

1
4

[λ1,λ2,λ3](0,0) , ∆B = λ1 +2λ2 . (8.43)

And finally, the third case are the 1
2 -BPS multiplets

B
1
2 ,

1
2

[0,λ2,0](0,0) , ∆B = λ2 . (8.44)
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8.6. The Anomalous Dimension

∆ = ∆A

∆ = ∆B

∆

non-unitary

non-unitary

unitary

Figure 8.1.: Unitarity structure of superconformal multiplets. Long multiplets exist for ∆>∆A in the
green region. At the unitarity bound ∆ = ∆A are the short A-type multiplets. Below the
unitarity bound, there is the forbidden region in red. However, at discrete values of the
conformal scaling dimension ∆ = ∆B, individual short (and semi-short) multiplets exist.
In particular these are the BPS multiplets [122, 129].

Besides the short B-type multiplets there are also semi-short multiplets obtained by imposing
[55] (

Q̄1A+ 1
2j̄+1

M̄ α̇
β̇
Q̄2A

)
|∆;j, j̄;λ1,λ2,λ3⟩

hw = 0 with (α̇ > β̇) . (8.45)

Long multiplets can be decomposed into direct sums of semi-short and sometimes also short
multiplets. Comparing the scaling dimensions of the long and short multiplets, we notice that
∆A > ∆B. Thus, by imposing the BPS conditions on the highest weight state, we have found
supermultiplets with lower than initially allowed scaling dimensions which still belong to unitary
representations. We have summarized this in figure 8.1. The short and semi-short representa-
tions of the superconformal algebra forN = 2 andN = 4 in four dimensions have been extensively
studied in [55]. Unitary superconformal multiplets for 1 ≤N ≤ 8 supersymmetries in d ≥ 3 di-
mensions have also been studied in [129]. In particular, the authors of [129] have analyzed the
operator content of the various multiplets.

8.6. The Anomalous Dimension

In any supermultiplet, the scaling dimensions of the operators increase by a factor of 1
2 with each

level. When the primary operator has scaling dimension ∆ its first descendants have scaling
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8. The Superconformal Algebra and its Unitary Representations

dimension ∆+ 1
2 . The second descendants have scaling dimension ∆+1 and so on. A priori, the

scaling dimension of any (primary) operator receives quantum corrections. These corrections
are called the anomalous dimension. However, since the superconformal symmetry of N = 4
super Yang-Mills holds even at the quantum level, all operators in one supermultiplet have the
same anomalous dimension.

A particularly special kind of multiplets are the 1
2 -BPS multiplets B

1
2 ,

1
2

[0,λ2,0](0,0) with ∆B = λ2. It
has been shown that the operators in these multiplets are subjected to a non-renormalization
theorem and do not receive any anomalous dimension [61]. This agrees with the results of per-
turbative calculations [56–60]. In particular, the vanishing of the anomalous dimension implies
that the 1

2 -BPS multiplets B
1
2 ,

1
2

[0,λ2,0](0,0) do not recombine into long multiplets [55].

8.7. Conformal Correlation Functions

In conformal field theories such as N = 4 super Yang-Mills, the form of the 2- and 3-point
functions of (quasi) primary operators Oi(xi) are completely fixed up to a constant, the scal-
ing dimensions ∆i ≡ ∆i(g) and its quantum corrections. For the 2-point function the scaling
dimensions must agree, ∆ = ∆1 = ∆2 and the correlator is

⟨⟨O1(x1)O2(x2)⟩⟩g = C12
|x1−x2|2∆ . (8.46)

with a constant C12 =C12(g) that can be normalized to 1. Similarly, the 3-point function reads

⟨⟨O1(x1)O2(x2)O2(x3)⟩⟩g = C123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆1+∆3−∆2
13

, (8.47)

where xij = |xi−xj | and C123 = C123(g) is also a constant. Thus, for operators in the 1
2 -BPS

multiplets B
1
2 ,

1
2

[0,λ2,0](0,0), the exact expressions for the 2- and 3-point function are given by their
classical results. 4-point functions are not protected.
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9. The Stress Tensor Multiplet

We present the explicit field content of the stress tensor multiplet. The stress tensor multiplet
is the simplest non-trivial 1

2 -BPS multiplet in N = 4 super Yang-Mills. It contains the energy-
momentum tensor and the R-symmetry currents. Remarkably, its constituents do not acquire
an anomalous dimension. The main result of this chapter, i.e. the explicit field content of the
stress tensor multiplet, has not been published before. Abstractly the field content was studied
by Dolan and Osborn in [63].

In the first section, we briefly introduce the stress tensor multiplet and highlight some older
results. Furthermore, we recall some important equations. In section 9.2, we give a graphical
representation of the states in the stress tensor multiplet. Section 9.3 contains the main result
of this chapter, i.e. the explicit field content of the stress tensor multiplet. In section 9.4 we
explain how to compute correlation functions of general operators containing spinor fields with
the Nicolai map. Finally, in the last section, we outline the derivation of the field content in the
stress tensor multiplet by computing successive supersymmetry transformations of the primary
field.

9.1. Introduction

By Noether’s theorem to every continuous global symmetry of the action corresponds a conserved
current. The symmetry group of N = 4 super Yang-Mills is of course PSU(2,2|4). Thus, for
every one of its generators, there is a conserved current. The conserved current associated with
translation invariance is the energy-momentum tensor (or stress-energy tensor) Tµν . In classical
4-dimensional conformal field theories, the energy-momentum tensor is symmetric and traceless.
Since the superconformal symmetry of N = 4 super Yang-Mills survives even at the quantum
level, the energy-momentum tensor remains traceless beyond the classical theory. This is not
the case in general field theories with classical conformal symmetry.

All conserved currents in N = 4 super Yang-Mills are part of the same supermultiplet [67]. This
is the 1

2 -BPS multiplet B
1
2 ,

1
2

[0,2,0](0,0) [55]. In the following, we call it the stress tensor multiplet.
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9. The Stress Tensor Multiplet

It is the best-studied multiplet in N = 4 superconformal symmetries. It has connections to
many current topics in high energy physics such as scattering amplitudes, integrability and
conformal bootstrap (see [130] for a review). We have already listed some of the properties of
this multiplet in the previous chapter. In particular, recall that its constituents do not acquire
an anomalous dimension. Thus, the first correlation function to receive quantum corrections
is the 4-point function. It has been studied in a variety of ways. For example, it was shown
that the conformal symmetry relates the 4-point function of any four operators in the stress
tensor multiplet to the 4-point function of the primary field [62]. Superconformal symmetry has
also been used to express the 4-point correlation functions in terms of a single (yet unknown)
function of the two conformal invariants [63]. This result has, in particular, been applied to
the operator product expansion. Another direction of research are perturbative calculations at
weak coupling. The 4-point function has been computed to two-loops [131]. The integrand was
even given up to ten-loops [132]. Finally, the 4-point functions of the stress tensor multiplet
have also been studied in numerical bootstrap, see e.g. [133], where upper bounds on the scaling
dimensions and the operator product expansion coefficients have been computed.

In the future, we would like to study the stress tensor multiplet with the Nicolai map and
hopefully derive some non-perturbative results for the 4-point functions or operator product
expansions. However, this requires us to first know the explicit field content of the entire
multiplet and not only its primary field. Thus, in the following, we derive the entire field
content of the stress tensor multiplet and show how to compute correlation functions of mixed
bosonic and fermionic operators with the Nicolai map.

9.1.1. The N = 4 super Yang-Mills Action and Equations of Motion

Recall the N = 4 super Yang-Mills action with Weyl spinors (2.151)

S4
inv =

∫
d4x trc

[
− 1

2FµνF
µν− (DµϕI)(DµϕI)+ g2

4 [ϕI ,ϕJ ][ϕI ,ϕJ ]

−2iψαAσµαα̇(Dµψ̄
α̇
A)− igψαA[ΣI

ABϕI ,ψ
B
α ]− ig ψ̄α̇A[Σ̄AB

I ϕI , ψ̄α̇B]
]
.

(9.1)

The expression has been simplified by writing the fields as Lie algebra valued objects, i.e. Aµ =
taAaµ, and taking the trace over the representation space, as in (2.8). Recall that µ,ν = 0, . . . ,3
are the spacetime indices, α= 1,2 and α̇= 1,2 are the Weyl spinor indices, A,B = 1, . . . ,4 are the
SU(4) R-symmetry indices, counting the 4 supersymmetries, and I,J = 1, . . . ,6 are the SO(6)
indices. For more details on the spinor conventions and notation, see appendix A.

The N = 4 super Yang-Mills action is invariant under the action of the superconformal algebra
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9.2. The Stress Tensor Multiplet

psu(2,2|4), introduced in the previous chapter. The action of the supersymmetry transforma-
tions on the fields of the fundamental multiplet is given by

δAaµ = iεαAσµαα̇ψ̄
aα̇
A − iψaαAσµαα̇ε̄α̇A ,

δψaAα =−(σµν) β
α ε

A
βF

a
µν− i Σ̄AB

I (Dαα̇ϕ
I)aε̄α̇B−

g

2f
abcΣ̄AB

I ΣJ
BCε

C
αϕ

bIϕcJ ,

δψ̄aα̇A = ε̄β̇A(σ̄µν)β̇α̇F aµν + iΣI
ABε

αB(Dαα̇ϕI)a−
g

2f
abcΣI

ABΣ̄BC
J ε̄α̇Cϕ

b
Iϕ

cJ ,

δϕaI =−εαAΣI ABψ
aB
α − ε̄α̇AΣ̄AB

I ψ̄aα̇B ,

(9.2)

where εAα and ε̄α̇A are anti-commuting Weyl spinors. Since the supersymmetry of N = 4 super
Yang-Mills is realized only ‘on-shell,’ the action of the supersymmetry algebra closes only up to
terms proportional to the equations of motion

DνF
µν = ig[ϕI ,DµϕI ]+g[ψαAσµαα̇, ψ̄α̇A] ,

DµD
µϕI =−g2 [ϕJ , [ϕI ,ϕJ ]]− ig2 [ψαA,ΣI ABψ

B
α ]− ig2 [ψ̄α̇A, Σ̄AB

I ψ̄α̇B] ,

Dα̇αψAα =−g [Σ̄AB
I ϕI , ψ̄α̇B] ,

Dαα̇ψ̄
α̇
A =−g [ΣI

ABϕI ,ψ
B
α ] .

(9.3)

9.2. The Stress Tensor Multiplet

We give a diagrammatic representation of all states in the stress tensor multiplet. The highest
weight state of the stress tensor multiplet B

1
2 ,

1
2

[0,2,0](0,0) is of course [0,2,0](0,0). The irreducible
su(4) representation associated to the Dynkin label [0,2,0] has real dimension 20 and is denoted
by 20′. The prime is conventional since the irreducible representation associated to [2,0,0] is
also 20-dimensional.

The descendants of the highest weight state are found by acting with the supercharges. By
construction, the highest weight state is annihilated by the action of Q1

α, Q2
α, Q̄α̇3 and Q̄α̇4

(see section 8.5). In (8.33) - (8.34) we have given the changes in the Dynkin labels and spin
generated by the action of the supercharges. For example acting with Q3

α on the highest weight
state [0,2,0](0,0) gives

Q3
α[0,2,0](0,0) = [0,1,1]

( 1
2 ,0) . (9.4)

Acting again with Q3
β (with β ̸= α) yields

Q3
βQ

3
α[0,2,0](0,0) = [0,0,2](0,0) . (9.5)

Alternatively, acting with Q4
α gives

Q4
βQ

3
α[0,2,0](0,0) = [0,1,0](1,0)⊕ [0,1,0](0,0) . (9.6)
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9. The Stress Tensor Multiplet

The red term vanishes. It would correspond to the trace over a single Lie algebra valued scalar
field ϕI , which is zero for gauge group SU(N). On (9.5), we can only act with Q4

α since acting
three times with Q3

α gives zero. Similarly, on (9.6) we must act with Q3
β. In both cases, we

obtain

Q4
γQ

3
βQ

3
α[0,2,0](0,0) = [0,0,1]

( 1
2 ,0) . (9.7)

Finally, we act one last time with Q4
δ and obtain

Q4
δQ

4
γQ

3
βQ

3
α[0,2,0](0,0) = [0,0,0](0,0) . (9.8)

Any further action with a supercharge QAα would give zero. Thus, we have obtained all states
in one branch of the B

1
2 ,

1
2

[0,2,0](0,0) multiplet.

The entire stress tensor multiplet structure is given in the following diagram [55].

[0,2,0](0,0)

[0,1,1]( 1
2 ,0) [1,1,0](0, 1

2 )

[0,0,2](0,0)
[0,1,0](1,0)

[1,0,1]( 1
2 , 1

2 )
[2,0,0](0,0)
[0,1,0](0,1)

[0,0,1]( 1
2 ,0) [1,0,0](1, 1

2 ) [0,0,1]( 1
2 ,1) [1,0,0](0, 1

2 )

[0,0,0](0,0) [0,0,0](1,1) [0,0,0](0,0)

∆

2

5
2

3

7
2

4

Figure 9.1.: Diagrammatic representation of the stress tensor multiplet using Dynkin labels.

The ↙ arrows denotes the action of QAα and the ↘ arrows denotes the action of Q̄α̇A. The first
row has conformal dimension ∆ = 2. With every row, the conformal dimension increases by 1

2 .
Moreover, the spin increases (or decreases) by 1

2 with every action of a supercharge.

9.3. The Field Content

We give the entire field content of the stress tensor multiplet in terms of the fundamental fields.
The primary field of the multiplet corresponding to the highest weight state [0,2,0](0,0) is given
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9.3. The Field Content

by

φIJ := trc(ϕIϕJ)− ηIJ6 trc(ϕKϕK) . (9.9)

The field is symmetric, i.e. φIJ = φJI , and traceless, i.e. φ I
I = 0. Because the fundamental

scalar field ϕI has conformal dimension 1, φIJ has conformal dimension 2. Similarly, there is a
field corresponding to each state in the 1

2 -BPS multiplet. Up to hermitian conjugates, the fields
in the stress tensor multiplet are1

φIJ := trc(ϕIϕJ)− ηIJ6 trc(ϕKϕK) ,

ΨA
αI := trc(ϕIψAα )− Σ̄AB

I ΣK
BC

6 trc(ϕKψCα ) ,

ρAB := 1
2trc

(
ψαAψBα

)
− ig

12 trc
(
(Σ̄IΣJ Σ̄K)ABϕI [ϕJ ,ϕK ]

)
,

f Iαβ := 1
2trc

(
ψAαΣI

ABψ
B
β

)
− trc

(
ϕI(σµν) γ

α ϵγβFµν
)
,

Jαα̇IJ := trc
(
ψAα (ΣIJ) B

A ψ̄α̇B
)
− itrc

(
(Dαα̇ϕ[I)ϕJ ]

)
,

λAα := trc
(
(σµν) β

α ψ
A
β Fµν

)
+ ig

2 trc
(
Σ̄AB
I ΣJ

BCψ
C
α [ϕI ,ϕJ ]

)
,

χαββ̇A :=−1
2trc

(
(σµν) γ

α ϵγβFµνψ̄β̇A

)
− i

3 trc
(
ΣI
ABψ

B
(α(Dβ)β̇ϕI)

)
+ i

6 trc
(
ΣI
AB(D(β|β̇ψ

B
α))ϕI

)
,

Φ := 1
2 trc (FµνFµν)+ i

4ϵ
µνρλ trc (FµνFρλ)

+ itrc
(
ψαA(Dαα̇ψ̄

α̇
A)
)

+ g2

2 trc
(
[ϕI ,ϕJ ][ϕI ,ϕJ ]

)
,

Tαβα̇β̇ := 1
2 trc

(
(σµν) γ

(αϵ|γ|β)ϵ(α̇|γ̇|(σ̄ρλ)γ̇
β̇)FµνFρλ

)
+ i

2 trc
(
(D(α(α̇ψ

A
β))ψ̄β̇)A

)
− i

2 trc
(
ψA(α(Dβ)(α̇ψ̄β̇)A)

)
+ 1

6 trc
(
(D(α(α̇(Dβ)β̇)ϕI))ϕ

I
)
− 1

3 trc
(
(D(α(α̇ϕI)(Dβ)β̇)ϕ

I)
)
.

(9.10)

This is the main result of this chapter and has not been published before. The paper [63] only
discusses the field constraints and supersymmetry transformations of the fields (9.10) but does
not provide the explicit expressions (9.10). In section 9.5, we show how to derive (9.10) from
the primary field (9.9).

The last field in (9.10) is, of course, the energy-momentum tensor Tαβα̇β̇. We colored the indices
to distinguish the two symmetrizations over the dotted and undotted indices (α̇β̇) and (αβ).

1As usual (ab) = 1
2 (ab + ba).
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9. The Stress Tensor Multiplet

The fact that Tαβα̇β̇ is separately symmetric in (α̇β̇) and (αβ) follows from the symmetry and
tracelessness of Tµν . Φ is the SU(4) R-symmetry current.

Replacing the Dynkin labels in 9.1 with the respective fields gives [63]:

φIJ

ΨA
αI Ψ̄I

α̇A

ρAB , fαβI Jαα̇IJ ρ̄AB , f̄
I
α̇β̇

λA
α

χA
αβα̇

χ̄αα̇β̇A λ̄α̇A

Φ Tαβα̇β̇ Φ̄

Figure 9.2.: Diagrammatic representation of the stress tensor multiplet in terms of the fields.

The supersymmetry variations of the fields in the stress tensor multiplet are [63]

δφIJ =−2εαAΣAB(IΨB
J)α−2ε̄α̇AΣ̄AB

(I Ψ̄α̇
J)B ,

δΨA
αI =− i2(Dαα̇φIJ)Σ̄J AB ε̄α̇B +fαβIε

βA− 1
6fαβJ Σ̄AB

I ΣJ
BCε

βC

−ρABΣI BCε
C
α −Jαα̇IJ Σ̄J AB ε̄α̇B + 1

6Jαα̇JKΣ̄AB
I ΣJ

BCΣ̄KCDε̄α̇D ,

δρAB = εα(AλB)
α − iε̄α̇CΣ̄C(A

I Dα̇αΨB)I
α ,

δf Iαβ =−2iΨI A
(α
←
Dβ)β̇ ε̄

β̇
A+2χαββ̇AΣ̄I AB ε̄β̇B−ε

A
(αΣI

ABλ
B
β) ,

δJαα̇IJ = 2iεβAΣAB[IΨB
J ]α
←
Dβα̇− iεβAΣAB[IΨB

J ]β
←
Dαα̇+2εβA(ΣIJ) B

A χβαα̇B

+2iDαβ̇Ψ̄A
α̇[IΣ̄J ]AB ε̄

β̇B− iDαα̇Ψ̄A
β̇[IΣ̄J ]AB ε̄

β̇B +2χ̄A
αα̇β̇

(Σ̄IJ)BAε̄
β̇
B .

δλAα = εAαΦ+ i(f Iαβϵβγ
←
Dγα̇)Σ̄AB

I ε̄α̇B +2iDαα̇ρ
AB ε̄α̇B ,

δχαβα̇A =− i2ε
γBΣI BADγα̇f

I
αβ + i

3ε
γBΣI BAD(β|α̇|f

I
α)γ−

i

4D(α|β̇|Jβ)α̇IJΣI
ABΣ̄J BC ε̄β̇C

+ i

12D(α|α̇|Jβ)β̇IJΣI
ABΣ̄J BC ε̄β̇C +Tαβα̇β̇ ε̄

β̇A ,

δΦ = 2iε̄α̇ADα̇αλAα ,

δTαβα̇β̇ = 2iεδADδ(α̇χαββ̇)A− iε
δAD(α(α̇χ|δ|β)β̇)A−2iχ̄(αα̇β̇

←
Dβ)δ̇ ε̄

δ̇A+ iχ̄(α(α̇|δ̇
←
Dβ)β̇)ε̄

δ̇A .

(9.11)
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These can be obtained without knowing the field representations. We know that under a super-
symmetry transformation, a field of conformal dimension ∆ must transform into a linear com-
bination of fields of conformal dimension ∆+ 1

2 and derivatives of fields of conformal dimension
∆− 1

2 . The coefficients and field constraints are found by demanding that the supersymmetry
algebra closes on the fields of the stress tensor multiplet up to terms proportional to the equa-
tions of motion. This analysis was first done in Dolan and Osborn. The equations of motion for
the fields are [63]

Dαα̇Jαα̇IJ = 0 , Dα̇αχAαβα̇ = 0 , Dα̇αχ̄αα̇β̇A = 0 , Dα̇αTαβα̇β̇ = 0 . (9.12)

They can be verified using the field expressions (9.10) and the N = 4 super Yang-Mills equations
of motion (9.3). The main properties of the fields are summarized in the following table taken
from [63].

SU(4) Rep SU(4) Dim (j, j̄) Field Field Constraints Field Dim
[0,2,0] 20R (0,0) φIJ φIJ = φ(IJ) , φ

I
I = 0 20

[0,1,1] 20C (1
2 ,0) ΨA

αI ΣI
ABΨB

αI = 0 40
[1,1,0] 20C (0, 1

2 ) Ψ̄I
α̇A Σ̄AB

I Ψ̄I
α̇B = 0 40

[0,1,0] 6R (1,0) fαβI fαβI = f(αβ)I 18
[0,1,0] 6R (0,1) f̄I

α̇β̇
f̄I

α̇β̇
= f̄I

(α̇β̇) 18

[0,0,2] 10C (0,0) ρAB ρAB = ρ(AB) 10
[2,0,0] 10C (0,0) ρ̄AB ρ̄AB = ρ̄(AB) 10
[1,0,1] 15C (1

2 ,
1
2 ) Jαα̇IJ Jαα̇IJ = Jαα̇[IJ] , D

αα̇Jαα̇IJ = 0 45
[0,0,1] 4C (1

2 ,0) λA
α 8

[1,0,0] 4C (0, 1
2 ) λ̄α̇A 8

[1,0,0] 4C (1, 1
2 ) χA

αβα̇ χA
αβα̇ = χA

(αβ)α̇ , D
α̇αχA

αβα̇ = 0 16
[0,0,1] 4C (1

2 ,1) χ̄αα̇β̇A χ̄αα̇β̇A = χ̄α(α̇β̇)A , D
α̇αχ̄αα̇β̇A = 0 16

[0,0,0] 1R (0,0) Φ 1
[0,0,0] 1R (0,0) Φ̄ 1
[0,0,0] 1R (1,1) Tαβα̇β̇ Tαβα̇β̇ = T(αβ)(α̇β̇) , D

α̇αTαβα̇β̇ = 0 5

The index structure of the fields can be inferred from their field dimension and spin. The field
constraints are such that the field dimension matches the SU(4) dimension.

9.4. General Correlation Functions with the Nicolai Map

The inverse Nicolai map T −1
g maps quantum correlation functions of bosonic operators to free

correlation functions〈〈
O1(x1) . . .On(xn)

〉〉
g

=
〈
(T −1
g O1)(x1) . . .(T −1

g On)(xn)
〉

0 . (9.13)
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However, except for the primary field φIJ all fields in the stress tensor multiplet (9.10) contain
spinors. Hence, we must adjust (9.13) to compute correlation functions of these operators.
Recall that we can always integrate out the fermions in a correlation function since they appear
only quadratically in the action (9.1). Similar to (2.105) we have for example (with Majorana
spinors)

〈〈
Aaµ(x)λbA(y)λ̄cB(z)

〉〉
g

= i
〈
Aaµ(x)λbA(y)λ̄cB(z)

〉
g

=
〈
Aaµ(x)SbcAB(y,z;A )

〉
g

(9.14)

where A = (Aaµ,Aai ,Ba
i ). We then find

〈〈
Aaµ(x)λbA(y)λ̄cB(z)

〉〉
g

=
〈
Aaµ(x)SbcAB(y,z;A )

〉
g

=
∫
D0A ∆MSS[g;A ]∆FP[g;A ] e−iS4

inv[g;A ]−iSgf [g,A ] Aaµ(x)SbcAB(y,z;A ) .
(9.15)

The fermion propagator only depends on the free bosonic propagator and the bosonic fields.
Hence, we find 〈

(T −1
g A)aµ(x)SbcAB(y,z;T −1

g A )
〉

0

=
∫
D0A e−iS

4
inv[0;A ]−iSgf [0,A ] (T −1

g A)aµ(x)SbcAB(y,z;T −1
g A )

=
∫
D0A J (TgA ) e−iS4

inv[0;TgA ]−iSgf [0,TgA ] Aaµ(x)SbcAB(y,z;A ) .

(9.16)

Thus, with the main theorem 5.1 we can conclude

〈〈
Aaµ(x)λbA(y)λ̄cB(z)

〉〉
g

= i
〈
(T −1
g A)aµ(x)SbcAB(y,z;T −1

g A )
〉

0 . (9.17)

The generalization of this equality follows from Wick’s theorem and (9.13). We leave the cal-
culation of correlation functions for future study. Notice that we can only compute correlation
functions of operators containing spinors but we cannot compute their Nicolai map.

9.5. Supersymmetry Transformations of the Chiral Primary Field

The descendant fields of the stress tensor multiplet are obtained by successively computing the
supersymmetry transformations of the chiral primary field φIJ . In the following, we outline the
details of these calculations and give some examples. Our starting point is (9.11). The first two
descendants are found by

δφIJ =−trc(εαAΣI ABψ
B
α ϕJ)− trc(ϕIεαAΣJ ABψ

B
α )+ ηIJ

3 trc(εαAΣK
ABψ

B
α ϕK)

− trc(ε̄α̇AΣ̄AB
I ψ̄α̇Bϕ

J)− trc(ϕI ε̄α̇AΣ̄AB
J ψ̄α̇B)+ ηIJ

3 trc(ε̄α̇AΣ̄AB
K ψ̄α̇Bϕ

K)
!=−2εαAΣAB(IΨB

J)α−2ε̄α̇AΣ̄AB
(I Ψ̄α̇

J)B .

(9.18)
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We can read off the expressions for ΨA
αI and Ψ̄I

α̇A. We continue down the left branch of the
multiplet (see fig. 9.2). The supersymmetry variation of ΨA

αI is

δΨA
αI =−trc

(
εβBΣI BCψ

C
β ψ

A
α

)
− trc

(
ε̄β̇BΣ̄BC

I ψ̄β̇Cψ
A
α

)
− trc

(
ϕIσ

µν β
α εAβFµν

)
− itrc

(
ϕIσ

µ
αα̇Σ̄AB

J ε̄α̇B(Dµϕ
J)
)

+ ig

2 trc
(
ϕIΣ̄AB

J ΣK
BCε

C
α [ϕJ ,ϕK ]

)
+ Σ̄AB

I ΣK
BC

6 trc
(
εβDΣKDEψ

E
β ψ

C
α

)
+ Σ̄AB

I ΣK
BC

6 trc
(
ε̄β̇DΣ̄DE

K ψ̄β̇Eψ
C
α

)
+ Σ̄AB

I ΣK
BC

6 trc
(
ϕKσ

µν β
α εCβ Fµν

)
+ i

Σ̄AB
I ΣK

BC

6 trc
(
ϕKσ

µ
αα̇Σ̄CD

J ε̄α̇D(Dµϕ
J)
)

− ig2
Σ̄AB
I ΣK

BC

6 trc
(
ϕKΣ̄J

CDΣLDEεαE [ϕJ ,ϕL]
)
.

(9.19)

By (9.11) this must be equivalent to

δΨA
αI =− i2(Dαα̇φIJ)Σ̄J AB ε̄α̇B +fαβIε

βA− 1
6fαβJ Σ̄AB

I ΣJ
BCε

βC

−ρABΣI BCε
C
α −Jαα̇IJ Σ̄J AB ε̄α̇B + 1

6Jαα̇JKΣ̄AB
I ΣJ

BCΣ̄KCDε̄α̇D .

(9.20)

First we focus on all the terms proportional to εAα and compare the respective terms on the
right-hand sides of (9.19) and (9.20)

fαβIε
βA− 1

6fαβJ Σ̄AB
I ΣJ

BCε
βC −ρABΣI BCε

C
α

!=−trc
(
εβBΣI BCψ

C
β ψ

A
α

)
− trc

(
ϕIσ

µν β
α εAβFµν

)
+ ig

2 trc
(
ϕIΣ̄AB

J ΣK
BCε

C
α [ϕJ ,ϕK ]

)
+ Σ̄AB

I ΣK
BC

6 trc
(
εβDΣKDEψ

E
β ψ

C
α

)
+ Σ̄AB

I ΣK
BC

6 trc
(
ϕKσ

µν β
α εCβ Fµν

)
− ig2

Σ̄AB
I ΣK

BC

6 trc
(
ϕKΣ̄J

CDΣLDEεαE [ϕJ ,ϕL]
)
.

(9.21)

The coloring is for later. We want to solve this equation for ρAB and f Iαβ. From the table in the
previous section we know that f Iαβ must be symmetric in α and β and ρAB must be symmetric
in A and B. The only combinations of fields appearing on the right-hand side of (9.21), which
are symmetric in α and β and match the index structure of f Iαβ are

trc
(
ψAαΣI

ABψ
B
β

)
, trc

(
ϕI(σµν) γ

α ϵγβFµν
)
, (9.22)

where ϵαβ is the anti-symmetric tensor and (σµν) γ
α ϵγβ is symmetric in α and β. Similarly,

trc
(
ψαAψBα

)
, trc

(
(Σ̄IΣJ Σ̄K)ABϕI [ϕJ ,ϕK ]

)
(9.23)

are the only combinations symmetric in A and B. A term like trc(ΣAB
I ϕI(σµν) β

α ϵβαFµν) cannot
be part of ρAB as it is anti-symmetric in A and B. Thus, we assume that f Iαβ is a linear
combination of (9.22) and ρAB is a linear combination of (9.23). We compute the left-hand side
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of (9.21) to fix the coefficients Xi

−ρABΣI BCε
C
α

=X1trc
(
ψβAψBβ

)
ΣI BCε

C
α +X2trc

(
(Σ̄JΣKΣ̄L)ABΣI BCε

C
αϕ

J [ϕK ,ϕL]
)

=X1trc
(
εBαΣI BCψ

βCψAβ

)
−6X2trc

(
(Σ̄JΣK)ABεBαϕI [ϕJ ,ϕK ]

)
+X2trc

(
(Σ̄IΣJ Σ̄KΣL)ABεBαϕJ [ϕK ,ϕL]

)
.

(9.24)

The green term must match the green term in (9.21). So we obtain X2 = − ig
12 . To find X1 we

must first compute the terms with f Iαβ in (9.21)

fαβIε
βA− 1

6fαβJ Σ̄AB
I ΣJ

BCε
βC

=X3trc
(
ψBα ΣI BCψ

C
β ε

βA
)

+X4trc
(
ϕI(σµν) γ

α ϵγβε
βAFµν

)
−X3

6 trc
(
ψDα ΣJDEψ

E
β Σ̄AB

I ΣJ
BCε

βC
)

−X4
6 trc

(
ϕJ(σµν) γ

α ϵγβΣ̄AB
I ΣJ

BCε
βCFµν

)
=
(
X3−

X3
3

)
trc
(
εβAψBβ ΣI BCψ

C
α

)
−X3

3 trc
(
εβBΣI BCψ

C
β ψ

A
α

)
+ X3

3 trc
(
εβBΣI BCψ

A
β ψ

C
α

)
+X4trc

(
ϕIσ

µν β
α εAβFµν

)
−X4

Σ̄AB
I ΣJ

BC

6 trc
(
ϕJσ

µν β
α εCβ Fµν

)
.

(9.25)

For the second equality we used ΣI
ABΣ̄CD

I =−4δ [C
A δ

D]
B . The blue term matches the blue term

in (9.21) if X4 = −1. To find the last two coefficients X1 and X3 we write out the remaining
terms in (9.21), (9.24) and (9.25)

X1trc
(
εBαΣI BCψ

βCψAβ

)
+
(
X3−

X3
3

)
trc
(
εβAψBβ ΣI BCψ

C
α

)
−X3

3 trc
(
εβBΣI BCψ

C
β ψ

A
α

)
+ X3

3 trc
(
εβBΣI BCψ

A
β ψ

C
α

)
!=−trc

(
εβBΣI BCψ

C
β ψ

A
α

)
+ Σ̄AB

I ΣK
BC

6 trc
(
εβDΣKDEψ

E
β ψ

C
α

)
.

(9.26)

In the second term on the right-hand side, we first commute Σ̄AB
I and ΣK

BC and subsequently
use ΣK

ABΣ̄CD
K =−4δ [C

A δ
D]
B . Thus, (9.26) becomes

X1trc
(
εBαΣI BCψ

βCψAβ

)
+
(
X3−

X3
3

)
trc
(
εβAψBβ ΣI BCψ

C
α

)
−X3

3 trc
(
εβBΣI BCψ

C
β ψ

A
α

)
+ X3

3 trc
(
εβBΣI BCψ

A
β ψ

C
α

)
!=−trc

(
εβBΣI BCψ

C
β ψ

A
α

)
+ 1

3 trc
(
εβBΣI BCψ

C
β ψ

A
α

)
+ 1

3 trc
(
εβAψBβ ΣI BCψ

C
α

)
− 1

3 trc
(
εβBΣI BCψ

A
β ψ

C
α

)
.

(9.27)
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The red terms match if X3 = 1
2 . Similarly the remaining black term match if X1 = 1

2 since

trc
(
εβBΣI BCψ

C
β ψ

A
α

)
+trc

(
εβBΣI BCψ

A
β ψ

C
α

)
+trc

(
εBαΣI BCψ

βCψAβ

)
= 0 . (9.28)

This can be seen by spelling out the left-hand side for all possible combinations of the indices α
and β. Thus, we have obtained the following expressions for ρAB and f Iαβ

ρAB := 1
2trc

(
ψαAψBα

)
− ig

12 trc
(
(Σ̄IΣJ Σ̄K)ABϕI [ϕJ ,ϕK ]

)
,

f Iαβ := 1
2trc

(
ψAαΣI

ABψ
B
β

)
− trc

(
ϕI(σµν) γ

α ϵγβFµν
)
.

(9.29)

Similarly, we can find Jαα̇IJ by collecting all terms proportional to ε̄α̇A in (9.19) and (9.20).

Following this same procedure, we work through the entire multiplet to determine the field
content at every level. The calculations become more tedious at every level and the field structure
becomes more complicated. For conciseness, we will not provide any further details of these
calculations here. Finally, the supersymmetry variations of the R-symmetry current Φ and the
energy-momentum tensor Tαβα̇β̇ do not reveal any new fields but give only derivatives of the
previously obtained fields. Thus, these variations act as tests for the entire calculation.

137



10. Conclusion and Outlook

In this thesis, we have studied the Nicolai map in various supersymmetric field theories. Besides
a formal introduction to the subject, we have used the Nicolai map to compute the vacuum
expectation value of the infinite straight line Maldacena-Wilson loop in N = 4 super Yang-Mills
to order g6. Furthermore, we have calculated the entire field content of the N = 4 super Yang-
Mills stress tensor multiplet. In the following, we review the new results obtained in this work
and name open questions and possible directions for future research.

10.1. Summary of Results

We have learned that supersymmetric theories can be characterized by the existence of a non-
linear and non-local transformation of the bosonic fields, called the Nicolai map, which maps the
interacting functional measure to that of a free theory such that the Jacobian determinant of the
map is equal to the product of the fermionic determinants. The Nicolai map is made possible
by the supersymmetric Ward identities relating bosonic and fermionic correlation functions.

Briefly summarized, the main results of this work are:

• The calculation of the Nicolai map (3.45) for the 2-dimensional Wess-Zumino model up to
the fifth order in the coupling.

• The introduction of ‘on- and off-shell’ Nicolai maps and Rg-operators.
• The calculation of the Nicolai map (4.5) for ‘off-shell’ N = 1 super Yang-Mills in axial

gauge up to the second order in the coupling.
• The calculation of the Nicolai map (C.1) for ‘on-shell’ N = 1 super Yang-Mills in d= 3, 4,

6 and 10 dimensions and Landau gauge up to the fourth order in the coupling.
• The calculation of the vacuum expectation value of the infinite straight line Maldacena-

Wilson loop in N = 4 super Yang-Mills to order g6.
• The derivation of the entire field content of the N = 4 super Yang-Mills stress tensor

multiplet.
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We will now give some further details to these results.

The Nicolai map of the 2-dimensional Wess-Zumino model was first studied by Nicolai in [34–38].
Nicolai derived the corresponding Rλ-operator, i.e. the infinitesimal generator of the inverse
Nicolai map, and provided the first three orders of the perturbative expansion of the Nicolai
map. However, at the time the map was not systemically computed. For lower-order results,
this can work, but as we have seen already Nicolai’s third-order result differs from the one we
obtained by a systematic calculation. In chapter 3, we have explained how to derive the Rλ-
operator and how to compute the Nicolai map. Our results show that the map can be obtained
to arbitrary order in perturbation theory. More than anything, the fifth-order result (3.45) is
a non-trivial proof of concept for the Nicolai map. Furthermore, we have given a pedagogical
proof of the main theorem governing the properties of the Nicolai map.

The most important result of this work was given in chapter 4. Namely, the introduction
of the ‘off-shell’ Nicolai map [3]. For the first time, we were able to obtain a Nicolai map of a
supersymmetric gauge theory in general gauges. Despite countless attempts (see e.g. [41, 42, 48–
50]) all previous Nicolai maps of gauge theories were constrained to the Landau gauge (see e.g.
[34]). The crucial observation was to consider the ‘off-shell’ formulation of the theory and
rescaled fields Ãaµ = gAaµ. When using rescaled fields, the dependence of the action on the
coupling constant g factors out and also the supersymmetry transformations of the fields no
longer depend on the coupling. Hence, it becomes possible to write the ‘off-shell’ action of a
gauge theory as a supervariation without any gauge constraints. Subsequently, we obtained an
R̃g-operator not restricted by a gauge choice. The second crucial observation was to act with
this R̃g-operator on (1

g Ã
a
µ) rather than Ãaµ. This led us to the correct expression for the inverse

Nicolai map (T −1
g A)aµ = (Tg(1

g Ã))aµ. This construction is universal to all supersymmetric gauge
theories with ‘off-shell’ supersymmetry. We have applied it to 4-dimensional N = 1 super Yang-
Mills and computed the Nicolai map in axial gauge (4.5) to the second order in the coupling.

Due to the presence of the field strength tensor in the ‘off-shell’ R̃g-operator, the favored gauge
of the super Yang-Mills Nicolai maps is the Landau gauge. For a detailed explanation, see
section 4.7. Thus, for our next result in this thesis, we constrained ourselves to the Landau
gauge and computed the Nicolai map (C.1) for ‘on-shell’ N = 1 super Yang-Mills in d= 3, 4, 6
and 10 dimensions up to the fourth order in the coupling [1, 3]. Thus, we have extended the
previously existing result from [34] by two orders. We also found an ambiguity specifically in
six dimensions [2] where up to the third order in the coupling, a simpler version of the Nicolai
map exists.

After extensively studying the Nicolai map in N = 1 super Yang-Mills, we finally turned to
N = 4 super Yang-Mills in chapter 6. Since the N = 4 super Yang-Mills theory does not have
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an ‘off-shell’ formulation with finitely many auxiliary fields and manifest N = 4 supersymmetry,
the closest we can come to an ‘off-shell’ Nicolai map for the N = 4 theory is the ‘off-shell’ Nicolai
map of maximally extended 4-dimensional N = 1 super Yang-Mills. In (6.13) - (6.14) we have
given the ‘off-shell’ R̃g-operator of maximally extended 4-dimensional N = 1 super Yang-Mills
and in (6.22) - (6.23) we have given the ‘on-shell’ R4

g-operator of N = 4 super Yang-Mills. Since
both expressions are much more complicated than any of the Rg-operators derived before, we
proved that the Nicolai map of N = 4 super Yang-Mills can be obtained from the Nicolai map
of 10-dimensional N = 1 super Yang-Mills by the means of dimensional reduction. This gave
us automatic access to the fourth-order Nicolai map in N = 4 super Yang-Mills. In [54] it was
shown that, when one dimensionally reduces the N = 1 Rg-operator to the N = 4 R4

g-operator,
there is some freedom in the realization of the SU(4) R-symmetry. Thus, there are several
possible Nicolai maps for N = 4 super Yang-Mills. Our result corresponds to the case of full
SU(4) symmetry. Correlation functions do not depend on the choice of map.

In chapter 7, we have demonstrated a possible perturbative application of the Nicolai map. We
have computed the vacuum expectation value of the infinite straight line Maldacena-Wilson
loop in N = 4 super Yang-Mills to order g6. It is widely believed that the vacuum expectation
value of the infinite straight line Maldacena-Wilson loop is exactly equal to 1 [120]. However,
this has actually never been proven. In this work, we have extended the previous perturbative
calculation of [120] by one order. This result has first been published in [4]. We found that the
cancellations occurring at O(g6) are by no means trivial.

In this thesis, we have also commented on some general questions related to the Nicolai map. It is
well known that the perturbative expansion of most quantum field theories has vanishing radius
of convergence. The Nicolai map, however, is believed to have a non-zero radius of convergence in
all theories. However, thus far, it has only been proven for supersymmetric quantum mechanics
in [87]. Similar proofs for other supersymmetric field theories remain a challenge for future
research. Concerning the renormalization of Nicolai maps, we have shown that it fundamentally
hinges on the renormalization properties of the fermion and ghost propagators in the gauge field
background. In super Yang-Mills theories, this yields a non-linear renormalization of the Nicolai
map.

In the second part of this thesis, we have derived the entire field content of the N = 4 super Yang-
Mills stress tensor multiplet. This is a particularly interesting short multiplet as it contains all
theN = 4 currents and, in particular, the energy-momentum tensor. Moreover, it has been shown
[61] that the operators in the stress tensor multiplet do not acquire an anomalous dimension.
The structure of the stress tensor multiplet and the 2-, 3- and 4-point correlation functions of
its constituents have been extensively studied in [63]. However, the explicit expressions for the
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fields in the multiplet were not provided. We have filled this gap in chapter 9. With the explicit
field content at hand we can in the future investigate its correlation functions with the Nicolai
map. It will be interesting to see if and how the simplifications in the 2-, 3- and 4-point functions
of this mulitplet are visible through the Nicolai map.

Thus, to summarize, we now have a comprehensive understanding of the Nicolai map in a wide
range of supersymmetric field theories. In particular, we have addressed many open questions
from earlier research in the 1980s. Hopefully, this framework will assist us in the future when
we tackle some of the more fundamental questions in supersymmetric gauge theories.

10.2. Outlook

There are several possible lines of future research on the Nicolai map and related topics. In the
following, we highlight a selected few.

The Nicolai maps presented in the chapters 3, 4 and 5 have been computed using Mathematica.
However, not much thought has gone into optimizing the calculations. A more efficient approach
could yield results far beyond the fourth- respectively fifth-order Nicolai maps presented in this
thesis. It would be interesting to see if calculations such as that of the five-loop anomalous
dimension of the Konishi operator [134] are also possible with the Nicolai map.

The Nicolai map in axial gauge (4.56) is significantly more complicated than its Landau gauge
counterpart (5.38). At the moment, there seem to be three possible paths to a more tractable
result. The first would be along the lines of section 5.7, i.e. to simply guess a simpler version of
the second-order Nicolai map in axial gauge. In [2] an algorithm is outlined which could produce
such a result. The advantage of this approach is that it would be relatively simple to implement.
However, it is not very likely that we could produce higher-order results this way.

A second, more promising approach is the introduction of a topological term in the action
similar to [135]. In Landau gauge, special values of θ make the second order of the Nicolai
map vanish altogether and drastically reduce the number of terms in higher orders. We have
checked that the exact approach presented in [135] does not yield any simplifications in the axial
gauge. Furthermore, it is only permissible in Euclidean signature and thus not possible for the
light-cone gauge. Nevertheless, we still hope that the formalism can be appropriately modified.

A third possibility could be a modification of the gauge field along the lines of [32, 136]. Man-
delstam’s finiteness statements [13, 31] seem to only concern the transversal degrees of freedom
of the fields. Hence, there is room to modify the longitudinal degrees of freedom in accordance
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with the finiteness in the light-cone gauge. The hope is that such a modification in the N = 1
theory would cancel some of the terms in (4.5).

Another possibility for future research is to search for non-perturbative results in N = 4 super
Yang-Mills with the Nicolai map. The most straightforward type of result would be to find
operators which are in the kernel of the Rg-operator. A first study of the kernel of the Rg-
operator in N = 1 super Yang-Mills was done by Lechtenfeld in his doctoral thesis [41]. He
showed that the (anti) self-dual field strength tensor is in the kernel of the ‘off-shell’ R̃g-operator.
More generally, also operators for which the Nicolai map takes a closed form could potentially
be very interesting. These could give rise to all-order non-trivial perturbative results for vacuum
expectation values or correlation functions. A related goal is to give a non-perturbative proof
for the vanishing of quantum corrections in the vacuum expectation value of the infinite-straight
line Maldacena-Wilson loop.

Furthermore, studying the Nicolai map of correlation functions rather than individual operators
could also yield some interesting results. With the explicit field content of the stress tensor
multiplet (9.10) and the instructions for computing general correlation functions with the Nicolai
map from section 9.4, it is now possible to study the multiplet from a new angle. The hope
is to derive some non-perturbative statements for the 4-point functions or operator product
expansions.

And finally, there is string theory. So far, all the research on the Nicolai map has been done for
ordinary quantum field theories. However, supersymmetry is also present in theories of gravity,
such as string theory. It would be interesting to see if it is possible to derive a Nicolai map for
the superstring similar to the ones presented here. Maybe even new connections in the context
of the AdS/CFT correspondence are possible.
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A. Spinors

In this appendix, we list important properties of sigma and gamma matrices as well as spinors
in various dimensions. In the first two sections, we introduce sigma matrices in four and six
spacetime dimensions. In section A.3 we introduce gamma matrices in general dimension and
provide some explicit representations in four and ten dimensions. In the last four sections, we
introduce Weyl, Dirac, Majorana and Majorana-Weyl spinors. In particular, we give the Fierz
identities for Weyl and Majorana spinors in two and four dimensions.

A.1. Sigma Matrices in Four Dimensions

Four-dimensional sigma matrices carry two types of spinor indices α = 1,2 and α̇ = 1,2. The
three Pauli matrices are

σ1 :=
(

0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
(A.1)

and the two times four sigma matrices are defined as σµ := (12,σ
i) and σ̄µ := (12,−σi). Fur-

thermore, we introduce the anti-symmetric tensors ϵαβ and ϵα̇β̇ with

ϵ21 = ϵ12 = 1 , ϵ12 = ϵ21 =−1 , ϵ11 = ϵ22 = 0 . (A.2)

The barred and unbarred sigma matrices are related by

σ̄µα̇α = ϵα̇β̇ϵαβσµ
ββ̇
. (A.3)

The Fierz identities for the σ-matrices are

σµαα̇σ̄
β̇β
µ = 2δ β

α δ
β̇
α̇ , σµαα̇σ

µ

ββ̇
= 2ϵαβϵα̇β̇ , σ̄α̇αµ σ̄µβ̇β = 2ϵαβϵα̇β̇ . (A.4)

Usually, we will suppress the spinor indices. The metric tensor is ηµν with mostly minus signature
(+,−,−,−). The sigma matrices satisfy the Clifford algebra

{σµ, σ̄ν}= 2ηµν . (A.5)
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We define the anti-symmetric products

(σµν) β
α := 1

4(σµαα̇σ̄να̇β−σναα̇σ̄µα̇β) ,

(σ̄µν)β̇α̇ := 1
4(σ̄µα̇ασν

αβ̇
− σ̄να̇ασµ

αβ̇
) .

(A.6)

These relations and definitions imply

σ̄ρσµν = σ̄ρµν +ηρ[µσ̄ν] ,

σµνσρ = σµνρ+σ[µην]ρ ,

1
2 (σµσ̄νσρ−σρσ̄νσµ) = iϵµνρλσλ

(A.7)

with the totally anti-symmetric symbol ϵ0123 = 1.

A.2. Sigma Matrices in Six Dimensions

In six dimensions, there is one type of spinor index A= 1,2,3,4 and two times six sigma matrices
ΣI
AB and Σ̄AB

I . The barred and unbarred sigma matrices are related by

ΣI
AB = 1

2ϵABCDΣ̄I CD , Σ̄AB
I = 1

2ϵ
ABCDΣI CD , (A.8)

with the totally anti-symmetric symbol ϵ1234 = 1. The six-dimensional sigma matrices satisfy
the Clifford algebra

{ΣI , Σ̄J}=−2δIJ (A.9)

and the Fierz identities

ΣI
ABΣ̄CD

I =−4δ [C
A δ

D]
B , ΣI ABΣI

CD =−2ϵABCD , Σ̄AB
I Σ̄I CD =−2ϵABCD . (A.10)

Moreover, let

(ΣIJ) B
A := 1

4(ΣI
ACΣ̄J CB−ΣJ

ACΣ̄I CB) ,

(Σ̄IJ)BA := 1
4(Σ̄I ACΣJ

CB− Σ̄J ACΣI
CB) .

(A.11)

These relations and definitions imply

Σ̄IΣJK = Σ̄IJK − δI[J Σ̄K] ,

ΣIJΣK = ΣIJK −Σ[IδJ ]K .
(A.12)

Important trace relations are

tr(ΣIΣ̄J) =−4δIJ ,

tr(ΣIΣ̄JΣKΣ̄L) =−4
(
δIJδKL− δIKδJL+ δILδJK

)
.

(A.13)
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All these relations are independent of the sigma matrix representation. However, some appli-
cations require us to choose a representation. In that case, we define the two times six sigma
matrices via the real anti-symmetric matrices αiAB and βiAB (with i= 1,2,3)

αjik := εijk , αji4 =−αj4i :=−δji , αi44 := 0 ,

βjik :=−εijk , βji4 =−βj4i :=−δji , βi44 := 0 ,
(A.14)

which satisfy

{αi,αj}=−2δij , [αi,αj ] = 2εijkαk ,

{βi,βj}=−2δij , [βi,βj ] =−2εijkβk , [αi,βj ] = 0 .
(A.15)

Subsequently,

Σi
AB := αiAB , Σ̄AB

i := αiAB Σi+3
AB :=−iβiAB , Σ̄AB

i+3 := iβiAB . (A.16)

A.3. Gamma Matrices

Gamma matrices exist in every dimension d≥ 2. They carry one type of spinor index α= 1, . . . , r,
where r is the dimension of the gamma matrix representation in question. For the majority of
this thesis, it is not necessary to specify a gamma matrix representation. In contrast to the spinor
indices for the sigma matrices, we will not distinguish between sub- or superscript spinor indices
for gamma matrices and write them all as subscripts. Usually, spinor indices are suppressed
altogether. Gamma matrices are defined through the Clifford algebra

{γµ,γν}= 2ηµν . (A.17)

with the mostly minus Minkowski metric ηµν = (+,−, . . . ,−). For the gamma matrices, we are
mostly interested in the trace relations

tr(γµ) = 0 ,

tr(γµ1 . . .γµn) =
n∑
i=2

(−1)i ηµ1µi tr(γµ2 . . . γ̂µi . . .γµn) ,
(A.18)

where the hat indicates that γ̂µi is excluded from the product. In particular, the trace over an
odd number of gamma matrices is zero. The anti-symmetrized product of two gamma matrices
is given by

γµν := 1
2 (γµγν−γνγµ) . (A.19)
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This implies

γµγνρ = γµνρ+ηµ[νγρ] ,

γµνγρ = γµνρ+γ[µην]ρ .
(A.20)

Additionally, one may introduce the charge conjugation matrix C. It is defined via

CγµC−1 =−(γµ)T , (A.21)

where ( ·)T denotes the matrix transpose. The charge conjugation matrix satisfies C−1 = C† =
−CT = C. There are two special dimensions demanding some more attention.

A.3.1. Gamma Matrices in Four Dimensions

In four dimensions we have the additional γ5-matrix γ5 := iγ0γ1γ2γ3. It anti-commutes with all
other gamma matrices, i.e.

{γ5,γµ}= 0 (A.22)

and it obeys γ5γ5 = 1. Moreover,

tr(γ5) = tr(γ5γµγν) = 0 (A.23)

and also the trace of an odd number of gamma matrices times γ5 is zero. For the dimensional
reduction of 10-dimensional N = 1 super Yang-Mills to 4-dimensional N = 4 super Yang-Mills,
we are required to choose a gamma matrix representation. Let

γµ =
(

0 σµ

σ̄µ 0
)
, γ5 =

(
−12 0

0 12

)
. (A.24)

In this representation, the charge conjugation matrix is C = iγ2γ0. It is straightforward to check
that these 4-dimensional gamma matrices satisfy the Clifford algebra (A.17).

A.3.2. Gamma Matrices in Ten Dimensions

In ten dimensions, the spacetime indices are M,N = 0, . . . ,9. The 10-dimensional gamma matri-
ces are defined via the α- and β-matrices (A.14) and the 4-dimensional gamma matrices (A.24)

Γµ := γµ⊗18 , µ= 0,1,2,3 ,

Γ3+i := γ5⊗
(

0 iαi

−iαi 0

)
, i= 1,2,3 ,

Γ6+i := γ5⊗
(

0 βi

βi 0

)
, i= 1,2,3 .

(A.25)

Furthermore, we introduce the 11th gamma matrix Γ11 := Γ0 · · ·Γ9. The 10-dimensional charge
conjugation matrix is

C10 = C4⊗C6 with C4 = iγ2γ0 and C6 =
(

0 14
14 0

)
. (A.26)

Also, these 10-dimensional gamma matrices satisfy the Clifford algebra (A.17).
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A.4. Weyl Spinors in Four Dimensions

Weyl spinors exist in every even spacetime dimension. Here we state their properties in four
spacetime dimensions. They are anti-commuting objects ψα (and ψ̄α̇) with one spinor index
α= 1,2 (respectively α̇= 1,2), that can be raised and lowered by

ψα = ϵαβψβ , ψα = ϵαβψ
β (A.27)

and respectively for ψ̄α̇. Usually, we suppress Weyl spinor indices via (ψχ)≡ ψαχα. The most
important relations of two-component Weyl spinors are

(ψχ) = (χψ) ,

(ψ̄χ̄) = (χ̄ψ̄) ,

(ψχ)† = (ψ̄χ̄) ,

(ψσµχ̄) =−(χ̄σ̄µψ) ,

(ψσµχ̄)† = (ψσµχ̄) ,

(ψσµσ̄νχ) = (χσν σ̄µψ) ,

(ψσµσ̄νχ)† = (χ̄σ̄νσµψ̄) .

(A.28)

Here ( ·)† denotes the conjugate transpose.

A.5. Dirac Spinors

Dirac spinors λα are labeled by a single spinor index α = 1, . . . , r, where r is the dimension of
the corresponding Clifford algebra representation. Dirac spinors are complex and they exist in
any spacetime dimensions d≥ 1. In even spacetime dimensions, they have 2d/2 complex degrees
of freedom. In odd spacetime dimensions, they have 2(d−1)/2 complex degrees of freedom. In
either case, the real degrees of freedom are twice that.

In any even number of spacetime dimensions, we can impose the Weyl condition

λ= 1
2(1−γd+1)λ (A.29)

on a Dirac spinor. This reduces their degrees of freedom by a factor of 2. In any spacetime
dimension d≡ 1,2,3,4 mod 8, we may impose the Majorana condition

λ̄= (λTC) , (A.30)

where C is the charge conjugation matrix. This also halves the degrees of freedom of the Dirac
spinor. Finally, if the dimension is d= 2 mod 8, we may impose both the Majorana and Weyl
condition. These results are summarized in table A.1. In the following, we list further properties
of Majorana spinors.
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Dimension 2 3 4 5 6 7 8 9 10
Weyl Spinors × × × × ×
Majorana Spinors × × × × ×
Majorana-Weyl Spinors × ×

Table A.1.: Spacetime dimensions and their possible spinor representations.

A.6. Majorana Spinors

A Majorana spinor λα is a Dirac spinor that satisfies the Majorana condition (A.30). Majorana
spinors are real. They have 2d/2 (respectively 2(d−1)/2 in odd spacetime dimensions) real degrees
of freedom.

A.6.1. Majorana Spinors in Two Dimensions

In two spacetime dimensions, the irreducible Clifford algebra representations are 2-dimensional.
The four matrices 1, γµ and iγµν form a basis of the 2×2 matrices. On this basis, we have the
following identities for Majorana spinors

(λ̄Mχ) =

+(χ̄Mλ) M = 1 ,

−(χ̄Mλ) M = γµ , iγµν .
(A.31)

Furthermore, we can obtain the 2-dimensional Fierz identity

λ̄αχβ = 1
2
∑
A

OAβα (λ̄OAχ) with OA = (1 , γµ , iγµν) (A.32)

from these relations.

A.6.2. Majorana Spinors in Four Dimensions

In four spacetime dimensions, the irreducible Clifford algebra representations are 4-dimensional.
A basis of the 4× 4 matrices is given by the 16 matrices 1, γ5, γµ, iγµγ5 and i√

2γ
µν . On this

basis, we have the following identities for Majorana spinors

(λ̄Mχ) =

+(χ̄Mλ) M = 1 , γ5 , iγµγ5 ,

−(χ̄Mλ) M = γµ , i√
2γ

µν .
(A.33)

The Fierz identity in four dimensions is

λ̄αχβ = 1
4
∑
A

OAβα(λ̄OAχ) with OA =
(

1 , γ5 , γµ , iγµγ5 ,
i√
2
γµν

)
. (A.34)
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A.7. Majorana-Weyl Spinors in Ten Dimensions

Given the 4-dimensional gamma matrix representation (A.24) the Majorana spinors are written
in the Weyl basis

λα =
(
ψα
ψ̄α̇

)
, (A.35)

where ψα is a Weyl spinor.

A.7. Majorana-Weyl Spinors in Ten Dimensions

Dirac spinors in 10 spacetime dimensions have 25 = 32 complex components. Given the 10-
dimensional gamma matrix representation (A.25) and imposing the Majorana condition (A.30)

Λ̄ = (ΛTC10) , (A.36)

as well as the Weyl condition (A.29)

Λ = 1
2 (132−Γ11)Λ (A.37)

the Majorana-Weyl spinors take the form

Λ =
(
χ
χ̄

)
with χ=

 0
ψ1
0
ψ2

 and ψi =

ω1i
ω2i
ω3i
ω4i

 0 =

0
0
0
0

 . (A.38)
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B. Functional Determinants

In this appendix, we give an introduction to the calculation of bosonic and fermionic functional
determinants.

B.1. Bosonic Functional Determinants

Our starting point for bosonic functional determinants is the Gaussian integral∫ ∞
−∞

dx e−a(x+b)2 =
√
π

a
. (B.1)

This can be generalized by considering the expression
(

n∏
k=1

∫
dξk

)
exp

− n∑
i,j=1

ξiAijξj

 , (B.2)

where A is a symmetric n×n matrix with non-zero eigenvalues ai. Then there exists an or-
thogonal matrix O, i.e. O−1 =OT and det(O) = 1, such that O−1AO is diagonal. Thus, we can
perform a change of variables to coordinates xi with ξi =∑n

j=1Oijxj such that

(
n∏
k=1

∫ ∞
−∞

dξk
)

exp

− n∑
i,j=1

ξiAijξj

=
(

n∏
k=1

∫ ∞
−∞

dxk
)

exp[−
n∑
i=1

aix
2
i ]

=
n∏
i=1

(∫ ∞
−∞

dxi exp[−aix2
i ]
)

=
n∏
i=1

√
π

ai
= πn/2 [det(A)]−1/2 .

(B.3)

With this calculation in mind, it is easy to evaluate the bosonic path integral for a gauge theory∫
DA e−

i
2

∫
ddx Aa

µ(Mµν Aν)a = [det(M)]−1/2 , (B.4)

where we have appropriately normalized the measure DA. det(M) is called the functional
determinant. The definitions for scalar theories and Euclidean space follow accordingly.

150



B.2. Fermionic Functional Determinants

B.2. Fermionic Functional Determinants

For anti-commuting variables, the functional integration behaves a little differently. It requires
the technique of the Berezin integral [47]. We start with the 1-dimensional case. Let θ be a
Grassmann variable, i.e. θ2 = 0. Then the Berezin integral over θ is∫

dθ θ = 1 ,
∫

dθ = 0 . (B.5)

Any function f(θ) can be expanded in a Taylor series, which terminates after two terms since
θ2 = 0. Thus, we have f(θ) = a+ bθ and∫

dθ f(θ) =
∫

dθ (a+ bθ) = b . (B.6)

The generalization to multidimensional Grassman numbers θ1 . . .θn with θiθj =−θjθi and thus
θiθi = 0 (no summation over i) is immediate. For example, we have∫

dθ1

∫
dθ2 θ1θ2 =−

∫
dθ1

∫
dθ2 θ2θ1 =−

∫
dθ1 θ1 =−1 . (B.7)

Let B be a anti-symmetric n×n matrix with matrix elements Bij and consider the integral

In(B) =
∫

dθ1 . . .dθn e−
∑n

i,j=1 θiBijθj . (B.8)

It is not hard to see that In(B) = 0 for odd n since all terms in the Taylor series expansion of
the exponential come with an even number of θs. So there are either more than n θis which
gives zero since θiθi = 0 (no summation over i), or there are less than n θis in which case the
integral gives zero. For n even there exist a unitary matrix U such that

C = UTBU =


0 λ1 · · · 0 0
−λ1 0 · · · 0 0

...
... . . . ...

...
0 0 · · · 0 λn
0 0 · · · −λn 0

 . (B.9)

Then we introduce new Grassmann variables τi in (B.8) via θi =∑n
j=1Uijτj

In(B) =
∫

dθ1 . . .dθn e−
∑n

i,j=1 θiBijθj

= 1
det(U)

∫
dτ1 . . .dτn e−

∑n

i,j=1 τiCijτj

= 1
det(U)

∫
dτ1 . . .dτn e−2(λ1τ1τ2+...+λnτn−1τn)

= (−1)n/2

det(U)

∫
dτ1 . . .dτn τ1 . . . τn

n∏
i=1

λi

= 1
det(U)

n∏
i=1

λi =
√

det(C)
det(U) =

√
det(B) .

(B.10)
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One can use this Berezin integral as the definition of the Pfaffian of a complex n×n matrix B

Pf(B) :=

0 n odd ,√
det(B) n even .

(B.11)

Thus, we have In(B) = Pf(B). These relations give us the functional determinant of a path
integral over Majorana spinors∫

Dλ e−
1
2

∫
ddx λ̄a(Mλ)a =

√
det(M) . (B.12)

Again the normalization is hidden in the path integral measure.

Finally, we want to discuss the complex Berezin integral. To this end, we introduce the complex
Grassmann variables

η = 1√
2

(θ1 + iθ2) , η̄ = 1√
2

(θ1− iθ2) , (B.13)

such that

dθ1 dθ2 = dη̄ dη . (B.14)

This definition easily extends to the n-dimensional case. Then let D be any n×n matrix with
entries Dij and consider the integral

Jn(D) =
∫

dη̄1dη1 . . .dη̄ndηn e−
∑n

i,j=1 η̄iDijηj . (B.15)

In the Taylor expansion of the exponential function, only the terms proportional to η̄1η1 . . . η̄nηn

will survive. We find that

Jn(D) = (−1)n
∫

dη̄1dη1 . . . dη̄ndηn η̄1η1 . . . η̄nηn
∑
σ∈Sn

sgn(σ)
n∏
i=1

Diσi

= (−1)n
∫

dη̄1dη1 . . . dη̄ndηn η̄1η1 . . . η̄nηn det(D)

= det(D) .

(B.16)

Thus, for the path integral over anti-commuting ghost fields C and C̄ we obtain∫
DC̄ DC e−

i
2

∫
ddx C̄a(MC)a = det(M) . (B.17)

Here, too, the path integral measure has been appropriately normalized.
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C. The Fourth-Order Nicolai Map

We give the ‘on-shell’ N = 1 super Yang-Mills Nicolai map (TgA)aµ in Landau gauge up to and
including O(g4). The result is valid in all critical dimensions d= 3, 4, 6, 10. It was first obtained
in [3] and extends (5.38) by one order. We have checked that it satisfies all three tests from
section 5.6. Moreover, upon dimensional reduction, it agrees with the 2-dimensional result in
[88]. The inverse of the map given here has been used in [4] to compute the vacuum expectation
value of the infinite straight line Maldacena-Wilson loop to the sixth order.

In the expression below, anti-symmetrizations over five spacetime indices occur. These terms
vanish if the result is taken to be in d= 3 or d= 4 dimensions. In that sense, the Nicolai map
depends on the number of dimensions from the fourth order onwards. The fourth-order ‘on-shell’
N = 1 super Yang-Mills Nicolai map in Landau gauge reads [3]

(Tg A)a
µ(x) = Aa

µ(x) + gfabc

∫
ddy ∂ρC(x − y)Ab

µ(y)Ac
ρ(y)

+ 3g2

2 fabcfbde

∫
ddy ddz ∂ρC(x − y)Acλ(y)∂[ρC(y − z)Ad

µ(z)Ae
λ](z)

+ g3

2 fabcfbdefcfg

∫
ddy ddz ddw ∂ρC(x − y)

× ∂λC(y − z)Ad
λ(z)Aeσ(z)∂[ρC(y − w)Af

µ(w)Ag
σ](w)

+ g3fabcfbdefdfg

∫
ddy ddz ddw ∂ρC(x − y)Acλ(y)

{
− ∂σC(y − z)Ae

σ(z)∂[ρC(z − w)Af
µ(w)Ag

λ](w)

+ ∂[ρC(y − z)Ae
µ(z)∂σC(z − w)Af

λ](w)Ag
σ(w)

}
+ g3

3 fabcfbdefdfg

∫
ddy ddz ddw

{
+ 6∂ρC(x − y)Acλ(y)∂[ρC(y − z)Aeσ](z)∂[λC(z − w)Af

µ(w)Ag
σ](w)

− 6∂ρC(x − y)Ac
λ(y)∂[λC(y − z)Aσ]e(z)∂[ρC(z − w)Af

µ(w)Ag
σ](w)

− 6∂ρC(x − y)Ac
λ(y)∂[σC(y − z)Ae

µ](z)∂[ρC(z − w)Af λ(w)Ag σ](w)

+ 2∂ρC(x − y)Ac
[ρ(y)∂µ]C(y − z)Aeλ(z)∂σC(z − w)Af

λ(w)Ag
σ(w)

− ∂µC(x − y)∂ρ
(
Ac

ρ(y)C(y − z)
)

Aeλ(z)∂σC(z − w)Af
λ(w)Ag

σ(w)
}

− g3

3 fabcfbdefdfg

∫
ddy ddz Ac

µ(x)C(x − y)Aeρ(y)∂λC(y − z)Af
ρ(z)Ag

λ(z)

(C.1)
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+ g4

12fabcfbdefdfgfchi

∫
ddy ddz ddw

× C(x − y)Aeλ(y)∂ρC(y − z)Af
λ(z)Ag

ρ(z)∂σC(x − w)Ah
σ(w)Ai

µ(w)

+ g4

8 fabcfbdefdfgfchi

∫
ddy ddz ddw ddv ∂λC(x − y)∂ρC(y − z)

{
− 9Ae

σ(z)∂[ρC(z − w)Af σ(w)Ag ν](w)∂[µC(y − v)Ah
λ(v)Ai

ν](v)

+ 4Ae [ρ(z)∂|σ|C(z − w)Af
σ(w)Ag ,ν](w)∂[µC(y − v)Ah

λ(v)Ai
ν](v)

− 2Aeρ(z)∂[µC(z − w)Af
λ(w)Ag

ν](w)∂σC(y − v)Ah
σ(v)Aiν(v)

}
− g4

12fabcfbdefdfgfchi

∫
ddy ddz ddw ddv ∂µC(x − y)∂λC(y − z)

× Aeρ(z)∂σC(z − w)Af
σ(w)Ag

ρ(w)∂τ C(y − v)Ah
τ (v)Ai

λ(v)

+ g4

2 fabcfbdefdfgfchi

∫
ddy ddz ddw ddv ∂λC(x − y)

{
+ ∂[µC(y − z)Ae

ρ](z)∂[λC(z − w)Af ρ(w)Ag ν](w)∂σC(y − v)Ah
σ(v)Ai

ν(v)

− ∂[λC(y − z)Aeρ(z)∂[µC(z − w)Af
ρ(w)Ag

ν](w)∂σC(y − v)Ah
σ(v)Ai

ν(v)
}

+ g4

6 fabcfbdefdfgfchi

∫
ddy ddz ddw ddv ∂λC(x − y)

{
+ 3∂[ρC(y − z)Aeν](z)∂[µC(z − w)Af

λ(w)Ag
ρ](w)∂σC(y − v)Ah

σ(v)Ai
ν(v)

+ ∂[λC(y − z)Aeν(z)∂σC(z − w)Af
|σ(w)Ag

ν(w)∂ρC(y − v)Ah
ρ|(v)Ai

µ](v)
}

− g4

3 fabcfbdefdfgfehi

∫
ddx ddy ddz ddw

× Ac
µ(x)C(x − y)∂λC(y − z)Af

λ(z)Ag ρ(z)∂σC(y − w)Ah
σ(w)Ai

ρ(w)

− g4

3 fabcfbdefdfgfehi

∫
ddy ddz ddw ddv ∂µC(x − y)

× ∂λ
(
Ac

λ(y)C(y − z)
)

∂ρC(z − w)Af
ρ(w)Ag ν(w)∂σC(z − v)Ah

σ(v)Ai
ν(v)

+ g4

12fabcfbdefdfgfehi

∫
ddy ddz ddw ddv ∂λC(x − y)Aρc(y)

{
− 3∂ρC(y − z)∂[µC(z − w)Af

λ(w)Ag
ν](w)∂σC(z − v)Ah

σ(v)Ai
ν(v)

− 3∂νC(y − z)∂[µC(z − w)Af
ρ(w)Ag

ν](w)∂σC(z − v)Ah
σ(v)Ai

λ(v)

+ 3∂νC(y − z)∂[λC(z − w)Af
ρ(w)Ag

ν](w)∂σC(z − v)Ah
σ(v)Ai

µ(v)

− 3∂µC(y − z)∂[λC(z − w)Af
ρ(w)Ag

ν](w)∂σC(z − v)Ah
σ(v)Ai

ν(v)

+ 3∂λC(y − z)∂[µC(z − w)Af
ρ(w)Ag

ν](w)∂σC(z − v)Ah
σ(v)Aiν(v)

− 2∂[λC(y − z)∂νC(z − w)Af
|ν|(w)Ag

µ](w)∂σC(z − v)Ah
σ(v)Ai

ρ(v)

+ ∂ρC(y − z)∂νC(z − w)Af
ν (w)Ag

µ(w)∂σC(z − v)Ah
σ(v)Ai

λ(v)
}

+ g4

6 fabcfbdefdfgfehi

∫
ddy ddz ddw ddv ∂λC(x − y)

{
− 7Ac

[µ(y)∂λ]C(y − z)∂ρC(z − w)Af
ρ(w)Ag ν(w)∂σC(z − v)Ah

σ(v)Ai
ν(v)

+ 3Ac [ν(y)∂ρ]C(y − z)∂[µC(z − w)Af
λ(w)Ag

ρ](w)∂σC(z − v)Ah
σ(v)Ai

ν(v)
}
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− g4

2 fabcfbdefdfgffhi

∫
ddy ddz ddw

× ∂λC(x − y)Ac
[µ(y)Ae

λ](y)C(y − z)Ag ρ(z)∂σC(z − w)Ah
σ(w)Ai

ρ(w)

+ g4

12fabcfbdefdfgffhi

∫
ddx ddy ddz ddw Ac

µ(x)C(x − y)
{

+ 9Aeλ(y)∂ρC(y − z)Ag σ(z)∂[λC(z − w)Ah
ρ(w)Ai

σ](w)

+ 4Ae [λ(y)∂ρ]C(y − z)Ag
λ(z)∂σC(z − w)Ah

σ(w)Ai
ρ(w)

− 3Ae
λ(y)∂λC(y − z)Aρg(z)∂σC(z − w)Ah

σ(w)Ai
ρ(w)

− 3∂λ
(
Ae

λ(y)C(y − z)
)

Ag ρ(z)∂σC(z − w)Ah
σ(w)Ai

ρ(w)
}

+ g4

12fabcfbdefdfgffhi

∫
ddy ddz ddw ddv ∂µC(x − y)∂λ

(
Ac

λ(y)C(y − z)
) {

+ 9Aeρ(z)∂σC(z − w)Ag ν(w)∂[ρC(w − v)Ah
σ(v)Ai

ν](v)

+ 4Ae [ρ(z)∂ν]C(z − w)Ag
ρ(w)∂σC(w − v)Ah

σ(v)Ai
ν(v)

− 3∂ρ
(
Ae

ρ(z)C(z − w)
)

Ag ν(w)∂σC(w − v)Ah
σ(v)Ai

ν(v)

− 3Ae
ρ(z)∂ρC(z − w)Ag ν(w)∂σC(w − v)Ah

σ(v)Ai
ν(v)

}
+ g4

2 fabcfbdefdfgffhi

∫
ddy ddz ddw ddv ∂λC(x − y)Ac

[µ(y)∂λ]C(y − z)
{

− ∂ρ
(
Ae

ρ(z)C(z − w)
)

Ag ν(w)∂σC(w − v)Ah
σ(v)Ai

ν(v)

− Ae
ρ(z)∂ρC(z − w)Ag ν(w)∂σC(w − v)Ah

σ(v)Ai
ν(v)

}
+ 2g4

3 fabcfbdefdfgffhi

∫
ddy ddz ddw ddv ∂λC(x − y)

× Ac
[µ(y)∂λ]C(y − z)Aeρ(z)∂νC(z − w)Ag

[ρ(w)∂σC(w − v)Ah
|σ|(v)Ai

ν](v)

+ 3g4

2 fabcfbdefdfgffhi

∫
ddy ddz ddw ddv ∂λC(x − y)

{
+ 4Acρ(y)∂[λC(y − z)Aeν](z)∂σC(z − w)Ag

[µ(w)∂ρC(w − v)Ah
σ(v)Ai

ν](v)

− 4Ac
ρ(y)∂[µC(y − z)Ae

ν](z)∂σC(z − w)Ag [λ(w)∂ρC(w − v)Ahσ(v)Aiν](v)

− Acρ(y)∂[ρC(y − z)Ae
σ](z)∂µC(z − w)Ag

ν(w)∂[λC(w − v)Ahσ(v)Aiν](v)

+ Ac
ρ(y)∂[ρC(y − z)Aeσ](z)∂λC(z − w)Ag ν(w)∂[µC(w − v)Ah

σ(v)Ai
ν](v)

}
+ 3g4

2 fabcfbdefdfgffhi

∫
ddy ddz ddw ddv ∂λC(x − y)

{
− Ac

[λ(y)∂µ]C(y − z)Aeρ(z)∂σC(z − w)Ag ν(w)∂[ρC(w − v)Ah
σ(v)Ai

ν](v)

− Ac [ρ(y)∂λC(y − z)Aeσ](z)∂ρC(z − w)Ag ν(w)∂[µC(w − v)Ah
σ(v)Ai

ν](v)

+ Ac [ρ(y)∂µC(y − z)Aeσ](z)∂ρC(z − w)Ag ν(w)∂[λC(w − v)Ah
σ(v)Ai

ν](v)

+ Ac [ρ(y)∂σ]C(y − z)Ae
λ(z)∂ρC(z − w)Ag ν(w)∂[µC(w − v)Ah

σ(v)Ai
ν](v)

− Ac [ρ(y)∂σ]C(y − z)Ae
µ(z)∂ρC(z − w)Ag ν(w)∂[λC(w − v)Ah

σ(v)Ai
ν](v)

}
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+ g4

2 fabcfbdefdfgffhi

∫
ddy ddz ddw ddv ∂λC(x − y)Aρc(y)

{
+ 8∂νC(y − z)Ae

[µ(z)∂λC(z − w)Ag
ρ(w)∂σC(w − v)Ah

|σ|(v)Ai
ν](v)

+ 2∂λC(y − z)Aeν(z)∂[µC(z − w)Ag
ρ(w)∂σC(w − v)Ah

|σ|(v)Ai
ν](v)

− 2∂ρC(y − z)Aeν(z)∂[µC(z − w)Ag
λ(w)∂σC(w − v)Ah

|σ|(v)Ai
ν](v)

− 2∂µC(y − z)Aeν(z)∂[λC(z − w)Ag
ρ(w)∂σC(w − v)Ah

|σ|(v)Ai
ν](v)

− 3
2∂[µC(y − z)Ae

ρ](z)∂σC(z − w)Ag ν(w)∂[λC(w − v)Ah
σ(v)Ai

ν](v)

+ 3
2∂[λC(y − z)Ae

ρ](z)∂σC(z − w)Ag ν(w)∂[µC(w − v)Ah
σ(v)Ai

ν](v)

+ 3
2∂[µC(y − z)Ae

λ](z)∂σC(z − w)Ag ν(w)∂[ρC(w − v)Ah
σ(v)Ai

ν](v)

+ ∂[µC(y − z)Ae
λ(z)∂νC(z − w)Ag

ρ](w)∂σC(w − v)Ah
σ(v)Ai

ν(v)

− ∂[µC(y − z)Ae
λ(z)∂νC(z − w)Ag

|ν(w)∂σC(w − v)Ah
σ|(v)Ai

ρ](v)
}

+ 3g4

4 fabcfbdefdfgffhi

∫
ddy ddz ddw ddv ∂λC(x − y)Aρc(y)

{
− 20∂νC(y − z)Aeσ(z)∂[νC(z − w)Ag

µ(w)∂σC(w − v)Ah
λ(v)Ai

ρ](v)

− 4∂ρC(y − z)Aeν(z)∂σC(z − w)Ag
[µ(w)∂λC(w − v)Ah

σ(v)Ai
ν](v)

+ 4∂σC(y − z)Ae
σ(z)∂νC(z − w)Ag

[µ(w)∂λC(w − v)Ah
ρ(v)Ai

ν](v)

− 2∂[µC(y − z)Aeσ(z)∂λ]C(z − w)Ag ν(w)∂[ρC(w − v)Ah
σ(v)Ai

ν](v)

+ 2∂σC(y − z)Ae
[µ(z)∂λ]C(z − w)Ag ν(w)∂[ρC(w − v)Ah

σ(v)Ai
ν](v)

− 2∂σC(y − z)Ae
[σ(z)∂ρ]C(z − w)Ag ν(w)∂[µC(w − v)Ah

λ(v)Ai
ν](v)

− 2∂[µC(y − z)Ae
λ(z)∂ρ]C(z − w)Ag ν(w)∂σC(w − v)Ah

σ(v)Ai
ν(v)

− 2∂σC(y − z)Ae
ρ(z)∂νC(z − w)Ag

[µ(w)∂λC(w − v)Ah
σ](v)Ai

ν(v)

− ∂ρC(y − z)Ae
σ(z)∂σC(z − w)Ag ν(w)∂[µC(w − v)Ah

λ(v)Ai
ν](v)

− ∂σC(y − z)Ae
σ(z)∂µC(z − w)Ag ν(w)∂[λC(w − v)Ah

ρ(v)Ai
ν](v)

− ∂σC(y − z)Ae
ρ(z)∂νC(z − w)Ag

[µ(w)∂|ν|C(w − v)Ah
λ(v)Ai

σ](v)

+ ∂σC(y − z)Ae
ρ(z)∂νC(z − w)Ag

ν(w)∂[µC(w − v)Ah
λ(v)Ai

σ](v)

+ ∂σC(y − z)Ae
σ(z)∂λC(z − w)Ag ν(w)∂[µC(w − v)Ah

ρ(v)Ai
ν](v)

}
+ O(g5) .
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