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Abstract: Non-intrusive model reduction is a promising solution to system dynamics
prediction, especially in cases where data are collected from experimental campaigns or
proprietary software simulations. In this work, we present a method for non-intrusive
model reduction applied to Fluid-Structure Interaction (FSI) problems. The approach is
based on the a priori known sparsity of the full-order system operators, which is dictated
by grid adjacency information. In order to enforce this type of sparsity, we solve a “local”,
regularized least-squares problem for each degree of freedom on a grid, considering only
the training data from adjacent degrees of freedom, thus making computation and storage
of the inferred full-order operators feasible. After constructing the non-intrusive, sparse
full-order model, Proper Orthogonal Decomposition (POD) is used for its projection to a
reduced dimension subspace and thus the construction of a reduced-order model (ROM).
The methodology is applied to the challenging Hron-Turek benchmark FSI3, for Re = 200.
A physics-informed, non-intrusive ROM is constructed to predict the two-way coupled
dynamics of a solid with a deformable, slender tail, subject to an incompressible, laminar
flow. Results considering the accuracy and predictive capabilities of the inferred reduced
models are discussed.

Keywords: Non-intrusive Model Reduction, Vortex-Induced Vibrations, Fluid-Structure
Interactions

AMS subject classifications: 76D05

Novelty statement: Non-intrusive reduced-order modeling method for two-way coupled
FSI. Sparse, nonlinear data-driven model inference. Coupled FSI model for Hron-Turek
FSI3 benchmark testcase.

1 Introduction
Fluid-Structure Interactions encompass coupled, strongly nonlinear fluid-solid dynamics systems, which
arise in various engineering fields. For different regimes, materials and geometry configurations, the
specific coupling conditions and corresponding FSI dynamical response can widely differ [1]. In this
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work, we focus on incompressible fluid dynamics at low Reynolds numbers, coupled with deformable
solids, at relatively low mass ratios. Under such conditions, the timescales and inertia of the two
subsystems are comparable, leading to a strong, two-way coupling mechanism.
The development of non-intrusive, reduced-order models for FSI problems is motivated by needs in

engineering design and control. Firstly, the high computational cost of direct FSI numerical simula-
tion renders multi-query tasks such as design optimization and real-time control cumbersome. Such
engineering tasks could benefit from model reduction techniques, which have proven to allow for con-
siderable speed-ups of FSI simulation, without significant loss of accuracy [2]. Secondly, in cases where
experimental or FSI simulation data are available, without access to a numerical simulation source
code, non-intrusive modeling methods are developed for system dynamics prediction [3]. Exploit-
ing knowledge on the structure of the underlying dynamical system has been shown to enhance the
predictive capabilities of non-intrusive ROMs for specific FSI regimes such as aeroelasticity [4].
In this work, we implement an adjacency-based approach to FSI problems. The method was re-

cently studied for linear advection and diffusion problems in [5] and [6] and has been applied to the
inference of quadratic-bilinear, incompressible fluid dynamics operators in Vortex-Induced Vibrations
problems by the authors [7]. Two coupled, data-driven models are inferred for the fluid dynamics
and solid dynamics subsystems, exploiting a physics-based structure of the governing equations under
the Arbitrary Lagrangian-Eulerian (ALE) formulation. We present results for the FSI3 Hron-Turek
benchmark [8], which has been previously studied for intrusive model reduction in [2]. Through this
testcase, we examine the predictive capabilities of the obtained, non-intrusive model.

2 Theoretical Background

2.1 Governing equations
For the fluid flow, we focus on the regime of 2D incompressible, laminar flows. In cases of moving
fluid domains Ω(t), the equations can be expressed with respect to a reference configuration Ω̂ using
the ALE formulation. The map from the reference domain to the current configuration is given as:
x̂ 7→ x = x̂ + d̂f (t), where d̂f (t) is a deformation field. The incompressible ALE Navier-Stokes
equations are then given by{

ρfJ
(
∂tû + ∇̂ûF−1

(
û− ∂td̂f

))
− div

(
Jσ̂ (û, p̂)F−T

)
= Jρf~g

div
(
JF−1û

)
= 0

, (1)

where û is the ALE velocity field, p̂ is the pressure, σ̂ is the ALE stress tensor given by

σ̂ (û, p̂) = −p̂I + ρfνf

(
∇̂ûF−1 + F−T ∇̂ûT

)
, (2)

F is the gradient of the ALE map and J = detF, with

F = I + ∇̂d̂f . (3)

For solid dynamics modelling, we use the linear Navier-Lamé equations, assuming no material or
geometrical nonlinearities. The boundary of the solid is split into Γs

1 where the displacement is zero
and Γs

2 where the fluid-structure coupling occurs. The solid deformation ds is thus modeled by{
∂ttds −∇ · σs = 0
σs = µ(∇ds +∇dT

s ) + λ tr( 1
2 (∇ds +∇dT

s ))I
. (4)
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Figure 1: Schematic representation (not scaled) of the Hron-Turek FSI benchmark testcase. A velocity
profile is assigned at the inlet Γf

1 and FSI coupling occurs on the surface Γs
2 of a slender,

deformable tail.

The boundary conditions of the coupled fluid-solid problem are given below, based on Figure 1.

û = uin on Γf
1 ,

J
(
νf ∇̂ûF−1 − p̂I

)
F−T · n̂f = 0 on Γf

2 ,

û = 0 on Γf
3 ,

ds = 0 on Γs
1,

Jσ̂fF
−T · n̂f = σs · ns on Ω̂ ∩ S,

û = ∂tds on Ω̂ ∩ S.

(5)

The above formulation considers the coupled problem on a reference fluid domain Ω̂. We use a stiffened
harmonic extension as an ALE map, to transfer the solution to the current, deformed configuration
Ω(t).

−∇̂2d̂f −
∇̂a(x̂)

a(x̂)
∇̂d̂f = 0, in Ω̂, (6)

with boundary conditions on the interface Ω̂ ∩ S, and on the domain external boundaries:{
d̂f = d̂s − d̂s(t = t1), on Ω̂ ∩ S,
d̂f = 0, on Γf

1 ∪ Γf
2 ∪ Γf

3 .
(7)

a(x̂) introduces a stiffening effect close to the FSI interface Ω̂ ∩ S, which allows for larger mesh
displacements without element degradation, compared to a purely harmonic extension (see Section
5.3.5 of [1]). t1 is selected as a reference time, for which Ω̂ = Ω(t1).

2.2 Approximate model structure
By discretizing (1), (4) and (6), we aim to reveal an approximate structure of the dynamical system,
which will be exploited for non-intrusive modeling. We assume that the gradient of the deformation
field ∇̂d̂f is sufficiently small, such that F ≈ I (and thus J ≈ 1) is a valid approximation of (2).
In that case, the structure of (1) is approximately quadratic-bilinear. After discretizing in space and
time, working similarly to [9], we cancel out the algebraic contribution of the pressure and come up
with the following, approximate model structure for the fluid velocity field:

uk+1 ≈ Auk +H(uk+1)2 +K ∂tdf ⊗ uk+1 +B ∂tds + L uin + C, (8)

where (u)2 denotes the vector of
(
2nf

2

)
unique elements of the Kronecker product u⊗ u. For the solid

velocity field, we get a second-order, forced linear system by discretizing (4) in space and time

∂td
k+1
s = As∂td

k
s +Ks d

k
s + f . (9)
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The forcing f originates from the dynamic coupling condition on the interface (i.e. the projection of
the fluid stress tensor on the normal to the interface). This can be approximated by a quadratic model,
as follows.

f ≈ Bsu
k+1
FS +Hsu

k+1
FS

2
, (10)

where FS denotes nodes that are sufficiently close to the interface, given the sparsity of the discretized
stress tensor (see (2)). This means that uFS = Ru, where R is an ordered selection matrix.
Finally, the solid velocity field ∂tds should be integrated to update the solid displacement field ds. To
this end, a Crank-Nicholson scheme is used

dk+1
s = dk

s +
∆t

2
(∂td

k+1
s + ∂td

k
s). (11)

We also need to discretize and solve (6), in order to compute the fluid mesh displacement in the current
configuration, Ω(t), with respect to the reference configuration Ω̂. This leads to

dk
f = ALSd

k
s , (12)

where AL is the inverse of the discretized ALE map and S is an ordered selection matrix, which picks
only the solid DoFs on Γs

2. Equations (8) to (12) comprise a discretized, coupled dynamical system,
which models ALE FSI problems under small deformations. In the following, we use this structure to
fit the corresponding operators to numerical FSI data and thus construct a physics-based, non-intrusive
model.

3 FSI Non-Intrusive Model Reduction

3.1 Physics-based adjacency
Having identified an approximate structure for the FSI dynamical system, we aim to infer the unknown
operators of the fluid dynamics subsystem ((8)), the solid dynamics subsystem ((9)) and the solid
forcing term ((10)), from simulation data.
The discretized operators in (9) are sparse, while the operators of (8) and (10) are only approximately

sparse, due to canceling out the contribution from the pressure. The corresponding sparsity pattern
originates from grid adjacency. Based on this observation, the employed method aims to infer full-
order, adjacency-based, sparse operators.
To proceed with the inference task, we should map the available data for the flowfield over time

t = [0, T ] to a reference configuration Ω̂, since equation (8) was derived there. Knowing the motion
of the FSI interface from the data, we define a reference time as t1 = argmin(‖d̂s(t)‖2). Based on
the reference position of the FSI interface at t1, we can construct a fluid and a solid mesh (e.g. via
Delaunay triangulation), with the constraint that the nodes of the two meshes on the interface should
match.
For the fluid, we compute the deformed mesh Ω(t) from (12), given the motion of the FSI interface

(see (7)) and the constructed reference Ω̂ = Ω(t1). Then, the fluid velocity data can be interpolated on
the reference configuration Ω̂ at each of the nT timesteps. For the solid, we interpolate the displacement
field values for all nT timesteps from the solver mesh configuration at t1, to the constructed solid mesh.
The difference between handling the solid and the fluid problem should be noted: Mesh construction is
necessary only for the fluid side due to the ALE formulation. However, grid adjacency information for
both the fluid and the solid mesh is essential for the following. Thus, the solid mesh of the simulation
data can be readily used as long as adjacency information can be retrieved.

3.2 Least Squares formulation and regularization
The number of grid nodes is denoted by nf for the fluid and ns for the solid mesh. Then, there are
2nf and 2ns kinematic degrees of freedom (DoFs), respectively, for this 2D problem. For the i-th
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DoF (streamwise or transverse component of u or ∂td), we denote by qA(i) the set of geometrically
adjacent DoFs in the fluid A ≡ f or solid A ≡ s mesh respectively. For example, if i is a fluid velocity
component, qf (i) includes exclusively DoFs which correspond to fluid mesh nodes, adjacent to the
node of i. Then, the local inference of the operators for DoF i corresponds to solving the following
problem:

min
βi

∥∥∥βT
i Di − ym+1

i

∥∥∥
2
, (13)

where we make a distinction between the fluid and solid dynamics problems:
For the fluid dynamics subsystem,

βi = [Ci, Ai,., Hi,.,Ki,.]
T , DT

i =


1

um
qf (i)

um
qf (i)

2

um
qf (i)
⊗ ∂td̂m

f

 , ym+1
i = [ut=2

i ... u
t=nT1
i ]T , (14)

where T1 corresponds to the training time and m = [1, ..., nT1 − 1]. For fluid DoFs on Γf
1 and Ω̂∩S we

can directly impose the corresponding Dirichlet boundary conditions, by setting row i of A,H,K,C
to zero, and assigning entries of value 1 in corresponding positions of L and B, accordingly.
For the solid dynamics subsystem, we introduce sets qFS(i) and qI(i), to distinguish between internal
DoFs and DoFs on Γs

2. As a result, qFS(i) = qf (i) for DoFs i on Γs
2 and qFS(i) = ∅ otherwise, while

qI(i) = qs(i) everywhere, except for Γs
2, where qI(i) = ∅. Then the variables of (13) for the local

inference of the solid dynamics operators are

βi = [ASi,. ,KSi,. , BSi,. , HSi,. ]
T , DT

i =


∂td

k
sqI (i)

dk
sqI (i)

uk
qFS(i)

uk
qFS(i)

2

 , ym+1
i = [∂td

t=2
si ... ∂td

t=nT1
si ]T . (15)

In practice, (13) should be complemented with a regularization term, to bypass potential numerical
errors due to small singular values of Di. To this end, we employ truncated SVD of Di, for different
truncation thresholds η of the normalized singular values of Di. The optimal η is determined as the
“corner” of an L-curve, with the solution norm ‖βi‖2 on the x axis and the error

∥∥∥βT
i Di − ym+1

i

∥∥∥
2
on

the y axis (see Figure 2). In essence, the SVD truncation corresponds to an L2 regularization of (13).
Regularization plays a crucial role on the inferred model properties and thus determining the range
of possible η is not trivial. The process of computing the optimal threshold η is performed for few,
randomly sampled DoFs. An interpolation from the sampled, optimal η values is performed to the rest
of the mesh DoFs, as shown in Figure 3, such that only one least-squares problem per i is solved for
those, with a predefined truncation threshold.

3.3 Model reduction and coupling
After solving (13) for both the solid and the fluid nodes, we have inferred the sparse, full-order matrices
of (8) and (9). In order to derive a reduced-order model, we use a POD projection. This is done
by taking the SVD of the velocity flowfield u snapshot matrix, and of the solid velocity field ∂tds

snapshot matrix, over some training interval [0, T1]. By retaining the first rf and rs singular modes
accordingly, we obtain the orthonormal projection bases Φf ∈ R2nf×rf and Φs ∈ R2ns×rs . Substituting
the projected states u = Φf ũ and ∂tds = Φf∂td̃s to (8) and (9) results to a coupled, non-intrusive,
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Figure 2: Left: Truncation of the singular values of
D to threshold η, for a random DoF i.
Right: Corresponding L-curve: The optimal
η achieves a compromise between the least-
squares error

∥∥∥βT
i Di − ym+1

i

∥∥∥
2
and the so-

lution norm ‖βi‖2.

Figure 3: Interpolated, sub-optimal η value
for the streamwise flowfield com-
ponent, using the optimal η for
30 % of the DoFs. Regularization
values are higher along the wake
of the flow and close to the de-
formable solid tail.

reduced-order model
ũk+1 = Ãũk + H̃ũk+1 ⊗ ũk+1 + K̃ ∂td̃s ⊗ ũk+1 + B̃ ∂tds + L̃ uin + C̃

∂td̃
k+1
s = Ãs∂td̃

k
s + K̃s d̃

k
s + B̃sũ

k+1 + H̃sũ
k+1 ⊗ ũk+1

d̃k+1
s = d̃k

s +
∆t

2
(∂td̃

k+1
s + ∂td̃

k
s).

(16)

The corresponding ROM matrices of (16) can be efficiently computed since the sparsity patterns of
the full-order matrices are known. We then have for the fluid subsystem

Ã = ΦT
f AΦf , H̃ = ΦT

fHΦf⊗Φf , K̃ = ΦT
fK(ALSΦs)⊗Φf , B̃ = ΦT

f BΦs, L̃ = ΦT
f L, C̃ = ΦT

f C, (17)

and for the solid

Ãs = ΦT
s AsΦs, K̃s = ΦT

s KsΦs, B̃s = ΦT
s BsRΦf , H̃s = ΦT

s Hs(RΦf )⊗ (RΦf ) . (18)

It was observed that the stiff coupling exhibited in FSI numerical simulation [8] transfers also to
the data-driven, reduced-order model. The implicit formulation of (8) is necessary for stability. The
combined convergence criterion for each timestep

∥∥ũk
j+1 − ũk

j

∥∥
2
< res1 and

∥∥∥d̃s
k

j+1 − d̃s
k

j

∥∥∥
2
< res2

was used during simulation, where j denotes the index of iterations within timestep k. For each implicit
iteration, a successive under-relaxation method was used.

4 Numerical Results
The analyzed methodology was tested for the Hron-Turek FSI3 benchmark [8]. Simulation data were
obtained using the Gascoigne 3D open-source, Finite Element solver [10]. A monolithic approach was
used, with a moderate mesh of 4128 elements and a timestep of ∆t = 5 × 10−3 s, for a total time of
5 s. We discard the first 1.5 s of data to avoid the influence of numerical solution initialization. The
clock time required for the numerical simulation is approximately 1.5 hours on a laptop.
As presented in Section 3.1, we interpolate the data to a new mesh with 4060 nodes, for which we

construct the ALE map (12). We use 65% of the overall available time series (T1 = 2.3 s) to solve (13),
computing the optimal SVD truncation value for 10% of the mesh nodes, using 10, logarithmically
sorted values of η ∈ [10−5, 10−1]. We then construct the ROM through (17), (18), by selecting rf = 40,
rs = 5, and solve the implicitly coupled, reduced-order system (16) by successive under-relaxation and
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res1 = res2 = 10−6. The “offline” step of mesh construction, interpolation and FOM inference requires
approximately 5 minutes, while the simulation time of the ROM requires less than a minute.
The predicted, reconstructed ROM flowfield at T = 3.5 s, well beyond the training time T1, is given

in Figure 4, in comparison to the CFD results for the same instance, for both velocity components. It is
observed that the main dynamical features of vortex shedding as well as the motion of the deformable
tail are well approximated, using only 45 reduced variables, from the initial 8120 DoFs. The vertical
velocity over time for the upper right corner of the deformable tail is also presented in Figure 5.
The predicted ROM solid motion is well in line with the numerical results and captures the limit cycle
behaviour beyond training time T1. A minor phase shift can be attributed to the considerable presence
of transient dynamics in the training data.

(a) (b)

(c) (d)

Figure 4: (a) CFD results at t = 3.5 s for streamwise velocity component (b) ROM results (rf = 40,
rs = 5) at t = 3.5 s for streamwise velocity component (c) CFD results at t = 3.5 s for
transverse velocity component (d) ROM results (rf = 40, rs = 5) at t = 3.5 s for transverse
velocity component

Finally, it is interesting to investigate the stability of the derived FSI model with respect to the ROM
dimensions rs and rf of the solid and fluid subsystems, respectively. In Figure 6, we illustrate the
ROM streamwise velocity error with respect to the numerical simulation on the reference configuration
Ω̂, averaged over the domain Ω̂ and testing time t = [T1, T ]. This is denoted with ex(t). Based on
ex(t), we observe that rs ≥ 3 modes are required for the solid subsystem for an accurate FSI ROM,
as anticipated by the deformable tail motion. For values rs ≥ 8, a coupling instability was exhibited,
irrespective of the rf value. Similarly rf ≥ 20 SVD modes are necessary on the fluid side. However, we
also observe that the combination of rf and rs can significantly affect the ROM predictive accuracy,
due to the strong coupling on the FSI interface. For a significant range of ROM dimensions, the
average error ex(t) is below 5%.

5 Conclusions
In this work, we employed an adjacency-based method for non-intrusive, reduced-order modelling of
FSI problems. Accurate results were obtained for the Hron-Turek FSI3 benchmark testcase, with an
average ROM prediction error of less than 5 %. Based on the potential of this framework, aspects
of computational efficiency, parametric model reduction, as well as as a theoretical analysis of local
non-intrusive inference comprise potential, future research directions.
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Figure 5: Velocity ROM prediction (streamwise,
transverse) for the upper right corner
of the deformable solid. Training time
T1 = 2.3 s is denoted with a dashed
vertical line.

Figure 6: Average error for streamwise flowfield over
testing time ex(t), for different combina-
tions of ROM dimensions (rf , rs).
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