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Classical optimization problems can be solved by adiabatically preparing the ground state of a quantum
Hamiltonian that encodes the problem. The performance of this approach is determined by the smallest gap
encountered during the evolution. Here, we consider the maximum independent set problem, which can be
efficiently encoded in the Hamiltonian describing a Rydberg atom array. We present a general construction of
instances of the problem for which the minimum gap decays superexponentially with system size, implying a
superexponentially large time to solution via adiabatic evolution. The small gap arises from locally independent
choices which cause the system to initially evolve and localize into a configuration far from the solution in
terms of Hamming distance. We investigate remedies to this problem. Specifically, we show that quantum
quenches in these models can exhibit signatures of quantum many-body scars, which in turn, can circumvent
the superexponential gaps. By quenching from a suboptimal configuration, states with a larger ground-state
overlap can be prepared, illustrating the utility of quantum quenches as an algorithmic tool.
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I. INTRODUCTION

Adiabatic quantum evolution offers a resource-efficient
way to explore the power of current quantum computing
platforms. While adiabatic quantum computation is equivalent
to circuit-based computation in terms of computational com-
plexity [1], it incurs smaller experimental overheads provided
classical problems can be encoded in quantum Hamiltoni-
ans in a hardware-efficient manner [2–6]. Recently, Rydberg
atom arrays have emerged as an especially promising platform
for both analog and digital quantum information processing
[7–11]. The Hamiltonian of this system naturally encodes the
so-called maximum independent set (MIS) problem (Fig. 1),
which is NP hard in the worst case [12], and has many
real-word applications ranging from map labeling [13] to au-
tomated DNA design [14]. Using optical tweezers, atoms can
be arranged in nearly arbitrary two-dimensional geometries to
encode the MIS problem on unit-disk graphs. The adiabatic
approach to solving the MIS problem consists of initializing
all atoms in the ground state and applying a time-dependent
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drive to the Rydberg state [11,15]. As long as the maximum
rate of change of the drive is sufficiently small, the MIS state
will be prepared. However, for any given instance of the prob-
lem, the required evolution time is determined by the smallest
energy gap, which is, a priori, unknown. Recent experimental
observations [11] indicate that solving the maximum inde-
pendent set problem can have a favorable scaling for certain
unit-disk graph instances, compared to a class of classical
algorithms. Yet, it remains an important open challenge to
determine sets of instances that are either easy or hard to
solve adiabatically and how these compare to instances that
are difficult classically. Insights into what contributes to the
difficulty of instances could enable the development of new
algorithms overcoming such algorithmic slowdowns.

In this work, we construct instances of the MIS problem
that are very hard to solve via an adiabatic approach. Our
construction is based on locally independent choices when
forming suboptimal independent sets of a certain size. The
ability to locally pick different vertices without affecting the
rest of the independent set gives rise to a large degeneracy.
The coupling between the atomic ground state and superposi-
tions of these degenerate configurations is enhanced, causing
the system to initially evolve toward such states during the
protocol. The transition into the MIS at later times encoun-
ters a bottleneck if the locally degenerate configurations are
separated from the MIS by a large Hamming distance (cf.
[16] and next paragraph). We provide an explicit example of a
quasi-one-dimensional (quasi-1D) chain, where the Hamming
distance between the MIS and the degenerate configurations

2643-1564/2024/6(1)/013271(14) 013271-1 Published by the American Physical Society

https://orcid.org/0000-0001-8951-2157
https://orcid.org/0000-0001-7994-7077
https://orcid.org/0000-0001-5775-9542
https://orcid.org/0000-0002-5298-3112
https://orcid.org/0000-0001-5171-7798
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.013271&domain=pdf&date_stamp=2024-03-12
https://doi.org/10.1103/PhysRevResearch.6.013271
https://creativecommons.org/licenses/by/4.0/


BENJAMIN F. SCHIFFER et al. PHYSICAL REVIEW RESEARCH 6, 013271 (2024)

(a)

(c)

(b)

FIG. 1. (a) A unit-disk graph, where all pairs of vertices sepa-
rated by less than Rb share an edge. (b) A solution of the maximum
independent set (MIS) problem with green vertices constituting the
MIS. (c) Schematic of steps to solve the MIS problem on a Ry-
dberg atom array. The graph is initialized with all atoms in the
atomic ground state |gg . . . g〉 with connected sites located inside
their respective Rydberg blockade radii. After a sufficiently slow
sweep from δ � −|�| to δ � |�|, the set of sites in the state |r〉
corresponds to the MIS.

is proportional to the system size. Using a mean-field and
perturbation-theory analysis supported by numerics, we show
that the ground state undergoes an avoided level crossing
whose gap vanishes superexponentially with the system size.
The avoided level crossing may be viewed as a first-order
transition from the locally degenerate configurations to the
MIS.

Related obstructions to the adiabatic algorithm have been
reported for the weighted MIS, the 3-satisfiability, and the
exact cover problems [16–18]. This mechanism is also com-
monly referred to as a perturbative crossing [16]. In particular,
it was shown [18] that random instances of the exact cover
problem are likely to give rise to a superexponentially small
gap due to Anderson localization in configuration space. Ad-
ditional problem instances have been constructed in recent
years with fine-tuned interactions, or gadgets, that lead to
exponentially small gaps in the respective models [19–21].

Our work demonstrates that such small gaps can occur even
in translationally invariant unit-disk graphs for the MIS prob-
lem, in the absence of spatial disorder and without weighted
vertices. In fact, in our analysis, we make the observation that
cliques of a graph can lead to an enhancement of the quantum
fluctuations in the Hamiltonian, thus favoring localization in
configuration space. While this also leads to a perturbative
crossing, the classical optimization problem considered and
the physical mechanism leading to the small gap have subtle,
yet important, differences to what has been previously consid-
ered. Moreover, as locally independent choices create a large
degeneracy for independent sets smaller than the MIS, they
also affect classical algorithms: the time required to find the
MIS using simulated annealing with local updates increases at
least exponentially with the system size [11].

We discuss two approaches to address the challenges as-
sociated with the small gap. First, we add spin-exchange
terms to the Hamiltonian [22], which can be experimentally
realized, e.g., using multiple Rydberg levels [23–25]. These
terms allow the system to explore the configuration space
more efficiently. We observe that this increases the minimum
gap by orders of magnitude, although the superexponential
scaling persists. As a second remedy, we consider nonadia-
batic quenches, which give rise to quantum many-body scars
[26,27]. These scars lead to oscillations between the locally
degenerate configurations and the MIS, and thus offer an
avenue to preparing the MIS without having to adiabatically
cross the first-order transition. Indeed, we find significantly
improved probabilities for obtaining the MIS solution. Fur-
ther, we show that the oscillations decay with a slow exponent,
and hence, provide a scaling advantage over a superexponen-
tial adiabatic slowdown.

First, let us present a brief overview of the physical mod-
els that we consider in our analysis. Our starting point is a
system of Rydberg atoms arranged in a chain of diamonds
with N atoms, as in Fig. 1(c), which we call the doublet
Rydberg model. In this model, the atoms are coupled by the
long-ranged van der Waals interactions. In the limit of strong
interactions, the simultaneous excitation of neighboring atoms
to the Rydberg state is strongly suppressed, leading to the
so-called PXP Hamiltonian, where adjacent excitations are
strictly forbidden and the tails of the van der Waals inter-
actions are ignored [28]. Given the particular geometry of
the doublet chain, we call this the doublet PXP model. We
show that for the adiabatic algorithm, the doublet PXP model
is equivalent to a one-dimensional PXP chain of length L
wherein every odd site has its driving frequency enhanced
by a factor of k. We refer to this imbalanced PXP model as
the k-PXP chain. A related model, the k-Rydberg chain, is
obtained by adding back the full van der Waals interaction to
a chain of atoms where the driving term on every odd site is
enhanced by a factor k.

This paper is organized as follows. In Sec. II, we review
the MIS problem and define the quantum adiabatic algorithm
in the context of Rydberg atom arrays. Next, in Sec. III,
we describe the construction of graphs with locally indepen-
dent choices and introduce the quasi-one-dimensional chain
forming a lattice of interconnected diamond-shaped plaque-
ttes. Thereafter, in Sec. IV, we analyze the properties of this
chain of diamonds in detail and show that the minimum gap
vanishes superexponentially with the system size. We inves-
tigate remedies to overcome the unfavorable scaling of the
gap, either by adding hopping terms to the Hamiltonian, in
Sec. V A, or by exploiting quantum many-body scars follow-
ing a quench, in Secs. V B and V C, before concluding in
Sec. VI.

II. MAXIMUM INDEPENDENT SET PROBLEM
IN RYDBERG ATOM ARRAYS

We start by reviewing the problem Hamiltonian and the
adiabatic algorithm. The combinatorial problem of interest
here is the MIS problem, which is defined as follows. Given
a graph G(V, E ) with vertices V and edges E , an independent
set is a subset of vertices in which no two vertices share an
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edge. A maximum independent set is an independent set with
the largest possible number of vertices. There may be several
distinct MIS configurations; the MIS problem is to find at
least one such MIS. This can equivalently be expressed as
the problem of finding the ground state of the classical spin
Hamiltonian

HMIS =
∑

(i, j)∈E
V nin j − δ

∑
i∈V

ni, (1)

for V > δ > 0. Here, we associate with each site i ∈ V a
two-level system with computational basis states {|0〉 , |1〉}.
The Hamiltonian is expressed in the occupation-number basis
ni = |1〉i 〈1|, and we will refer to V and δ as the interaction
strength and the detuning, respectively. An MIS is identified
with a ground state of this Hamiltonian by preparing all ver-
tices in the independent set in the |1〉 state and all others in
|0〉.

We restrict the graphs of interest to unit-disk graphs, which
are constructed by placing vertices in a 2D plane and con-
necting each vertex to any other within a fixed radius; see
Fig. 1(a) for an example. Note that the MIS problem remains
NP complete when restricted to unit-disk graphs [12]. It was
observed in Ref. [15] that for the special class of unit-disk
graphs, an approximation to HMIS is natively realized in Ry-
dberg platforms, which allows one to solve the MIS problem
by preparing the ground state of an array of Rydberg atoms.
We associate with |0〉 the ground state of an atom and with |1〉
a highly excited Rydberg state. For convenience, we will also
refer to these states as |g〉 and |r〉, respectively. The Rydberg
Hamiltonian is given by

HRyd(δ,�) =
∑

i, j∈V

V

|ri − r j |6
nin j − δ

∑
i∈V

ni + �
∑
i∈V

σ x
i , (2)

where � denotes the global Rabi frequency. Here, the inter-
action along the edges of the graph has been replaced by
a term that depends on the sixth power of the Euclidean
distance between two atoms (vertices), arising from the van
der Waals (vdW) interaction between pairs of atoms oc-
cupying the Rydberg state. The first two terms in Eq. (2)
encode the classical cost function whereas the last one is the
quantum driver, which is necessary to adiabatically prepare
the MIS.

In the quantum adiabatic algorithm (QAA) [29–32], the
system is prepared in the initial state |gg . . . g〉, which is the
(approximate) ground state of H0 = HRyd(δ � −|�|,�). The
parameters of the Hamiltonian are then slowly changed until
the target Hamiltonian HT = HRyd(δ � |�|,�) is reached.
We will assume that this change proceeds according to the
linear interpolation

H

(
t

T

)
=

(
1 − t

T

)
H0 + t

T
HT , (3)

where t is the time and T the total duration.1 The preparation
time T required to achieve an appreciable overlap with the

1In practice, the Rabi frequency � is usually ramped from zero to
a constant value in the beginning of the sweep and ramped down at
the end. For simplicity of the presentation, we assume a constant �

throughout the sweep.

ground state of HT is related to the adiabatic gap �min, which
is the minimum spectral gap between the ground state and the
first excited state during the evolution. In the worst case, the
adiabatic theorem gives a scaling of T with the adiabatic gap
as 1/�3

min [33] such that a small gap may render the adiabatic
algorithm highly inefficient in practice.

III. LOCALLY INDEPENDENT CHOICES
IN QUASI-1D GRAPHS

Recently, Ebadi et al. [11] observed that for a class of ran-
dom unit-disk graphs, degeneracies play an important role in
determining the instance-to-instance variation in the hardness
of solving the combinatorial optimization problem. Specifi-
cally, we define the degeneracy ratio

R ≡ D(|MIS| − 1)/D(|MIS|), (4)

where D(s) denotes the number of distinct independent sets
of size s and |MIS| is the size of the MIS. Reference [11] re-
ported that R is strongly correlated with the hardness of many
graph instances for both simulated annealing and QAA.2 In
the case of simulated annealing, this is because it is chal-
lenging to find an independent set that is connected to the
MIS via local updates if the degeneracy ratio is large since
the algorithm will typically get stuck in a local minimum. For
QAA, the relation between a large degeneracy ratio and a long
computation time or, equivalently, a small minimum gap, is
less clear. In this section, we present a class of graphs that
simultaneously gives rise to a large degeneracy ratio and a
small adiabatic gap.

Our mechanism is based on local degrees of freedom that
give rise to a large degeneracy. We start by considering quasi-
1D graphs, although this mechanism can be generalized to
higher dimensions. The graphs of interest are built from a
finite 1D chain by replacing some of the vertices with two
connected vertices (a doublet). Four different examples with
a chain of length L = 7 are shown in Fig. 2(a). The fourth
graph (chain of diamonds) and the third graph (diamonds with
doublets on the boundaries) are special in the sense that they
have a particularly large or small degeneracy ratio when L is
odd. For the chain of diamonds, there is only a single MIS
solution [Fig. 1(c)]. The number of MIS-1 configurations, i.e.,
independent sets that are smaller than an MIS by one vertex,
is exponential in the chain length L because of the freedom to
occupy either position in every doublet. Hence, the degener-
acy ratio R increases exponentially with L. In the remainder of
this paper, we focus on the fourth graph in Fig. 1(a), referring
to it as the doublet chain.

For encoding these graphs in Rydberg atom arrays, we
shall consider the Rydberg blockade [34] regime, where the
interaction strength between the two atoms in each doublet is
sufficiently large so that they cannot simultaneously occupy
the Rydberg state. Here, we do not consider longer-range

2In Ref. [11], a hardness parameter is defined as HP = R/|MIS|.
However, |MIS| scales at most linearly with the system size, whereas
R scales exponentially for the chain of diamonds. The denominator
in the hardness parameter is therefore a subleading contribution and
can be safely ignored for the purpose of this work.
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(a) (b)

(c)

FIG. 2. (a) Different quasi-1D chains. In this work, we focus
mainly on the fourth graph (chain of diamonds). Singlets and dou-
blets are indexed in the horizontal direction. (b) In the strongly
blockaded limit, two sites sharing a vertical edge (doublet) may
be decomposed into the symmetric and antisymmetric subspace in
the occupation basis. An adiabatic sweep from the |gg . . . g〉 state
is restricted to the symmetric subspace for every doublet. (c) As
the antisymmetric subspace is effectively frozen out, the quasi-1D
chains can be mapped to a regular 1D chain with site-dependent
Rabi frequencies, shown here for the chain of diamonds. The doublet
(i, j), in which each site contributes to the Hamiltonian with a local
drive �(σ x

i + σ x
j ), is replaced by a single node with an enhanced

Rabi frequency
√

2�.

interaction tails yet. In this case, the states of a doublet are
spanned by the symmetric subspace {|gg〉 , (|gr〉 + |rg〉)/

√
2}

and the antisymmetric subspace {(|gr〉 − |rg〉)/
√

2} [see
Fig. 2(b)]. As the linear, homogeneous adiabatic sweep is
initiated in the |gg . . . g〉 state, the antisymmetric subspace
is never populated. The symmetric subspace may be viewed
as a two-level system, for which the local Rabi frequency
is enhanced by a factor of

√
2 compared to a single atom.

This allows us to map the doublet PXP model to a 1D
chain with alternating Rabi frequencies [Fig. 2(c)]. For this
1D geometry, we consider both the strongly interacting
limit (

√
2-PXP chain) and a finite interaction strength V

between even and odd sites (
√

2-Rydberg chain). Longer-
ranged interactions are referred to as interaction tails and
studied only in the

√
2-Rydberg model when explicitly

indicated.
The enhancement of the effective Rabi frequency for dou-

blets excites them to the Rydberg state faster than atoms
that do not belong to a doublet. In the picture where the
doublet chain is viewed as a 1D chain with alternating Rabi
frequencies, the system is driven toward a state where the
even sites are excited to a Rydberg state, while the odd sites
remain in the ground state. Since L is odd, this state belongs
to the MIS-1 subspace. We will show below that to transition
from this state to the MIS, where the odd sites occupy the
Rydberg state, it is necessary to pass through an avoided
crossing whose gap decays superexponentially with L. Hence,
the locally independent choices under the independent set
constraint result in a small adiabatic gap by causing the system
to initially favor a suboptimal solution.

IV. LOCAL DEGREES OF FREEDOM MAKE
THE ADIABATIC ALGORITHM FAIL

We now turn to investigate the particular properties of the
adiabatic gap for the

√
2 models, where every even site has an

enhanced Rabi frequency.

A. Phase diagram for varying imbalance strength

In the construction of the doublet chain, we have so far only
introduced �even = √

2�odd (i.e., k = √
2). However, instead

of the doublet, other gadgets may be used [35] that replace a
single site in the 1D chain, e.g., a fully connected graph of
three vertices that all connect to the previous and subsequent
vertex. This gadget would lead to a local enhancement of
k = √

3 (as discussed in Appendix B). To build intuition for
the imbalanced chain, we construct a phase diagram of the
system as a function of k and the detuning δ, using the mean
occupation as an observable [36,37]. We find a disordered
ground state for δ/� � −1 and two ordered ground states for
δ/� � 1 in Fig. 3. The red horizontal solid and dashed lines
correspond to adiabatic sweeps for two particular geometries,
i.e., the PXP chain and the

√
2-PXP chain, respectively. One

ordered state corresponds to the MIS solution (yellow). In
the other ordered state, the sites occupied are exactly those
which are unoccupied in the MIS state; we label this as
S (green). From the figure, we observe that the transition
to the MIS state becomes increasingly sharper for larger k.
For k = 1, the model is known to exhibit a translational-
symmetry-breaking second-order phase transition equivalent
to that of the transverse-field Ising model [38]. Away from
the k = 1 line, the Z2 translational symmetry is explicitly

FIG. 3. The mean occupation for a k-PXP chain of length L = 11
with the Rabi frequency enhanced by a factor k on every even site.
The doublet chain corresponds to k = √

2. The adiabatic sweeps
considered originate on the left side for δ/� � −1 and end on the
right at δ/� � 1. The transition from the disordered to the ordered
phase along horizontal lines becomes sharper for larger k. Notably,
the MIS solution becomes separated by a first-order transition from
the phase corresponding to the MIS-1 solution (S) when k > 1.
Different k may be realized by other gadgets replacing the doublets
(see Appendix B).
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(a)

(b)

FIG. 4. Local occupation 〈ni〉 in the ground state at different
values of δ/� for (a) a Rydberg chain and (b) a

√
2-Rydberg chain

(V = 100, no interaction tails) of length L = 11. The local occupa-
tion is zero for both chains for δ/� � (δ/�)crit and converts into
a stripe pattern (MIS) at δ/� � (δ/�)crit. However, close to the
respective critical points, the behavior is different. The Rydberg
chain exhibits an onset of increasing occupation at the boundary first
and in the bulk only slightly later. The

√
2-Rydberg chain shows

increased occupation on the doublet sites before the critical point.
In an adiabatic sweep, the system will initially rotate into the wrong
configuration (S), leading to a very small adiabatic gap.

broken in the Hamiltonian by the staggered Rabi frequencies,
so there is no sharp distinction between the S , MIS (= S ),
and disordered states in terms of their symmetries. We observe
that the enhanced Rabi frequency on alternate sites now leads
to the occurrence of a first-order transition for k � 1, while
the two states can be continuously connected in the k � 1
regime. This line of first-order transitions that terminates at
a second-order critical point is reminiscent of the familiar
liquid-gas transition in water, which is similarly characterized
by a first-order transition without any symmetry breaking
[39].

Let us outline a general explanation of the first-order tran-
sition in

√
2 chains before presenting analytical arguments

using both a mean-field picture and a perturbation-theory cal-
culation in the following subsections. Intuitively, the enhanced
Rabi frequency locally favors occupation on the even sites.
This is visualized clearly in Fig. 4 when comparing the local
Rydberg occupation 〈ni〉 of the Rydberg chain in (a) to that of
the

√
2-Rydberg chain in (b) for varying δ/�. Approaching

the critical detuning from negative to positive values of δ/�,
we observe increased occupation on the even sites of the
quasi-1D chain. From the perspective of the MIS problem,
the wrong sites are favored and rotate first, which is not the
case for the second-order phase transition in the 1D chain.
Hence, for the

√
2 chain, the ground states shortly before and

after the critical point have near-maximal Hamming distance.
This leads to a very small adiabatic gap because high-order
quantum fluctuations are required to transition between the
two states. We emphasize an interplay between the bulk and

the boundary in the ordering process: in Fig. 4(a), we observe
that the boundary orders first, thereby assisting the adiabatic
evolution [37]. This is primarily due to the presence of fewer
interactions at the boundary, which favors vertices close to
the ends of the chain being occupied earlier. While this phe-
nomenon can also be seen for the quasi-1D chain, it is much
weaker than the effect of the local enhancement of the Rabi
frequency.

Our observations on the first-order transition for the Ryd-
berg doublet chain are consistent with the existing literature
on perturbative crossings [16,18]. We identify a locally en-
hanced Rabi frequency as the root of the localization in
configuration space, thus allowing for additional physical in-
sight into perturbative crossings in Rydberg atom arrays.

B. Mean-field analysis

We now establish a mean-field description of the
√

2-
PXP chain to phenomenologically describe the features of the
graph geometry. To this end, we consider a simple product-
state ansatz, which obeys the blockade condition for the limit
of large interactions. For the ground state and the first excited
state, we write

|ψMIS〉 = |φ1〉 |g〉 |φ3〉 |g〉 . . . |φL〉 , (5)

|ψS〉 = |g〉 |φ2〉 |g〉 |φ4〉 . . . |g〉 , (6)

with |φi〉 ≡ αi |g〉 + βi |r〉. Next, we assume that all odd and
even sites can be described by the same two-level dynamics
such that |φ1〉 = |φ3〉 = · · · = |φodd〉 and |φ2〉 = |φ3〉 = · · · =
|φeven〉.

The local Hamiltonian is given by

Hi = −δ ni +
{
� σ x

i , i odd
k� σ x

i , i even (7)

and the local state follows as |φi〉 = cos(θi/2) |r〉 +
sin(θi/2) |g〉 with tan(θodd) = −2�/δ and tan(θeven) =
−2k�/δ. With this ansatz, the energies of the ground and first
excited states are

EMIS = −L + 1

4
(δ +

√
4�2 + δ2), (8)

ES = −L − 1

4
(δ +

√
4(k�)2 + δ2), (9)

respectively. Indeed, the mean-field picture explains Fig. 4(b),
where the states on the two sides of the critical point are
rotated in a way so as to yield complementary stripe patterns.
Furthermore, we may look for the critical point where the two
energies EMIS and ES would cross in the mean-field model.
Setting k = √

2, we find that (δ/�)crit ∼ O(
√

L), implying
that when the

√
2-PXP chain growths in length, the avoided

level crossing occurs in an increasingly classical regime.

C. Superexponentially small adiabatic gap

Having established an intuitive understanding of the dou-
blet chain from the phase diagram and the mean-field model,
we now analyze the scaling of the minimal spectral gap in an
adiabatic evolution process in which the detuning δ is swept
from large negative to large positive values. To anticipate the
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FIG. 5. Size and position of the adiabatic gap in the
√

2-Rydberg
chain. The main plot shows the superexponential scaling of the
adiabatic gap for different interaction strengths. Adding the tails of
the Rydberg interaction decaying as 1/r6 to the

√
2-Rydberg chain

does not change the slope significantly. In the inset, we show that
the value of the critical detuning (δ/�)crit grows with the square root
of the system size, confirming the mean-field prediction. Hence, the
phase transition occurs in an increasingly classical regime for long
chains.

result, we find that the adiabatic gap vanishes superexponen-
tially fast with growing system size.

First, we discuss the numerical results for k = √
2 and then

follow up with an analytical proof for sufficiently large k. The
Hamiltonian for the doublet chain reduced to a

√
2-Rydberg

chain is given by

HQ1D =
∑
i> j

V

|i − j|6 nin j − δ

L∑
i

ni + �

L∑
i odd

σ x
i

+
√

2�

L∑
i even

σ x
i . (10)

In Fig. 5, we compute the size and position of the adiabatic
gap and also compare the effect of varying the strength of the
interaction V as well as the inclusion of long-ranged vdW tails
in the

√
2-Rydberg chain up to a distance of five sites. The

Rabi frequency is fixed to � = 1, such that the only parameter
swept in the adiabatic evolution is the detuning from δ � −1
to δ � 1. The adiabatic gap is computed using the density-
matrix renormalization group (DMRG) algorithm [40]. Our
numerical data clearly show that the size of the adiabatic gap
approaches zero with a scaling that is superexponential, even
in the presence of long-ranged interaction tails or a softer
blockade between horizontal nodes. Furthermore, we numeri-
cally confirm the mean-field prediction that the position of the
spectral gap shifts toward larger values of δ and scales with
the square root of the chain length.

Now, we seek to confirm the numerical findings with an
analytical description of the gap’s scaling. In order to do so,
we present a three-step argument summarizing a perturbative
approach and include a full description thereof in the Ap-
pendix A. The argument is as follows:

(1) From the mean-field model, we compute that the po-
sition of the critical point lies in the classical regime with
δcrit � |�| for large L. Hence, a perturbative ansatz is war-
ranted.

(2) Next, we consider the k-PXP chain with locally
enhanced Rabi frequencies, described by the Hamiltonian
H/δ = H0 + �/δ Hx ≡ H0 + εHx. Here, the unperturbed
Hamiltonian is H0 = −∑L

i ni, and the perturbation is

Hx =
L∑

i odd

Pi−1σ
x
i Pi+1 + k

L∑
i even

Pi−1σ
x
i Pi+1,

where the projectors Pi ≡ (1 − ni ) and P0 = PL+1 = I enforce
the blockade constraint. Now, considering the subspace of
the first excited states of H0 and using Rayleigh-Schrödinger
perturbation theory, the lowest perturbed eigenenergy is found
for the eigenstate that completely localizes in the S state if the
local enhancement factor k is sufficiently large.

(3) For sufficiently large k, the spectral gap at the avoided
level crossing is given, similar to a Landau-Zener model [41],
as

� ∝ εL
crit =

√
1/L

L = exp[−L log(L)/2].

This agrees with the numerical findings of a superexponen-
tially small adiabatic gap as the length of the doublet chain is
increased.

V. MITIGATING THE SMALL ADIABATIC GAP

In the following section, we investigate two approaches
to overcome the superexponentially small gap encountered in
preparing the MIS ground state with quantum dynamics.

A. Additional spin-exchange terms in the evolution

The first approach is to add additional terms to the Hamil-
tonian that facilitate fluctuations between the S and the MIS
state. Intuitively, the addition of boson hopping, or spin-
exchange, terms, σ+

i σ−
j + σ−

i σ+
j = (σ x

i σ x
j + σ

y
i σ

y
j )/2 with

σ±
i = (σ x

i ± iσ y
i )/2, allows for occupations to move across

the chain directly as opposed to via higher-order processes
with the σ x

i term alone. To confirm this hypothesis, we nu-
merically compute the adiabatic gap for

√
2-Rydberg chains

of lengths up to L = 55, corresponding to N = 82 sites in
the Rydberg model. The Hamiltonian, including the spin-
exchange terms, that we consider is

HSE = HQ1D − φ

L−1∑
i=1

(σ+
i σ−

i+1 + σ−
i σ+

i+1). (11)

We probe values of φ ∈ {0, 1, 2, 3}, do not include long-
ranged tails here, and set V = 100, � = 1. As previously,
the only parameter that we sweep in the adiabatic evolution
is the detuning from δ � −1 to δ � 1. We observe that the
scaling of the vanishing adiabatic gap remains superexponen-
tial �min ∼ O{exp[−N log(N )]} even with the spin-exchange
terms. This is expected as the critical region still lies in
the classical regime and transitioning into the ground state,
as before, requires quantum fluctuations of the order of the
chain length. Importantly, however, the absolute values of
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(a)

(b)

FIG. 6. (a) Adiabatic gap with an additional spin-exchange term
of varying global strength φ in the

√
2-Rydberg chain (V = 100, no

tails). The x axis shows the number of sites N in the corresponding
quasi-1D geometry. We observe that the superexponential scaling
persists. However, the absolute size of the gap increases by orders
of magnitude for the longest chains probed. (b) Comparison between
the gap in a standard adiabatic sweep and the Laplacian formalism.
Here, we consider the

√
2-PXP model by setting the interaction

strength to a very large value (V = 1000). The strength of the
Laplacian was set to φ = L. The expected scaling, shown as a guide,
becomes exponential in the limit of N � 1.

�min are significantly larger when the spin-exchange term is
present, by up to multiple orders of magnitude as visualized
in Fig. 6(a). We note, however, that Eq. (11), which describes
the

√
2-Rydberg chain, is not equivalent to adding spin-

exchange terms of global strength φ to the doublet Rydberg
model.

This approach of adding terms to the Hamiltonian is a well-
known technique that, for some models, can lead to a larger
adiabatic gap [19,42–45]. These terms are then also referred
to as catalysts for the adiabatic evolution, and some catalysts
resemble the spin-exchange terms used here.

In a similar vein, Ref. [22] proposes a modification to
the original Hamiltonian by adding a global Laplacian term
that favors delocalization in configuration space. This graph
Laplacian resembles HSE, but also includes a diagonal correc-
tion term that counts the number of possible spin exchanges.
In the

√
2-Rydberg chain, the full Hamiltonian with this mod-

ification reads as

HL = HQ1D −
√

2φ

L−1∑
i=1

(σ+
i σ−

i+1 + σ−
i σ+

i+1)

+
L−1∑
i=1

φiniPi+1Pi+2 +
L∑

i=2

φiPi−2Pi−1ni, (12)

where φi = φ for odd i, φi = 2φ for even i, and Pi = I for
i /∈ [1, L]. For large systems, the adiabatic gap in the pres-
ence of a Laplacian of sufficient strength is predicted to be
�min ∝ |MIS|/√D(|MIS| − 1) as the degeneracy of the MIS
is one. For a quasi-1D doublet chain of odd length L, there is
only a single MIS and the number of MIS-1 configurations in

the graph is D(|MIS| − 1) = 2(L+3)/2 − (L + 5)/2. Therefore,
with the Laplacian modification, the scaling of the adiabatic
gap becomes exponential instead of superexponential. We
accordingly include a guide to the eye in Fig. 6(b), which con-
siders the doublet PXP model in the limit of a strong blockade.
With an added Laplacian of strength φ = L, the scaling of the
numerically computed gap follows the exponential trend in
the regime of large system sizes.

B. Using many-body scars to quench across the phase transition

In the previous section, we described how the small adi-
abatic gap of the doublet Rydberg model can be mitigated
by additional terms in the Hamiltonian. Ideally though, we
would like to find an algorithmic procedure that circum-
vents the superexponential scaling of the adiabatic gap by
using only the Rydberg Hamiltonian. Here, we describe how
nonergodic eigenstates in this model can be used to cross
the observed first-order transition and provide an algorithmic
advantage.

Quantum many-body scars, which have attracted much in-
terest in recent years, describe a phenomenon in which a weak
breaking of ergodicity gives rise to coherent state revivals
of an initial state after a global quench. This behavior was
first observed in experiments on 1D Rydberg chains, which
showed persistent oscillations between the MIS state and its
complement after a global quench [26]. Since then, numer-
ous theoretical explanations have emerged for such scars,
including nonthermal eigenstates in the spectrum [46], and
proximity to models with unstable periodic orbits [47]. For a
theoretical introduction on many-body scars, we direct the in-
terested reader to Ref. [27]. In a broader sense, this mitigation
approach connects to research on diabatic quantum annealing,
which encompasses different advanced techniques beyond the
traditional adiabatic algorithm [48].

Since the 1D Rydberg chain is approximated by the PXP
chain, it is natural to ask whether quantum many-body scars
also exist in the

√
2-PXP chain and, importantly, whether they

provide an alternative route to bypass the first-order transi-
tion with global quantum dynamics. The key signatures of
scars are nonthermal eigenstates, which weakly violate the
eigenstate thermalization hypothesis (ETH).3 In Figs. 7(a) and
7(b), we show the overlap of the energy eigenstates of a PXP
chain and of a

√
2-PXP chain with the MIS and S state as a

function of the energy. For the PXP chain [Fig. 7(a)], there
are signatures of special eigenstates which have much higher
overlap with the MIS and S states than expected from ETH,
as indicated by a gap to the thermal bulk of eigenstates. In
contrast, for the

√
2-PXP chain in Fig. 7(b), these features

smear out and the special eigenstates start to mix with the
bulk of the thermal states. However, a few eigenstates remain
separated, suggesting that the quasi-1D chain may also feature
quantum many-body scars, albeit of lower intensity.

To probe quantum scar dynamics, we numerically study the
state-transfer fidelity for short times after a global quench to
δ = 0 from the S state [orange line in Fig. 7(c)] for a chain of

3The violation is weak because the eigenstates constitute a set of
measure zero in the thermodynamic limit.
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(a)

(c)

(d)

(e)

(b)

FIG. 7. Eigenvector overlaps for the k-PXP chain with δ = 0 and
L = 15 with (a) k = 1 and (b) k = √

2 as a function of the energy.
(c) Revival and state-transfer fidelity for a quench from the S state,
which is the first excited state of the Hamiltonian at large detunings.
At T = 2.0, a large fidelity to prepare the (MIS) state is observed.
(d) Quantum many-body scars as an algorithmic tool: instead of slow
adiabatic evolution, the system is driven to the S state. Then, after
quenching to δ = 0, the readout is timed such that the probability to
obtain the desired MIS state is maximized. (e) Exponential scaling
of the peak state-transfer fidelity of the MIS state for the k-PXP
chains of length up to L = 21 after a quench to δ = 0. The fidelity is
extracted at fixed T : T1D = 2.37 for the PXP chain, and TQ1D = 2.00
for the

√
2-PXP chain.

length L = 21. The simulations are performed in an effective
Hamiltonian subspace where we assume the interaction be-
tween vertices connected by an edge to be infinitely large. In
the fully blockaded limit, the model is described by a

√
2-PXP

chain:

Hq = �

L∑
i odd

Pi−1σ
i
xPi+1 +

√
2�

L∑
i even

Pi−1σ
i
xPi+1, (13)

with P0 = PL+1 = I . Akin to the PXP chain without en-
hanced Rabi frequencies, we find significant initial revival
fidelities that vanish for later times. Specifically for L = 21,
the state-transfer fidelity into the MIS state has a peak of
46% (see Appendix C for longer times). From the PXP
chain, it is known that the position of the MIS peak is ap-
proximately independent of system size and is numerically
predicted to be at T1D ≈ 1.51π/(2�) ≈ 2.37 [26]. To first
order, the revival (and state-transfer) periodicity may be ap-
proximated by a two-site dimer model which does not take
the blockade between two adjacent dimers into account. Such
a model predicts T̃1D = √

2π/(2�) ≈ 2.22, around 6.3%
below the true value. Extending the dimer model to the√

2-PXP chain of Hq, we obtain an approximate prediction
T̃Q1D ≈ π/(

√
3�) ≈ 1.81, which is 9.5% below the numerical

prediction of TQ1D = 1.27π/(2�) ≈ 2.00. The calculation of
the revival time is detailed in Appendix C 1.

A schematic picture of how scars can be used for state
preparation is shown in Fig. 7(d): An initial state is prepared
and a fast diabatic evolution brings the state to the S phase
by sweeping the detuning δ. A global quench to a detuning
δ = 0 then invokes collective nonergodic dynamics. While the
first revival occurs at time T ∼ O(1), the size of the revival is
expected to vanish in the thermodynamic limit. We consider
the scaling of the decay and compare the data for the PXP
chain and the

√
2-PXP chain in Fig. 7(e). From the eigen-

value overlaps [Fig. 7(a)] and a simple two-site dimer model
(Appendix C 1), it is expected that the signatures of scars
are weaker in the

√
2-PXP chain. Indeed, we observe that

the first revival peak vanishes with a faster exponential slope
when the Rabi frequency is locally enhanced. Nevertheless,
for the system sizes considered, the absolute fidelities are
still remarkably large. Contrasted with the superexponential
vanishing of the adiabatic gap, this opens up the possibility to
cross over to the MIS state by a quantum quench instead of a
very slow adiabatic evolution.

As the perfect initial state for the quench might itself be
difficult to prepare, we consider instead an intermediate state
in the quasiadiabatic evolution after the critical point (this
stopping time would need to be fine tuned). In the Appendix,
we show such a realistic quench scenario after a quasiadia-
batic sweep for a chain of length L = 11 with long-ranged
tails and observe a significant state-transfer fidelity, albeit
less pronounced than for a perfect initial S state. Here, the
quench is performed after the quasiadiabatic evolution. Re-
lated schemes where a quench is introduced in the middle of
the quasiadiabatic sweep can yield superior results in practical
experimental setups (cf. Ref. [49]). Generally, the readout is
required to be timed to maximize the probability of observing
the desired MIS state. In this fashion, quantum quenches may
be used advantageously as an algorithmic tool. Additionally,
we note that in order to always have the interaction V being
stronger than the final detuning δ, a suitable rescaling of the
Hamiltonian parameters can be necessary for long chains.
Concretely, as (δ/�)crit ∼ O(

√
L), one can choose to reduce

the Rabi frequency � for longer chains. Alternatively, the
atoms can be placed together more tightly in order to decrease
the blockade radius Rb such that δ/V ∼ R6

b

√
L = const. This

ensures that there is indeed an MIS phase which can then be
prepared using an adiabatic sweep.
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(a)

(b)

(c)

FIG. 8. (a) A quasi-2D geometry which naturally extends the
quasi-1D chain and maps to a 2D lattice with the Rabi frequency
enhanced by a factor of

√
2 on every (light blue) site that is not a

part of the nondegenerate MIS solution (green). (b) Revival fidelity
for the imbalanced 3 × 3 grid with an enhanced Rabi frequency
on every light blue site. Initializing a quench with δ = 0 in the S
state, we find a significant state-transfer fidelity to the MIS state,
shortly after T = 2. (c) Revival fidelity for the imbalanced 5 × 5 grid
(i.e., N = 37 sites in the original quasi-2D grid), still exhibiting a
significant peak of 50%.

C. Extension to quasi-2D grids

The construction of the quasi-1D chain can be directly ex-
tended to a quasi-2D lattice. Given a square grid, the vertices
that are not to be part of the MIS are replaced by doublets. An
example constructed from a 3 × 3 grid is shown in Fig. 8(a),
featuring N = 13 vertices. Importantly, our analysis of the
spectral gap’s scaling remains the same for this

√
2-PXP grid.

For notational convenience, we continue to denote the state
that is complementary to the single MIS configuration (green
nodes) as S (light blue nodes). Even for the

√
2-PXP grid, the

feature of quantum many-body scars persists, which we verify
numerically. In our calculations, we simulate quenches to a
detuning δ = 0 with doublet grids of N = 13 (3 × 3) and N =
37 (5 × 5) sites, shown in Figs. 8(b) and 8(c). The quenches
are initialized in the S state and show significant state-transfer
fidelity to the MIS state shortly after T = 2, confirming that
the doublet grid behaves similarly to the doublet chain.

VI. DISCUSSION AND OUTLOOK

In this work, we introduced the concept of graphs with
locally independent configurational choices and showed that
they can cause a system to evolve into a configuration far
from the global optimum in terms of Hamming distance at
early times of an adiabatic evolution. This mechanism renders

inefficient not only QAA but also simulated annealing (SA),
a classical multipurpose algorithm for solving optimization
problems [50]. In simulated annealing, the temperature of
the thermal equilibrium state corresponding to the (classical)
problem Hamiltonian is gradually lowered until the ground
state is reached. In every iteration of this classical algorithm,
a random spin (or cluster of spins) update is proposed and
the update is accepted or rejected according to a rule that
guarantees convergence to the Gibbs ensemble at the current
temperature. In Ref. [11], it was observed that the ability
of SA to find the solution of the MIS problem depends on
the degeneracy ratio R: the expected hitting time for SA to
prepare the MIS is bounded from below by a time propor-
tional to R. For the chain of diamond plaquettes, R increases
exponentially with N such that SA fails to solve the MIS
problem on this graph efficiently. Hence, the local degrees
of freedom make both QAA and SA ineffective for this
model.

We propose two approaches to mitigate the small adiabatic
gap and to reduce the time to solution. Spin-exchange terms
increase the adiabatic gap by orders of magnitude without
changing the scaling of how the gap closes with system
size. Moreover, using a Laplacian formalism, an exponential
scaling of the spectral gap can be recovered. The potential
benefit of adding terms to the Hamiltonian has been explored
in the context of quantum annealing devices before; such
terms are often termed catalysts [19,42–45]. Here, we relate
this approach to the challenge of small adiabatic gaps on
current neutral-atom quantum computers. We also make the
connection to graph-Laplacian formulations explicit, which
provides new insights into the physical motivation behind the
introduction of additional catalytic terms.

In the second approach, we considered quenches with the
rapidly prepared suboptimal configuration as an initial state.
Similar to the regular PXP chain, the

√
2 chain features signa-

tures of quantum many-body scars, which result in oscillations
from the suboptimal configuration to the target configuration
(MIS). Even though the revival fidelities are expected to van-
ish in the thermodynamic limit, they remain significant for
relatively large systems. We confirm an exponential scaling of
this decay in the numerically accessible regime, suggesting
a favorable asymptotic scaling compared to the superexpo-
nential scaling of the adiabatic gap. We highlight that the
nonergodic behavior of many-body scars may be stabilized
such that the revival fidelity has a more favorable decay or
does not decay at all in the thermodynamic limit. Concretely,
it has been shown, for the PXP model, that quasilocal defor-
mations can make revivals virtually perfect [51]. Optimizing
the initial state for the quench dynamics can potentially also
improve the stability of the scars. This opens up possible
intersections with optimal control theory to determine effi-
cient protocols for state preparation on graph instances where
the adiabatic gap becomes prohibitively small [52]. It will
be interesting to explore whether the combination of fast,
nonadiabatic sweeps and quenches can give rise to a speedup
over QAA more generally. Importantly, our mitigation ap-
proaches make use of only global control. Another avenue
for future research is a combination with local control of the
Rabi frequencies to mitigate the small gaps associated with
perturbative crossings [53].
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In our analysis, we start from the doublet Rydberg chain
and show that, in the limit of strong, short-ranged interactions,
it can be described by a

√
2-Rydberg chain with a super-

exponentially small adiabatic gap. Aside from this quantum
mechanism that relies on the coherent superposition of the
doublets, there also exists a classical mechanism that leads
to a superexponentially small gap. The classical mechanism
is due to the tails of the long-range interaction, which favor
a state in which the distance between Rydberg excitations
is maximized by separating them diagonally across adjacent
doublets. The resulting zigzag-type state also has a large Ham-
ming distance from the MIS state. As the net difference in
interaction energy between the zigzag-type state and the MIS
is proportional to the chain length, the first-order transition
happens progressively later in the sweep for longer chains.
Hence, the energy splitting due to the interaction tails induces
a classical mechanism with a similar effect on the gap as the
enhanced Rabi frequency in the

√
2 chain. For longer chains,

the classical mechanism eventually dominates over the quan-
tum mechanism. In the Appendix, we numerically confirm
the predicted gap scaling in the doublet Rydberg model and
compare it to the

√
2-Rydberg chain, where only the quantum

mechanism is present. The experimental implications of the
interaction tails of the doublet Rydberg chain will be studied
in future work [49], specifically, in the limit where the reduced
chain approximation is no longer applicable. We note that
by placing the atoms of the doublet sufficiently close, the
physical properties of the

√
2-Rydberg chain, as investigated

in this paper, are retained.
Our observations provide important insights relevant for

practical realizations of optimization problems in Rydberg
systems. Local degrees of freedom arise from the cliques of
a graph, and we conjecture that they impede the solution of
the MIS problem on a more general set of graphs with many
cliques. Further work is needed to ascertain to what extent
local degeneracy and the vdW tails are responsible for the
observed correlation between the degeneracy ratio and the
adiabatic gap in random graphs [11]. Our work opens the door
to theoretical and experimental studies of the characteristics
that render instances of the MIS problem hard to solve with
QAA. An improved understanding of the connection between
graph geometries and the adiabatic gap will guide the search
for classes of instances for which optimization with Rydberg
atom arrays may achieve a practical quantum speedup.
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APPENDIX A: SCALING OF THE ADIABATIC GAP

1. Perturbation theory

In this Appendix, we seek to quantify the size of the
smallest spectral gap along the adiabatic sweep to prepare
the ground state of the k-PXP chain with the Rabi fre-
quency enhanced by a factor k on every even site. We denote
L = 2K − 1, such that K = |MIS|, and make use of a pertur-
bative approach in the limit of δ � � and δ > 0:

Heff

δ
= H0 + �

δ
Hx = H0 + εHx. (A1)

For the doublet PXP chain, we have k = √
2. The unperturbed

Hamiltonian and the perturbation are given by

H0 = −
L∑
i

ni, (A2)

Hx =
L∑

i odd

Pi−1σ
x
i Pi+1 + k

L∑
i even

Pi−1σ
x
i Pi+1 (A3)

with P0 = PL+1 = I at the boundaries. The eigenstates of
the unperturbed Hamiltonian H0 are classical configurations
in the occupation basis. In Rayleigh-Schrödinger perturbation
theory, the perturbed energies are given by

En(ε) = E (0)
n + ε2

∑
k �=n

|〈k(0)|Hx|n(0)〉|2
E (0)

n − E (0)
k

+ O(ε3) (A4)

because, at first order, all contributions vanish
[〈n(0)|Hx|n(0)〉 = 0]. Hence, the perturbed energy for the
nondegenerate ground state can be easily computed as
E0 = −K + ε2(−K ). This is because the ground state of H0

is the MIS with K sites in the Rydberg state and there are
K terms in the sum contributing to the correction at second
order: each of the K occupied sites may become unoccupied
individually through Hx, and there are no other classical
configurations that the ground state connects to at this order.

The first excited state, however, is highly degenerate. Thus,
we consider the matrix

Mi j = −ε2
∑

l∈{MIS,MIS−2}

〈i|Hx|l〉〈l|Hx| j〉
E (0)

MIS−1 − E (0)
l

, (A5)
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where i, j ∈ {MIS − 1}. We observe that the sorted diagonal
of M is given by

diag(M ) = ε2{. . . , k2(K − 2) + 1, k2(K − 1)}, (A6)

where the last element corresponds to the energy of the MIS-1
state with the largest Hamming distance to the ground state,
i.e., the S state. The penultimate element is one of the classical
states with K − 2 occupied even sites and one occupied odd
site. The MIS-1 state S couples to only two other MIS-1 states
through edge excitations: as the state is a maximal indepen-
dent set state, an occupied spin needs to be moved from the
second to the first or from the second to last to the last site
of the chain. Hence, the matrix M has only two off-diagonal
elements in the last row (or column) which have value k. By
the same argument, we have three elements of value k in the
second last row.

Clearly, if K → ∞, the largest eigenvalue of M is given by
k2(K − 1). For sufficiently large k as well, we can argue why
the eigenvalue would indeed be close to this value. To do so,
we make use of the Gershgorin circle theorem [55].

Theorem 1 (Gershgorin circle). Every eigenvalue of a
square matrix A with entries ai j lies within at least one of
the Gershgorin disks D(aii, Ri ) centered at aii with radius
Ri = ∑

j �=i |ai j |. If a single disk is disjoint from the other
disks, it contains exactly one eigenvalue of A.

The disks corresponding to the largest two eigenvalues
are D(k2(K − 1), 2k) and D(k2(K − 2) + 1, 3k), respectively.
Hence, these disks are disjoint for k̃ > (

√
29 + 5)/2 ≈ 5.19.

This implies that the proof here does not yet apply for k = √
2;

however, numerical evidence (see Fig. 5) suggests a similar
behavior can indeed be expected for values of k that are
significantly larger than 1 but smaller than k̃.

Having established that the largest eigenvalue r con-
centrates around r ≈ k2(K − 1) for sufficiently large k,
independent of the chain length, we analyze the dominant
eigenvector v using the Perron-Frobenius theorem [56].

Theorem 2 (Perron-Frobenius). For a square, positive,
symmetric matrix A with dominant eigenvalue r and normal-
ized dominant eigenvector v, the relation limm→∞ Am/rm =
vvT holds.

Thus, the Perron-Frobenius theorem implies that the domi-
nant eigenvector approaches v = (0, . . . , 0, 1) as K or k → ∞.
The configuration corresponding to the dominant eigenvector
is the MIS-1 state with maximal Hamming distance (S) from
the MIS state. In other words, the MIS-1 state is localized in
configuration space at the critical point.

We consider the tunneling matrix element between the two
localized states to compute the adiabatic gap. As they couple
only via Lth-order quantum fluctuations, the spectral gap is
given as

�min = εL
crit

∑
λ

∏
λi

√
2

1+(−1)i 1

Eλi

(A7)

= ε2K−1
crit

√
2

K−1 ∑
λ

∏
λi

1

Eλi

, (A8)

where Eλi is the energy denominator from the perturbative
expansion and the sum runs over all trajectories λ where L
sites are flipped from unoccupied to occupied (and vice versa)

FIG. 9. Superexponentially decreasing minimum gap for the
doublet Rydberg model in the geometry described in Appendix A 2
retaining interaction tails up to distances <2.5 (orange), and the√

2-Rydberg model with k = √
2 but no tails (blue); V is chosen

to be 100 for both cases. The steeper slope for the doublet Rydberg
model is attributed to the vdW tails favoring MIS-1 configurations
with large Hamming distance.

to connect the S state to the MIS state. The position of the
minimum spectral gap εcrit is computed using a mean-field
ansatz (see Sec. IV B). We can also confirm the location of the
critical point using a perturbative argument where we consider
the limit of large K and compute the crossing between the
energies of the MIS state and the MIS-1 state that is closest in
energy to obtain εcrit = 1/

√
k2(K − 1) − K . The perturbative

argument holds as the critical point occurs in the classical
regime for large system sizes or large k. The gap will be
given by �min = w(K )[

√
k2(K − 1) − K]−L, where w(K ) is

a correction factor. As in Ref. [18], we have a total number of
trajectories which goes as O(K!) that cancels the contribution
from the Eλi , which also gives O(K!), such that w(K ) does not
change the scaling of the gap. Hence, we find that the adiabatic
gap vanishes as �min ∼ O{exp[−L log(L)]}.

2. Validity of the reduced chain approximation

We consider the spectral gap of the doublet Rydberg
model (including next-nearest neighbors separated by dis-
tances <2.5) and compare it to that of the

√
2-Rydberg chain

with an imbalanced Rabi frequency (but without long-ranged
interaction tails) to validate that the approximation of the
reduced chain is suitable for the geometries considered. The
specific geometry considered here has doublet sites spaced
by 1 and the single atom at distance

√
1.5 from each doublet

atom. The interaction coefficient is chosen to be V = 100 for
both chains. Indeed, we see that the scaling of the minimum
gap is superexponential in both cases in Fig. 9, although
there are quantitative differences for longer chains. Here, the
blue line is reproduced from Fig. 4. The difference can be
explained as follows: due to the tails, a distinct MIS-1 config-
uration emerges, which is the ground state within a range of
positive δ/� before the critical detuning. In this case, an exci-
tation on one doublet is perfectly correlated with another in a
diagonally adjacent position, giving rise to a superposition of
two zigzag patterns of Rydberg excitations. The reduced chain
approximation is valid when the two atoms of the doublet are
placed sufficiently close to each other. The gap closing due to
a classical energy splitting is analyzed in detail in Ref. [49].
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FIG. 10. Spectral gap for different values of k for a chain of
length L = 11. The Rabi frequency is set to � = 1 and is enhanced
by the factor k on every even site. The critical detuning is found to
be at larger values of δ when increasing k.

APPENDIX B: VARIABLE IMBALANCE PARAMETER k

It is insightful to consider the closing of the spectral gap for
different enhancement factors k as a function of δ/�. We plot
the gap for a chain of length L = 11 in Fig. 10 and observe that
for increasing k, the position of the minimum shifts toward
larger δ and, importantly, the gap itself closes more sharply.
For k = 1, we know that the phase transition is of second
order, while it becomes a first-order transition for sufficiently
large k.

In the main text, we mention that while it might not be
feasible to tune k continuously, it is possible to implement
different values of k by using gadgets [35], which are graphs
with certain properties replacing a single site (or multiple
sites) in the original graph. In Fig. 11, we present examples of
how the quasi-1D chain can be extended for higher k: instead
of a two-vertex clique, a clique of three or four vertices might
be inserted, yielding k = √

3 and k = √
4 = 2, respectively.

All vertices from each clique connect to the previous and
subsequent vertex of the chain. For the three-vertex clique
[Fig. 11(c)], the symmetric subspace spans {|ggg〉 , (|ggr〉 +
|grg〉 + |rgg〉)/

√
3}, thus leading to the enhancement factor of

k = √
3.

(a) (b)

(c) (d)

FIG. 11. Variants of a gadget introduced into a 1D chain in (a).
The doublet nodes in (b) lead to a local enhancement of the Rabi
frequency of k = √

2, but other gadgets can be imagined, e.g.,
inserting a fully connected graph of three vertices in (c) for k = √

3,
or four vertices in (d) for k = 2.

(a)

(b)

(c)

FIG. 12. (a) Revival and state-transfer fidelity for the
√

2-PXP
chain as in Fig. 8, but for longer quench times. (b) For the

√
2-PXP

chain (L = 11), the revivals are shown after a linear quasiadiabatic
sweep with δ ∈ [−40, 40], � = 1, total evolution time TQAA = 50,
and tails (corresponding to V = 20), aborted at 73% of the sweep;
here, the peak MIS fidelity is 21%. (c) Revival and state-transfer
fidelity for the full, physical Rydberg Hamiltonian on the doublet
chain with long-ranged interactions, as described in the text. The
dynamics agree well with the

√
2-PXP chain simulations for short

times.

APPENDIX C: QUANTUM MANY-BODY SCARS
IN THE

√
2-PXP CHAIN

1. Approximate revival time in the dimer model

We would like to estimate the time that maximizes the
fidelity of the MIS state on quenching from the S state in
the PXP chain where every even site has an enhanced Rabi
frequency k�. Here, we consider a simple model of two-site
dimers and extend the ansatz from Ref. [26] to the

√
2 PXP

chain. The Hamiltonian considered is

Hq = �

L∑
i odd

Pi−1σ
i
xPi+1 + k�

L∑
i even

Pi−1σ
i
xPi+1, (C1)

where, as before, P0 = PL+1 = I . We consider an ansatz
|ψ (t )〉 = ⊗1� j�L/2 |φ(t )〉2 j−1,2 j describing independent two-
site dimers. Within each dimer, the blockade constraint is
enforced, thus allowing only superpositions of the basis states
|rg〉, |gr〉, and |gg〉. Note that the blockade between adjacent
dimers, however, is ignored here; hence, this model can only
be a first-order approximation to the true quantum dynamics.
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We find that for an initial state |φ(t = 0)〉 = |gr〉, the time-
evolved state can be described by

|φ(t )〉 = ik sin(
√

1 + k2t�)√
1 + k2

|gg〉 + 1 + k2 cos(
√

1 + k2t�)

1 + k2

× |gr〉 + −k + k cos(
√

1 + k2t�)

1 + k2
|rg〉 . (C2)

Hence, the revival time to quench into the state |rg〉 is

T̃k = 2√
1 + k2

π

2�
. (C3)

This simple model shows that the periodic evolution of the
revivals is faster for larger imbalances. It also predicts that
the fidelity of the state transfer from |gr〉 to |rg〉 is below one
for k > 1, contributing to a decaying signal for larger system
sizes.

2. Decay of the revival fidelity and simulation of quench
dynamics with vdW tails

In order to quench from the S state to the MIS state, we
are mostly interested in the fidelity of the first revival peak.

For longer quench times, more revivals are observed; how-
ever, they decay rather quickly in the models considered. For
completeness, we plot in Fig. 12(a) the evolution for longer
times where the decay of the revivals can be observed.

We propose that quench dynamics can be used as an algo-
rithmic tool for state preparation. An example scenario where
a quench follows a quasiadiabatic evolution is simulated in
Fig. 12(b). Here, to study the dynamics, we consider the√

2-PXP chain and add vdW interaction tails corresponding
to an interaction strength V = 20. As mentioned in the main
text, related schemes where the quench is introduced in the
middle of a quasiadiabatic can yield superior results and are
investigated in Ref. [49].

To confirm that the revival dynamics also hold in the phys-
ical Rydberg model, we perform exact simulations of a chain
of L = 11 atoms. We choose a geometry of equilateral trian-
gles with atoms placed 5.5 µm apart. The interaction strength
between nearest neighbors is V0 = 860 000 × 2π MHz µm6,
corresponding the interaction between 87Rb atoms in the
|70S1/2〉 state. The Rabi frequency is � = 2.5 × 2π MHz at
a detuning δ = 0 MHz. We find a good qualitative agreement
between the exact simulation of the Rydberg chain and the√

2-PXP chain in Fig. 12(c).
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