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We introduce and study the discrete-time version of the Quantum East model, an interacting
quantum spin chain inspired by simple kinetically constrained models of classical glasses. Previous
work has established that its continuous-time counterpart displays a disorder-free localisation tran-
sition signalled by the appearance of an exponentially large (in the volume) family of non-thermal,
localised eigenstates. Here we combine analytical and numerical approaches to show that: i) The
transition persists for discrete times, in fact, it is present for any finite value of the time step apart
from a zero measure set; ii) It is directly detected by following the non-equilibrium dynamics of the
fully polarised state. Our findings imply that the transition is currently observable in state-of-the-art
platforms for digital quantum simulation.

Introduction.— Establishing the precise conditions for
real space localisation in interacting systems, even in
one dimension, turns out to be extremely challenging.
In fact, despite intense efforts to crack it [1–9], it cur-
rently remains a major unsolved problem in theoretical
physics. It has been argued that a form of many-body lo-
calisation should emerge as a consequence of an external
quenched disorder, which, under some conditions, might
defeat interactions. Whether this mechanism can lead
to a stable phase of matter, however, is still a matter
of an active debate [7–9]. A fundamental problem in all
these studies is that they are either limited to small sys-
tems accessible to numerical or experimental simulation
or uncontrolled perturbative approximations. Neverthe-
less, if many-body localisation can ever be established as
a phase of matter it has to exist in the thermodynamic
limit, meaning it should not (only) be the property of
eigenstates, but (also) of time evolution (dynamics) of
an infinite system.

Recently, it has been suggested that, other than by
disorder, real space localisation can also be triggered by
kinetic constraints which render transport a higher-order
process. An advantage of this approach is that it is not
affected by fluctuating rare events such as ergodic bub-
bles. A minimal example of this mechanism is realised
in the so-called Quantum East model [10–14] (and its
bosonic version [15]) where a localisation transition in the
quantum Hamiltonian is in one-to-one correspondence to
a first order activity-inactivity transition in the corre-
sponding classical stochastic glass model. Consistently
with this picture, Ref. [16] observed an eigenstate local-
isation transition in the Quantum East for an exponen-
tially large family of eigenstates.

In this work, we take a fundamental step further and
look for the possibility of dynamical localisation in a Flo-
quet, or trotterised, version of the Quantum East model.
We replace the continuous Hamiltonian dynamics by a
discrete sequence of conditional unitary gate operations
– a quantum circuit – that can be conveniently imple-

mented on platforms for digital quantum simulation such
as trapped ions [17–20] and superconducting circuits [21–
26]. Using time-dependent perturbation theory, we ar-
gue that the model displays a localisation transition by
tuning the parameters of the model. We demonstrate
that in the dynamically localised phase the model can
be efficiently simulated by time-dependent matrix prod-
uct methods (i.e. TEBD algorithm) [27–29] to an arbi-
trary precision, showing very good quantitative agree-
ment with the perturbative prediction. Moreover, we find
qualitative agreement between dynamical picture of lo-
calisation in the infinite system and localisation of eigen-
states in the finite system.
The model.— Our starting point is the Quantum East

model [10], which is defined by the following Hamiltonian
operator (in arbitrary energy units)

H(a) =

2L−1∑
j=1

Pj(aXj+1 − I) + aX1 − I . (1)

Here a is the dimensionless coupling constant, 2L is the
system size, {Xj , Yj , Zj} are Pauli matrices acting non-
trivially at site j, I is the identity operator, and Pj =
(I + Zj)/2.
We are interested in discrete sequences of unitary op-

erations U(a, τ) that reproduce the dynamics generated
by Eq. (1) in a special scaling limit. Namely

lim
t→∞

U(a, t/t)t = e−iH(a)t . (2)

This procedure is known as Trotter-Suzuki decomposi-
tion [30, 31] and does not uniquely specify the unitary
operator: there are many different choices of U(a, τ) ful-
filling Eq. (2). Here we consider a simple one that is local
in space, i.e., it has the following brickwork structure (see
Fig. 1)

U(a, τ) = eiτUe(a, τ)Uo(a, τ), (3)
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FIG. 1. (Left) State (6) after t = 3.5 time steps of discrete
dynamics. White bullets denote the state |↓⟩ and the blue
circles the activation part of the conditional gate U(a, τ).
In yellow we highlighted the brick-wall Floquet propagator
U(a, τ). (Right) Explicit simplification of the dynamics out
of the light cone. With dashed line we indicated the cut for
the ladder evolution in Eq. (8). In orange we highlighted the
ladder propagator Uℓ(a, τ) (cf. (9)).

with

Ue(a, τ) = U1,2(a, τ) · · ·U2L−1,2L(a, τ),

Uo(a, τ) = e−iτaX1U2,3(a, τ) · · ·U2L−2,2L−1(a, τ), (4)

where we use a standard notation Ox,y for an operator O
acting non-trivially only at the sites x and y, and define
a local conditional gate

U(a, τ) = e−iτ(aP⊗X−P⊗I) . (5)

The time step τ , usually referred to as the Trotter step,
sets the strength of the unitary operation (3). It is easy
to verify that (2) holds for the evolution operator defined
in Eq. (3).

To probe the localisation properties of the quantum
circuit (3) we consider a local quantum quench. Namely,
we prepare the circuit in the initial state

|↓ · · · ↓⟩ , (6)

which is an eigenstate of the bulk evolution due to the
identity U(a, τ) |↓↓⟩ = |↓↓⟩, but is not stationary at the
left boundary. A direct consequence of this is that only
the sites within a light cone spreading from the left
boundary undergo a non-trivial evolution. Specifically, at
time t only the 2t leftmost sites are affected by the time
evolution, see Fig. 1. Intuitively, one can think of our
local quench protocol as creating a localised disturbance
in (x, t) = (0, 0) in a state that is otherwise stationary.

A simple measure of how the disturbance created by
the local quench spreads through the system is given by
the partial norms

W (x, t)=
∑

sj=↑,↓

|⟨s1 . . . sx−1↑↓· · ·↓|U(a, τ)t|↓ · · ·↓⟩|2. (7)

SinceW (x, t) ≥ 0 and
∑

xW (x, t) = 1, the partial norms
can be thought of as the probability of having the right-
most up spin at position x. Specifically, whenever the

disturbance remains localised at the boundary we have
W (x, t) ≈ 0 for x ≫ x0 = O(t0), while when it spreads
through the light cone the partial norms attain non-
zero values for all x ≤ 2t. Note that, because of the
light cone structure of the dynamics, one always has
W (x > 2t, t) = 0.
In fact, to facilitate our numerical analysis here we

consider slightly modified quantities that bear the same
physical information as those in Eq. (7): Instead of the
partial norms of the state U(a, τ)t |↓ · · ·↓⟩, we look at
those of the state along the diagonal cut in the right
panel of Fig. 1. The latter quantities are defined as

N(x, t)=
∑

sj=↑,↓

|⟨s1 . . . sx−1↑↓· · ·↓|Uℓ(a, τ)
t|↓ · · ·↓⟩|2, (8)

where we introduced the “ladder evolution operator” (cf.
Fig 1)

Uℓ(a,τ)=e
iτe−iτaX1U1,2(a,τ)U2,3(a,τ)· · ·UL−1,L(a,τ), (9)

which is related to U(a, τ) by a similarity transforma-
tion [32]. The quantities in Eq. (8) are more convenient
than those in Eq. (7) because with the same computa-
tional effort one can access times that are twice as long.
Infinite system at finite times.— Let us begin consid-

ering the time evolution of the partial norms N(x, t) in
the thermodynamic limit L→ ∞. In this case, the main
qualitative features of their evolution can be understood
by performing a simple perturbative analysis (the same
can be done for W (x, t) [32]). We begin by introduc-
ing the interaction representation of the time evolution
operator

Uℓ(a, τ)
t =

[
t∏

k=0

Ũℓ(τa, τk)

]
eiτt

∑
jPj , (10)

where we defined

Ũℓ(a, τ) = eiτe−iaX1e
−iτZ1

→∏
k∈{1,...2L−1}

Ũk,k+1(a, τ), (11)

Ũ(a, τ) = e−iaP⊗Xe−iτZ

. (12)

We now fix x, t, τ and expand (7) in powers of a. Looking
at the local gate in the interaction picture, i.e.,

Ũ1,2(a, τ) = 1− iaP1X2e
−iτZ2 +O(a2) (13)

we have that N(x) is at least of order a2x. Indeed, due
to the structure of Eq. (3), to get a spin up at position x
we need to at least flip all the spins on its left. In fact,
this also tells us

N(x, t)≃N ′(x, t)≡|⟨↑ · · · ↑︸ ︷︷ ︸
x

↓· · ·↓|U(a, τ)t|↓ · · ·↓⟩|2, (14)

where ≃ denotes equality at the leading order in a. Eval-
uating the corresponding amplitude

A′(x, t) = ⟨↑ · · · ↑︸ ︷︷ ︸
x

↓ · · · ↓|Uℓ(a, τ)
t|↓ · · · ↓⟩ , (15)



3

at leading order is a simple combinatorial problem: we
plug (13) and (10) into (15) and count the number ways
to flip x spins in sequential order. For the j-th flip we
get a factor iaτeiτtj , where t ≤ tj < tj−1 is the time of
the j-th flip. This gives

A′(x, t) ≃ (−i)xeiτt(aτ)xK(x, t), (16)

where we introduced

K(x, t) ≡
t∑

t1=1

t∑
t2=t1+1

· · ·
t∑

tx=tx−1+1

eiτ(t1+···+tx). (17)

It is simple to show that these objects fulfil the following
recurrence relations

K(x, t) = K(x, t− 1) +K(x− 1, t− 1)eiτt, (18)

with K(x > t, t) = 0 and K(0, 0) = 1 which is solved by

K(x, t) = e−iτx(x+1)/2

(
t
x

)
q

. (19)

Here we set q ≡ eiτ and(
n
m

)
q

=
[n]q!

[n−m]q![m]q!
, n ≥ m,

(
n
m

)
q

= 0, n < m, (20)

are q-deformed binomial coefficients defined in terms of
q-deformed factorials

[n]q! =

n∏
k=1

[n]q, [k]q =
1− qk

1− q
. (21)

Putting all together we then find

N(x, t) ≃ N ′
1(x, t) ≡ (aτ)2x

∣∣∣∣(tx
)
q

∣∣∣∣2, (22)

which concludes the perturbative calculation. Interest-
ingly, this perturbative analysis commutes with the limit
(2). Indeed

lim
τ→0

N ′
1(x, t/τ) =

(2a sin(t/2))2x

(x!)2
, (23)

coincides with the leading order of (8) if one replaces (10)
with its Trotter limit [32].

Let us now move on to analyse the localisation proper-
ties of the perturbative solution. To this aim, we assume
that N ′

1(x, t) gives the only relevant contribution to the
partial norm. The first key feature of N ′

1(x, t) is that its
localisation properties depend on whether or not τ is a
rational multiple of 2π. Namely, whether it can be writ-
ten as 2πc/d for some coprime integers c and d. When
this is the case one can use the q-Lucas theorem [33] to
connect the behaviour of q-deformed and regular binomi-
als as follows(

t
x

)
q

=

(
⌊t/d⌋
⌊x/d⌋

)(
mod(t, d)
mod(x, d)

)
q

, (24)

where ⌊x⌋ is the largest integer smaller than x and
mod(c, d) is the remainder of the division of c ∈ N by
d ∈ N. Using now the Stirling approximation we find
that Eq. (22) has a maximum at

x̄ =
(aτ)2dt

1 + (aτ)2d
. (25)

Therefore the support of N ′
1(x, t) grows in time ruling

out localisation.
On the other hand, whenever τ is not a rational multi-

ple of 2π the deformed binomial coefficients are bounded
in time. Namely we have

log

∣∣∣∣∣
(
t
x

)
q

∣∣∣∣∣
2

=

t−x∑
p=1

log

[
1− cos(τ(x+ p))

1− cos(τp)

]
≃ O(t0). (26)

In the last step we used that, since {mod(τp, 2π)}tp=1

covers [0, 2π) uniformly in the large t limit, we have

t−x∑
p=1

log(1− cos(τ(y + p))) ≃ (x− t) log 2 , ∀y . (27)

Therefore theO(t) in Eq. (26) cancels and we are left with
an O(t0) term. Plugging the bound Eq. (26) into Eq. (22)
we have that N ′

1(x, t) is localised within a distance x0 =
−1/(2 log aτ) from the left boundary for all times.
The second key feature that we can extract from the

perturbative solution is the τ dependence of ac — the
critical a for localisation — in the case of irrational
τ/(2π). In our setup this amounts to ask for what range
of a we expect the perturbative result to apply (at least
qualitatively). From Eq. (22) we see that for finite τ the
parameter that has to be small to ensure the validity of
the perturbative approach is aτ . Instead, in the limit
τ → 0 the perturbative solution requires a itself to be
small [32]. This suggests that ac should be of the form

ac(τ) = min(α, β/τ) , (28)

for some α, β ∈ R.
Remarkably, by computing N(x, t) and N ′(x, t) via a

simple version of the TEBD algorithm [32] we find that
all these qualitative features persist away from the per-
turbative regime. Some representative examples of our
numerical results are presented in Figs. 2 and 3, where,
as a further indicator of localisation, we also report the
entanglement entropy S(x, t) between the x leftmost sites
and the rest of the system at time t.
For small enough a we see that disturbance created

by the local quench remains localised only for irrational
values of τ/(2π). This is clearly shown in the insets of
Fig. 2: While for rational τ/(2π) we see the peak of the
entanglement entropy growing linearly in time, for irra-
tional τ/(2π) we see it saturating. Moreover, while in
the former case the peak’s distance from the left edge
also grows linearly in time, in the latter it approaches a
time-independent value. Note that we observe this stark
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FIG. 2. Profiles of N ′(x, t) for a = 0.1 (left column panels),
a = 0.2 (right column panels), and for τ = (

√
5− 1)π/2 (top

row panels), τ = 2π/3 (bottom row panels). The data are
shown for times t = 20, 40 . . . 120 (red to blue curves), ex-
cept for bottom/right panel where only t = 20, 40, 60 can be
computed due to fast growth of entanglement (insets indicate
entanglement entropy profiles S(x, t), t = 10, 20 . . ., of respec-
tive cases). Coloured bullets depict perturbative results for
shortest and longest simulated time.

difference between rational and irrational τ/(2π) also for
times that are significantly out of the perturbative regime
(t≫ 1/a) and at which Eq. (22) is not quantitatively ac-
curate: see the comparison in the main panel of Fig. 2. As
a result of this localised behaviour, for irrational τ/(2π)
we are able to run our TEBD simulations with essentially
no truncation error for hundreds of time steps.

On the other hand, for a larger than a certain critical
value ac(τ) the system transitions to the ergodic regime
also for irrational τ/(2π), see Fig. 3. In this case the per-
turbative result does not describe the system’s behaviour
even at the qualitative level: the support of the partial
norms grows linearly in time signalling a delocalisation of
the disturbance caused by the impurity. Concerning the
τ dependence of ac(τ), our numerical results are compati-
ble with the functional form in Eq. (28) [32]. Namely, the
critical a appears approximately τ -independent for small
τ , while it starts to decay as τ−1 when τ is increased
beyond a threshold value.

Finite systems at infinite times.— Interestingly, the
phenomenology observed above in the thermodynamic
limit setting is also observed for finite volumes. In
this case we again look at a quench from the ini-
tial state in Eq. (6) but keep L finite while taking
t→ ∞. A convenient indicator of the localisation transi-
tion is then the time averaged square of Loschmidt Echo
(LE) | ⟨↓ · · · ↓|Ut

ℓ |↓ · · · ↓⟩ |2 [this quantity is the same for
brick-wall U and ladder propagators Uℓ]. Assuming that
there are no degeneracies in the spectrum of Uℓ, the LE
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FIG. 3. Two cases of ergodic finite t/infinite size dynamics:
left, right, column panels correspond, respectively, to a =
0.3, τ = (

√
5− 1)π/2 just beyond localization transition, and

to a = 1.0, τ = (
√
5−1)π/2 well in the ergodic phase. We plot

entanglement entropy profiles S(x, t), partial norm profiles
N(x, t), and domain wall component profiles N ′(x, t), in lines
1 to 3 respectively, for t = 17, 18 . . . 36 (red to blue).

can be written as

lim
t→∞

1

t

t∑
s

| ⟨↓ · · · ↓|Uℓ(a, τ)
s |↓ · · · ↓⟩ |2

= lim
t→∞

1

t

t∑
s

∑
i,j

|⟨↓ · · · ↓|Ei⟩|2|⟨↓ · · · ↓|Ej⟩|2ei(Ej−Ei)s

=
∑
i

| ⟨↓ · · · ↓|Ei⟩ |4 ≡ I|↓···↓⟩, (29)

where the sum over i, j goes over all of the eigenstates.
The quantity on the last line is the so called inverse par-
ticipation ratio (IPR), which measures the spreading of
the initial state in the eigenbasis of the time-evolution
operator. It can be interpreted as the purity of the prob-
ability distribution {Pi}, with Pi = | ⟨↓ · · · ↓|Ei⟩ |2 being
the Born probability of measuring the eigenstate |Ei⟩ in
|↓ · · · ↓⟩.
For random eigenstates |Ei⟩ the probability distribu-

tion is flat, i.e., Pi = 2−L, which gives I|↓···↓⟩,Haar = 2−L.
In contrast, in the localised phase, we expect that up to
exponential corrections, the initial state spreads up to a

finite distance k, so Ut |↓ · · · ↓⟩ = |ψ⟩ |↓⟩⊗(L−k)
, which

leads to an IPR constant in L. Namely I|↓···↓⟩,loc ≥ 2−k

for all L.
We computed I|↓···↓⟩ numerically for several values of

a, τ , and L: our main numerical results are summarised
in Fig. 4. We see that IPR versus a and τ produces a
suggestive phase diagram, where the localisation transi-
tions matches the finite time data surprisingly well. The
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FIG. 4. (Top) Logarithm of the IPR at L = 13 as a function
of τ and a. We see that for small τ the transition is at a = 1,
whereas for bigger τ the transition is at a ∝ 1/τ . With the
white dashed lines we show the three values of τ considered
in the bottom panel. (Bottom) Logarithm of the IPR versus
L for three values of τ and several values of a (0.5, 0.7, . . . , 1.5
top to bottom for the first plot and 0.05, 0.15, . . . , 0.55 for the
second and third). The grey solid line corresponds to fastest
decay 2−L for random eigenstates. For the first two values
of τ , we can estimate the transition between constant and
exponential decay at a = 1 and a = 0.3. The third τ is a
rational multiple of 2π, and its transition occurs at a much
smaller a.

bottom panel of the figure shows the IPR versus L for
different values a and three choices of τ . Identifying the
localisation transition as the transition between constant
and exponentially decaying IPR, we can estimate ac(τ).
The last two τ are similar in size, but they are respec-
tively irrational and rational multiples of 2π. We see
that the difference between these two cases is stark also

in this setting: the irrational τ/(2π) shows a transition
at sizeable a, while τ/(2π) shows ergodic behaviour for
the same choice of a. In the phase diagram, the rational
τ/(2π) generate some irregular behaviour reminiscent of
Arnold tongues [34]. Some further finite-volume data is
reported in the SM [32].
Conclusions and Outlook.— We introduced a discrete-

time version of the Quantum East model [10] and anal-
ysed its localisation properties in real-time. Specifically,
we studied the spreading of disturbances that are initially
spatially localised. Combining a perturbative analysis
with exact numerics we identified a localisation transition
taking place in this system as a function of the dimen-
sionless coupling a: for couplings smaller than a critical
value ac(τ) the effect of the disturbance remains localised
in space, while it spreads ballistically for a > ac(τ). This
is also shown by a stark difference in the entanglement
scaling (linear vs bounded). Interestingly, this transition
has a non-analytic dependence on the Trotter time τ and
takes place only when the latter is an irrational multiple
of 2π.
Our work opens several directions for future research.

First, it calls for a more precise and systematic charac-
terisation of the observed transition. Since the entan-
glement appears to be exactly bounded in the localised
phase, many features of this transition can be efficiently
characterised via tensor network methods. Moreover, the
discrete space-time setting introduced in this letter is
particularly convenient for analytical analyses. Second,
more generally, our work shows that quantum circuits
composed of one-sided control gates, like our Floquet
Quantum East, can generate interesting minimal models
where one can exactly study exotic physical behaviours.
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Appendix A: Perturbative analysis of W (x, t)

The perturbative analysis of the main text can be directly performed also for the partial norms W (x, t) in the
brickwall formulation, Eq. (7). Considering the interaction picture representation of the evolution operator (3) we
have

U(a, τ)teiτt(1+
∑

jPj)=

t−1∏
k=0

Ũe(τa, kτ)Ũo(τa, (k + 1)τ), (SA.1)

where we introduced

Ũe(a, τ) = Ũ(a, τ)⊗L, (SA.2)

Ũo(a, τ) = e−iaX ⊗ Ũ(a, τ)⊗(L−1) , (SA.3)

and Ũ(a, τ) is the one given in Eq. (12). Considering the amplitude

A′
W (x, t) = ⟨↑ · · · ↑︸ ︷︷ ︸

x

↓ · · · ↓|U(a, τ)t|↓ · · · ↓⟩ (SA.4)

we find that it is again computed by counting the number ways to flip x spins in sequential order. This time the j-th
flip gives a factor

−iaτe−iτ(t−tj+mod(j,2)), (SA.5)

where t ≤ tj ≤ tj−1 +mod(j, 2). Putting all together we find

A′
W (x, t) ≃ (−i)xe−iτ [t(x+1)+⌈x/2⌉](aτ)xC(x, t), (SA.6)

where we introduced

C(x, t) =

t∑
p1=1

t∑
p2=p1

· · ·
t∑

px=px−1+mod(x,2)

eiτ(p1+···+px). (SA.7)

The coefficients C(x, t) fulfil the following recursive relation

C(2x, t) = C(2x, t−1) + C(2x−1, t−1)eiτt + C(2x− 2, t−1)e2iτt, (SA.8)

C(2x−1, t) = C(2x−1, t−1) + C(2x−2, t−1)eiτt, (SA.9)
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with boundary conditions

C(0, 1) = 1, C(1, 1) = eiτ , C(2, 1) = e2iτ, (SA.10)

C(x < 0, t) = 0, C(x > 2t, t) = 0. (SA.11)

These equations are solved by

C(x, t) = qx/2+x2/4+mod(x,2)/4

(
t+ ⌊x/2⌋

x

)
q=eiτ

. (SA.12)

Plugging back into (14) we finally find

W (x, t) ≃ (aτ)2x |C(x, t)|2 . (SA.13)

Appendix B: Perturbation theory in the Trotter limit

Considering the Trotter limit of the time-evolution operator in the interaction picture we have

lim
τ→0

U(a, τ)t/τ = Texp

[
−i

∫ t

0

dsHI(s, a)

]
eit

∑
jPj , (SB.1)

where Texp[·] represents the time-ordered exponential and

HI(s, a) = a
∑
j

PjXj+1e
−isZj+1 + a(X1e

−isZ1 − 1), (SB.2)

is the coupling part of the Hamiltonian in the interaction representation. A standard expansion of the time-ordered
exponential gives

A′(x, t) = ⟨↑ · · · ↑︸ ︷︷ ︸
x

↓ · · · ↓|Texp
[
−i

∫ t

0

dsHI(s, a)

]
|↓ · · · ↓⟩

=(−i)xax ⟨↑ · · · ↑︸ ︷︷ ︸
x

↓ · · · ↓|XxPx−1 . . . X2P1X1|↓ · · · ↓⟩
∫ t

0

dtx

∫ tx

0

dtx−1 · · ·
∫ t2

0

dt1e
i(tx+...+t1) +O(ax+1)

=(−2ia)x
sin(t/2)

x

x!
. (SB.3)

Plugging back into Eq. (14) we find Eq. (23).

Appendix C: TEBD algorithm for conditional ladder circuit

To simulate the dynamics in the Floquet Quantum East circuit in the ladder formulation we use the standard
time-evolved block decimation (TEBD) algorithm [27], which is ideally suited for this particular application. We
write the state

|ψ(t)⟩ = Ut
ℓ |↓↓ · · ·⟩ (SC.1)

which we represent as a matrix product state

|ψ(t)⟩ =
∑

s1,...,st∈{↑,↓}

A(1,t)
s1 Λ(1,t)A(2,t)

s2 Λ(2,t) · · ·A(t,t)
st |s1s2 · · · st ↓↓ · · ·⟩ . (SC.2)

A(x,t) are d(x−1,t) × d(x,t) dimensional matrices, which at any position x ∈ {1, . . . , t} and instant of time t ∈ N satisfy
the (right) orthogonality relations ∑

s∈{↑,↓}

A(x,t)
s

[
Λ(x,t)

]2[
A(x,t)

s

]†
= I, (SC.3)
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A B

= U DV† ≈
B′ A′

(SC.6)

FIG. S1. Here we show the elementary iterative step of our TEBD algorithm. Diamonds denote the Λ matrices of Schmidt
coefficients. First we construct the matrix M with tensors A = A(x,t−1) and B = B(x+1), which we then write in the canonical
singular value decomposition. Then we truncate the singular values, put them in the new Λ(x,t), and define new tensors
A′ = A(x+1,t) and B′ = B(x). In this way we applied one local conditional gate and moved the impurity tensor B one place
left.

where Λ(x,t) are d(x,t) dimensional diagonal matrices containing (nonzero) Schmidt coefficients

Λ(x,t) = diag{σ(x,t)
n |n = 1, 2, . . . d(x,t)} . (SC.4)

Namely, they are square roots of the elements of entanglement spectrum [σ
(x,t)
n ]2 for the bipartition

[1, 2, . . . t] ∪ [t+ 1, t+ 2 . . .].

For convenience and consistency we take d(0,t) := 1, d(t,t) := 1, Λ(0,t) := 1, Λ(t,t) := 1. Note that due to the

normalization of the state |ψ(t)⟩ we have tr
[
Λ(x,t)

]2
= 1.

In the t-th time step of the algorithm, having already computed the tensors A
(x,t−1)
s ,Λ(x,t−1), x = 1, . . . t − 1, we

start applying the gates of the ladder propagator Uℓ from the right. We first trivially expand the support of the state
|ψ(t− 1)⟩ one site to the right, by placing an explicit down-spin at place x = t introducing an 1× 1 impurity matrix

B
(t)
s = δs,0, i.e.

|ψ(t− 1)⟩ =
∑

s1,...,st∈{↑,↓}

A(1,t−1)
s1 Λ(1,t−1)A(2,t−1)

s2 Λ(2,t−1) · · ·Λ(t−1,t−1)B(t)
st |s1s2 · · · st ↓↓ · · ·⟩ . (SC.5)

Then, for x = t− 1, t− 2, . . . 1, we do the following (see also the diagram in Fig. S1)

1. We form a 2d(x−1,t−1) × 2d(x+1,t) matrix by multiplying local matrices and performing a local conditional gate

M(s,n),(s′,n′) =
∑
s′′

(δs,↓δs′,s′′ + δs,↑us′,s′′)
[
Λ(x−1,t−1)A(x,t−1)

s Λ(x,t−1)B
(x+1)
s′′ Λ(x+1,t)

]
n,n′ , (SC.7)

where u is the single-qubit part of of full 2-qubit conditional gate U (5)

u = exp(−iτ(aX − I)). (SC.8)

2. We compute the canonical singular value decomposition of M

M =: U DV† (SC.9)

where we keep only d(x,t) singular values (elements of the diagonal matrix D) larger than some prescribed
truncation accuracy ε. Thereby we assigning[

B(x)
s

]
n,n′ :=

[
Λ(x−1,t−1)
n,n

]−1U(s,n),n′ , (SC.10)

Λ(x,t) := diag{Dn,n|n = 1, . . . , d(x,t)}, (SC.11)[
A(x+1,t)

s

]
n,n′ :=

[
Λ(x+1,t)
n,n

]−1V∗
(s,n),n′ . (SC.12)

This means that in each iteration we move the defect matrices B
(x)
s one step to the left, maintaining the canonical

Schmidt orthogonal form of the matrix product state. At the end of the loop, we set

A(1,t)
s :=

∑
s′

us,s′B
(1)
s′ , (SC.13)
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FIG. S2. Quantitative match with perturbation theory: Domain wall profile components N ′(x, t) for small a, a = 0.06 (left),
a = 0.02 (right), and τ = (

√
5− 1)π/2, and three different t = 25 (red), t = 35 (magenta), t = 45 (blue). Bullet denote leading

order perturbative formula (22).

which applies the local unconditional gate u at the left end of the circuit (see Fig. 1).

We simulated dynamics of Floquet Quantum East chain using TEBD algorithm in the localised regime with
negligible truncation error, setting ε between 10−6 and 10−10. This meant in practice that dynamical bond
dimensions d(x,t) never grew to more than a few hundred for the data shown in this paper. On the other hand, in
the ergodic regime, d(x,t) quickly grew so that TEBD could only reach times comparable to those accessible to exact
simulation t ≈ 30− 40.

Appendix D: Additional data from TEBD simulations

1. Quantitative check of perturbative analysis

For very small coupling parameter a the leading order perturbative prediction (22) for the domain wall components
N ′(x, t), gives even quantitatively correct result. We show in Fig. S2 the comparison between perturbative prediction

and TEBD data for a = 0.02 and a = 0.06 and irrational Trotter time τ = (
√
5 − 1)π/2. We find indeed that for

times t <∼ 1/a the agreement is even quantitative, whereas for longer times t≫ 1/a the agreement is still qualitative,
namely the overall decay of N ′(x, t) seems to be correctly captured by perturbation theory for all times t.

2. Critical coupling parameter ac(τ) for smaller τ

In order to verify our perturbative prediction (28) for the critical coupling constant ac(τ) we also investigate the
dynamics of entanglement entropies S(x, t) as function of a for values of τ considerably smaller than those shown in

Fig. 2. Specifically, in Fig. S3 we study cases of a = 0.6, 0.8, 0.10 and τ = (
√
5− 1)π/8 and τ = (

√
5− 1)π/16 clearly

suggesting the transition to lie in the interval ac ∈ [0.8, 1] for both small values of τ , in qualitative agreement with
the prediction (28) and even quantitatively agreing with the IPR phase diagram (4).

3. Schmidt (entanglement) spectra

It is perhaps also instructive to check the scaling of Schmidt (or entanglement) spectra {σ(x,t)
n } across the localization

transition for different cuts x at sufficiently long time t. This is shown in Fig. S4 for a = 0.2 (localised), and

a = 0.3, 0.5, 1.0 (ergodic regime), and fixed τ = (
√
5− 1)π/2, t = 36.
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FIG. S3. Entanglement entropy dynamics S(x, t), for t = 20, 30, . . . , 120 (red to blue curves) approaching the localisation
transition for smaller values of τ , specifically τ = (

√
5−1)π/8 (left column panels) and τ = (

√
5−1)π/16 (right column panels),

and three different values of a, a = 0.6 (top row panels), a = 0.8 (middle row panels), a = 1.0 (bottom row panels). Note
that only in the bottom row panels we see clearly linear growth of entanglement entropies, signalling ergodic dynamics, so the
transition should appear for 0.8 < ac < 1.0 for both values of τ (compare against the phase diagram in the main text).

Appendix E: Ladder vs brickwall cicruit

In Fig. S5 we show explicitly the similarity transformation, as a piece of quantum circuit, between the brick-wall
and the ladder propagators of the Floquet Qantum East model.

Appendix F: Additional data for IPR from exact diagonalization of finite systems

In the main text we showed how IPR scales with L, and with τ and a. It is also illustrative to look at the scaling
with a for a fixed τ and a few different values of L, which we report in Fig. S6. We see that there is an almost L
independent part where the IPR decreases significantly with increasing a. This could be interpreted as the region
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FIG. S4. Entanglement (Schmidt) spectra: We show Schmidt spectra for τ = (
√
5 − 1)π/2, t = 36, and different a =

0.2, 0.3, 0.5, 1.0 (left to right panels). Red to blue curves correspond to cuts from x = 2, 3, . . . , 35.

=

FIG. S5. Similarity transformation S (shaded region) between the U and Uℓ: SU = UℓS.

where the localisation length ξ increases with increasing a, resulting in decreasing IPR ∼ 2−ξ. When ξ increases
beyond L, we see L dependent values of IPR.
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FIG. S6. (Top) Logarithm of IPR versus a at τ = (
√
5 − 1)π/8 for different system sizes L. We see the the transition close

to a = 1. On the right we zoom on the collapse of data for different system sizes close to transition. (Bottom left) Same as
above with τ = (

√
5− 1)π/2. (Bottom right) A comparison between irrational τ = (

√
5− 1)π/2 ∼ 1.94161 (blue) and rational

τ = 2π
3

∼ 2.0944 (green) for system sizes L = 8, 12, 14 (cross, triangle, square). Even thought these τ are close, the transition
of the irrational one is close to a = 0.3 versus the rational one shows IPR shrinking with system size for much smaller a.
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