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The interaction between localized emitters and quantum fields, both in relativistic settings and in the case
of ultra-strong couplings, requires non-perturbative methods beyond the rotating-wave approximation. In this
work we employ chain-mapping methods to achieve a numerically exact treatment of the interaction between a
localized emitter and a scalar quantum field. We extend the application range of these methods beyond emitter
observables and apply them to study field observables. We first provide an overview of chain-mapping methods
and their physical interpretation, and discuss the thermal double construction for systems coupled to thermal
field states. Modelling the emitter as an Unruh-DeWitt particle detector, we then calculate the energy density
emitted by a detector coupling strongly to the field. As a stimulating demonstration of the approach’s potential,
we calculate the radiation emitted from an accelerated detector in the Unruh effect, which is closely related to
the thermal double construction as we discuss. We comment on prospects and challenges of the method.

I. INTRODUCTION

Interacting quantum systems are ubiquitous in nature. Yet
their dynamics is challenging to predict beyond simplifying
approximations. A versatile set of computational tools is of-
fered by the theory of open quantum systems, in which a phys-
ical system of interest is described as being coupled to its en-
vironment [1–3]. Common approaches in the study of open
systems rely on an effective description of the system which
may be obtained by tracing out the environmental degrees of
freedom yielding a quantum master equation. Its validity is
usually restricted to weak system-bath couplings and short-
lived bath correlations within the Born-Markov approxima-
tion. Physically it describes scenarios of low entanglement
between system and environment and, being an effective de-
scription of the reduced state of the system, yields access only
to system and not to bath observables.

Physical systems do not necessarily satisfy the underly-
ing assumptions of weak coupling and Markovianity as en-
countered in, e.g., quantum optics [4–6], condensed-matter
physics [7–9], quantum chemistry and biology [10–12], or
acceleration-induced quantum effects [13, 14]. Under such
conditions, predicting the time evolution is challenging.
While the Nakajima-Zwanzig generalized master equation
[15, 16] provides an exact framework for the simulation of
quantum dynamics, it is usually hard to derive. For special
cases, e.g., if the environment may be described by indepen-
dent quantum harmonic oscillators, there exist numerically
convergent methods to calculate the dynamics within the non-
Markovian and strong-coupling regimes [17–21].

While most approaches aim at solving the dynamics of the
reduced system only, some physical phenomena require a de-
tailed analysis of bath observables. Apart from exact diag-
onalization, which becomes intractable for moderate system
sizes, the total system dynamics may be obtained by unitar-
ily mapping the underlying model onto a one-dimensional
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chain Hamiltonian and performing time evolution with respect
to this tight-binding chain. Tracing back to the numerical
renormalization group [22–25], so-called star-to-chain trans-
formations may even be performed analytically and without
previous discretization of the environment [19, 20]. The re-
sulting semi-infinite chain may be truncated and the thereby
obtained model can be evolved efficiently by matrix-product
state (MPS) simulations [26, 27]. For a large class of Gaus-
sian bosonic environments, the validity of this truncation can
be certified by appropriate error bounds [28–32].

Chain-mapping approaches have recently been utilized to
investigate a variety of different problems, e.g., for non-
perturbative studies of light-matter interaction at strong cou-
plings [33–35] and quantum impurity problems in structured
environments [36–38]. Other works have focused on the ex-
tension of this approach to thermal baths via a thermofield
transformation [39–41], which may be used to map an initially
thermal chain to two empty chains [42–44]. The latter case of
two initially empty chains provides a useful starting point for
MPS-based numerical simulations in the presence of thermal
baths as demonstrated, e.g., in Refs. [45–47]. Yet most of the
previous works have focused on the reduced system’s dynam-
ics or explored only coarse-grained bath observables, while
the approach’s broad access to bath observables remains to be
fully leveraged.

In this work, we demonstrate the potential of chain map-
pings for detailed, non-perturbative studies of field observ-
ables, such as the energy density radiated from an emitter in-
teracting strongly with a quantum field. As a physically in-
teresting and stimulating first example, we consider the ques-
tion what kind of radiation is emitted from a uniformly accel-
erated emitter in the context of the Unruh effect. To model
the emitter we use the Unruh-DeWitt (UDW) particle detector
model [48–50]. The UDW detector model is a central tool in
relativistic quantum information, used to address a wide range
of phenomena including the Unruh effect [51], but also Hawk-
ing radiation, vacuum entanglement, relativistic communica-
tion, particle and radiation creation or even superposition of
trajectories and temporal orders [52]. It consists of a single
emitter, modelled as a two-level system (TLS) or a harmonic
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ĉ1

… <latexit sha1_base64="ZEH2sR0BU1+48E5o3nuNMlQxyVo=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbTbt0s0l3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGdzO/9cS1EbF6xEnC/YgOlAgFo2ildndIkQQ9t1euuFV3DrJKvJxUIEe9V/7q9mOWRlwhk9SYjucm6GdUo2CST0vd1PCEshEd8I6likbc+Nn83ik5s0qfhLG2pZDM1d8TGY2MmUSB7YwoDs2yNxP/8zophjd+JlSSIldssShMJcGYzJ4nfaE5QzmxhDIt7K2EDammDG1EJRuCt/zyKmleVL2rqvdwWand5nEU4QRO4Rw8uIYa3EMdGsBAwjO8wpszdl6cd+dj0Vpw8plj+APn8wdI1o96</latexit>

b̂0

<latexit sha1_base64="nMtw4X4GbxBxUsr++vfPoHSjPDY=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbTbt0s0l3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGdzO/9cS1EbF6xEnC/YgOlAgFo2ildndIkQQ9r1euuFV3DrJKvJxUIEe9V/7q9mOWRlwhk9SYjucm6GdUo2CST0vd1PCEshEd8I6likbc+Nn83ik5s0qfhLG2pZDM1d8TGY2MmUSB7YwoDs2yNxP/8zophjd+JlSSIldssShMJcGYzJ4nfaE5QzmxhDIt7K2EDammDG1EJRuCt/zyKmleVL2rqvdwWand5nEU4QRO4Rw8uIYa3EMdGsBAwjO8wpszdl6cd+dj0Vpw8plj+APn8wdKWo97</latexit>

b̂1
<latexit sha1_base64="pxceoJtIXgwb8PxWF+wQkboEtBQ=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilTm9EkQT9Wr9ccavuHGSVeDmpQI5Gv/zVG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5vVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmT1PBkJzhnJiCWVa2FsJG1FNGdqISjYEb/nlVdKqVb3Lqnd/Uanf5HEU4QRO4Rw8uII63EEDmsBAwjO8wpvz6Lw4787HorXg5DPH8AfO5w9L3o98</latexit>

b̂2

<latexit sha1_base64="F0/tHl2WM74RBGo99eUkygEFe/c=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8cK9gPaUDbbTbt0s4m7E6GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94DjhfkQHSoSCUbRSuzukSILeea9ccavuDGSZeDmpQI56r/zV7ccsjbhCJqkxHc9N0M+oRsEkn5S6qeEJZSM64B1LFY248bPZvRNyYpU+CWNtSyGZqb8nMhoZM44C2xlRHJpFbyr+53VSDK/9TKgkRa7YfFGYSoIxmT5P+kJzhnJsCWVa2FsJG1JNGdqISjYEb/HlZdI8q3qXVe/+olK7yeMowhEcwyl4cAU1uIM6NICBhGd4hTfn0Xlx3p2PeWvByWcO4Q+czx9NYo99</latexit>

b̂3

<latexit sha1_base64="ZMdmy37zEv2XhmYLkmKcWIleMW0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilTm9EkQT9Wr9ccavuHGSVeDmpQI5Gv/zVG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5vVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmT1PBkJzhnJiCWVa2FsJG1FNGdqISjYEb/nlVdK6qHqXVe++Vqnf5HEU4QRO4Rw8uII63EEDmsBAwjO8wpvz6Lw4787HorXg5DPH8AfO5w9O5o9+</latexit>

b̂4
<latexit sha1_base64="MzGNll4rG7REBFaq4FOp07zchKg=">AAAB+HicbVBNS8NAEJ34WetHox69LBbBU0lE1GPRi8cK9gPaGDbbTbt0dxN2N0IN/SVePCji1Z/izX/jts1BWx8MPN6bYWZelHKmjed9Oyura+sbm6Wt8vbO7l7F3T9o6SRThDZJwhPVibCmnEnaNMxw2kkVxSLitB2NbqZ++5EqzRJ5b8YpDQQeSBYzgo2VQrfSG2KDotB76KWKCRq6Va/mzYCWiV+QKhRohO5Xr5+QTFBpCMdad30vNUGOlWGE00m5l2maYjLCA9q1VGJBdZDPDp+gE6v0UZwoW9Kgmfp7IsdC67GIbKfAZqgXvan4n9fNTHwV5EymmaGSzBfFGUcmQdMUUJ8pSgwfW4KJYvZWRIZYYWJsVmUbgr/48jJpndX8i5p/d16tXxdxlOAIjuEUfLiEOtxCA5pAIINneIU358l5cd6dj3nrilPMHMIfOJ8/LISSyA==</latexit>

b̂00

<latexit sha1_base64="wOnZVrXCSqsRfPEyOoNlG64hsQM=">AAAB+HicbVBNS8NAEJ34WetHox69LBbBU0lE1GPRi8cK9gPaGDbbTbt0dxN2N0IN/SVePCji1Z/izX/jts1BWx8MPN6bYWZelHKmjed9Oyura+sbm6Wt8vbO7l7F3T9o6SRThDZJwhPVibCmnEnaNMxw2kkVxSLitB2NbqZ++5EqzRJ5b8YpDQQeSBYzgo2VQrfSG2KDotB/6KWKCRq6Va/mzYCWiV+QKhRohO5Xr5+QTFBpCMdad30vNUGOlWGE00m5l2maYjLCA9q1VGJBdZDPDp+gE6v0UZwoW9Kgmfp7IsdC67GIbKfAZqgXvan4n9fNTHwV5EymmaGSzBfFGUcmQdMUUJ8pSgwfW4KJYvZWRIZYYWJsVmUbgr/48jJpndX8i5p/d16tXxdxlOAIjuEUfLiEOtxCA5pAIINneIU358l5cd6dj3nrilPMHMIfOJ8/Lg+SyQ==</latexit>

b̂01
<latexit sha1_base64="8xYuQvdFO1gNKbM6UppeKDpO8cg=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEInkpSRD0WvXisYD+giWGz3bRLd5OwOxFq6C/x4kERr/4Ub/4bt20O2vpg4PHeDDPzwlRwDY7zbZXW1jc2t8rblZ3dvf2qfXDY0UmmKGvTRCSqFxLNBI9ZGzgI1ksVIzIUrBuOb2Z+95EpzZP4HiYp8yUZxjzilICRArvqjQjgMGg8eKnikgV2zak7c+BV4hakhgq0AvvLGyQ0kywGKojWfddJwc+JAk4Fm1a8TLOU0DEZsr6hMZFM+/n88Ck+NcoAR4kyFQOeq78nciK1nsjQdEoCI73szcT/vH4G0ZWf8zjNgMV0sSjKBIYEz1LAA64YBTExhFDFza2YjogiFExWFROCu/zyKuk06u5F3b07rzWvizjK6BidoDPkokvURLeohdqIogw9o1f0Zj1ZL9a79bFoLVnFzBH6A+vzBy+akso=</latexit>

b̂02

<latexit sha1_base64="7SpGk7+tEshEVxiQRnEapkmNLJ0=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEInkqioh6LXjxWsB/QxLDZTtqlm03Y3Qg19Jd48aCIV3+KN/+N2zYHbX0w8Hhvhpl5YcqZ0o7zbZVWVtfWN8qbla3tnd2qvbffVkkmKbRowhPZDYkCzgS0NNMcuqkEEoccOuHoZup3HkEqloh7PU7Bj8lAsIhRoo0U2FVvSDQOg7MHL5UshsCuOXVnBrxM3ILUUIFmYH95/YRmMQhNOVGq5zqp9nMiNaMcJhUvU5ASOiID6BkqSAzKz2eHT/CxUfo4SqQpofFM/T2Rk1ipcRyazpjooVr0puJ/Xi/T0ZWfM5FmGgSdL4oyjnWCpyngPpNANR8bQqhk5lZMh0QSqk1WFROCu/jyMmmf1t2Lunt3XmtcF3GU0SE6QifIRZeogW5RE7UQRRl6Rq/ozXqyXqx362PeWrKKmQP0B9bnDzElkss=</latexit>

b̂03

<latexit sha1_base64="LMfB8K5mLAogOeHzCQEaGKaw4oc=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEInkoiRT0WvXisYD+giWGz3bRLd5OwOxFq6C/x4kERr/4Ub/4bt20O2vpg4PHeDDPzwlRwDY7zbZXW1jc2t8rblZ3dvf2qfXDY0UmmKGvTRCSqFxLNBI9ZGzgI1ksVIzIUrBuOb2Z+95EpzZP4HiYp8yUZxjzilICRArvqjQjgMGg8eKnikgV2zak7c+BV4hakhgq0AvvLGyQ0kywGKojWfddJwc+JAk4Fm1a8TLOU0DEZsr6hMZFM+/n88Ck+NcoAR4kyFQOeq78nciK1nsjQdEoCI73szcT/vH4G0ZWf8zjNgMV0sSjKBIYEz1LAA64YBTExhFDFza2YjogiFExWFROCu/zyKumc192LunvXqDWvizjK6BidoDPkokvURLeohdqIogw9o1f0Zj1ZL9a79bFoLVnFzBH6A+vzBzKwksw=</latexit>

b̂04

…

<latexit sha1_base64="69kWNij95YfnIq1DC463PJL873Q=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgxpKIqMuiG1dSwT6gCWUynbRDJ5MwD6GE/oYbF4q49Wfc+TdO2iy09cDA4Zx7uWdOmHKmtOt+O6WV1bX1jfJmZWt7Z3evun/QVomRhLZIwhPZDbGinAna0kxz2k0lxXHIaScc3+Z+54lKxRLxqCcpDWI8FCxiBGsr+f4Ia0T62f2ZN+1Xa27dnQEtE68gNSjQ7Fe//EFCTEyFJhwr1fPcVAcZlpoRTqcV3yiaYjLGQ9qzVOCYqiCbZZ6iE6sMUJRI+4TNkKu/NzIcKzWJQzsZYz1Si14u/uf1jI6ug4yJ1GgqyPxQZDjSCcoLQAMmKdF8YgkmktmsiIywxETbmiq2BG/xy8ukfV73Luvew0WtcVPUUYYjOIZT8OAKGnAHTWgBgRSe4RXeHOO8OO/Ox3y05BQ7h/AHzucPH3qRFw==</latexit>

ĉN�1
<latexit sha1_base64="/dtAHj9yPhx3X6ecMetgYhWPiF0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRiyepYD+gDWWy3bRLN5u4uxFK6J/w4kERr/4db/4bN20P2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TRVmDxiJW7QA1E1yyhuFGsHaiGEaBYK1gdJP7rSemNI/lgxknzI9wIHnIKRortbtDNIT27nrlilt1pyDLxJuTCsxR75W/uv2YphGThgrUuuO5ifEzVIZTwSalbqpZgnSEA9axVGLEtJ9N752QE6v0SRgrW9Luz9XfExlGWo+jwHZGaIZ60cvF/7xOasIrP+MySQ2TdLYoTAUxMcmfJ32uGDVibAlSxe2thA5RITU2opINwVt8eZk0z6reRdW7P6/UrudxFOEIjuEUPLiEGtxCHRpAQcAzvMKb8+i8OO/Ox6y14MxnDuEPnM8fd9SPmQ==</latexit>

ĉN

…
<latexit sha1_base64="qNFR2UdKmTjuCL2bhQfdlYGw8J4=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKthbaUDabTbt0s4m7E6GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpxlsskYnuBNRwKRRvoUDJO6nmNA4kfwhGN1P/4YlrIxJ1j+OU+zEdKBEJRtFKnd6QIgn7br9ac+vuDGSZeAWpQYFmv/rVCxOWxVwhk9SYruem6OdUo2CSTyq9zPCUshEd8K6lisbc+Pns3gk5sUpIokTbUkhm6u+JnMbGjOPAdsYUh2bRm4r/ed0Moys/FyrNkCs2XxRlkmBCps+TUGjOUI4toUwLeythQ6opQxtRxYbgLb68TNpnde+i7t2d1xrXRRxlOIJjOAUPLqEBt9CEFjCQ8Ayv8OY8Oi/Ou/Mxby05xcwh/IHz+QNL4o98</latexit>

d̂0
<latexit sha1_base64="wUIwMdPcXsIuFon8r2grWkC+Obs=">AAAB+HicbVBNS8NAEJ34WetHox69LBbBU0lE1GPRi8cK9gOaGDabTbt0Nwm7G6GG/hIvHhTx6k/x5r9x2+agrQ8GHu/NMDMvzDhT2nG+rZXVtfWNzcpWdXtnd69m7x90VJpLQtsk5anshVhRzhLa1kxz2sskxSLktBuObqZ+95FKxdLkXo8z6gs8SFjMCNZGCuyaN8QaRYHz4GWSCRrYdafhzICWiVuSOpRoBfaXF6UkFzTRhGOl+q6Tab/AUjPC6aTq5YpmmIzwgPYNTbCgyi9mh0/QiVEiFKfSVKLRTP09UWCh1FiEplNgPVSL3lT8z+vnOr7yC5ZkuaYJmS+Kc450iqYpoIhJSjQfG4KJZOZWRIZYYqJNVlUTgrv48jLpnDXci4Z7d15vXpdxVOAIjuEUXLiEJtxCC9pAIIdneIU368l6sd6tj3nrilXOHMIfWJ8/L56Syg==</latexit>

d̂00

<latexit sha1_base64="uWWJoAPVRuyxAvyxHLTcSmhAHLI=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKthbaUDabTbt0s4m7E6GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpxlsskYnuBNRwKRRvoUDJO6nmNA4kfwhGN1P/4YlrIxJ1j+OU+zEdKBEJRtFKnd6QIgn7Xr9ac+vuDGSZeAWpQYFmv/rVCxOWxVwhk9SYruem6OdUo2CSTyq9zPCUshEd8K6lisbc+Pns3gk5sUpIokTbUkhm6u+JnMbGjOPAdsYUh2bRm4r/ed0Moys/FyrNkCs2XxRlkmBCps+TUGjOUI4toUwLeythQ6opQxtRxYbgLb68TNpnde+i7t2d1xrXRRxlOIJjOAUPLqEBt9CEFjCQ8Ayv8OY8Oi/Ou/Mxby05xcwh/IHz+QNNZo99</latexit>

d̂1
<latexit sha1_base64="RWrPcNesWexBmF6eD9oiVueLRiw=">AAAB+HicbVBNS8NAEJ34WetHox69LBbBU0lE1GPRi8cK9gOaGDabTbt0Nwm7G6GG/hIvHhTx6k/x5r9x2+agrQ8GHu/NMDMvzDhT2nG+rZXVtfWNzcpWdXtnd69m7x90VJpLQtsk5anshVhRzhLa1kxz2sskxSLktBuObqZ+95FKxdLkXo8z6gs8SFjMCNZGCuyaN8QaRYH74GWSCRrYdafhzICWiVuSOpRoBfaXF6UkFzTRhGOl+q6Tab/AUjPC6aTq5YpmmIzwgPYNTbCgyi9mh0/QiVEiFKfSVKLRTP09UWCh1FiEplNgPVSL3lT8z+vnOr7yC5ZkuaYJmS+Kc450iqYpoIhJSjQfG4KJZOZWRIZYYqJNVlUTgrv48jLpnDXci4Z7d15vXpdxVOAIjuEUXLiEJtxCC9pAIIdneIU368l6sd6tj3nrilXOHMIfWJ8/MSmSyw==</latexit>

d̂01

<latexit sha1_base64="btPu7J/j3gTTM5u1RJSY/c8m7lU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Ae0oWw2m3bpZhN3J0Ip/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEph0HW/ncLa+sbmVnG7tLO7t39QPjxqmSTTjDdZIhPdCajhUijeRIGSd1LNaRxI3g5GtzO//cS1EYl6wHHK/ZgOlIgEo2ilTm9IkYT9Wr9ccavuHGSVeDmpQI5Gv/zVCxOWxVwhk9SYruem6E+oRsEkn5Z6meEpZSM64F1LFY258Sfze6fkzCohiRJtSyGZq78nJjQ2ZhwHtjOmODTL3kz8z+tmGF37E6HSDLlii0VRJgkmZPY8CYXmDOXYEsq0sLcSNqSaMrQRlWwI3vLLq6RVq3qXVe/+olK/yeMowgmcwjl4cAV1uIMGNIGBhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx9O6o9+</latexit>

d̂2

<latexit sha1_base64="UyTBJHUE2dJsAu7zwRNxXY2unPA=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEInkpSRD0WvXisYD+giWGzmbRLd5OwuxFq6S/x4kERr/4Ub/4bt20O2vpg4PHeDDPzwowzpR3n2yqtrW9sbpW3Kzu7e/tV++Cwo9JcUmjTlKeyFxIFnCXQ1kxz6GUSiAg5dMPRzczvPoJULE3u9TgDX5BBwmJGiTZSYFe9IdE4ChoPXiaZgMCuOXVnDrxK3ILUUIFWYH95UUpzAYmmnCjVd51M+xMiNaMcphUvV5AROiID6BuaEAHKn8wPn+JTo0Q4TqWpROO5+ntiQoRSYxGaTkH0UC17M/E/r5/r+MqfsCTLNSR0sSjOOdYpnqWAIyaBaj42hFDJzK2YDokkVJusKiYEd/nlVdJp1N2Lunt3XmteF3GU0TE6QWfIRZeoiW5RC7URRTl6Rq/ozXqyXqx362PRWrKKmSP0B9bnDzK0ksw=</latexit>

d̂02

<latexit sha1_base64="tAi2JixmATsFggB2YDPa1NulFmw=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8cK9gPaUDbbTbt0s4m7E6GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94DjhfkQHSoSCUbRSuzukSPq981654lbdGcgy8XJSgRz1Xvmr249ZGnGFTFJjOp6boJ9RjYJJPil1U8MTykZ0wDuWKhpx42ezeyfkxCp9EsbalkIyU39PZDQyZhwFtjOiODSL3lT8z+ukGF77mVBJilyx+aIwlQRjMn2e9IXmDOXYEsq0sLcSNqSaMrQRlWwI3uLLy6R5VvUuq979RaV2k8dRhCM4hlPw4ApqcAd1aAADCc/wCm/Oo/PivDsf89aCk88cwh84nz9Qbo9/</latexit>

d̂3

<latexit sha1_base64="JT432CDq2tj8vo/sFki2H7yv/OY=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEInkqioh6LXjxWsB/QxLDZTNulm03Y3Qg19Jd48aCIV3+KN/+N2zYHbX0w8Hhvhpl5YcqZ0o7zbZVWVtfWN8qbla3tnd2qvbffVkkmKbRowhPZDYkCzgS0NNMcuqkEEoccOuHoZup3HkEqloh7PU7Bj8lAsD6jRBspsKvekGgcBWcPXipZDIFdc+rODHiZuAWpoQLNwP7yooRmMQhNOVGq5zqp9nMiNaMcJhUvU5ASOiID6BkqSAzKz2eHT/CxUSLcT6QpofFM/T2Rk1ipcRyazpjooVr0puJ/Xi/T/Ss/ZyLNNAg6X9TPONYJnqaAIyaBaj42hFDJzK2YDokkVJusKiYEd/HlZdI+rbsXdffuvNa4LuIoo0N0hE6Qiy5RA92iJmohijL0jF7Rm/VkvVjv1se8tWQVMwfoD6zPHzQ/ks0=</latexit>

d̂03

<latexit sha1_base64="B5j0PosnEfY+vP3OvbdIqHCpoGY=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWw2m3bpZhN3J0Ip/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEph0HW/ncLa+sbmVnG7tLO7t39QPjxqmSTTjDdZIhPdCajhUijeRIGSd1LNaRxI3g5GtzO//cS1EYl6wHHK/ZgOlIgEo2ilTm9IkYT9Wr9ccavuHGSVeDmpQI5Gv/zVCxOWxVwhk9SYruem6E+oRsEkn5Z6meEpZSM64F1LFY258Sfze6fkzCohiRJtSyGZq78nJjQ2ZhwHtjOmODTL3kz8z+tmGF37E6HSDLlii0VRJgkmZPY8CYXmDOXYEsq0sLcSNqSaMrQRlWwI3vLLq6R1UfUuq959rVK/yeMowgmcwjl4cAV1uIMGNIGBhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx9R8o+A</latexit>

d̂4
<latexit sha1_base64="TjU7r8fDXoYPXWR0gAVWc4yA498=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEInkoiRT0WvXisYD+giWGzmbRLd5OwuxFq6S/x4kERr/4Ub/4bt20O2vpg4PHeDDPzwowzpR3n2yqtrW9sbpW3Kzu7e/tV++Cwo9JcUmjTlKeyFxIFnCXQ1kxz6GUSiAg5dMPRzczvPoJULE3u9TgDX5BBwmJGiTZSYFe9IdE4ChoPXiaZgMCuOXVnDrxK3ILUUIFWYH95UUpzAYmmnCjVd51M+xMiNaMcphUvV5AROiID6BuaEAHKn8wPn+JTo0Q4TqWpROO5+ntiQoRSYxGaTkH0UC17M/E/r5/r+MqfsCTLNSR0sSjOOdYpnqWAIyaBaj42hFDJzK2YDokkVJusKiYEd/nlVdI5r7sXdfeuUWteF3GU0TE6QWfIRZeoiW5RC7URRTl6Rq/ozXqyXqx362PRWrKKmSP0B9bnDzXKks4=</latexit>

d̂04

<latexit sha1_base64="mSnMQmDw8AlgkcJidqIhaekAsiQ=">AAACLHicbZBNS8NAEIY39bt+VT16WSyCIJRERL0IYi8eK1gVmhgmm6ldu5uE3Y1QQn+QF/+KIB4s4tXf4fbjoNWBhZfnnWFn3igTXBvXHTilmdm5+YXFpfLyyuraemVj81qnuWLYZKlI1W0EGgVPsGm4EXibKQQZCbyJuvWhf/OISvM0uTK9DAMJ9wlvcwbGorBS9ztgKAs5PaW+zmX4QH0QWQfCgj/06ciNLdynfoRmit75meISw0rVrbmjon+FNxFVMqlGWHn145TlEhPDBGjd8tzMBAUow5nAftnPNWbAunCPLSsTkKiDYnRsn+5aEtN2quxL7OpD+nOiAKl1T0a2U4Lp6GlvCP/zWrlpnwQFT7LcYMLGH7VzQU1Kh8nRmCtkRvSsAKa43ZWyDihgxuZbtiF40yf/FdcHNe+o5l0eVs/OJ3Eskm2yQ/aIR47JGbkgDdIkjDyRF/JOBs6z8+Z8OJ/j1pIzmdkiv8r5+gafTKdG</latexit>

ĉi =
X

j

↵ij d̂j + �ij d̂
0
j

<latexit sha1_base64="l/XkAiWCvUe6wI/hadQdRP0bq9o=">AAAB83icbVA9SwNBEJ3zM8avqKXNYhCswl0KtQzaWEYwH5AcYW+zSZbs3h27s4Fw5G/YWChi65+x89+4Sa7QxAcDj/dmmJkXpVIY9P1vb2Nza3tnt7BX3D84PDounZw2TWI14w2WyES3I2q4FDFvoEDJ26nmVEWSt6Lx/dxvTbg2IomfcJryUNFhLAaCUXRSd0KZtYoYpMh7pbJf8Rcg6yTISRly1Hulr24/YVbxGJmkxnQCP8UwoxoFk3xW7FrDU8rGdMg7jsZUcRNmi5tn5NIpfTJItKsYyUL9PZFRZcxURa5TURyZVW8u/ud1LA5uw0zEqUUes+WigZUEEzIPgPSF5gzl1BHKtHC3EjaimjJ0MRVdCMHqy+ukWa0E15XgsVqu3eVxFOAcLuAKAriBGjxAHRrAIIVneIU3z3ov3rv3sWzd8PKZM/gD7/MHMXiRyA==</latexit>

vacuum state
<latexit sha1_base64="SmMzbxEimmWo/kawXBHLqRn85w0=">AAAB9HicbVA9SwNBEN2LXzF+RS1tFoNgFe5SqGXQxjKC+YDkCHubuWTJ3t65OxcIR36HjYUitv4YO/+Nm+QKTXww8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikZeJUc2jyWMa6EzADUihookAJnUQDiwIJ7WB8N/fbE9BGxOoRpwn4ERsqEQrO0Eo+jkBHTFKDDKFfrrhVdwG6TrycVEiORr/81RvEPI1AIZfMmK7nJuhnTKPgEmalXmogYXzMhtC1VLEIjJ8tjp7RC6sMaBhrWwrpQv09kbHImGkU2M6I4cisenPxP6+bYnjjZ0IlKYLiy0VhKinGdJ4AHQgNHOXUEsa1sLdSPmKacbQ5lWwI3urL66RVq3pXVe+hVqnf5nEUyRk5J5fEI9ekTu5JgzQJJ0/kmbySN2fivDjvzseyteDkM6fkD5zPH+aVki4=</latexit>

thermal state

<latexit sha1_base64="SgIzPRPTCRb/5MmfQTroGiDKXNQ="></latexit>

d̂i = �ex/2b̂i

��e�x/2(b̂0i)
†

<latexit sha1_base64="BVHP0swmZIfsFZcVbNYTEoYM+SM="></latexit>

hopping
⇣
ĉ†
i ĉj + h.c.

⌘
<latexit sha1_base64="y/tOyt/ROFib5mOiq+t+WCVOUag=">AAAB+XicbVBNS8NAEN3Ur1q/oh69BIvgqSY9qMeiF48V7Ae0oWw2k3bpJht2J4US+k+8eFDEq//Em//GbZuDtj4YeLw3w8y8IBVco+t+W6WNza3tnfJuZW//4PDIPj5pa5kpBi0mhVTdgGoQPIEWchTQTRXQOBDQCcb3c78zAaW5TJ5wmoIf02HCI84oGmlg2yEgMJTqCmKOCGpgV92au4CzTryCVEmB5sD+6oeSZTEkyATVuue5Kfo5VciZgFmln2lIKRvTIfQMTWgM2s8Xl8+cC6OETiSVqQSdhfp7Iqex1tM4MJ0xxZFe9ebif14vw+jWz3mSZggJWy6KMuGgdOYxOCFX5m0xNYQyxc2tDhtRRZmJQFdMCN7qy+ukXa951zXvsV5t3BVxlMkZOSeXxCM3pEEeSJO0CCMT8kxeyZuVWy/Wu/WxbC1Zxcwp+QPr8wfjSpPS</latexit>

detector/emitter
<latexit sha1_base64="VJWA9tYABOzHCmVQfQhnz5llt1U=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6rLopssK9gFtCJPppB06mYSZG6XEfoobF4q49Uvc+TdO2iy09cDA4Zx7uWdOkAiuwXG+rdLa+sbmVnm7srO7t39gVw87Ok4VZW0ai1j1AqKZ4JK1gYNgvUQxEgWCdYPJbe53H5jSPJb3ME2YF5GR5CGnBIzk29XBmABu+oOIwFhFGZ/5ds2pO3PgVeIWpIYKtHz7azCMaRoxCVQQrfuuk4CXEQWcCjarDFLNEkInZMT6hkoSMe1l8+gzfGqUIQ5jZZ4EPFd/b2Qk0noaBWYyT6iXvVz8z+unEF57GZdJCkzSxaEwFRhinPeAh1wxCmJqCKGKm6yYjokiFExbFVOCu/zlVdI5r7uXdffuota4Keooo2N0gs6Qi65QAzVRC7URRY/oGb2iN+vJerHerY/FaMkqdo7QH1ifPz+glAE=</latexit>

Ĥi

<latexit sha1_base64="qzo/5MBQPpDdYj+FadvvDpwqWGM="></latexit>

d̂i =
1p

2sh(2x)

⇣
exb̂i � e�x(b̂0i)

†
⌘

<latexit sha1_base64="qgzvHbrKFiXYRRX0datCrGC/7Yw=">AAAB6XicbVA9SwNBEJ2LXzF+RS1tFoOgTbhLoZZBG8so5gOSI+xt5pIle3vH7p4QjvwDGwtFbP1Hdv4bN8kVmvhg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GtzO//YRK81g+mkmCfkSHkoecUWOlB3rRL1fcqjsHWSVeTiqQo9Evf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa6mkEWo/m186JWdWGZAwVrakIXP190RGI60nUWA7I2pGetmbif953dSE137GZZIalGyxKEwFMTGZvU0GXCEzYmIJZYrbWwkbUUWZseGUbAje8surpFWrepdV775Wqd/kcRThBE7hHDy4gjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nDygtjRw=</latexit>

a)

<latexit sha1_base64="WTMX+nO7n07b2+AhztJFiW6f8Qw=">AAAB6XicbVA9SwNBEJ2LXzF+RS1tFoOgTbhLoZZBG8so5gOSI+xt9pIle3vH7pwQjvwDGwtFbP1Hdv4bN8kVmvhg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvp357SeujYjVI04S7kd0qEQoGEUrPQQX/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+aXTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZIUuWKLRWEqCcZk9jYZCM0ZyokllGlhbyVsRDVlaMMp2RC85ZdXSatW9S6r3n2tUr/J4yjCCZzCOXhwBXW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPHymyjR0=</latexit>

b)

FIG. 1. Schematic depiction of chain transformation for field in a) vacuum or b) thermal state, respectively. Upper panel: field mode operators
b̂i and chain mode operators ĉi are related by (8) and (11), see Sec. II A. Lower panel: in the thermal double construction, each b̂i mode is
assigned a partner mode b̂′i, see Sec. II B. New modes d̂i are introduced by means of a two-mode squeezing transformation with respect to the
b̂i and b̂′i modes, cf. Eq. (17). The chain modes ĉi for the thermal case are then expressed in terms of the d̂i modes, cf. Eq. (24). The coupling
Ĥi is equivalently described by Eqs. (4), (6), (15) and (20) in the main text.

oscillator (HO), which couples via its monopole operator to
a scalar quantum field. After being first posed, the question
whether a uniformly accelerated detector emits radiation in-
spired various works and raised a discussion whose devel-
opment is summarized, for example, both in [51] and [53],
with the latter addressing the question non-perturbatively.
Many questions in relativistic quantum information, in par-
ticular questions concerning the extraction and transmission
of entanglement, require the non-perturbative treatment of the
detector-field interaction. For TLS detectors, whose Hamil-
tonian is a type of spin-boson model, non-perturbative solu-
tions are challenging and only a limited number of solutions
are known, as recently summarized in [54]. Here we treat
them using MPS-based approaches. For HO detectors, Gaus-
sian state methods can be employed for non-perturbative treat-
ments [55, 56] which we also build upon in our work.

Here we show that, employing star-to-chain transforma-
tions, it is possible to calculate non-perturbatively the time
evolution of the joint detector-field state. Most interestingly,
the approach introduces no approximations to the model but
allows for (i) a treatment which is numerically exact up to
a time scale determined by the numerical resources available
and (ii) a precise control over the simulation error. Since the
UDW model is prototypical for many models in quantum op-
tics, these results lead the way to future applications, for ex-
ample, in the treatment of ultra-strong matter-light couplings.
Specifically in the following we calculate the time evolution
of the detector state and the energy density emitted by both
resting and accelerated detectors into the Minkowski vacuum
state of the field. We consider TLS and HO detectors, initial-
ized in their ground or (first) excited states, and verify that the
applied coupling strength is significantly beyond the regime

of leading-order time-dependent perturbation theory.
This work is organized as follows: Sec. II summarizes the

employed chain mapping combined with the thermofield ap-
proach. Sec. III discusses errors arising in the approach and
how they restrict the maximal simulation times, for both a
free field and an emitter coupled to the vacuum field. Sub-
sequently, thermal field states are considered and the relation
to the Unruh effect is made explicit in Sec. IV. The results are
summarized in Sec. V, where we also provide future perspec-
tives.

II. THEORETICAL FRAMEWORK

In this section, we introduce our theoretical approach and
numerical methods. In Sec. II A we briefly review chain trans-
formations and employ them to cast the UDW detector model
into a form that can be studied efficiently using our numer-
ical methods. To account for the coupling to thermal field
states we summarize the thermal double construction and sub-
sequent chain transformation in Sec. II B. This is followed
by a brief discussion of the numerical methods we utilize in
Sec. II C, and a proof-of-principle demonstration in Sec. II D,
in which we calculate the energy density of a detector coupled
to the vacuum.

A. Chain mapping

UDW model.—Chain mappings can be applied to systems
coupled bilinearly to a harmonic bath. Here we apply them
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to the UDW detector model, which phenomenologically de-
scribes a monopole detector coupled to a massless scalar field.
We start by considering a generic Hamiltonian

Ĥ = Ĥf + Ĥd + Ĥi, (1)

which contains the free field described by Ĥf , a detector mod-
eled by Ĥd, and an interaction Hamiltonian Ĥi.

In the Schrödinger picture, the field Hamiltonian reads

Ĥf =

∫ ∞

−∞
dk |k| b̂†k b̂k, (2)

and is described by bosonic annihilation (creation) operators
b̂
(†)
k . The field is coupled to a detector, or emitter, with which

we mean either a two-level system (TLS) or a harmonic oscil-
lator (HO) that can emit or absorb energy by interacting with
the field. For these two cases, we consider the detector models
(in the following, ℏ = c = 1):

Ĥ
(TLS)
d =

Ωd

2
σ̂z, Ĥ

(HO)
d = Ωd

(
â†â+

1

2

)
. (3)

Here, Ωd is the level spacing, â(†) are ladder operators of the
oscillator, σ̂ denotes the Pauli spin operator and σ̂z its z com-
ponent. Finally, the bilinear interaction between field and de-
tector is modeled by

Ĥi = λ X̂ ⊗
∫

dxf(x)π̂(x), (4)

with the dimensionless coupling constant λ, field momentum
π̂ and the smearing function f(x) that describes the shape of
the coupling in real space. The field couples to the detector via
the system operators X̂ = σ̂+ + σ̂− (TLS) and X̂ = â† + â
(HO), respectively. Note that this interaction Hamiltonian is
not number-conserving. Generally speaking, at strong cou-
plings this constitutes a formidable challenge for numerical
treatments.

Lorentzian coupling profile.—In the following, we choose
to model the interaction by a Lorentzian smearing function,
i.e.,

f(x) =
L

π(L2 + x2)
, (5)

with length scale L, see also Table I. Because this
smearing function is even, i.e., f(x) = f(−x), the
detector only couples to the even sector of the field.
With b̂

(e/o)
k =

(
b̂k ± b̂−k

)
/
√
2, which yields Ĥf =

∫∞
0
dk k

(
b̂
(e)†
k b̂

(e)
k + b̂

(o)†
k b̂

(o)
k

)
=: Ĥ

(e)
f + Ĥ

(o)
f , the interac-

tion Hamiltonian only couples to even modes,

Ĥi = λ X̂ ⊗
(√

2

∫ ∞

0

dk fk b̂
(e)
k + f∗k b̂

(e)†
k

)
, (6)

and we can discard the (dynamics of) the odd sector of the
field henceforth. Here, the coupling coefficients fk are

fk =
−i

√
k√

4π

(∫
dx eikxf(x)

)
= −i

√
k

4π
e−Lk. (7)

Chain modes.—The model captured by Eqs. (1,2,3,6) de-
scribes a (harmonic or two-level) detector coupled to inde-
pendent harmonic oscillators, as schematically depicted in
Fig. 1(a). This Hamiltonian may be transformed such that the
new model takes the form of a semi-infinite chain with only
nearest-neighbor interactions. To this end, we introduce the
chain mode operators as

ĉi =
√
2

∫ ∞

0

dk fkpi(k)b̂
(e)
k . (8)

As originally presented and detailed in Ref. [20], the functions
pi(k) (i = 0, 1, 2, ...) form a family of orthogonal polynomi-
als,

2

∫ ∞

0

dk |fk|2 pi(k) pj(k) = δij , (9)

which for the Lorentzian detector profile (5) is given by
rescaled and normalized Laguerre polynomials (see (G3)):

pn(k) =
L
√
8π√

n+ 1
L1
n(2Lk). (10)

Chain Hamiltonian.—The chain form of the field Hamilto-
nian is obtained by plugging the inverse Bogoliubov transfor-
mation,

b̂
(e)
k =

√
2
∑

i

f∗kpi(k)ĉi, (11)

into Eq. (2), and using both Eq. (9) and the recurrence rela-
tions [20]

kpn(k) = γnpn+1(k) + νnpn(k) + γn−1pn−1(k), (12)

where, by convention, γ−1 = 0. The Hamiltonian then takes
the form

Ĥ
(e)
f =

∑

i=0,1,...

νiĉ
†
i ĉi + γi

(
ĉ†i ĉi+1 + ĉ†i+1ĉi

)
, (13)

which describes the anticipated chain with nearest-neighbor
interactions. For the Lorentzian detector, the Laguerre poly-
nomials’ recurrence relations yield

γn = −
√
(n+ 2)(n+ 1)

2L
, νn =

n+ 1

L
. (14)

Correspondingly, the interaction Hamiltonian now takes the
form of a detector coupled only to the first chain mode,

Ĥi = λκ X̂ ⊗
(
ĉ0 + ĉ†0

)
, (15)

with the normalization constant κ = 1/(L
√
8π) for the

Lorentzian coupling profile. With this we arrive at the
chain-mode representation of our general model (1), which
is Ĥchain = Ĥ

(e)
f + Ĥ

(TLS/HO)
d + Ĥi, combining Eqs. (3),

(13) and (15).
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B. Thermal double construction

In this work, we investigate the coupling of a detector to
thermal field states. However, the chain transformation as in-
troduced in the previous section for the vacuum state of the
field is inapt for a direct treatment of thermal field states, since
(i) their representation in terms of chain modes may be non-
trivial or inefficient, and (ii) since they can contain a large
number of excitations, whereas our numerical MPS simula-
tions are restricted to a small number of field excitations. This
problem can be circumvented by resorting to a thermal double
construction [42], in which the original environment is viewed
as a subsystem of an enlarged environment in its vacuum state.
This enlarged environment can again be treated efficiently us-
ing chain transformations and numerical simulations. This
subsection reviews how to apply the thermal double construc-
tion to our model for a thermal field state with inverse tem-
perature β. App. F discusses how the energy density emitted
from a detector at rest, which couples to a thermal state of the
field, can be evaluated numerically and derives the necessary
expressions.

Double construction.—The enlargement of the environ-
ment is given by a doubling of the field modes: For each field
mode (b̂k) we introduce a partner mode (b̂′k) with opposite ex-
citation energy. As indicated in Fig. 1(b), each pair of partner
modes is in a two-mode squeezed state such that the individ-
ual modes’ partial state is a thermal state. The overall state
of the doubled field, however, is pure and corresponds to the
vacuum state of the ’unsqueezed’ d̂k and d̂′k modes.

Before going through the individual steps of these transfor-
mations, as above, we make use of the fact that the detector
only couples to even field modes. Thus we can discard the
odd sector of the field and apply the double construction to
the even sector only. The even-sector, doubled-field Hamilto-
nian reads

Ĥ
′(e)
f =

∫ ∞

0

dk k

((
b̂
(e)
k

)†
b̂
(e)
k −

(
b̂
(e)′

k

)†
b̂
(e)′

k

)
. (16)

By acting with two-mode squeezing transformations on each
pair of partner modes, we obtain a new basis of canonically
commuting operators

d̂k =
e

βk
4 b̂

(e)
k − e−

βk
4 b̂

(e)′

k
†

√
2 sinh(βk/2)

, d̂′k =
e

βk
4 b̂

(e)′

k − e−
βk
4 b̂

(e)
k

†
√
2 sinh(βk/2)

,

(17)

under which the field Hamiltonian remains invariant, i.e.,

Ĥ
′(e)
f =

∫ ∞

0

dk k
(
d̂†kd̂k − d̂′

†
kd̂

′
k

)
. (18)

The squeezing parameter (βk)/4 is chosen such that the vac-
uum |0D⟩ of these new modes (i.e., the state |0D⟩ for which
d̂
(′)
k |0D⟩ = 0) is the thermal state of Ĥf with inverse temper-

ature β on the original field modes b̂(e)k , i.e.,

⟨0D| b̂(e)†k b̂
(e)
k′ |0D⟩ = δ(k − k′)

(
eβk − 1

)−1
. (19)

The interaction Hamiltonian Ĥi remains unchanged in the
thermal double construction. To express Ĥi in terms of the
new modes, we invert (17) and obtain b̂

(e)
k = (eβk/4d̂k +

e−βk/4d̂†−k)/
√
2 sinh(βk/2), which we insert in (6),

Ĥi = λX̂ ⊗
∫ ∞

−∞
dk

sgn(k)f|k|e
βk
4

√
| sinh(βk/2)|

d̂k + h.c. , (20)

where we used, from (7), that f∗k = −fk is purely imaginary,
and place the primed d̂′k operators on the negative-k axis via
the identification k < 0 : d̂k = d̂′−k. With this identification,

the doubled field Hamiltonian (18) takes the form Ĥ
′(e)
f =∫∞

−∞dk k d̂
†
kd̂k.

By doubling the number of field modes the thermal dou-
ble construction has enlarged the system we need to simulate
from the total Hamiltonian Ĥ = Ĥ

(e)
f + Ĥd + Ĥi to the total

Hamiltonian Ĥ ′ = Ĥ
′(e)
f + Ĥd+ Ĥi. However, the d̂k-modes

are eigenmodes of Ĥ ′(e)
f , and the initial state of the field is

their vacuum state. Hence, as depicted in Fig. 1, the enlarged
system can again be treated efficiently with chain transforma-
tions, where the chain modes ĉi are constructed from the d̂k-
modes.

Chain modes.—The chain modes are obtained by the same
procedure as outlined above, in Sec. II A. However, instead of
the Laguerre polynomials from (10), in the thermal case the
polynomials qi(k) are defined on the entire real line and need
to obey

∫ ∞

−∞
dk w(k)qn(k)qm(k) = δnm, w(k) =

ke−2L|k|eβk/2

4π sinh(βk/2)
.

(21)
In contrast to the vacuum case, the weight functionw(k) does,
to our knowledge, not correspond to one of the well known
and studied families of orthogonal polynomials. Hence, the
polynomial coefficients

qn(k) =

n∑

i=0

Pn,ik
i (22)

have to be determined numerically. For this it is useful that the
moments of the weight function for the Lorentzian detector
profile have a closed-form solution in terms of Polygamma
functions:

(−1)π2n+3Ln+2

∫ ∞

−∞
dk w(k)kn

= (−1)n(n+ 1)!− (1 + (−1)n)
(

2L
β

)n+2

ψ(n+1)
(

2L
β

)
.

(23)

Based on numerical evaluations of these, the coefficients
Pn,i can be obtained from a Cholesky decomposition of the
moment matrix, as detailed in App. A. This step requires
large numerical precision because the size of the weight mo-
ments (23) spans a large range of orders of magnitude, as do
the resulting coefficients Pn,i. In fact, this is to be expected
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from the analytical solution of the vacuum field state in the
previous Sec. II A: The size of the coefficients |P249,i| ranges
from log10 |P249,20| ≈ 18 to log10 |P249,249| ≈ −414.

To numerically calculate the coefficients Pn,i in the ther-
mal double field construction we use Mathematica [57] to ob-
tain several hundreds of digits of precision. This high preci-
sion in the beginning of the calculations, which may appear
as an overhead at this point, is later consumed, for example,
in the evaluation of the energy density emitted from the detec-
tor. When evaluating expressions for the field energy density,
such as (K12) or (F9) which we derive below, the coefficients
Pn,i get multiplied by coefficients Ii spanning a similar range
of orders of magnitude. In this step, many digits of precision
are lost, hence a high precision in the initial calculation of
Pn,i (and Ii) is required in order to still be able to extract the
energy densities from the numerically calculated covariance
matrices of the state with good precision.

With the polynomials at hand, the chain modes for the ther-
mal case are given by

ĉi =

∫ ∞

−∞
dk

sgn(k)f|k|e
βk
4

√
| sinh(βk/2)|

pi(k)d̂k. (24)

In terms of these mode operators, the interaction Hamiltonian
Ĥi in (20) takes the same form as (15), and the double field
Hamiltonian Ĥ ′(e)

f takes the same form as in (13), where now
the normalization and coupling constants

κ =
1

P0,0
, γn =

Pn,n

Pn+1,n+1
, νn =

Pn,n−1

Pn,n
− Pn+1,n

Pn+1,n+1
,

(25)

follow from the polynomial recurrence relations [20].

C. Numerical methods for time evolution

We consider two different detectors, i.e., a two-level system
(TLS) and a harmonic oscillator (HO), as introduced in (3). To
treat the composite detector-field system numerically, we uti-
lize two different approaches: matrix product states methods
for the TLS, and Gaussian state methods for the HO. In the
following we will briefly highlight these methods, and their
different sources of numerical errors.

In addition to the method-specific errors, all numerical
methods share a common error which arises because only
chains of finite length can be treated numerically. Sec. III dis-
cusses this general truncation error separately and in detail.

Two-level detector.—The two-level system is described by
Ĥ

(TLS)
d given in (3). To compute the time evolution |ψt+dt⟩ =

Û(dt) |ψt⟩ = e−iĤchaindt |ψt⟩, we time-evolve the MPS |ψt⟩
at time t using the Trotter method, i.e., a second-order Trotter-
Suzuki decomposition of the time-evolution operator Û(dt).
It is well-known that this method is prone to two main sources
of error [58]: (i) a total time-step error of order O(dt2), and
(ii) a truncation error of the time-evolved state to a manage-
able bond dimension. In order to reduce the first type of er-
ror, choosing a small time step dt is desirable. However this

Quantity Symbol & Default Value Definition
Detector width L (5)
Detector energy gap Ωd = 2π/(5L) (3)
Coupling constant λ = 2 (4)

TABLE I. Overview of model constants for detector model together
with their default numerical values which are used throughout this
work, unless stated otherwise. The detector width L is used as unit
for other numerical values and results.

increases the required number of time steps to evolve. More-
over, if dt is chosen too small, the state truncated to a given
bond dimension does not properly time-evolve since the trun-
cation error becomes too large in comparison. We discuss this
effect in more detail in App. B, where we also comment on the
choice of dt, with which we obtain the results in this work.

Harmonic detector.—The harmonic detector is modeled by
Ĥ

(HO)
d in (3). Since this Hamiltonian is quadratic and since

the initial states we consider are Gaussian states, the state
remains Gaussian throughout its time evolution and is fully
characterized by its covariance matrix. This allows us to cal-
culate the time evolution highly efficiently using Gaussian-
state methods by a direct numerical exponentiation of the
Hamiltonian generator (see, e.g., [59]). Using Mathemat-
ica [57] for these calculations allows us to obtain the time-
evolved covariance matrix of the state with very high (hun-
dreds of digits) precision. For this reason, we expect the pre-
sented numerical results for HO detectors to be essentially un-
affected by numerical errors, but to be only subject to the trun-
cation error discussed in Sec. III. This difference between HO
and TLS data is, e.g., noticeable in the energy densities dis-
cussed in the subsequent subsection.

D. Case study: energy density

As a first demonstration of our approach, in this section we
consider the energy densities emitted from detectors at rest
of the different models in (3). This study provides a good
basis for the detailed discussion of the truncation error in the
following section, before we consider the radiation emitted by
accelerated detectors in Sec. IV.

Energy density of massless field.—The energy density of
the massless Klein-Gordon field [60],

T̂00(x) =
1

2

(
π̂(x)2 +

(
∂xϕ̂(x)

)2)
= π̂−(x)

2 + π̂+(x)
2,

(26)
decouples into the right-moving energy density π̂2

− and the
left-moving energy density π̂2

+, which are the squares of the
right- and left-moving sectors of the field momentum,

π̂∓ = −i

∫ ∞

0

dk

√
k

4π

(
ei±kxb̂±k − e∓ikxb̂†±k

)
. (27)
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FIG. 2. Energy densities in vacuum. For MPS calculations dt =
10−3L was used. The values of t plotted in subplots b) and d) for
the TLS are t = 1 + dt, 4 + dt, 7 + dt. Physical parameters: λ =
2,Ωd = 2π/(5L). The chain was truncated to 250 modes.

We consider the normal-ordered energy density,

: π̂2
∓(x) : =

∫ ∞

0

dk

∫ ∞

0

dk′
√
kk′

4π

(
2e∓i(k−k′)xb̂†±k b̂±k′

−e±i(k+k′)xb̂±k b̂±k′ − e∓i(k+k′)xb̂†±k b̂
†
±k′

)
,

(28)

which when integrated up over all space Ĥf =
∫
dx : T̂00(x) :

yields the field Hamiltonian (2). To evaluate
〈
: π̂2

∓(x) :
〉

from the numerical data, we rewrite the operator in terms of
the chain mode operators ĉi, as detailed in App. G. Because
the coupling between detector and field is even, the expecta-
tion value of the left-moving energy density

〈
: π̂2

+(x, t) :
〉
=

−
〈
: π̂2

+(−x, t) :
〉

is simply the mirror image of the right-
moving energy density, and we need only consider the latter.

Numerical results.—Fig. 2 shows the right-moving energy
density for the case of a detector coupled to the vacuum with
a Lorentzian profile, for a harmonic detector (panels a and
c) and a two-level detector (panels b and d) that initially is
either in its ground state (panels a and b) or first-excited state
(panels c and d). The spatial profile of the detector, which
determines the region with significant coupling between field
and detector, is depicted in the lower panel of each subfigure.
Each panel shows the energy density for an early time (t/L =
1), an intermediate time (t/L = 4) and a late time (t/L = 7)
after the interaction begins at t/L = 0.

In this illustrative example, we can make several obser-
vations. First, as can be seen by comparing the upper with
the lower rows, the initially excited emitter naturally radiates
much more energy into the field. In contrast, when the emit-
ter is initialized in its ground state and early excitations stem
from counter-rotating terms in (15), little energy is being emit-
ted overall. Moreover, in the case of ground states, we find
negative densities propagating to the right, that are more pro-
nounced for the two-level emitter than for the harmonic oscil-
lator.

Once the right-moving density has left the region in which

-0.05
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0.10

0.15

0.20

-2 0 2 4 6 8
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0.3
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FIG. 3. Comparison of energy densities resulting from leading order
perturbation theory and the non-perturbative numerical results from
Fig. 2. Same parameters as in Fig. 2.

the coupling to the detector is significant, it maintains its
shape and simply propagates to the right. This behavior can
be seen for all depicted cases and propagation times. On the
one hand, this reassures that the number of 250 chain modes
used in the numerical simulation (which for consistency we
use throughout the paper) is sufficient to reliable represent the
full time evolution within the selected times. On the other
hand, it also allows us to extrapolate that radiation once it has
propagated past x/L ≳ L will maintain its shape as it prop-
agates further. Hence, the early-time radiation will maintain
the profile observed in Fig. 2 for t/L = 7, and only to assess
the radiation emanating from the detector at this late time nu-
merical calculations employing a larger number of modes in
the chain would be necessary.

To demonstrate that our chosen coupling paramaters go far
beyond the perturbative regime, in Fig. 3 we contrast the nu-
merical results from Fig. 2 with the values obtained from time-
dependent perturbation theory to leading order, as derived in
App. H. While both agree well and are hardly distinguishable
at short times, we find large differences at long times. Both for
the harmonic and two-level detectors, perturbation theory fails
to capture the features of the numerically exact result even
qualitatively, e.g., by inaccurately producing a density with
the wrong number of nodes or local extrema. The discrepancy
is particularly pronounced for the case of an initially excited
emitter, which shows a radiation burst that propagates to the
right (see Fig. 2), but which is significantly overestimated by
the perturbatively obtained curves. These disagreements un-
derline the importance of advanced numerical methods that
can treat and time-evolve the full state of the composite sys-
tem, including both matter and field degrees of freedom in
strong coupling regimes.

III. THE TRUNCATION ERROR

The star-to-chain transformation as introduced above (see
Sec. II A and Sec. II B) is exact and introduces no approxima-
tions or simplifications to the original Hamiltonian. However,
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in numerical studies the derived infinite chains have to be trun-
cated as also indicated in Fig. 1, because only a finite number
of modes can be represented on a computer. This necessarily
degrades the accuracy of numerical calculations at sufficiently
long simulation times. This section is devoted to the conse-
quencues of the truncation error that is thereby introduced.

A. Heuristic of truncation error

In the study of dynamics, the truncation error stems from
the difference between time evolution according to the infi-
nite system and the truncated Hamiltonian. This difference is
rooted in neglecting the hopping term between the last consid-
ered mode (ĉN−1 in Fig. 1) and the first truncated mode (ĉN
in Fig. 1). Therefore, the truncation error can be understood
intuitively and treated analytically to some extent.

The intuitive picture of the truncation picture is as follows:
Initially, the time evolution of the truncated system agrees
well with the time evolution of the exact, infinite system.
Since the chain starts out in the vacuum state, this holds up to
the time which it takes excitations, created by the interaction
with the emitter, to propagate from the front to the chain to
the truncated end. After this time, the excitations in the trun-
cated, numerically implementated model are reflected back to
the front of the chain, whereas they had propagated further
down the original infinite chain, thus causing the truncation
error.

Free field without detector.—To make this picture more ex-
act it is helpful to consider the excitation dynamics of the
chain. This approach was pursued in [61] to deepen the un-
derstanding of chain-mapping methods. For our purpose it
suffices to consider the chain for the free field to which no
emitter is coupled, i.e., we put λ = 0 above, and to con-
sider the evolution of the state ĉ†0 |0⟩ which has one excita-
tion in the first mode of the chain at t = 0. To this end,
it is convenient to work in the Heisenberg picture and ex-
press ĉ0(t) =

∑∞
j=0 ρj(t)ĉj(0). From (8) it follows that

ĉ0(t) =
√
2
∫∞
0
dω fωp0(ω)b̂

(e)
ω e−iωt, and we obtain

ρj(t) =
[
ĉ0(t), ĉ

†
j

]
=

4
√
j + 1(it/L)j

(2 + it/L)
2+j

. (29)

The absolute value squared of these coefficients |ρj(t)|2 =

⟨0| ĉ0(−t)†ĉ†j ĉj ĉ0(−t) |0⟩ yields the number expectation
value of the jth chain mode at time t. This distribution spreads
and flattens out quickly over the chain, as can be characterised
by the center of mass of the distribution

∑
j j|ρj(t)|2 =

t2/(2L2) growing quadratically in time. Also, the peak of
the distribution |ρJ(t)|2 := supj |ρj(t)|2 has a position which
asymptotically behaves as J ∼ t2/(4L2) for large times and
takes the value |ρJ(t)|2 ∼ 4L2/(et2) as t→ ∞. These obser-
vations indicate that in order to avoid the truncation error in
numerical calculations, the number of required chain modes
may scale quadratically in the duration of the time evolution.

In the following Sec. III B we discuss how the error in
the state arising due to the truncation may be bounded from

above. This rather straightforward bound, however, (i) is only
useful for bounded observables, and (ii) does not take into
account that chain modes near the front of the chain are af-
fected by the truncation much later than modes near the chain
end. Both these points render the state error bound not useful
for the energy density of the field which we are interested in
here. Therefore, in Sec. III C, we discuss how the truncation
error arising in the energy density of the field can be assessed
heuristically by a wave-equation source term.

B. Bounding the state truncation error

The truncation of the chain after N chain modes corre-
sponds to subtracting

∆Ĥ = γN−1

(
ĉ†N−1ĉN + h.c.

)
(30)

from the full Hamiltonian Ĥ . The system thus evolves from
its initial state |ψ0⟩ at t = 0 into a defective state

|ψϵ⟩ = exp
(
−it(Ĥ −∆Ĥ)

)
|ψ0⟩ (31)

instead of the correct state |ψ⟩ = exp
(
−itĤ

)
|ψ0⟩. The error

|ϵ⟩ = |ψ⟩ − |ψϵ⟩ evolves as

d

dt
|ϵ⟩ = d

dt
(|ψ⟩ − |ψϵ⟩) = −iH |ϵ⟩ − i∆H |ψϵ⟩ . (32)

As detailed in App. I, the norm of the state error evolves as

d

dt
∥|ϵ⟩∥ ≤

√〈
∆Ĥψϵ

∣∣∣∆Ĥψϵ
〉
, (33)

and its norm at time t is lower or equal to the integral

∥|ϵ⟩∥ ≤ ϵt := |γN−1|
∫ t

0

dt′
√
⟨ψϵ| ĉ†N−1ĉN−1 |ψϵ⟩. (34)

Advantages of error bound.—The expression (34) achieves
something practically useful, since numerically we have ac-
cess to the expectation value ⟨ĉ†N−1ĉN−1⟩ with respect to the
state we propagate, |ψϵ⟩, at each available time step. From this
the integrated error bound can be obtained straightforwardly.

Moreover, if the emitter is itself a harmonic oscillator, then
a bound on the error in the (Frobenius) norm ∥G∥ of the co-
variance matrix Gij =

〈
ξ̂iξ̂j + ξ̂j ξ̂i

〉
of the total system

state can be derived.1 As detailed in App. J, this uses that
the system remains Gaussian both under the true and the trun-
cated time evolution. The bound on the error in ∥G∥ trans-
lates into a bound on the error in the expectation value of
quadratic observables Ô = 1

2

∑
i,j Oij ξ̂

iξ̂j , provided that the
norm of O is bounded. For example, this allows to bound the

1 Here ξ̂⊺ = (q̂1, p̂1, ...) represents a basis of quadrature operators.
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FIG. 4. Comparison of error in free field energy density and source term (36), with ϵ = L/20. For MPS calculations dt = 10−3L was used.

error in the expectation values of number operators of chain
mode ladder operators, or of other collective mode operators
B̂ =

∫
dω g(ω)b̂ω (with

∫
dω |g(ω)|2 = 1) which can be one

way to characterize emitted radiation.
Drawbacks of error bound.—Since the above error bound

concerns the norm of the state, it only allows us to bound the
error in the expectation values of observables with finite op-
erator norm. This excludes many operators of interest such
as the number and quadrature operators of individual field
modes, as well as the energy density of the field, all of which
are quadratic in the mode ladder operators.

Moreover, whereas this bound may be interesting and prac-
tically useful for identifying the regimes of validity of simula-
tions, it appears to be too rigorous for many applications. This
is because it does not take into account the decomposition of
an observable in terms of the chain mode operators. However,
operators acting on modes at the front of the chain are affected
by the truncation error much later than the modes at the trun-
cated end of the chain. An important and interesting subject
for future research would therefore be to derive error bounds
which take into account the decomposition and support of ob-
servables with respect to the chain mode operators. A natural
first step in this direction may well be to investigate a gener-
alization of results from the literature regarding observables
acting only on the emitter [28–30, 32].

C. Truncation error in the energy density

Since the coefficients of the field energy density with re-
spect to the chain modes are not bounded, cf. Eq. (G2), the er-
ror bounds from above do not apply to the energy density. To
understand how it is impacted by the truncation error, we first

consider the free field with initial state ĉ†0 |0⟩. For this case,
we know the exact solution from Sec. III A, which allows to
precisely quantify the errors arising in the numerical simula-
tions of the truncated chain. We find that the errors constitute
themselves in the shape of oscillatory features which have a
short wave length, tend to arise away from the location of the
detector and can be recognized as contributions to the source
term of the wave equation.

If the free field (λ = 0 in (4), i.e., no emitter-field coupling)
is prepared in the initial state ĉ†0 |0⟩ at time t = 0, then the ex-
act expectation value of the right-moving field energy density
is
〈
: π̂2

−(x, t) :
〉
ex

= ⟨0| ĉ0(−t) : π̂2
−(x) : ĉ

†
0(−t) |0⟩

=
L2

π(L2 + (x− t)2)2
.

(35)

The error ∆
〈
: π̂2

−(x, t) :
〉

=
〈
: π̂2

−(x, t) :
〉
ex

−〈
: π̂2

−(x, t) :
〉
num

which arises in the numerical calcu-
lations for the truncated chain is shown in Fig. 4(a), for the
Gaussian methods applied for HO emitters, and in Fig. 4(b),
for the MPS methods applied for TLS emitters. The figures
compare the error ∆

〈
: π̂2

−(x, t) :
〉
, in their upper panel, to

the difference between the energy density at a given point and
the density’s value traced back a small distance (ϵ = L/20)
along a light ray:

sϵ(x, t) =
〈
: π̂2

−(x, t) :
〉
num

−
〈
: π̂2

−(x− ϵ, t− ϵ) :
〉
num

.
(36)

In the (exact solution of) the free field, this term always van-
ishes since the right-moving energy density is simply trans-
lated along light rays in time. However, for the truncated
chain, in Fig. 4(c) and Fig. 4(d) we see that a non-zero value
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FIG. 5. Source term (36) for scenario of Fig. 2 c) and d) with ϵ = L/20.

of this difference builds up as the simulation time increases.
In particular, the behavior of the source term is highly parallel
to the behavior of the absolute error. Both signal the effects
of the truncation error by the appearance of highly oscillatory
features away from x = 0 where the emitter is centered.

This observation motivates our use of the source term as
a heuristic measure for the error arising in numerical simula-
tions in scenarios where the emitter is coupled to the field and
no analytical solution is available. When the emitter is cou-
pled to the field, the term (36) serves as an approximation to
the expectation value of the source term of the wave equation,

(∂t + ∂x)
〈
: π̂2

−(x) :
〉
= i
〈[
Ĥi, π̂

2
−(x)

]〉

= −λdf
dx

〈
X̂ ⊗ π̂−(x)

〉
.

(37)

In the exact solution of the model, the source term is restricted
to the support of the (derivative of the) smearing function
f(x). Thus, a non-zero source term away from the support
of the emitter signals the appearance of numerical errors.

Fig. 5 shows the numerical source term (36) for the data in
Fig. 2 which showed the energy density emitted by an HO and
a TLS emitter at rest into the vacuum of the field. Based on
the rise of oscillating features in the source term well away
from the emitter’s support around a total simulation duration
of up to t = 7L, we decide to only consider results up to this
simulation time, here and in the following. Also below, for de-
tectors coupled to thermal field states, we checked the source
term and energy densities for highly oscillatory features to en-
sure that the truncation error has no significant impact within
this simulation time.

IV. DETECTOR RADIATION IN THE UNRUH EFFECT

The previous sections discussed basic properties of chain
transformations applied to relativistic fields, and applied them
to non-perturbatively calculate the energy density emitted
from a particle detector at rest. In this section we use chain
transformations to address the Unruh effect as a paradigmatic
phenomenon of relativistic quantum fields, and calculate the
radiation emitted from a uniformly accelerated detector.

While the Unruh effect itself happens in flat spacetime, it
captures a central lesson of quantum field theory in curved
spacetimes which is that particles are an observer-dependent
concept. At its core the Unruh effect is the observation that
what an inertial observer (which we refer to as Minkowski ob-
server) describes as the vacuum state of the field, a uniformly
accelerated observer (Rindler observer) describes as a thermal
state of the field. Famously, the associated Unruh temperature
TU = a/(2π) is proportional to the proper acceleration a of
the observer (see, e.g., [51]). In fact, the Unruh effect ex-
hibits intriguing parallels to the thermal double construction
of Sec. II B. For a self-contained and detailed review of the
Unruh effect and this perspective we refer to App. C. In the
following, we summarize it in a high-level overview to intro-
duce and motivate our modeling of the radiation emitted from
a uniformly accelerated detector.

A. Modeling the coupling of an accelerated detector

The Unruh effect takes place in ordinary, flat Minkowski
spacetime. We restrict ourselves to the (1+1)-dimensional
case and use (t, x) as the standard coordinates for the
Minkowski observer. The quantum field is in the vacuum state
|0M⟩ with respect to the Minkowski observer. That means that
the mode operators âk, that the Minkowski observer uses to
expand the field in, annihilate the vacuum state: âk |0M⟩ = 0.
As will be clear shortly, the Minkowski modes have no equiv-
alent in the framework as discussed so far and depicted in
Fig. 1, which is why we intentionally denote them as âk.

A wordline of a uniformly accelerated observer (see Fig. 6),
i.e., an observer undergoing constant proper acceleration a, is

t =
1

a
sinh(aτ), x =

1

a
cosh(aτ), (38)

where τ is the proper time of the accelerated observer. The
so-called Rindler coordinates (τ, ξ) in (C9) (for details see
App. C) are the natural choice of coordinates for a uniformly
accelerated observer, rather than the Minkowski coordinates.
Similarily, such an observer will use so-called Rindler modes
b̂RΩ to expand the field, rather than the Minkowski âk-modes.
Again we choose this notation intentionally because the
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x

t

FIG. 6. Spacetime diagram of the worldline (38) of a uniformly ac-
celerated detector. The detector is coupled to the field for a proper
time interval −T ≤ τ ≤ 0, and we evaluate the energy density an
inertial observer measures on the hyperplane t = 0. The lines indi-
cate the emitted radiation. The left-moving energy density is boosted
to higher values due to the Doppler shift, whereas the right-moving
density is lowered.

Rindler modes play exactly the role of the modes labelled as
b̂k earlier, in the thermal double construction and in Fig. 1(b):
Because the Rindler annihilation operators are linear com-
binations both of Minkowski annihilation and of Minkowski
creation operators (see (C16)), they do not share the vacuum
state with the Minkowski modes. Instead the Minkowski vac-
uum is a thermal state with respect to the Rindler modes,
whose temperature is the Unruh temperature TU = a/(2π),
as seen from the expectation value (see (C25))

⟨0M| b̂R†
Ω b̂RΩ |0M⟩ = δ(Ω− Ω′)

e
2πΩ
a − 1

, (39)

where Ω is the Rindler mode frequency.
The thermal b̂k-modes in the thermal double construction

are purified by their partner b̂′k-modes. Where are then the
partner modes of the Rindler modes b̂RΩ found? The uni-
formly accelerated observer above is restricted to the right
Rindler wedge, i.e., the spacetime region of |t| < x, and the
b̂RΩ-modes completely capture the field in this region. Their
purifying partner modes b̂L−Ω pertain analogously to the left
Rindler wedge, i.e., the region |t| < −x, to which the mirror
image (along the origin x = 0) of our uniformly accelerated
observer (38) is restricted. As indicated by the notation, these
modes have negative Rindler frequency and play exactly the
role of the b̂′k-modes in our discussion of the thermal double
construction above.

Exactly as the d̂-modes are constructed in the thermal
double construction, also the Rindler partner mode pairs
can be transformed into pairs of so-called Unruh modes d̂Ω
(see (C26)). For these modes the field state is the vacuum
state, i.e., d̂Ω |0M⟩ = 0, and the chain modes for the numeri-
cal simulation of the system are constructed as linear combi-
nations of Unruh modes.

Building on the relations summarized above, our approach
to modeling the interaction of a uniformly accelerated detec-
tor with the quantum field in its Minkowski vacuum state is to

map it to the interaction of a detector at rest with field modes
in a thermal state. That is, we use the total model Hamilto-
nian Ĥ = Ĥf + Ĥd + Ĥi with its three parts exactly in the
same form as introduced in Sec. II A and Sec. II B, respec-
tively. However, the role of the Minkowski coordinates (t, x)
is now played by the Rindler coordinates (τ, ξ), and the role
of the (thermal) eigenmodes of the field operator is played by
the Rindler modes.

In particular, as discussed in detail at the end of App. C, the
interaction Hamiltonian Ĥi takes the form (see (C29))

Ĥi = λX̂ ⊗
∫
dξ f(ξ)∂τ ϕ̂(ξ) , (40)

where the detector smearing is performed with respect to
Rindler coordinates. The worldline of constant Rindler coor-
dinate ξ = 0 exactly is the detector worldline (38). Note that
worldlines of constant Rindler coordinate ξ0 correspond to a
constant proper acceleration of ae−aξ0 . Hence, for our ansatz
to model a detector experiencing a single constant proper ac-
celeration, the width of the detector profile needs to be small,
i.e., we require aL≪ 1.

A consequence of our approach is also, that our calcula-
tions now yield time evolution with respect to Rindler time
τ as opposed to Minkowski coordinate time t. Concerning
detector observables, the action of the time evolution opera-
tor exp(−iTĤ) is to simply evolve the detector state forward
with respect to detector proper time by an amount T , since
along ξ = 0 the Rindler time coordinate τ equals the detec-
tor’s proper time. Concerning field observables, because the
Rindler field Hamiltonian Ĥ ′

f =
∫∞
−∞dΩΩ

(
b̂R†
Ω b̂RΩ − b̂L†

Ω b̂LΩ

)

generates Lorentz boosts in Minkowski spacetime, the action
of exp(−iTĤ) is to, for example, transform a state defined on
the hyperplane t = τ = 0 to the hyperplane τ = T , which in
Minkowski coordinates is the hyperplane t = tanh(aT )x.

In App. D we discuss in detail how observables like the en-
ergy density of the field with respect to an inertial Minkowski
observer are affected. The easy way in which we handle this
issue here is, figuratively speaking, to move the start of the
interaction back in time: We move the onset of the interac-
tion back to proper time τ = −T of the detector, at which
point we assume the detector and field to be in a product ini-
tial state |ψ0⟩⊗|0M⟩, and then numerically calculate the action
of exp(−iTĤ) on this state, which results in a state defined
on the hyperplane t = 0.

B. Results

In this section, we discuss the numerical results we obtained
for three different acceleration values, aL = 0.1, 0.2, 0.4.
The largest of these values is interesting to understand the nu-
merical performance of our method, even if it may well be
viewed as being in conflict with our modeling requirement
that aL≪ 1, as discussed above.

Nevertheless, by considering the dynamics of the occupa-
tion number expectation value of the detector ⟨n̂⟩, which is

n̂HO = â†â, n̂TLS = 1
2 (σ̂z + I) (41)
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FIG. 7. Emitter occupation expectation value ⟨n̂⟩, as defined in (41),
for HO and TLS detectors in response to thermal states with inverse
temperatures β = ∞, 20πL, 10πL, 5πL, 2πL, which in the Unruh
effect corresponds to acceleration values aL = 0, 0.1, 0.2, 0.4, 1.
(For MPS calculations dt = 10−3L was used.)

for the HO detector the TLS detector respectively, we see that
the thermal response of the detector due to the Unruh effect
is not too pronounced at these accelerations, for the numer-
ical detector parameters that we consider. Fig. 7 shows the
expectation value for initial states with zero and with one ex-
citation for both detector types for a detector with the same
coupling parameteres (Ωd = 2π/5, λ = 2) as we considered
in Sec. II D for a detector at rest. For the TLS the detector,
the response of the detector occupation for the three accelera-
tion values aL = 0.1, 0.2, 0.4 is hardly distinguishable from
a resting detector (aL = 0). And even in the case of aL = 1
which we present there for reference, and which corresponds
to an inverse Unruh temperature of β = 2πL the difference is
relatively small still. For the HO detector the differences are
somewhat more pronounced and already the case of aL = 0.4,
corresponding to an inverse Unruh temperature of β = 5πL
are noticeable.

Based on this observation, we would expect the radiation
from our accelerated detectors to correspond to the profiles
observed in Fig. 2 for resting detectors, after undergoing a
Lorentz boost (or Doppler shift) which along each light ray
in the emitted radiation depends on the detector’s velocity at
the intersection between the detector’s worldline with the light
ray, i.e., the point in time at which the light ray would have
been emitted from the detector. In fact, the energy densities in
Fig. 8, that shows the results for all four combinations of de-
tector types and initial states for an acceleration of aL = 0.1,
shows the expected similarities. And Fig. 12 and Fig. 13 in
App. D confirm that to a very high degree this expectation
agrees with our numerical results for the energy density emit-
ted from a uniformly accelerated detector.

Fig. 9, on the one hand, shows how the emitted energy
density profile changes as the acceleration increased. On the
other hand, the double logarithmic plots exhibit some charac-
teristic features more clearly, which we observe for both HO
and TLS detectors. First, as a consequence of the accelerated
detector coupling evenly to the Rindler modes, the observed

(Minkowski) energy density exhibits the following symmetry
between left-moving and right-moving energy densities:
〈
: π̂2

+

(
x = 1

ae
−aξ, t

)
:
〉
= e2aξ

〈
: π̂2

−
(
x = 1

ae
aξ, t

)
:
〉
,

(42)
which can be read of directly from expressions (K11)
and (K12).

Second, for aL = 0.4, we see that both left-moving and
right-moving energy densities appear to diverge as x → 0.
This behaviour is in fact to be expected for all accelerations
towards the coordinate origin x → 0+, if one takes into ac-
count that the end of the time evolution on the hyperplane
t = 0 is equivalent to a sudden switch-off of the interac-
tion between detector at field: Since we applied the detector
smearing function (5) with respect to Rindler coordinates, in
terms of Minkowski coordinates it reads

f ′(x) = f(ξ) =
L

π(L2 + ξ2)
=

L

π
(
L2 + 1

4a2 ln(a2x2)2
) .
(43)

The derivative of this function limx→0+
df ′

dx = ∞ diverges to-
wards the coordinate origin. However, infinitely steep smear-
ing functions lead to diverging energy densities for instanta-
neous interaction switch-offs for the detector model we em-
ploy here.

Furthermore, we highlight the oscillatory features appear-
ing in the data for aL = 0.4 at x ≈ 0.2L in the right-moving
energy density and x ≈ 30L in the left-moving energy den-
sity. These features grow more dominant when the simula-
tion is continued further and they appear at earlier simulation
times for higher accelerations (respectively later for lower ac-
celerations). Based on our investigation of the truncation error
above, we interpret them as indicating the onset of the trunca-
tion error effects at simulation times beyond t = 7L for the
chosen coupling parameters of our model and chosen chain
length for our numerical simulations.

To reliably extend the simulation time beyond this regime
one would therefore have to use more chain modes in the nu-
merical calculations. This could be of interest, for example,
for further investigations dedicated to the radiation arising in
scenarios in which the Unruh temperatures are larger relative
to the detector energy gap Ωd, because a longer chain would
allow for longer simulation times which, in turn, would al-
low to cover an equal number of detector periods 2π/Ωd for
detectors with lower Ωd.

V. CONCLUSIONS & OUTLOOK

In summary, we have utilized chain-mapping methods to
numerically study the interaction between a scalar quantum
field, and localized quantum emitters both at rest and under-
going uniform acceleration. The numerically exact treatment
of the entire system, including the field, allows efficient access
to a large variety of system and field observables. In addition,
while our main focus rests on the emission and absorption of
excitations from an emitter, which we monitor by calculat-
ing and time-evolving the field energy density, the method is
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FIG. 8. Comparison of energy densities emitted from uniformly accelerated emitter with aL = 1/10, switched on at τ = −7L and switched
off at τ = 0. For the TLS system dt = 0.005 is used in the MPS calculations.
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FIG. 9. Double logarithmic plot of the left-moving (in blue) and right-moving (in red) energy density emitted from a uniformly accelerated
HO detector, for different acceleration values (in the different columns) and different initial states (upper row |ψ0⟩ |0⟩ and lower row |ψ0⟩ |1⟩).
The symmetry between left-moving and right-moving densities follows from (42). Note that a) and d) here, are equal to Fig. 8(a) and (c).

not restricted to these observables. While we focus on a two-
level or harmonic emitter, respectively, coupled to its bath via
a Lorentzian coupling profile, for which we find convenient
expressions within the chain-mapping approach, other emit-
ters may be considered as well. Future works may use our
approach to study, e.g., bath or system-bath correlation func-
tions, or to calculate the entanglement dynamics of multiple
emitters coupled to a thermal bath. In this context, an in-
teresting question is whether the chain mapping can be ef-
ficiently implemented for two emitters coupled to the same
continuum of bath modes. This would pave the way for a
new non-perturbative approach to many questions regarding
communication, correlation or entanglement transfer between
localized emitters and the quantum field. In particular in the
context of relativistic scenarios the present approach has the

advantage to introduce no further causality violating approxi-
mations to the model such as a UV cutoff [62, 63]. Instead, the
model is treated exactly within the maximal achievable simu-
lation time determined by the number of chain modes used in
the numerical simulation.

In Sec. III we discussed an error bound which can be prac-
tically evaluated along with the numerical simulations and
which rigorously controls the total error introduced to the
time-evolved state due to the truncation of the chain. Since
this error bound appears to be too rigorous for many appli-
cations of interest, it would be useful to derive error bounds
that are tailored towards specific observables by taking into
account their decomposition in terms of the chain modes.
This may be achieved building on existing error bounds [28–
30, 32].
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Appendix A: Polynomial coefficients from numerical weight
moment matrix via Cholesky decomposition

First we calculate a vector w with 2N+1 entries containing
the weights as given in (23),

w = [wk]k=0,...,2N , wk =

∫ ∞

−∞
dk w(k). (A1)

Then we arrange these into an (N + 1) × (N + 1)-matrix
M which represents the scalar product defined by (21) with
respect to the polynomials kn,

Mij =
[
w(i+j)

]
i,j=0,...,N

. (A2)

We need the Cholesky decomposition of this matrix M =
LL⊺. L is a lower triangular matrix and it corresponds to
a basis change matrix from the basis given by the polyno-
mials 1, k, k2, . . . , k2N to the polynomials p0(k), . . . , p2N (k)
which are orthonormal with respect to the inner product (21).
In particular,

pi(k) =

N∑

n=0

(L)
−1
i,n k

n, ⇒ (L)
−1
i,n = Pi,n, (A3)

i.e., the rows of L−1 contain the coefficients of the orthonor-
mal polynomials Pi,n as defined in (22).

In practice, we obtained the best performance, in terms of
speed and precision, by directly implementing the standard
algorithm for the Cholesky transform and its inverse. For the
matrix L that is

for 0 ≤ i ≤ N do
for 0 ≤ j ≤ i do

if i = j then Lii =
√
Mii −

∑j−1
k=0 (Ljk)

2

elseLij =
(
Mij −

∑j−1
k=0 LikLjk

)
/Ljj

end if
end for

end for,
and its inverse can then be constructed as

for 0 ≤ i ≤ N do L−1
ii = 1/ (Lii)

for 0 ≤ j < i do L−1
ij = (−1)L−1

ii ·∑i−1
k=j LikL

−1
kj

end for
end for.

Appendix B: MPS simulations and choice of time step

Real-time evolution of matrix product states has been re-
viewed in Ref. [58], where the Trotter or time-evolving block
decimation (TEBD) method is discussed with its strengths and
weaknesses. One of the critical numerical parameters within
TEBD is the time step dt, for which the usual trade-off con-
sists in keeping the introduced errors per time step small,
while maintaining a reasonable and manageable number of
time-evolution steps for the total simulation period of interest.
Here we comment on our choice of suitable time steps dt, for
time evolving the state |ψt+dt⟩ = Û(dt) |ψt⟩, which we use in
the simulations with which we obtain the results in the main
text.

Too large time steps.—When decomposing the time-
evolution operator using the Trotter method, ideally the time
steps should be sufficiently small. When comparing panels
(a) and (b) in Fig. 10, we indeed find that a shorter time
step (dt = 0.001) reproduces the profile of a simply right-
moving energy density more faithfully than a larger time step
(dt = 0.01), up to a final propagation time t/L = 7. For our
simulations, this contains a first lesson: (i) The choice of a
suitable time step is always tied to the total propagation time,
as time-step errors accumulate during time evolution. Since
we focus on simulation times of up to t/L = 7 throughout
most of this work, the time step dt = 0.001 seems preferable
(over dt = 0.01 and any larger time steps) based on numerical
examples like this.

Too small time steps.—On the other hand, and based on the
same example of Fig. 10, we find that too small time steps lead
to inaccurate predictions of the energy density. When compar-
ing panels (b) and (c) in Fig. 10, we see that the energy density
deviates from its expected behavior already for relatively short
times, t/L = 1. In order to understand this, in Fig. 11 we
show the occupations ⟨n̂i⟩ = ⟨ĉ†i ĉi⟩ of all 250 chain modes
for the same three propagation times as in Fig. 10. When
comparing Fig. 11(c) with the two remaining panels, we find
that the excitation, which is at the first chain mode at t = 0,
does not propagate through the chain for the smallest time step
(dt = 10−5). We interpret this time step to be too small given
the maximum bond dimension of χ = 300, used to obtain the
two figures 10 and 11. When the truncation error associated
with a given bond dimension is larger than the error induced
by the time evolution, the Trotter method fails to meaningfully
evolve the MPS. As a result, in the above example the initial
excitation almost does not propagate through the chain. This
provides us with a second useful lesson: (ii) The choice of
dt must take into account the truncation error due to restrict-
ing the MPS to a realistic bond dimension. If the time step
is too small, the latter dominates and further decreasing the
step size is counterproductive. Here we showed the result for
a very small time step, dt = 10−5. Based on further numeri-
cal experiments that we do not show, we finally choose a time
step between 10−3 ≤ dt ≤ 5 · 10−3 which we use throughout
the main text.
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FIG. 10. Right-moving energy density for a chain without emitter, in which an initial excitation is placed into the first mode and spreads
through the system during real-time evolution. Results shown at times t/L = 1, t/L = 3.95 and t/L = 7 for a time step of (a) dt/L = 10−2,
(b) dt/L = 10−3, (c) dt/L = 10−5. Other parameters are the same as in the main text.
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FIG. 11. Chain occupation ⟨n̂i⟩ = ⟨ĉ†i ĉi⟩ of all 250 modes used in the simulation, for a chain without emitter as in Fig. 10. Results shown at
times t/L = 1, t/L = 3.95 and t/L = 7 for a time step of (a) dt/L = 10−2, (b) dt/L = 10−3, (c) dt/L = 10−5. Other parameters are the
same as in the main text. The solid lines represent the exact solution for the infinite chain (without truncation).

Appendix C: Minkowski, Rindler and Unruh modes in the
Unruh effect

The purpose of this appendix is to give a brief, but self-
contained review of the different basis sets of modes rele-
vant to the Unruh effect, i.e., Minkowski, Rindler and Un-
ruh modes, and their relation to the chain modes and thermal
double construction of the previous sections. Table II gives a
compact overview of the modes appearing, and the relations
between them. Finally, the appendix arrives at the Bogoliubov
transformation expressing the Minkowski mode operators in
terms of the chain mode operators used in the numerical cal-
culations.

Bogolubov transformations.—It is central to the Unruh ef-
fect, as it is to many phenomena in quantum field theory in
curved spacetime, that different observers may choose dif-
ferent sets of modes to expand the field observables, and to
interpret the quantum state of the field [60, 64]. In 1+1-
dimensional Minkowski spacetime, the general expansion of
the amplitude of the massless scalar Klein-Gordon field that
we consider here, in the Heisenberg picture, takes the form

ϕ̂(t, x) =

∫
dk uk(t, x)âk + u∗k(t, x)â

†
k, (C1)

where the uk and their complex conjugates form a complete
basis of complex solutions to the Klein-Gordon field equa-

tion, and âk are the associated mode operators. That is, the
mode operators fullfill the canoncial commutation relations[
âk, â

†
k′

]
= δ(k − k′), and the set of solutions are orthonor-

mal with respect to the Klein-Gordon inner product

(uk, uk′) = −i

∫
dx (uk∂tu

∗
k′ − (∂tuk)u

∗
k′) = δ(k − k′) ,

(C2)
where the integral is evaluated on a hyperplane of constant
Minkowski coordinate time t. (The inner product can be eval-
uated on any other Cauchy surface of the spacetime, and the
result is independent of this choice [60, 64].) Given a sec-
ond complete basis of solutions, say vl(t, x), with associated
mode operators â′l, expressions can be transformed from one
basis to the other by the Bogoliubov transformations [60]

vl =

∫
dk αlkuk+βlku

∗
k, â′l =

∫
dk α∗

lkâk−β∗
lkâ

†
k (C3)

where the Bogoliubov coefficients are given by

αlk = (vl, uk) , βlk = − (vl, u
∗
k) . (C4)

The inverse transformations read

uk =

∫
dl α∗

lkvl−βlkv∗l , âk =

∫
dl αlkâ

′
l+β

∗
lkâ

′
l
†. (C5)
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Minkowski modes.—With respect to the standard coordi-
nates (t, x), the Minkowski metric reads ds2 = dt2 − dx2

and the massless Klein-Gordon wave equation reads
(
∂2t − ∂2x

)
ϕ(t, x) = 0. (C6)

The plane wave solutions uk(t, x) = e−i|k|t+ikx/
√
4π|k|

yield the orthonormal complete set of solutions which is the
canonical choice of basis for inertial observers. Since i∂tuk =
|k|uk they are eigenmodes of positive frequency with respect
to the generator of translations along coordinate time t, i.e.,
they are eigenmodes of the Hamiltonian which generates time
evolution with respect to the proper time of observers at rest
relative to the (t, x) coordinates. These modes separate into
left-moving modes u+ω and right-moving modes u−ω , with pos-
itive frequency ω > 0,

u±ω (t, x) = u∓ω(t, x) =
1√
4πω

e−iω(t±x). (C7)

To these mode functions we associate the mode operators â±ω ,
resulting in the mode operator expansion for the amplitude
operator of the quantum field,

ϕ̂(t, x) =

∫ ∞

0

dω
∑

±=+,−
u±ω (t, x) â

±
ω + u±ω (t, x)

∗ â±ω
† .

(C8)
Here, in the context of the Unruh effect, we denote the

Minkowski mode operators by the letter â rather than the let-
ter b̂, because the Minkowski modes neither generically ap-
pear in the interaction part of the Hamiltonian, nor in the part
that generates the relevant time evolution. Instead, this role is
played by the Rindler modes, which are the generic choice of
field modes for uniformly accelerated observer, and arise as
plane wave solutions with respect to the Rindler coordinates.
Hence, consistent with our notation throughout the article, we
denote the Rindler modes by the letter b̂.

Rindler modes.—The worldline t(τ) = sinh(aτ)/a,
x(τ) = cosh(aτ)/a describes the wordline of an observer
moving through Minkowski spacetime with constant proper
acceleration a. This wordline is entire located within the re-
gion |t| < x < ∞, the so called right Rindler wedge, and is,
in fact, causally separated from the left Rindler wedge, where
−∞ < x < −|t|.

The right Rindler wedge is covered by the Rindler coordi-
nates

t =
eaξ

a
sinh(aτ), x =

eaξ

a
cosh(aτ),

⇔ τ =
1

2a
ln
x+ t

x− t
, ξ =

1

2a
ln
(
a2(x2 − t2)

)
.

(C9)

with the timelike coordinate τ and the spacelike coordinate ξ.
These coordinates are the canonical choice of coordinates for
uniformly accelerated observers because worldlines of con-
stant Rindler coordinats are worldlines of constant proper ac-
celeration. In fact, the proper time σ of an observer moving
along the worldline of constant ξ(τ) = ξ0 is σ(τ) = eaξ0τ
and its proper acceleration is a0 = ae−aξ0 . In particular, at
ξ = 0, we recover the worldline with proper acceleration a.

Wave function / Operators Eqn.

left-moving + right-moving −

Minkowski u+
ω /â

+
ω u−

ω /â
−
ω (C7)

Rindler

|t|<x
vR+
Ω /b̂R+

Ω v−Ω /b̂
R−
Ω (C12)

b̂Rœ
Ω =

(
b̂R+
Ω ∓ b̂R−

Ω

)
/
√
2

|t|<−x
vL+
Ω /b̂L+

Ω vL−
Ω /b̂L−

Ω (C13)

b̂Lœ
Ω =

(
b̂L+
Ω ∓ b̂L−

Ω

)
/
√
2

Unruh

Ω > 0
w+

Ω /d̂
+
Ω w−

Ω /d̂
−
Ω (C26)

d̂œ
Ω = cosh(r)b̂Rœ

Ω − sinh(r)b̂Lœ †
Ω (C32)

Ω < 0
w+

−|Ω| /d̂
+
−|Ω| w−

−|Ω| /d̂
−
−|Ω| (C26)

d̂œ
(−Ω) = cosh(r)b̂Lœ

Ω − sinh(r)b̂Rœ †
Ω (C33)

Chain ĉi =
√
2
∫∞
−∞dΩ lΩpi(Ω)d̂

(e)
Ω

TABLE II. Overview of different modes in the Unruh effect

With respect to the Rindler coordinates the Minkowski met-
ric takes the form ds2 = dt2 − dx2 = e2aξ

(
dτ2 − dξ2

)
. Ac-

cordingly, the massless Klein-Gordon equation takes the same
form as with respect to Minkowski coordinates, namely,2

(
∂2τ − ∂2ξ

)
ϕ = 0. (C10)

This form of the wave equation suggests to consider the left-
moving and right-moving Rindler plane wave modes

vR±
Ω (τ, ξ) =

1√
4πΩ

e−iΩ(τ±ξ), (C11)

for the expansion of field operators. From τ±ξ = ± ln(a(x±
t))/a, one sees that these wavefunctions, with respect to
Minkowski coordinates, extend to left-moving and right-
moving solutions with support to the right of the null lines
t = −x and t = x, respectively:

vR±
Ω (t, x) =

1√
4πΩ

e∓iΩ/a ln(a(x±t)), if (x± t) > 0.

(C12)
Together, with their mirrored versions which have support on
the left side of these null lines

vL±
Ω (t, x) =

1√
4πΩ

e±iΩ/a ln |a(x±t)|, if x± t < 0, (C13)

these modes form a complete orthonormal set of modes, i.e.,(
vS±
Ω , vS

′±′

Ω′

)
= δ±,±′δS,S′δ(Ω − Ω′), which can be used to

2 For a treatment of the detector response in the Unruh effect for massive
fields and in higher dimensions see, e.g., [65] among others.
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expand the field operator as [60]

ϕ̂(t, x) =

∫ ∞

0

dΩ
∑

±=+,−
S=L,R

vS±
Ω (t, x) b̂S±

Ω + vS±
Ω (t, x)∗ b̂S±

Ω
†.

(C14)
The Bogoliubov coefficients for the transformation from
Minkowski to Rindler modes

vR±
Ω =

∫ ∞

0

dω α±R
Ωω u

±
ω + β±R

Ωω u
±
ω
∗ (C15)

are given in App. E. For the right Rindler wedge they are

αR±
Ωω =

√
ΩeπΩ/(2a)

2πa
√
ω

(ω
a

)±iΩ/a

Γ(∓iΩ/a),

βR±
Ωω = −

√
Ωe−πΩ/(2a)

2πa
√
ω

(ω
a

)±iΩ/a

Γ(∓iΩ/a),

(C16)

and for the left Rindler wedge modes they are related by com-
plex conjugation αL±

Ωω =
(
αR±
Ωω

)∗
and βL±

Ωω =
(
βR±
Ωω

)∗
.

Lorentz boost.—As discussed above, the Rindler coordi-
nates are closely related to uniformly accelerated observers:
Worldlines of fixed Rindler spatial coordinate correspond to
uniformly accelerated worldllines. Moreover, these world-
lines correspond to orbits of the Lorentz boost operator and
the Rindler modes are, in fact, eigenmodes of the Lorentz
boost operator. We use this relation for our numerical calcu-
lation and use the Lorentz boost operator as the Hamiltonian
which generates time evolution along the accelerated detec-
tor’s worldline.

To illustrate this relation, consider the Lorentz boost,
parametrized by a real parameter T , acting on points in
Minkowski spactime as
(
t
x

)
7→
(
t′

x′

)
=

(
cosh(aT ) sinh(aT )
sinh(aT ) cosh(aT )

)(
t
x

)
. (C17)

Inside the right Rindler wedge it transforms points exactly
such as to add T to their Rindler time coordinate

eaξ

a

(
sinh(aτ)
cosh(aτ)

)
7→ eaξ

a

(
sinh(a(T + τ))
cosh(a(T + τ))

)
. (C18)

Accordingly, under this Lorentz boost the Rindler modes in
the right Rindler wedge acquire only a complex phase

vR±
Ω (t′, x′) = e−iΩT vR±

Ω (t, x). (C19)

Hence, they are positive frequency modes with respect to
Lorentz boosts and we refer to Ω as their Rindler frequency,
which here in the right Rindler wedge is positive.

In the left Rindler wedge, however, the Rindler modes vL±
Ω

have a negative Rindler frequency. To see this we cover the
left Rindler wedge by the coordinates (τ̃ , ξ̃) with

t = −eaξ̃

a
sinh(aτ̃), x = −eaξ̃

a
cosh(aτ̃). (C20)

The Lorentz boost (C17) still increases the parameter τ̃ ,

eaξ̃

a

(
sinh(aτ̃)
cosh(aτ̃)

)
7→ eaξ̃

a

(
sinh(a(T + τ̃))
cosh(a(T + τ̃))

)
, (C21)

however, since the left Rindler modes with respect to these
coordinates read

vL±
Ω (τ̃ , ξ̃) =

1√
4πΩ

eiΩ(τ̃±ξ̃) (C22)

they have a negative Rindler frequency, acquiring the phase

vL±
Ω (t′, x′) = eiΩT vL±

Ω (t, x) (C23)

under the Lorentz boost, which moves points in the left
Rindler wedge into their causal past.

With these relations at hand we can express the Lorentz
boost Hamiltonian in terms of the mode operators associated
with the left and right Rindler modes:

ĤL =
∑

±=+,−

∫ ∞

0

dΩΩ
(
b̂R±
Ω

†b̂R±
Ω − b̂L±

Ω
†b̂L±

Ω

)
. (C24)

In the same way, as the Minkowski field Hamiltonian
Ĥf =

∫∞
0
dω
∑

± ωâ
±
ω
†a±ω generates translations along the

Minkowski time coordinate t, ĤL generates translations along
the Rindler time coordinates τ and τ̃ . In particular, this Hamil-
tonian generates time evolution with respect to the proper
time of the uniformly accelerated observer moving along the
wordlline at ξ = 0 with proper acceleration a in the right
Rindler wedge.

Unruh temperature and Unruh modes.—At its core, the Un-
ruh effect is the observation that when the field is in the vac-
uum state with respect to Minkowski modes, then the Rindler
modes of one wedge are in a thermal state with respect to the
Lorentz boost operator. In fact, we find that in the Minkowski
vacuum (see (E9))

⟨0M | b̂R±
Ω′

†b̂R±
Ω |0M ⟩ =

∫ ∞

0

dω βR±
Ωω β

R±
Ω′ω

∗ =
δ(Ω− Ω′)

e
2πΩ
a − 1

,

(C25)
the number expectation value of the Rindler modes equals
thermal expectation value with the celebrated Unruh temper-
ature given by TU = a/(2π). The analogous relation also
holds for the left Rindler wedge modes. Note here also, that
the Rindler modes not having any cross-correlations, identi-
fies them as the natural basis of normal modes to use in the
Rindler wedges.

The Hamiltonian ĤL thus takes the same role as the dou-
bled Hamiltonian (16) in the scenario of an inertial detector
coupling to a thermal field state. In the case of a thermal field,
we use pairwise squeezing to transform a pair b̂i and b̂′i of ther-
mal eigenmodes of the Hamiltonian into a pair of eigenmodes
d̂i and d̂′i which are in their vacuum state. In the same way, in
the context of the Unruh effect, we can use pairwise squeez-
ing of two Rinder modes b̂R±

Ω and b̂L±
Ω to transform them into

a pair of Unruh modes d̂±Ω and d̂±−Ω which share their vacuum
state with the Minkowski modes, i.e., d̂±Ω |0M ⟩ = 0.

Following the same steps as in the thermal case, the mode
functions associated to d̂±Ω which have positive Rindler fre-
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quency Ω > 0 are

w±
Ω =

eΩπ/(2a)vR±
Ω + e−Ωπ/(2a)

(
vL±
Ω

)∗
√
2 sinh(Ωπ/a)

= cosh(r)vR±
Ω + sinh(r)

(
vL±
Ω

)∗
,

where we introduced r such that cosh(2r) = 2/ tanh(Ωπ/a)

for compact notation. The Unruh modes associated to d̂±−Ω
with negative Rindler frequency, Ω < 0, are accordingly

w±
Ω = cosh(r)vL±

(−Ω) + sinh(r)
(
vR±
(−Ω)

)∗
. (C26)

By construction, the Unruh modes are thus linear combina-
tions of positive frequency Minkowski modes only,

w±
Ω =

∫ ∞

0

dω γ±Ωωu
±
ω , (C27)

with γ±Ωω as in (E14), for both the positive and the negative
Rindler frequency modes. This implies that, most importantly,
d̂±Ω |0M ⟩, i.e., the vacuum state of the Unruh modes coin-
cides with the Minkowski vacuum. And the the Lorentz boost
Hamiltonian, in terms of the Unruh mode operators, reads

ĤL =
∑

±=+,−

∫ ∞

−∞
dΩΩd̂±Ω

†d̂±Ω . (C28)

Coupling to even Rindler modes.—To couple the detector
to the field along a uniformly accelerated oberserver’s world-
line, we now replace the Minkowksi coordinates, used for the
detector at rest in (4) by Rindler coordinates, and obtain

Ĥi = λX̂ ⊗
∫
dξ f(ξ)∂τ ϕ̂(ξ) . (C29)

Since the detector’s smearing function f extends over a length
scale L, the different points of the detector actually experi-
ence different proper accelerations. Therefore, we assume that
aL≪ 1 so that such finite-size effects can be neglected.

Also note, that at this point we switch to the Schrödinger
picture which is also employed in the numerical calculations.
We take the observables in the Schrödinger picture to be equal
to the observables in the Heisenberg picture one the spacelike
hypersurface t = τ = 0.

The field observable ∂τ ϕ̂(ξ) = i
[
ĤL, ϕ̂(ξ)

]
to which the

detector couples can be expanded as

∂τ ϕ̂(ξ) =
∑

±

∫ ∞

0

dΩ (−iΩ)vR±
Ω (ξ)b̂R±

Ω +H.c.

=
∑

±

∫ ∞

0

dΩ
−i

√
Ωe∓iΩξ

√
4π

b̂R±
Ω +H.c. .

(C30)

from which it is clear that the time evolution of this model is
equal to the time evolution of a detector at rest coupling to a
field in a thermal state.

As before, in the numerical calculations we use that the
atom couples symmetrically to left- and right-moving modes,

i.e., it couples only to the even sector of the field, spanned by
b̂Re
Ω but not the odd sector, spanned by b̂Ro

Ω , where

b̂Re
Ω =

1√
2

(
b̂R+
Ω + b̂R−

Ω

)
, b̂Ro

Ω =
1√
2

(
b̂R+
Ω − b̂R−

Ω

)
.

(C31)
Accordingly, for the chain transformation and the numerical
calculations, we use the corresponding even Unruh modes

d̂eΩ = cosh(r)b̂Re
Ω − sinh(r)b̂Le

Ω
† =

d̂+Ω + d̂−Ω√
2

, (C32)

d̂e−|Ω| = cosh(r)b̂Le
Ω − sinh(r)b̂Re

Ω
† =

d̂+−|Ω| + d̂−−|Ω|√
2

,

(C33)

whose relation to the other modes is summarized also in
Tab. II. The chain modes for the Unruh effect are thus the
same chain modes as for a detector at rest coupling to a ther-
mal field, when setting β = 2π/a. They are composed from
the even Unruh modes only,

ĉi =

∫ ∞

−∞
dΩ

sgn(Ω)f|Ω|e
Ωπ
2a

√
| sinh(Ωπ/a)|

pi(Ω)d̂
e
Ω. (C34)

The odd Unruh modes d̂oΩ =
(
d̂+Ω − d̂−Ω

)
/
√
2, however, do

not couple to the atom, and remain in their vacuum state.
App. K, based on the Bogolubov transformations reviewed

in App. E, derives closed form expressions for the energy den-
sity ⟨ : π̂∓(x) : ⟩ as measured by an observer at rest with re-
spect to the Minkowski coordinates.

Appendix D: Lorentz boost of Minkowski observables under
Rindler time evolution

Rindler time evolution.—The expression (K12) gives
the expectation value of the right-moving and left-moving
Minkowski energy density for a state defined on the space-
time hyperplane τ = t = 0. Under the Rinder time evolution
exp(−iTĤ) which we apply in our numerical simulation, the
observable on the left-hand side of the expression transforms
non-trivially. Hence, after applying exp(−iTĤ), which cor-
responds to the Lorentz boost (C17), we need to reinterpret
the expectation value given by the right-hand side of (K12).
For this, there are two alternatives.

The first alternative is to interpret the results as being mea-
sured on the hyperplane t = 0, as it stands on the left-hand
side of (K12), but in a scenario where the interaction between
detector and field started on the hyperplane t = − tanh(aT )x
(corresponding to τ = −T ). This alternative makes use of
the Minkowski vacuum being invariant under Lorentz boosts.
Hence, the initial state, which is taken to be a product state
between the detector initial state and the Minkowski vacuum
of the field, can be boosted back in Rindler time.

The second alternative interprets the result as arising in
a scenario where the interaction between detector and field
starts on the hyperplane τ = t = 0 where the overall state
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FIG. 12. Left-moving radiation
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+ :
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from a uniformly accelerated harmonic oscillator detector compared to the radiation obtained by
boosting the radiation emitted by a resting detector as described in App. D. The detector is initialized in its ground state. The upper row of
panels shows the expectation values for the energy density. The line plot shows
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〉
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which are the results from Sec. IV, and the circle
points show
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the ’boosted’ data. The lower panels show the relative difference ∆rel
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FIG. 13. Comparison of radiation as in Fig. 12, for initial state |ψ0⟩ = |1⟩ of the harmonic detector.

is still given by the initial product state. In this scenario, the
expectation value given by the right-hand side of (K12) corre-
sponds to the observable

e±2aT
〈
: π̂±(t′, x′)2 :

〉
, (D1)

with (t′, x′) = (x sinh(aT ), x cosh(aT )), as we derive in the
following.

To derive this transformation, we first use (C9) to obtain

∂t =
∂τ

∂t
∂τ +

∂ξ

∂t
∂ξ = cosh(aτ)e−aξ∂τ − sinh(aτ)e−aξ∂ξ,

∂x =
∂τ

∂x
∂τ +

∂ξ

∂x
∂ξ = cosh(aτ)e−aξ∂ξ − sinh(aτ)e−aξ∂τ ,

∂τ = a (x∂t + t∂x) ,

∂ξ = a (x∂x + t∂t) . (D2)

Hence, with respect to Rindler coordinates the (left-moving
and right-moving) field momentum on the hyperplane t =
τ = 0 is

π̂±(x)
∣∣
t=0

=
1

2
(∂t ± ∂x) ϕ̂(x)

∣∣∣∣
t=0

=
e−aξ

2
(∂τ ± ∂ξ) ϕ̂ (ξ = ln(ax)/a)

∣∣∣∣
τ=0

.

(D3)

Under the Rindler time evolution (τ, ξ) → (τ + T, ξ), which
is nothing but the Lorentz boost (C17), this observable trans-
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forms into

e−aξ

2
(∂τ ± ∂ξ) ϕ̂(ξ)

∣∣∣∣
τ=T

=
e−aξ

2
a(x± t) (∂t ± ∂x) ϕ̂(t(ξ, T ), x(ξ, T ))

= e±aT π̂± (x cosh(aT ))
∣∣
t=x sinh(aT )

.

(D4)

Interpretation of Unruh radiation.—Both as a benchmark
and for an interpretation of the energy density emitted from an
accelerated detector, we can boost the energy density emitted
from a detector at rest, as calculated in Sec. II D, and pretend
as if it emanates from the accelerated worldline (38). Then we
compare the thereby obtained, boosted energy density profile
to the results from Sec. IV.

Fig. 12 compares this boosted radiation to our results from
Sec. IV for the left-moving radiation. In detail, we perform the
following transformation of the data from the resting detec-
tor: Fig. 2 shows the right-moving energy density expectation
value,

〈
: π̂2

−(x, t) :
〉
, emitted from detectors that are at rest.

We here use the data for an interaction time of t = 7L. By ne-
glecting the width of the detector, we can interpret the energy
density

〈
: π̂2

−(x, t = 7L) :
〉

in the interval 0 ≤ x ≤ 7L as
emanating from the detector (at x = 0) at times −7L ≤ t ≤ 0.
Since the detector is at rest, its proper time τ = t equals the
coordinate time.

It follows from the derivation of (D1) above, that the energy
density ⟨ : π̂± : ⟩, which is emitted from the worldline (38) at
proper time −τ , is Doppler shifted by a factor of e∓aτ with
respect to the resting observer. Radiation emanating from the
wordlline at τ = −T has light cone coordinates z± = t±x =
±e∓aT /a, and thus arrives on the hyperplane t = 0 at the
spatial coordinate x = e∓aT /a. In conclusion, the boosted
data

〈
: π̂2

+ :
〉
bst

plotted in Figs. 12 and 13 is obtained from
the left-moving energy density

〈
: π̂2

+(x, t = 7L) :
〉
res

(which
is related to the right-moving energy density plotted in Fig. 2
by
〈
: π̂2

+(x, t) :
〉
=
〈
: π̂2

−(−x, t) :
〉
) as

〈
: π̂2

+(x) :
〉
bst

=
1

a2x2
〈
: π̂2

+(− ln(ax)/a) :
〉
res
. (D5)

The figures show that the boosted data resemble the results
calculated for the accelerated detectors to a very good degree.

Appendix E: Bogoliubov transformations between Minkowski,
Rindler and Unruh modes

This section reviews the calculation of the Bogoliubov
transformations between Minkowski, Rindler and Unruh
modes. In order to express the Rindler modes as linear su-
perpositions of Minkowski modes, we need to calculate the
Klein-Gordon inner prodcuts of u±ω and vS±

Ω , with S = R,L,
and their conjugates. To see that any inner product between
a left-moving and a right-moving solution vanishes, note that
for left- and right-moving wave functions we have

∂tu
±
ω = ±∂xu±ω , ∂tv

S±
Ω = ±∂xvS±

Ω . (E1)

Applying integration by parts and making use of the fact the
boundary terms may be discarded we obtain:

(
vS±
Ω , u∓ω

)
= −i

∫
dx vS±

Ω ∂tu
∓
ω
∗ − (∂tv

S±
Ω )u∓ω

∗

= −i

∫
dx (∓1)vS±

Ω ∂xu
∓
ω
∗ ∓ (∂xv

S±
Ω )u∓ω

∗

= ±i

∫
dx vS±

Ω ∂xu
∓
ω
∗ − vS±

Ω ∂xu
∓
ω
∗ = 0

(E2)

For the non-vanishing inner products, we find:

αR±
Ωω =

(
vR±
Ω , u±ω

)
= −i

∫
dx vR±

Ω ∂tu
±
ω
∗ − (∂tv

S±
Ω )u±ω

∗

= ∓2i

∫
dx vR±

Ω ∂xu
±
ω
∗

t=0
=

√
ω

2π
√
Ω

∫ ∞

0

dx e∓iΩ/a ln(ax)e±iωx

(E3)

The integral is not convergent because the Bogoliubov trans-
formation is relating to set of improper, continuous modes.
We can obtain a regularized expression by introducing a reg-
ularizing factor e−ϵax, where we have to take the limit ϵ →
0+ after integrating against properly normalized expressions.
With this we obtain (see 3.381.4 in [66]),

αR±
Ωω =

√
ω

2π
√
Ω
a∓iΩ/a

∫ ∞

0

dxx∓iΩ/ae±iωx−ϵax

=
∓i

√
Ωω

2πa

a∓iΩ/a

(ϵa∓ iω)
1∓iΩ/a

Γ(∓iΩ/a)

ϵ→0+→
√
Ω

2πa
√
ω
eπΩ/(2a)

(ω
a

)±iΩ/a

Γ(∓iΩ/a). (E4)

Similarily,

βR±
Ωω = −

(
vR±
Ω , u±ω

∗) = ±2i

∫
dx vR±

Ω ∂xu
±
ω

= ±2i

∫ ∞

0

dx
1

4π
√
Ωω

e∓iΩ/a ln(ax)(∓iω)e∓iωx

=

√
ω

2π
√
Ω

∫ ∞

0

dx e∓iΩ/a ln(ax)e∓iωx, (E5)

which is regularized to

βR±
Ωω =

√
ω

2π
√
Ω

∫ ∞

0

dx e∓iΩ/a ln(ax)e∓iωx−ϵax

=
∓i

√
Ωω

2πa

a∓iΩ/a

(ϵa± iω)
1∓iΩ/a

Γ(∓iΩ/a)

ϵ→0+→ −
√
Ω

2πa
√
ω
e−πΩ/(2a)

(ω
a

)±iΩ/a

Γ(∓iΩ/a). (E6)
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The coefficients for the left Rindler wedge modes are related
to the right ones by complex conjugation,

αL±
Ωω =

(
vL±
Ω , u±ω

)
= ±2i

∫
dx vL±

Ω ∂xu
±
ω
∗

t=0
= −

√
ω

2π
√
Ω

∫ 0

−∞
dx e±iΩ/a ln |ax|e±iωx = (αR±

Ωω )∗

(E7)

and similarily

βL±
Ωω = (βR±

Ωω )∗. (E8)

Using the regularized expression we calculate the
Minkowski vacuum expectation value for the Rindler modes
to be

〈
b̂R±
Ω

†b̂R±
Ω′

〉
=

∫ ∞

0

dω βR±
Ωω β

R±
Ω′ω

∗

=

∫ ∞

−∞
dν

√
ΩΩ′

4π2a2
e−

(Ω+Ω′)π
2a e

±i(Ω−Ω′)ν
a Γ

(∓iΩ

a

)
Γ

(±iΩ′

a

)

=
δ(Ω− Ω′)

e
2Ωπ
a − 1

. (E9)

Both for left-movers and right-movers we have the relation

e−πΩ/(2a)αR±
Ωω + eπΩ/(2a)βL±

Ωω
∗

= e−πΩ/(2a)αR±
Ωω + eπΩ/(2a)βR±

Ωω = 0 (E10)

which is easy to read off from the regularized expressions,
but also holds without regularisation but considering contour
integrals. These relations warrant that the Unruh modes are
(linear combinations of only) positive Minkowski frequency

modes. With Ω > 0 we have

w±
Ω =

eΩπ/(2a)vR±
Ω + e−Ωπ/(2a)vL±

Ω
∗

√
2 sinh(πΩ/a)

=
1√

2 sinh(πΩ/a)

∫ ∞

0

dω
(
e

Ωπ
2a αR±

Ωω + e−
Ωπ
2a βR±

Ωω

)
u±ω

+
(
e

Ωπ
2a βR±

Ωω + e−
Ωπ
2a αR±

Ωω

)

︸ ︷︷ ︸
=0

u±ω
∗

=

∫ ∞

0

dω

√
Ωsinh

(
πΩ
a

)

πa
√
2ω

(ω
a

)±iΩ/a

Γ(∓iΩ/a)u±ω . (E11)

Similarly, for the Unruh modes with negative Rindler fre-
quency, Ω < 0, we have

w±
Ω =

e|Ω|π/(2a)vL±
|Ω| + e−|Ω|π/(2a)vR±

|Ω|
∗

√
2 sinh(π|Ω|/a)

=

∫∞
0
dω
(
e

|Ω|π
2a αR±

|Ω|ω
∗ + e−

|Ω|π
2a βR±

|Ω|ω
∗
)
u±ω√

2 sinh(π|Ω|/a)

=

∫ ∞

0

dω

√
Ωsinh

(
πΩ
a

)

πa
√
2ω

(ω
a

)±iΩ/a

Γ(∓iΩ/a)u±ω

(E12)
thus we can unify the formulae for negative and positive Ω
and write

w±
Ω =

∫ ∞

0

dω γ±Ωωu
±
ω , (E13)

γ±Ωω =

√
Ωsinh

(
πΩ
a

)

πa
√
2ω

(ω
a

)±iΩ/a

Γ(∓iΩ/a). (E14)

Appendix F: Energy density from a resting detector coupling to a thermal field state

Also for a detector at rest coupling to a thermal field state, the energy density which is emitted into the field can be calculated
from the numerical data for the chain modes. In this appendix we discuss the evaluation of

〈
: π̂2

± :
〉

in this context and derive
its expansion in terms of the chain modes obtained from the thermal double construction.

In the thermal state of the field, i.e., even before the detector couples to the field, the energy density expectation values is not
zero. This is because of the thermal occupation (19) of the field modes b̂k (all the modes b̂(e)k , b̂(o)k and b̂k are thermal). Hence
the expectation value of the left-moving and right-moving energy density (28) in this state is

〈
: π̂2

∓(x) :
〉
=

∫ ∞

0

dk

∫ ∞

0

dk′
√
kk′

2π
e∓i(k−k′)x

〈
b̂†±k b̂±k′

〉
=

∫ ∞

0

dk
k

2π (eβk − 1)
=

π

12β2
. (F1)

Even and odd modes contribute equally to this background energy density. The contribution from the odd sector remains constant
in time, whereas the contribution from the even sector is modulated due to the interaction with the atom. Hence, we need to
express

〈
: (π̂

(e)
∓ )2 :

〉
=

∫ ∞

0

dω

∫ ∞

0

dω′
√
ωω′

4π
e∓i(ω−ω′)x

〈
b̂(e)ω

†b̂(e)ω′

〉
−ℜ

∫ ∞

0

dω

∫ ∞

0

dω′
√
ωω′

4π
e±i(ω+ω′)x

〈
b̂(e)ω b̂

(e)
ω′

〉
(F2)

in terms of the chain mode operators.
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Starting from (17), and using the inverse transformation of (24) which is d̂ω =
∑

i i
sgn(ω)

√
|ω|e

βω
4

−L|ω|
√

4π| sinh(βω/2)|
pi(ω)ĉi, we have

b̂(e)ω =
1√

2 sinh(βω/2)

(
e

βω
4 d̂ω + e

−βω
4 d̂†−ω

)
=

∞∑

i=0

i∑

k=0

Pi,k
i
√
ωe−Lω

√
8π sinh(ω/θ)

ωk
(
e

ω
θ ĉi + (−1)ke−

ω
θ ĉ†i

)
. (F3)

With this at hand
〈
b̂(e)ω

†b̂(e)ω′

〉
=

∞∑

i,j=0

i∑

k=0

j∑

l=0

√
ωω′e−L(ω+ω′)Pi,kPj,lω

kω′l

8π sinh(βω/2) sinh(βω′/2)

〈(
e

ω
θ ĉ†i + (−1)ke−

ω
θ ĉi

)(
e

βω′
2 ĉj + (−1)le

−βω′
2 ĉ†j

)〉
(F4)

and
〈
b̂(e)ω b̂

(e)
ω′

〉
= −

∞∑

i,j=0

i∑

k=0

j∑

l=0

√
ωω′e−L(ω+ω′)Pi,kPj,l

8π sinh(βω/2) sinh(βω′/2)
ωkω′l

〈(
e

βω
2 ĉi + (−1)ke−

βω
2 ĉ†i

)(
e

βω′
2 ĉj + (−1)le

−βω′
2 ĉ†j

)〉
.

(F5)

Hence, in the expression for the energy density, the following integrals appear,

Ik∓,+ :=
1

4π

∫ ∞

0

dω
e∓iωxe−Lωeω/θ

sinh(ω/θ)
ωk+1 =

θk+2(k + 1)!

2k+3π
ζ

[
k + 2,

(L± ix)θ

2

]
, (F6)

Ik∓,− :=
1

4π

∫ ∞

0

dω
e∓iωxe−Lωe−ω/θ

sinh(ω/θ)
ωk+1 =

θk+2(k + 1)!

2k+3π
ζ

[
k + 2,

(L± ix)θ

2
+ 1

]
, (F7)

where θ = 2/β, ζ[a, b] is the generalized Riemann zeta function, and we used
∫ ∞

0

dx
xµ−1e−βx

sinh(x)
= 21−µΓ(µ)ζ

[
µ,
β + 1

2

]
, ℜµ > 1, ℜβ > −1,

with µ = k+2 and β = ∓1+Lθ± iθx (see 3.552.1 of [66]). Observe that ζ[s, a]∗ = ζ[s∗, a∗] and ζ[s, a] = ζ[s, a+1]+ 1
(a2)s/2

,
hence,

Ik∓,◦ =
(
Ik±,◦

)∗
, Ik∓,+ = Ik∓,− +

θk+2(k + 1)!

2k+3π

((
(L± ix)θ

2

)2
)−(k+2)/2

= Ik∓,− +
(k + 1)!

2π (L± ix)
k+2

Ik∓,+ + (−1)kIk±,− =
(k + 1)!

2π(L± ix)k+2
+
(
Ik∓,− + (−1)kIk±,−

)
=

(k + 1)!

2π(L± ix)k+2
+

{
2ℜIk∓,−, if k = 0, 2, 4, ...

2iℑIk∓,−, if k = 1, 3, 5, ...
. (F8)

Making use of this relation and inserting everything into (F2) we obtain

〈
: (π̂

(e)
− )2 : (x)

〉
=

1

2

∞∑

i,j=0

i∑

k=0

j∑

l=0

Pi,kPj,lℜ
[(
Ik−,+ + (−1)kIk+,−

) (
I l+,+ + (−1)lI l−,−

) 〈
ĉ†i ĉj

〉

+
(
Ik+,+ + (−1)kIk−,−

) (
I l+,+ + (−1)lI l−,−

)
⟨ĉiĉj⟩+ (−1)l

(
Ik−,+ + (−1)kIk+,−

)
I l−,−δij

]
.

(F9)

The very last term in this expression is a constant that is independent of the field state. Hence this term corresponds to the
contribution from the even sector to the thermal background energy density (F1). This contribution is only exact in the limit of
an infinite number of chain modes, but it is impacted by the truncation error in any numerical calculation with only finitely many
modes. Hence, in numerical calculations, it is more practical to replace this constant term by its known exact value and to only
evaluate the modulations of the energy density’s expectation value due to the interaction with the detector over time from the
numerical data.

Appendix G: Field energy density in terms of chain modes for detector at rest

Inserting b̂±ω = 1√
2

(
b̂
(e)
ω ± b̂

(o)
ω

)
into the right-moving, normal-ordered energy density expectation value, and using that the

odd field modes remain in their vacuum state, yields

〈
: π̂2

−(x) :
〉
=
〈
: π̂2

+(−x) :
〉
=

∫ ∞

0

dω

∫ ∞

0

dω′
√
ωω′

4π

(
e−i(ω−ω′)x

〈
b̂(e)ω

†b̂(e)ω′

〉
−ℜ

[
ei(ω+ω′)x

〈
b̂(e)ω b̂

(e)
ω′

〉])
. (G1)
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Using (11), we obtain

〈
: π̂2

−(x) :
〉
=

∫ ∞

0

dω

∫ ∞

0

dω′
√
ωω′

4π

(
e−i(ω−ω′)x

〈
b̂(e)ω

† ˆb(e)ω′

〉
−ℜ

[
ei(ω+ω′)x

〈
ˆb(e)ω

ˆb(e)ω′

〉])

= ℜ
∑

i,j

L2
√
(i+ 1)(j + 1)

π

(−L− ix)j

(L− ix)j+2

(
(−L+ ix)i

(L+ ix)i+2

〈
ĉ†i ĉj

〉
+

(−L− ix)i

(L− ix)i+2
⟨ĉiĉj⟩

)

= ℜ
∑

i,j

(−1)i+j
√
(i+ 1)(j + 1)

πL2(1 + x2/L2)2

(
ei2(j−i)atan

x
L

〈
ĉ†i ĉj

〉
+ ei(4+2i+2j)atan

x
L ⟨ĉiĉj⟩

)
(G2)

where we expanded (10),

pn(ω) =
L
√
8π√

n+ 1
L1
n(2Lω) =

√
2π

n+ 1

n∑

k=0

(
n+ 1

n− k

)
(−1)k

k!
2k+1Lk+1ωk, (G3)

used
∫∞
0
dω ω

π
√
8
e−Lω∓iωxpn(ω) = L

√
n+1(−L±ix)n(L±ix)−n−2

√
π

, and rewrote L + ix =
√
L2 + x2eiatan

x
L . The total energy

density expectation value is given by : T̂00(x) := : π̂2
−(x) : + : π̂2

+(x) := : π̂2
−(x) : + : π̂2

−(−x) : yielding

〈
: T̂00 :

〉
=

2

πL2

∑

k,l

(−1)k+l
√

(k + 1)(l + 1)

(1 + x2/L2)2
ℜ
(
cos
(
2(k − l)atan x

L

) 〈
ĉ†k ĉl

〉
+ cos

(
2(k + l + 2)atan x

L

)
⟨ĉk ĉl⟩

)
. (G4)

Appendix H: Perturbative calculation of emitted energy density

Fig. 3 compares our numerical results for the emitted energy density to the results obtained within in leading order perturbation
theory. This section derives the latter.

1. Perturbative state expansion

For time-dependent perturbation theory we employ the interaction picture, in which the field momentum operator reads

π̂(x, t) =

∫ ∞

−∞
dk

−i
√
|k|√

4π

(
e−i|k|t+ikxb̂k − h.c.

)
. (H1)

For the HO detector the interaction Hamiltonian reads

Ĥi(t) = λ
(
âA(t) + â†A

)
⊗
∫
dx f(x)π̂(x, t) = λ

(
âAe

−iΩdt + â†Ae
iΩdt
)
⊗ Π̂f (t), (H2)

Π̂f (t) =

∫ ∞

−∞
dk

(
−i
√
|k|√

4π
e−i|k|t

(∫ ∞

−∞
dx f(x)eikx

)
b̂k + h.c.

)
=

∫ ∞

−∞
dk
(
e−i|k|tfk b̂k + h.c.

)
. (H3)

We assume that the initial state is a product state between an emitter number state |n⟩, and the field vacuum state |0f ⟩. The time

evolved state is then expanded as |ψt⟩ ∼ |n⟩ ⊗ |0f ⟩+
∣∣∣ψ(1)

t

〉
+
∣∣∣ψ(2)

t

〉
+O

(
λ3
)

with

∣∣∣ψ(1)
t

〉
= −i

∫ t

0

dt′Hi(t
′) |ψ0⟩ = −iλ

∫ t

0

dt′
(
e−iΩdt

′√
n |n− 1⟩+ eiΩdt

′√
n+ 1 |n+ 1⟩

)
⊗ Π̂f (t

′) |0⟩ (H4)

∣∣∣ψ(2)
t

〉
= −

∫ t

0

dt′
∫ t′

0

dt′′Hi(t
′)Hi(t

′′) |ψ0⟩

= −λ2
∫ t

0

dt′
∫ t′

0

dt′′
(
e−iΩd(t

′+t′′)
√
n(n− 1) |n− 2⟩+ eiΩd(t

′+t′′)
√
(n+ 2)(n+ 1) |n+ 2⟩

+
(
2n cos(Ωd(t

′ − t′′)) + eiΩd(t
′′−t′)

)
|n⟩
)
⊗ Π̂f (t

′)Π̂f (t
′′) |0⟩ . (H5)
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For a TLS detector the interaction Hamiltonian reads

Ĥi(t) = λσ(t)⊗
∫
dx f(x)π̂(x, t) = λ

(
|g⟩⟨e| e−iΩdt + |e⟩⟨g| eiΩdt

)
⊗ Π̂f (t) . (H6)

We assume that the initial state is a product state between an atom eigenstate, either |g⟩ or |e⟩, and the field vacuum state |0f ⟩.
The leading order correction to the joint atom and field state is

∣∣∣ψ(1)
t

〉
= −i

∫ t

0

dt′Hi(t
′) |ψ0⟩ = −iλ

∫ t

0

dt′ e∓iΩdt
′

{
|g⟩
|e⟩ ⊗Πf (t

′) |0⟩ . (H7)

Here the upper sign/line applies to the initital state |e⟩ ⊗ |0⟩, and the lower to |g⟩ ⊗ |0⟩. And the second order correction to the
state is

∣∣∣ψ(2)
t

〉
= −i

∫ t

0

dt′Hi(t
′)
∣∣∣ψ(1)

t′

〉
= −λ2

∫ t

0

dt′
∫ t′

0

dt′′ e∓iΩd(t
′′−t′)

{
|e⟩
|g⟩ ⊗ Π̂f (t

′)Πf (t
′′) |0⟩ (H8)

2. Perturbative calculation of energy density

To leading order, the expectation value of the right-moving energy density is

⟨ψt| : π̂2
−(x) : |ψt⟩ ∼

〈
ψ
(1)
t

∣∣∣ : π̂2
−(x) :

∣∣∣ψ(1)
t

〉
+ 2ℜ

〈
ψ0

∣∣∣ : π̂2
−(x) :

∣∣∣ψ(2)
t

〉
. (H9)

In (28) we have for the right-moving energy density

: π̂2
−(x) : =

∫ ∞

0

dω

∫ ∞

0

dω′
√
ωω′

4π

(
2e−i(ω−ω′)xb̂†ω b̂ω′ − ei(ω+ω′)xb̂ω b̂ω′ − e−i(ω+ω′)xb̂†ω b̂

†
ω′

)
. (H10)

Note that in the present calculation we need to interpret x as a null coordinate because we are working in the interaction picture.
Since the field starts out in the vacuum, the first order correction to the state is in the one-particle sector of the field. Hence the
first term simplifies to

〈
ψ
(1)
t

∣∣∣ : π̂2
−(x) :

∣∣∣ψ(1)
t

〉
=

∫ ∞

0

dω

∫ ∞

0

dω′
√
ωω′

2π
e−i(ω−ω′)x

〈
ψ
(1)
t

∣∣∣ b̂†ω b̂ω′

∣∣∣ψ(1)
t

〉
. (H11)

Similarily, the second term simplifies due to the vacuum in the initial state:

〈
ψ0

∣∣∣ : π̂2
−(x) :

∣∣∣ψ(2)
t

〉
= −

∫ ∞

0

dω

∫ ∞

0

dω′
√
ωω′

4π
ei(ω+ω′)x

〈
ψ0

∣∣∣ b̂ω b̂ω′

∣∣∣ψ(2)
t

〉
. (H12)

Note that

b̂ω′Π̂f (t
′) |0⟩ = b̂ω′

∫ ∞

−∞
dk ei|k|t

′
f∗k b̂

†
k |0⟩ = eiω

′t′f∗ω′ |0⟩ (H13)

hence

⟨0| Π̂f (t
′′)b̂†ω b̂ω′Π̂(t′) |0⟩ = ei(ω

′t′−ωt′′)f∗ω′fω . (H14)

Similarily,

⟨0| b̂ω′ b̂ωΠ̂f (t
′)Π̂(t′′) |0⟩ =

∫ ∞

−∞
dk′

∫ ∞

−∞
dk′′ ei(|k

′|t′+|k′′|t′′)f∗k′f∗k′′ ⟨0| b̂ω′ b̂ω b̂
†
k′ b̂

†
k′′ |0⟩ = f∗ωf

∗
ω′(ei(ωt′+ω′t′′) + ei(ω

′t′+ωt′′))

(H15)

And from (7), we have fk = −i
√
|k|e−L|k|/

√
4π.



24

For the TLS detector, using the upper sign for the excited initial state |e⟩, we obtain

〈
ψ
(1)
t

∣∣∣ b̂†ω b̂ω′

∣∣∣ψ(1)
t

〉
= λ2

∫ t

0

dt′
∫ t

0

dt′′ e±iΩd(t
′−t′′)ei(ω

′t′′−ωt′)

√
ω′ω
4π

e−L(ω+ω′) (H16)

〈
ψ
(1)
t

∣∣∣ : π̂2
−(x) :

∣∣∣ψ(1)
t

〉
=

λ2

8π2

∣∣∣∣∣

∫ t

0

dt′
e±iΩdt

′

(L+ i(x+ t′))2

∣∣∣∣∣

2

(H17)

〈
ψ0

∣∣∣ b̂ω b̂ω′

∣∣∣ψ(2)
t

〉
= λ2

√
ω′ω
4π

e−L(ω+ω′)

∫ t

0

dt′
∫ t′

0

dt′′ e∓iΩd(t
′′−t′)(ei(ωt′+ω′t′′) + ei(ω

′t′+ωt′′)) (H18)

2ℜ
〈
ψ0

∣∣∣ : π̂2
−(x) :

∣∣∣ψ(2)
t

〉
= − λ2

4π2
ℜ
∫ t

0

dt′
∫ t′

0

dt′′
e∓iΩd(t

′′−t′)

(L− i(x+ t′))2(L− i(x+ t′′))2
(H19)

Thus, for the TLS emitter,

⟨ψt| : π̂2
−(x) : |ψt⟩ ∼

λ2

8π2

∣∣∣∣∣

∫ t

0

dt′
e±iΩdt

′

(L+ i(x+ t′))2

∣∣∣∣∣

2

− λ2

4π2
ℜ
∫ t

0

dt′
∫ t′

0

dt′′
e∓iΩd(t

′′−t′)

(L− i(x+ t′))2(L− i(x+ t′′))2
+O(λ3)

(H20)

For the HO detector we obtain
〈
ψ
(1)
t

∣∣∣ b̂†ω b̂ω′

∣∣∣ψ(1)
t

〉
= λ2

√
ωω′

4π
e−L(ω+ω′)

∫ t

0

dt′
∫ t

0

dt′′
(
nei(Ωd−ω)t′e−i(Ωd−ω′)t′′ + (n+ 1)e−i(Ωd+ω)t′ei(Ωd+ω′)t′′

)
,

(H21)
〈
ψ0

∣∣∣ b̂ω b̂ω′

∣∣∣ψ(2)
t

〉
= λ2

√
ωω′

4π
e−L(ω+ω′)

∫ t

0

dt′
∫ t′

0

dt′′
(
2n cos(Ωd(t

′ − t′′)) + eiΩd(t
′′−t′)

)
(ei(ωt′+ω′t′′) + ei(ω

′t′+ωt′′))

(H22)

We then have, using
∫∞
0
dω ωeω(iX−L) = (L− iX)−2,

〈
ψ
(1)
t

∣∣∣ : π̂2
−(x) :

∣∣∣ψ(1)
t

〉
=

λ2

8π2


n

∣∣∣∣∣

∫ t

0

dt′
eiΩdt

′

(L+ i(t′ + x))2

∣∣∣∣∣

2

+ (n+ 1)

∣∣∣∣∣

∫ t

0

dt′
e−iΩdt

′

(L+ i(t′ + x))2

∣∣∣∣∣

2

 , (H23)

2ℜ
〈
ψ0

∣∣∣ : π̂2
−(x) :

∣∣∣ψ(2)
t

〉
= −λ2ℜ 1

4π2

∫ t

0

dt′
∫ t′

0

dt′′
2n cos(Ωd(t

′ − t′′)) + eiΩd(t
′′−t′)

(L− i(x+ t′))2(L− i(x+ t′′))2
. (H24)

Appendix I: Derivation of state error bound

To bound the norm of the error ∥ |ϵ⟩ ∥, we first consider

d

dt
⟨ϵ |ϵ ⟩ = 2ℜ ⟨ϵ| d

dt
|ϵ⟩ = 2ℑ ⟨ϵ|∆H |ψϵ⟩ ≤ 2 |⟨ϵ |∆Hψϵ ⟩| ≤ 2

√
⟨ϵ |ϵ ⟩

√
⟨∆Hψϵ |∆Hψϵ ⟩, (I1)

and since d
dt ⟨ϵ |ϵ ⟩ = d

dt ∥|ϵ⟩∥
2
= 2 ∥|ϵ⟩∥ d

dt ∥|ϵ⟩∥, we have

d

dt
∥|ϵ⟩∥ ≤

√〈
∆Ĥψϵ

∣∣∣∆Ĥψϵ
〉
. (I2)

This expression can be evaluated in numerical calculations, because it only involves |ψϵ⟩ which we obtain from the numerical
calculations. The state |ψϵ⟩ always remains a product state between the first N sites and the rest of the chain, which remains in
its vacuum state, hence

〈
∆Ĥψϵ

∣∣∣∆Ĥψϵ
〉
= γ2N−1 ⟨ψϵ| ĉ†N−1ĉN−1 |ψϵ⟩ . (I3)

At t = 0 the error vanishes, |ϵ⟩ = 0, and therefore its norm at time t is lower or equal to the integral

∥|ϵ⟩∥ ≤ ϵt := |γN−1|
∫ t

0

dt′
√

⟨ψϵ| ĉ†N−1ĉN−1 |ψϵ⟩. (I4)
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Appendix J: Error bound for quadratic observables and harmonic emitters

When the emitter is a harmonic oscillator and the initial state is Gaussian, the system remains in a Gaussian state both under
the exact and the truncated Hamiltonian, because both are quadratic. In this scenario, we can use Gaussian state methods to
derive an error bound on quadratic observables similar to the error bound (34). We employ the Kähler structure formalism for
Gaussian states (for a review, see [59]).

Assume that we are interested in the expectation value of a quadratic observable. Then, working with respect to a real
symplectic basis of quadrature operators (i.e., ξ̂⊺ = (q̂1, q̂2, ..., p̂1, p̂2, ...) with [q̂i, p̂j ] = iδij), we can express the observable
as Ô = 1

2

∑
i,j Oij ξ̂

iξ̂j . We may assume that the matrix O is symmetric, since any anti-symmetric part would only add an
operator proportional to the identity operator to O. Thus, the expectation value of Ô is given by

〈
Ô
〉
=

1

4

∑

i,j

Oij

〈
ξ̂iξ̂j + ξ̂j ξ̂i

〉
=

1

4

∑

i,j

OijGij =
1

4
TrO⊺G = TrO⊺ΩJ⊺ =

1

4
TrΩ⊺OJ =

1

4
⟨O⊺Ω,J⟩ (J1)

where the matrix Ωij = i
[
ξ̂i, ξ̂j

]
represents the symplectic form, Gij =

〈
ξ̂iξ̂j + ξ̂j ξ̂i

〉
represents the covariance matrix of the

state and J = −GΩ−1 represents the linear complex structure of the state (represented by a real square matrix), and we used
the Frobenius scalar product ⟨A,B⟩ = TrA⊺B for real-valued square matrices.

The linear complex structure evolves in time as

J(t) = etKJ(t = 0)e−tK ⇒ J̇ = KJ(t)− J(t)K = [J(t),K] . (J2)

Here K = Ωh represents the Hamiltonian generator of the full system Hamiltonian which is Ĥ = 1
2

∑
i,j hi,j ξ̂

iξ̂j . However,
due to the truncation of the chain we are not calculating the state evolution under the full Hamiltonian, but only with the
truncated Hamiltonian generator Kϵ = K−∆K. Accordingly, we only calculate the linear complex structure Jϵ = J −∆J
with J̇ϵ = [Kϵ,Jϵ].

The error in the expectation value, which we seek to bound, is

|⟨O⟩ − ⟨O⟩ϵ| = 1

4
|⟨O⊺Ω,∆J⟩| ≤ 1

4

√
⟨O⊺Ω,O⊺Ω⟩

√
⟨∆J,∆J⟩ = 1

4
∥O⊺Ω∥ ∥∆J∥ . (J3)

The time derivative of the error in the linear complex structure is

∆̇J = [K,J]− [Kϵ,Jϵ] = [Kϵ +∆K,Jϵ +∆J]− [Kϵ,Jϵ] = [K,∆J] + [∆K,Jϵ] . (J4)

This we can use to bound

d

dt

√
⟨∆J,∆J⟩ =

d
dt ⟨∆J,∆J⟩
2
√

⟨∆J,∆J⟩
=

d
dt Tr∆J⊺∆J

2
√

⟨∆J,∆J⟩
. (J5)

Next, since TrAB = TrB⊺A⊺, we have

d

dt
Tr∆J⊺∆J = 2Tr ˙∆J⊺∆J = 2Tr ∆̇J∆J⊺ = 2Tr ([K,∆J]∆J⊺ + [∆K,Jϵ]∆J⊺) . (J6)

The first term Tr [K,∆J]∆J⊺ vanishes, because both TrK∆J∆J⊺ = 0 and Tr∆JK∆J⊺ = 0. This is seen using the
cyclicity of the trace and TrA = TrA⊺ and using that K⊺ = −K, for example, TrK∆J∆J⊺ = Tr∆J∆J⊺K⊺ =
−Tr∆J∆J⊺K = 0. Thus,

d

dt
Tr∆J⊺∆J = 2Tr [∆K,Jϵ]∆J⊺ ≤ 2

√
⟨[∆K,Jϵ] , [∆K,Jϵ]⟩

√
⟨∆J⊺,∆J⊺⟩ (J7)

such that

d

dt
∥∆J∥ =

d

dt

√
⟨∆J,∆J⟩ ≤

√
⟨[∆K,Jϵ] , [∆K,Jϵ]⟩ = ∥[∆K,Jϵ]∥ . (J8)

Note that since G = −JΩ we have ∥G∥ = ∥J∥, thus, the bound directly gives a bound on the error in the covariance matrix of
the calculated state.

In order to evaluate the right hand side, we express the truncation part of the Hamiltonian (30) in terms of chain mode
quadrature operators.

∆Ĥ = γN−1

(
ĉ†N−1ĉN + ĉ†N ĉN−1

)
= γN−1 (q̂N−1q̂N + p̂N−1p̂N ) . (J9)
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Hence we have

∆K =
1

2
Ω




0 γN−1

γN−1 0
0

0
0 γN−1

γN−1 0


 =

1

2




0
0 γN−1

γN−1 0
0 −γN−1

−γN−1 0
0


 (J10)

Since we are restricting our calculation to N chain modes (and one mode given by the harmonic oscillator emitter), the matrix
Jϵ takes the form

Jϵ =




A B
0 I

C D
0 −I 0


 , (J11)

with (N + 1) × (N + 1)-matrices A,B,C,D. Using indices Ai,j = ai,j with i, 1 = −1, 0, 1, ..., N − 1, and analogously for
the other matrices, we can calculate the right hand side of (J8) from

1

γ2N−1

∥[∆K,Jϵ]∥2 = 2(bN−1,N−1 − 1)2 + 2(cN−1,N−1 + 1)2 +

N−2∑

k=−1

(
(bk,N−1)

2 + (bN−1,k)
2 + (ck,N−1)

2 + (cN−1,k)
2
)

+

N−1∑

k=−1

(
(ak,N−1)

2 + (aN−1,k)
2 + (dk,N−1)

2 + (dN−1,k)
2
)
.

(J12)

In order to apply the above bound to the expectation value of the observable Ô the Frobenius norm of O needs to be finite.
One important example of such an operator is the number operator of a properly normalized positive frequency mode, i.e., a
mode that shares the vacuum state with the chain modes.

Appendix K: Minkowski energy density from chain modes in the Unruh effect

Using the Bogoliubov transformations derived above, the Minkowski mode operators â±ω can be expressed as a linear combi-
nation

â±ω =

∫ ∞

−∞
dΩ γ±Ωωd̂

±
Ω =

1√
2

∫ ∞

−∞
dΩ γ±Ωω

(
d̂eΩ ± doΩ

)
=

∫ ∞

−∞
dΩ γ±Ωω

(∑

i

sgn(Ω)f∗|Ω|e
Ωπ
2a

√
2| sinh(Ωπ/a)|

pi(Ω)ĉi ±
doΩ√
2

)

=
∑

i

Aω,iĉi + Ô(o)
ω (K1)

of chain mode operators ĉi, which is a linear combination of even Unruh modes, and some operator Ô(o)
ω , which is a linear

combination of odd Unruh modes. The precise form of Ô(o)
ω is irrelevant to our purpose, because the odd sector remains in

the vacuum state. Formally, for the coefficients Aω,i we use the regularized expression for γ±Ωω and, with (E14) and writing
pi(Ω) =

∑i
k=0 Pi,kΩ

k, obtain

Aω,i =

∫ ∞

−∞
dΩ γ±Ωω

sgn(Ω)f∗|Ω|e
Ωπ
2a

√
2| sinh(Ωπ/a)|

pi(Ω) =

i∑

k=0

iPi,k

4πa
√
πω

∫ ∞

−∞
dΩ

(ω
a

)±iΩ/a

Γ(∓iΩ/a)e−L|Ω|e
Ωπ
2a Ωk+1. (K2)

Based on this expression, a closed form expressions for the energy density of the field in terms of the chain modes can be
obtained. Using the notation as introduced in App. C, the expectation value of the normal ordered, Minkowski energy density of
the field (28) takes the following form, into which we insert (K2):

〈
: π̂2

±(x) :
〉
=

∫ ∞

0

dω

∫ ∞

0

dω′
√
ωω′

4π

(
2e±i(ω−ω′)x

〈
â±ω

†â±ω′

〉
− e∓i(ω+ω′)x

〈
â±ω â

±
ω′

〉
− e±i(ω+ω′)x

〈
â±ω

†â±ω′
†〉)

= ℜ
∑

i,j

∫ ∞

0

dω

∫ ∞

0

dω′
√
ωω′

2π

(
e±i(ω−ω′)x

〈
A∗

ω,iĉ
†
iAω′,j ĉj

〉
− e∓i(ω+ω′)x ⟨Aω,iĉiAω′,j ĉj⟩

)

= ℜ
∑

i,j

Jj(x)
(
J∗
i (x)

〈
ĉ†i ĉj

〉
− Ji(x) ⟨ĉiĉj⟩

)
, (K3)
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where

Jj(x) =

∫ ∞

0

dω e∓iωx

√
ω

2π
Aω,j

=

∫ ∞

0

dω e∓iωx

√
ω

2π

(
i

j∑

k=0

Pj,k
1

2πa
√
4πω

∫ ∞

−∞
dΩ

(ω
a

)±iΩ/a

Γ(∓iΩ/a)e−L|Ω|e
Ωπ
2a Ωk+1

)

=
i

4π2a
√
2

j∑

k=0

Pj,k

∫ ∞

−∞
dΩ a∓iΩ/aΓ(∓iΩ/a)e−L|Ω|e

Ωπ
2a Ωk+1

∫ ∞

0

dω e∓iωxω±iΩ/a. (K4)

Now introduce a regularisation in the ω-integration,

∫ ∞

0

dω e∓iωxω±iΩ/ae−ϵω =
±iΩ

a
Γ

(±iΩ

a

)
e∓

iΩ
a ln(ϵ±ix) 1

ϵ± ix

ϵ→0→ Ω

ax
Γ

(±iΩ

a

)
e∓

iΩ
a ln |x|esgn(x)Ωπ/(2a), (K5)

then

Jj(x) =
i

4π2a2x
√
2

j∑

k=0

Pj,k

∫ ∞

−∞
dΩ |Γ(∓iΩ/a)|2 e−L|Ω|Ωk+2e∓

iΩ
a ln |xa|e(1+sgn(x))Ωπ

2a

=
i

4πax
√
2

j∑

k=0

Pj,k

∫ ∞

−∞
dΩ

e−L|Ω|+(1+sgn(x))Ωπ
2a ∓ iΩ

a ln |xa|Ωk+1

sinh(πΩ/a)

=

j∑

k=0

Pj,k
iak+1

4πk+3x
√
2

∫ ∞

−∞
dν

e−La|ν|/π+( (1+sgn(x))
2 ∓ i

π ln |xa|)ννk+1

sinh(ν)︸ ︷︷ ︸
=:I±

k (x)

=

j∑

k=0

Pj,kIk(x) (K6)

with ν = Ωπ/a. We can split the ν-integration into two,

∫ ∞

0

dν
e(−

La
π +

(1+sgn(x))
2 ∓ i

π ln |xa|)ννk+1

sinh(ν)
= 2−k−1Γ(k + 2)ζ

[
k + 2,

1

2

(
La

π
− 1 + sgn(x)

2
± i ln |xa|

π
+ 1

)]

= 2−k−1Γ(k + 2)ζ

[
k + 2,

aL± i ln |xa|
2π

+
1− sgn(x)

4

]
, (K7)

∫ 0

−∞
dν

e−La|ν|/π+( (1+sgn(x))
2 ∓ i

π ln |xa|)ννk+1

sinh(ν)
= (−1)k

∫ ∞

0

dν
e−Laν/π−( (1+sgn(x))

2 ∓ i
π ln |xa|)ννk+1

sinh(ν)

= (−1)k2−k−1Γ(k + 2)ζ

[
k + 2,

1

2

(
La

π
+

1 + sgn(x)

2
∓ i

π
ln |ax|+ 1

)]

= (−1)k2−k−1Γ(k + 2)ζ

[
k + 2,

aL∓ i ln |xa|
2π

+
3 + sgn(x)

4

]
(K8)

where we used
∫∞
0
dx xµ−1e−βx

sinh(x) = 21−µΓ(µ)ζ[µ, 12 (β+1)], ℜµ > 1, ℜβ > −1 (see 3.552.1 of [66]). Inserting above we obtain

I±k (x) =
iak+1(k + 1)!

(2π)k+3x
√
2

(
ζ

[
k + 2,

aL± i ln |xa|
2π

+
1− sgn(x)

4

]
+ (−1)kζ

[
k + 2,

aL∓ i ln |xa|
2π

+
3 + sgn(x)

4

])
. (K9)

For negative x < 0, we obtain

I±k (x) =
iak+1(k + 1)!

(2π)k+3x
√
2




2ℜζ

[
k + 2, aL±i ln |xa|

2π + 1
2

]
, k even,

2iℑζ
[
k + 2, aL±i ln |xa|

2π + 1
2

]
, k odd,

(K10)

which, however, is not relevant for our considerations here since in our setup we only consider the energy density in the right
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Rindler wedge. There, for positive x > 0, we obtain (using ζ(s, a) = ζ(s, a+ 1) + 1
(a2)s/2

)

I±k (x) =
iak+1(k + 1)!

(2π)k+3x
√
2

(
ζ

[
k + 2,

aL± i ln |xa|
2π

]
+ (−1)kζ

[
k + 2,

aL∓ i ln |xa|
2π

+ 1

])

=
iak+1(k + 1)!

(2π)k+3x
√
2

(
ζ

[
k + 2,

aL± i ln |xa|
2π

]

+(−1)kζ

[
k + 2,

aL∓ i ln |xa|
2π

]
+ (−1)k+1

(
aL∓ i ln |ax|

2π

)−k−2
)

=


 i(−1)k+1ak+1(k + 1)!

2πx
√
2

(aL∓ i ln |xa|)−k−2
+

iak+1(k + 1)!

(2π)k+3x
√
2




2ℜζ

[
k + 2, aL±i ln |xa|

2π

]
, k even

2iℑζ
[
k + 2, aL±i ln |xa|

2π

]
, k odd


 . (K11)

These enter the final expression for the energy density as

〈
: π̂2

±(x) :
〉
= ℜ

∑

i,j

i∑

k=0

j∑

l=0

(
I±∗
k (x)Pi,k

〈
ĉ†i ĉj

〉
Pj,lI

±
l (x)− I±k (x)Pi,k ⟨ĉiĉj⟩Pj,lI

±
l (x)

)
. (K12)

Note that this expression is valid only on the hyperplane τ = t = 0. Under the Rindler time evolution the right-handside of this
equation evolves into a transformed observable expectation value as detailed in App. D.
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[14] Barbara Šoda, Vivishek Sudhir, and Achim Kempf.
Acceleration-Induced Effects in Stimulated Light-
Matter Interactions. Physical Review Letters, 128(16):

http://dx.doi.org/10.1103/RevModPhys.88.021002
http://dx.doi.org/10.1103/RevModPhys.88.021002
http://dx.doi.org/10.1103/RevModPhys.93.015008
http://dx.doi.org/10.1126/science.1257219
http://dx.doi.org/10.1038/s41567-019-0605-6
http://dx.doi.org/10.1038/s41567-019-0605-6
http://dx.doi.org/10.1103/PhysRevLett.122.203603
http://dx.doi.org/10.1103/PhysRevLett.101.260404
http://dx.doi.org/10.1103/PhysRevLett.101.260404
http://dx.doi.org/10.1038/ncomms8606
http://dx.doi.org/10.1038/ncomms8606
http://dx.doi.org/10.1103/PhysRevLett.121.227401
http://dx.doi.org/10.1103/PhysRevLett.121.227401
http://dx.doi.org/10.1080/00405000.2013.829687
http://dx.doi.org/10.1038/srep12753
http://dx.doi.org/10.1038/srep12753
http://dx.doi.org/10.1103/PhysRevA.97.012127
http://dx.doi.org/10.1103/PhysRevA.97.012127
http://dx.doi.org/10.1103/PhysRevA.103.013703
http://dx.doi.org/10.1103/PhysRevA.103.013703


29

163603, April 2022. ISSN 0031-9007, 1079-7114. doi:
10.1103/PhysRevLett.128.163603. 1

[15] Sadao Nakajima. On Quantum Theory of Transport Phe-
nomena: Steady Diffusion. Progress of Theoretical Physics,
20(6):948–959, December 1958. ISSN 0033-068X. doi:
10.1143/PTP.20.948. 1

[16] Robert Zwanzig. Ensemble Method in the Theory of Irre-
versibility. The Journal of Chemical Physics, 33(5):1338–
1341, November 1960. ISSN 0021-9606, 1089-7690. doi:
10.1063/1.1731409. 1

[17] Yoshitaka Tanimura and Ryogo Kubo. Time Evolution
of a Quantum System in Contact with a Nearly Gaussian-
Markoffian Noise Bath. Journal of the Physical Society of
Japan, 58(1):101–114, January 1989. ISSN 0031-9015, 1347-
4073. doi:10.1143/JPSJ.58.101. 1

[18] Yoshitaka Tanimura. Numerically “exact” approach to
open quantum dynamics: The hierarchical equations of mo-
tion (HEOM). The Journal of Chemical Physics, 153(2):
020901, July 2020. ISSN 0021-9606, 1089-7690. doi:
10.1063/5.0011599.

[19] Javier Prior, Alex W. Chin, Susana F. Huelga, and Mar-
tin B. Plenio. Efficient Simulation of Strong System-
Environment Interactions. Physical Review Letters, 105(5):
050404, July 2010. ISSN 0031-9007, 1079-7114. doi:
10.1103/PhysRevLett.105.050404. 1
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