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Quantum computers and simulators can potentially outperform classical computers in finding
ground states of classical and quantum Hamiltonians. However, if this advantage can persist in the
presence of noise without error correction remains unclear. In this paper, by exploiting the principle
of Lagrangian duality, we develop a numerical method to classically compute a certifiable lower
bound on the minimum energy attainable by the output state of a quantum circuit in the presence
of depolarizing noise. We provide theoretical and numerical evidence that this approach can provide
circuit-architecture dependent bounds on the performance of noisy quantum circuits.

I. INTRODUCTION

Fault-tolerant quantum computers hold promise for
outperforming classical computers at several computa-
tional tasks. One of the most explored computational
tasks is the problem of finding the ground state of a
given many-body Hamiltonian — a problem that nat-
urally arises in studying equilibrium properties of con-
densed matter systems [1]. Moreover, classical optimiza-
tion problems can also be framed as finding ground states
of commuting Hamiltonians [2]. Unsurprisingly, quan-
tum algorithms for finding Hamiltonian ground states
have been extensively studied [3–5] in search of a possible
quantum advantage [6–8] — algorithms based on phase
estimation and adiabatic evolution have been proposed
for solving this problem, and have even been shown to be
efficient for specific classes of Hamiltonians [9, 10]. Fur-
thermore, due to the constraints on available quantum
hardware, there has been intense activity in exploring
hardware-efficient heuristics for solving this problem such
as quantum adiabatic algorithms or variational quantum
algorithms [11–14].

Current noisy-intermediate scale quantum devices,
however, do not perform quantum error correction and
consequently noise places a severe constraint on the per-
formance of these quantum algorithms. From a theoreti-
cal standpoint, it has thus become of interest to develop
no-go results by providing theoretical bounds on the min-
imum energy that a noisy quantum circuit can achieve
for a given Hamiltonian — if a classical algorithm [15–
17] could obtain an energy better than this lower bound,
then we can conclude that a reduction in noise rate is
necessarily needed for a possible quantum advantage. An
approach to assessing the impact of noise on quantum al-
gorithms is to directly simulate the circuit more so since
the presence of noise in quantum circuits is expected to
make them easier to classically simulate [18, 19]. In fact,
there have been several recent demonstrations of noisy
quantum circuit simulations using tensor network meth-
ods [20–22]. However, most of the tensor network meth-
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ods lack rigorous accuracy guarantees and cannot certify
an accurate simulation of the quantum circuit. In partic-
ular, they are expected to deviate significantly from the
circuit output as the noise rate continues to decrease and
thus fall short of rigorously providing a no-go result for
quantum advantage.
Alternatively, this problem can be approached analyt-

ically using tools from quantum information theory. For
instance, Refs. [23–25] analyzed the increase in entropy
of the quantum state due to noise, and showed that it
can allow for an analytical lower bound on the attain-
able minimum energy. However, while providing rigorous
no-go results, these analyses were circuit-architecture in-
dependent and were thus expected to underestimate the
impact of noise. Certain circuit architectures are ex-
pected to significantly worsen the impact of noise, and
this phenomena has been theoretically demonstrated in
random quantum circuits models [26, 27]. However, it re-
mains unclear if it is possible to provide an architecture-
dependent lower bound for a specific engineered quantum
circuit.
In this article, we propose a method for efficiently com-

puting rigorous bounds on the performance of any spec-
ified quantum circuit in the presence of a constant rate
of depolarizing noise. The key insight behind our pro-
posed method is the formulation of a Lagrangian dual
corresponding to the circuit dynamics, which allows us
to account for the circuit architecture in addition to the
increase in the entropy, or equivalently, the decrease in
the purity of the quantum state. We show that the
Lagrangian dual yields a hierarchy of classically com-
putable lower bounds on energy, with respect to a spec-
ified Hamiltonian, obtained at the output of a noisy
quantum circuit. We provide numerical and analytical
evidence that this formulation can capture the circuit-
architecture dependent propagation of errors through the
noisy quantum circuit and thus provide more stringent
lower bounds than currently available. Our work is, in
part, motivated by the application of Lagrangian dual-
ity to provide performance bounds on classical physical
systems [28, 29] and quantum optical devices [30, 31].
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Figure 1. Comparison of bounds, with and without ac-
counting for circuit constraints, on the minimum energy cor-
responding to the Hamiltonian H = ∆Z attainable by the
output of the single qubit circuit shown in the schematic. The
circuit consists of a Y-axis rotation followed by depolarizing
noise acting with probability p.

II. DUALITY BASED BOUNDS

A. Single-qubit example

As a simple illustrative example of the Lagrangian
dual formulation, we first consider a single-qubit circuit
[Fig. 1(a)] — consider a qubit initially in |0⟩, with a gate
U = e−iθY being applied on it followed by depolarizing
noise with probability p. We would like to find the pa-
rameter θ to minimize the energy corresponding to the
Hamiltonian H = ∆Z — in the absence of noise (p = 0),
it is straighforward to verify that this would be accom-
plished by setting θ = π/2 to obtain an energy −∆.
However, in the presence of depolarizing noise, the

qubit will necessarily be in a mixed state. The extent
to which the state is mixed can be quantified with a
purity measure, for instance the von Neumann entropy
of the qubit state, its trace purity or even higher or-
der Renyi Entropies [32]. For concreteness, we use the
trace purity measure of a state ρ: P (ρ) = Tr(ρ2) —
P (ρ) = 1 if and only if ρ is a pure state, else P (ρ) < 1.
Now, since the state ρθ at the output of the single-
qubit circuit in Fig. 1(a) is obtained by applying the
depolarizing noise channel to a single qubit pure state,
P (ρθ) = P0 := p2/4 + (1 − p/2)2 < 1. Since ρθ is neces-
sarily mixed, it cannot produce the pure ground state of
the Hamiltonian H perfectly irrespective of the choice of
θ – in fact, this simple observation can be used to lower
bound the energy that can possibly be obtained at the
output of the circuit by minimizing it with respect to
states with purity at-most P0 i.e. solving the following

optimization problem

minimize
ρ∈D1(C2)

Tr(Hρ)

subject to P (ρ) ≤ P0, (1)

where D1(Cd) is the space of density matrices on the
Hilbert space Cd [33]. The optimization problem in Eq. 1
is solved by ρ = (1− p/2)|1⟩⟨1|+ (p/2)|0⟩⟨0| with energy
−∆(1 − p). This bound clearly exhibits the intuitively
expected dependence on the noise rate p — if p = 0, then
the energy attained coincides with the ground state en-
ergy of −∆, and if p = 1, it is simply the energy obtained
by the maximally mixed state.
However, this bound does not account for the unitary

being applied on the qubit, and a better bound can be
obtained by explicitly accounting for the circuit. To do
so, we use the method of Lagrange duality [28, 34]. For
this, we extend the problem in Eq. 1 by adding an addi-
tional constraint due to the circuit:

minimize
ρ∈D1(C2)

Tr(Hρ)

subject to ρ = Eθ(ρ0),
P (ρ) ≤ P0, (2)

where ρ0 = |0⟩⟨0| and Eθ is the channel corresponding to
the unitary e−iY θ followed by the single-qubit depolariz-
ing noise. To provide a lower bound on this optimization,
we construct its Lagrangian L(σ, λ) by introducing La-
grange multipliers σ ∈ M(C2) [33], where M(C2) is the
space of Hermitian single-qubit operators, and λ ≥ 0,

L(ρ, σ, λ) = Tr[Hρ] + Tr[σ(ρ− Eθ(|0⟩⟨0|))]
+ λ(P (ρ)− P0). (3)

L(ρ, σ, λ) can be considered to be a modified energy func-
tion which, in addition to the energy Tr[Hρ], also penal-
izes violation of the two constraints: ρ = Eθ(ρ0) imposed
by the circuit and P (ρ) ≤ P0 on the purity of the state ρ.
Minimizing the Lagrangian with respect to ρ, we obtain
the dual function,

g(σ, λ) = inf
ρ
L(ρ, σ, λ), (4)

which is a function of σ, λ, the dual variables. It follows
from the principle of Lagrange duality that for any σ and
λ ≥ 0, g(σ, λ) is a lower bound on the energy attained
by the circuit. This can easily be seen from Eq. 3 by
noting that when L is evaluated at the circuit output
ρθ = Eθ(|0⟩⟨0|), we obtain

L(ρθ, σ, λ) = Tr[Hρθ] + λ(P (ρθ)− P0) ≤ Tr[Hρθ],

since P (ρθ) ≤ P0 and λ ≥ 0. Since from Eq. 4 g(σ, λ)
is the smallest attainable value of L(ρ, σ, λ) on varying
ρ, we obtain g(σ, λ) ≤ Tr[Hρθ]. We emphasize that the
dual function g(σ, λ), evaluated at any σ, λ ≥ 0, is a lower
bound on the energy Tr[Hρθ] attained by the circuit, and
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Figure 2. Schematic depiction of the problem setting con-
sidered in this paper. The unitaries (colored boxes) imple-
ment a quantum algorithm to prepare an approximation of
the ground state of a target Hamiltonian H in the absence
of noise. Each layer of unitary is followed by single-qubit de-
polarizing noise (gray circles) on the qubits applied with a
probability p.

the best lower bound can be obtained by maximizing
g(σ, λ) with respect to σ, λ. Furthermore, since the con-
struction of the dual function explicitly accounts for the
circuit constraint, it gives a better bound than obtained
from the problem in Eq. 1 i.e. by just accounting for the
final purity of the state. This is exhibited in Fig. 1(b),
where maxσ,λ≥0g(σ, λ) compared with −∆(1− p) and it
can be seen that the dual function provides a better lower
bound for most values of θ. For the simple example of a
single qubit, the duality-based bound that we can com-
pute coincides exactly with the circuit output and thus
models it exactly. As we will see in the next sections,
this will not be the case for circuits over a large number
of qubits.

B. General formulation

We can now extend the duality lower bound to more
general quantum circuits [Fig. 2] — consider a quantum
circuit of depth d, consisting of unitaries U1, U2 . . . Ud

that has been designed to approximate the ground state
of a target HamiltonianH of N qubits. In the presence of
noise, the purity of the state decreases as it goes through
the circuit — while computing the exact purity of the
state generated by the circuit is generally difficult, an
analytical upper bound on several purity measures can
be obtained by making use of the fact that the noise is
depolarizing. In particular, Ref. [23] establishes explicit
upper bounds for two purity measures after t time-steps
— the information content of the quantum state, as well
as its trace purity.

Lemma 1 (Ref. [23]). Suppose ρt is the quantum state on
N qubits obtained from an initial pure state after applying

t unitaries and single qubit depolarizing channels, then

I(ρt) := N +Tr[ρt log2(ρt)] ≤ N(1− p)t,

Ptr(ρt) := Tr(ρ2t ) ≤ 2−N(1−(1−p)t),

where p is the probability of applying the depolarizing
noise at each time-step independently on each qubit.

In the remainder of this subsection, we denote by Pt

an upper bound on the purity of the state at tth time-
step — we will formulate the results of this subsection
for general convex purity measures, and specialize them
to concrete purity measures (such as information content
or trace purity) in the following sections. Now, as with
the single-qubit case, the energy attained at the output
of the circuit can now be written as,

minimize
ρ1,ρ2...ρd∈S

Tr(Hρd)

subject to ρt = Et(ρt−1), t ∈ {1, . . . , d},
P (ρt) ≤ Pt, t ∈ {1, . . . , d}, (5)

where Et(·) is the quantum channel that applies the uni-
tary Ut for the tth layer of the circuit followed by depo-
larizing noise acting individually on the qubits, and ρ0
is a fixed and known initial state. Importantly, in Eq. 5,
S is the set of N qubit operators over which we allow
the states ρ1, ρ2 . . . ρd to vary — this set can be chosen
to be any set containing density matrices over N qubits
D1((C2)⊗N ) since the circuit constraints (ρt = Et(ρt−1))
enforce ρ1, ρ2 . . . ρd to be valid density matrices. For in-
stance, S can be chosen to be just the set of N -qubit
Hermitian operators, or the set of N -qubit Hermitian op-
erators with unity trace. As we will see below, the choice
of this set together with the purity measure determines
the form of the dual function.

To construct the dual function corresponding to Eq. 5
— we introduce the dual variables σ⃗ = {σ1, σ2 . . . σd},
which are N−qubit Hermitian operators, corresponding

to the circuit constraints and λ⃗ = {λ1, λ2 . . . λd ≥ 0} cor-
responding to the purity constraints. The Lagrangian
is now constructed by adding penalties corresponding
to the circuit constraints and purity constraints at each
time-step to the output energy:

L(ρ⃗, σ⃗, λ⃗) = Tr[Hρd] +

d∑
t=1

Tr

[
σt

(
ρt − Et(ρt−1)

)]
+

d∑
t=1

λt

[
P (ρt)− Pt

]
. (6)

The dual function is obtained by minimizing the La-
grangian with respect to ρ1, ρ2 . . . ρd ∈ S,

g(σ⃗, λ⃗) = −Tr[ρ0E†
1(σ1)] +

d∑
t=1

(
FS,P (Ht, λt)− λtPt

)
,

(7a)
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where Hd = H + σd, Ht = σt − E†
t+1(σt+1) for t ∈

{1, 2 . . . d− 1} and

FS,P (H,λ) = inf
ρ∈S

(
Tr[Hρ] + λP (ρ)

)
. (7b)

Again, the dual function is a lower bound on the energy

produced at the circuit output for any σ⃗, λ⃗ ≥ 0 i.e.

g(σ⃗, λ⃗) ≤ Tr[ρdH] for all σt ∈ M((C2)⊗N ), λt ≥ 0.

The function FS,P (H,λ) can be interpreted as a gen-
eralized free energy corresponding to the Hamiltonian
H at temperature λ which depends on both the do-
main S and the purity measure P . For instance, if the
purity measure is taken to be the information content
I(ρ) = N−Tr[ρ log2(ρ)], then it reduces to the Gibbs free
energy with an offset of Nλ. However, by choosing dif-
ferent purity measures P as well as different domains S,
the dual function allows us to obtain a family of bounds
on the noisy quantum circuit. As we will see in the next
section, certain choices of P and S provide lower bounds
that can be classically computed.

Consider first the best lower bound that can be ob-
tained from the dual function. In the following propo-
sition, we show that the best lower bound attained by
the dual function is exactly equal to the energy attained
by the quantum circuit, and choice of dual variables
σ1, σ2 . . . σd that yields the largest value dual function
corresponds to the Heisenberg picture evolution of the
Hamiltonian H.

Proposition 1. For the dual function defined in Eq. 7,
it follows that

maximum
σ1,σ2...σd∈M((C2)⊗N )

λ1,λ2...λd≥0

g(σ⃗, λ⃗) = Tr[HEdEd−1 . . . E1(ρ0)],

and the maximum is attained at

σd = −H,σt = −E†
t+1E

†
t+2 . . . E

†
d(H),

and λ1 = λ2 = . . . λd = 0.

Proof : The proof of this proposition follows simply by
noting that, from definition,

FS,P (0, 0) = 0.

Now, if σd = −H, and σt = −E†
t+1E

†
t+2 . . . E

†
d(H),

then Ht = 0. Hence, we obtain that at this value

of σ⃗ and at λ⃗ = 0, g(σ⃗, λ⃗) = Tr[ρ0E†
1E

†
2 . . . E

†
d(H)] =

Tr[HEdEd−1 . . . E1(ρ0)]. Since Tr[HEdEd−1 . . . E1(ρ0)] is

also an upper bound of g(σ⃗, λ⃗), the proposition follows.
□

This proposition establishes that finding the best dual
bound is equivalent to exactly simulating the circuit,
which we expect to be hard to do on classical comput-
ers. This hardness fundamentally stems from the fact
that the dual variables σ1, σ2 . . . σd are operators in an

exponentially large space. However, since the dual func-

tion g(σ⃗, λ⃗) is a lower bound on the output energy for

any σ⃗, λ⃗, a natural approach to evaluate a lower bound
would be restrict σi to subsets of M((C2)⊗N ) where the
dual function could be evaluated efficiently — the specific
subset would depend on the choice of the purity measure.
In Section III, we will see that the dual function obtained
on choosing the purity measure to be trace purity and the
domain S = M((C2)⊗N ) ofN -qubit Hermitian operators
can be evaluated efficiently if σ1, σ2 . . . σd are chosen to be
matrix product operators of bond-dimension poly(N). In
Section IV, we will consider the dual function obtained
on choosing the purity measure to be the information
content of the state, in which case σ1, σ2 . . . σd can be re-
stricted to the space of geometrically local Hamiltonians,
allowing for an exact evaluation of the dual function.
Restricting the dual variables σ1, σ2 . . . σd to a subset

of M((C2)⊗N ) raises the question of whether the maxi-
mum value that the dual function can attain within this
restricted set of dual variables gives a better lower bound
on the energy compared to neglecting the circuit con-
straints and just accounting for the purity of the final
state i.e. does the duality based bound still account for
the circuit architecture. Our next proposition answers
this question affirmatively, and shows that a better lower
bound can be obtained as long as the restricted set of
dual variables contains 0.

Proposition 2. Suppose Sσ ⊂ M((C2)⊗N ), such that
0 ∈ Sσ, then

maximum
σ1,σ2...σd∈Sσ
λ1,λ2...λd≥0

g(σ⃗, λ⃗) ≥ minimize
ρ∈S,P (ρ)≤Pd

Tr(Hρ)

Proof : Since 0 ∈ Sσ,

maximum
λ≥0

g({0 . . . 0}, {0 . . . λ}) ≤ maximum
σ1,σ2...σd∈Sσ
λ1,λ2...λd≥0

g(σ⃗, λ⃗).

Now, we can note that

g({0 . . . 0}, {0 . . . λ}) = FS,P (H,λ)− λPd.

It can be noted that g({0 . . . 0}, {0 . . . λ}) is simply the
dual function of the convex problem

minimize
ρ∈S

Tr(Hρ)

subject to P (ρ) ≤ Pd.

Furthermore, this convex problem trivially satisfies the
Slater’s conditions [34, 35]. This can be checked by not-
ing that the Slater’s conditions are satisfied if there is
a ρ ∈ S such that P (ρ) < Pd — this follows by noting
that P (I/2N ) < Pd and I/2N ∈ D1((C2)⊗N ) ⊆ S. Since
Slater’s conditions are satisfied, this problem is strongly
dual and consequently the optimal duality-bound is equal
to the solution of the optimization problem i.e.

maximum
λ≥0

g({0 . . . 0}, {0 . . . λ}) = minimize
ρ∈S,P (ρ)≤Pd

Tr(Hρ),
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which proves the proposition. □
While this proposition indicates that accounting for

the circuit constraints while constructing the lower bound
results in an improvement over only accounting for the
final purity even with restricted space of dual variables,
it says nothing about the extent to which the bound im-
proves. We expect the improvement to be strongly de-
pendent on the purity function P , the domain set S, and
the dual set Sσ used in formulating and evaluating the
bound. In the next section, we consider a specific for-
mulation of the dual function that uses the trace purity
measure, and show that the lower bound obtained on ac-
counting for the circuit constraints can be exponentially
better than if the circuit constraints were not accounted
for.

III. TRACE PURITY-BASED LOWER BOUND

A. Formulation

In this section, we consider now a specific choice of
the purity function and the domain S that results in a
dual function that can be computed exactly when the
dual variables are parametrized as matrix product oper-
ators with poly(N) bond dimension. We choose the pu-
rity measure to be trace purity P (ρ) = Ptr(ρ) = Tr(ρ2),
and the domain S in Eq. 5 to be the space of Hermi-
tian N -qubit operators M((C2)⊗N ). It then follows that
FS,P (H,λ) defined in Eq. 7b evaluates to

FS,P (H,λ) = −Tr(H2)

4λ
,

and therefore, we obtain that

g(σ⃗, λ⃗) = −Tr[ρ0E†
1(σ1)]−

d∑
t=1

(
Tr(H2

t )

4λt
+ λtPt

)
,

where Hd = H + σd and Ht = σt − E†
t+1(σt+1). Further-

more, for this dual function, it is possible to perform the

maximization over λ⃗ analytically to obtain

h(σ⃗) = maximum
λ⃗≥0

g(σ⃗, λ⃗),

= −Tr[ρ0E†
1(σ1)]−

d∑
i=1

√
PtTr(H2

t ). (8)

From the expression for h(σ⃗), we immediately notice that
if σ1, σ2 . . . σd are restricted to be matrix product oper-
ators with bond dimension D, then h(σ⃗) can be evalu-
ated classically in time NdD4. However, as we estab-
lished in proposition 1, the best lower bound is obtained
h(σ⃗) when evaluating it at σ⃗ corresponding to a Heisen-
berg picture evolution of Hamiltonian H. While for most
problems of interest (e.g. where H is a local or spatially-
local Hamiltonian), H can be represented as a matrix

product operator of a modest bond dimension, the uni-
taries involved in the circuit can, in general, grow its bond
dimension exponentially. A natural choice of σ1, σ2 . . . σd

would then be to perform time-evolving block decimation
(TEBD) [36–40] on the Heisenberg evolution and com-
press the operators in each step into bond-dimension D

i.e. at σ⃗h,D = {σh,D
1 , σh,D

2 , . . . , σh,D
d }

σh,D
d = −H and,

σh,D
t = ΠDE†

t (σ
h,D
t+1 ) for t ∈ {1, 2 . . . d− 1}, (9)

where ΠD compresses an N -qubit operator to an opera-
tor with a bond-dimension D [41]. The bound h(σ⃗h,D)
can be related to the truncation errors made on per-
forming TEBD. Note that from Eq. 9, the error incurred
at step t of the Heisenberg evolution by the compres-

sion is
∥∥∥E†

t (σ
h,D
t+1 )−ΠDE†

t (σ
h,D
t+1 )

∥∥∥ = ∥Ht∥. Importantly,

while the error can be calculated with the norm cho-
sen to be the operator norm, we use the Frobenius norm

(∥Ht∥F =
√

Tr(H2
t )) since, unlike the operator norm, it

can be computed efficiently for matrix product operators
of low bond dimension. Using this error, the energy ob-

tained from TEBD, ETEBD = −Tr(ρ0E†
1(σ

h,D
1 )) and the

exact energy E = Tr(HEdEd−1 . . . E1(ρ0)) deviate by at
most

|E − ETEBD| ≤ δ =

d∑
t=1

√
Tr(H2

t ). (10)

We emphasize that δ can be computed while performing
TEBD without explicitly simulating the circuit exactly.
The deviation bound in Eq. 10 implies a lower bound

E ≥ ETEBD − δ = −Tr[ρ0E†
1(σ1)]−

d∑
i=1

√
Tr(H2

t ). (11)

This bound is significantly worse than the duality-
based bound in Eq. 8 as Pt ≪ 1 for all time steps t.
The key reason why just accounting for a worst-case ac-
cumulation of TEBD errors yields a loose lower bound is
that the upper bound in |E − ETEBD| does not account
for the decrease in the trace purity of the quantum state
in the presence of depolarizing noise. In the following
proposition, we show that h(σ⃗h,D) can also be interpreted
in terms of the TEBD compression errors, but with the
added consideration of explicitly taking into account the
purity decrease at each time step.

Proposition 3. Suppose H is a Hamiltonian which can
be exactly represented as a MPO of bond dimension D,
then

|ETEBD − E| ≤ ETEBD − h(σ⃗h,D) =

d∑
t=1

√
PtTr(H2

t )

Proof : We have that,

ETEBD = Tr

(
E1(ρ0)

( d∏
t=2

ΠDE†
t

)
(H)

)
,
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and

E = Tr

(
E1(ρ0)

( d∏
t=2

E†
t

)
(H)

)
.

Defining ρt = EtEt−1 . . . E1(ρ0), we the obtain that

E − ETEBD =

d−1∑
t=1

Tr
(
ρtHt

)
,

where Ht = σh,D
t − E†

t+1(σ
h,D
t+1 ). It then follows that

|E − ETEBD| ≤
d−1∑
t=1

|Tr(ρtHt)| ≤
d−1∑
t=1

√
Tr(ρ2t )Tr(H

2
t ).

Using Tr(ρ2t ) ≤ Pt, we obtain the proposition. □
In Fig. 3, we numerically exhibit the difference between

the bound in Eq. 11 and h(σ⃗h,D) for a 1D circuit on
N = 40 qubits [Fig. 3(a)], which is chosen to find the
ground state of a commuting 1D Hamiltonian (see the
figure caption for the exact circuit and Hamiltonian). As
can be seen from Fig. 3(b), the lower bound computed
from the trace purity based dual is significantly larger,
and thus more representative of the impact of noise on the
output energy, than the lower bound provided by Eq. 11.
We point out that the dual variables σ⃗h,D obtained by
TEBD in the Heisenberg picture are not necessarily the
globally optimal choice in the space of all MPOs with
bond dimension D to evaluate the dual function h(σ⃗).
The function h(σ⃗) can potentially be optimized beyond
the TEBD-based value to obtain better lower bounds.
In practice, we observe that local optimization of h(σ⃗)
with a gradient-based method starting from the initial
point of σ⃗ = σ⃗h,D yields only a modest improvement
over h

(
σ⃗h,D

)
.

Next, we study the improvement that the duality based
bounds that account for the circuit constraint provide
over bounds in existing literature that just account for
the information content at the circuit output. In partic-
ular, we numerically compare the best lower bound ℓdualD
that we can obtain by evaluating h(σ⃗) at σ1, σ2 . . . σd ∈
MPOD (the space of all N -qubit MPOs of bond dimen-
sion D),

ℓdualD = maximize
σ1,σ2...σd∈MPOD

h(σ⃗),

to the lower bound ℓI analyzed in Ref. [24],

ℓI = minimize
ρ:I(ρ)≤N(1−p)d

Tr(Hρ),

i.e. where they accounted only for the decreased informa-
tion content I(ρ) = N − Tr[ρ log2 ρ] of the final state as
per Lemma 1. First, we show that there exists a Hamil-
tonian and a 1D circuit where ℓdualD , with D = O(N) [33],
scales super-exponentially with the depth of the circuit
and thus captures the propagation of errors through the
circuit, while ℓI scales at-most exponentially with the
circuit depth.
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Figure 3. (a) Schematic of benchmark circuits considered for
1D spin systems: colored boxes indicate unitaries and grey
circles depolarizing noise. Two-qubit unitaries are chosen
to be exp(−iθX ⊗ X) and single-qubit unitaries are inde-
pendently Haar random. The Hamiltonian is chosen to be
H = −UH

(∑
i Zi

)
U†

H , where UH is the first layer of uni-
taries, making H a 4-local commuting Hamiltonian. The first
layer of unitaries UH thus transforms the initial state |0⟩⊗N

into the ground state of H. The last (d− 1)/2 layers are cho-
sen to be the inverse of the previous (d − 1)/2 layers — in
the absence of noise, the output of the circuit is the ground
state of H. (b) Plot shows trace purity-based dual bound
(h(σ⃗h,D) in Eq. 8) (solid lines, circular markers) and bound
obtained by only considering the TEBD errors (ETEBD − δ in
Eq. 11) (dotted lines, diamond markers) for the ground state
(G. S.) energy of the target Hamiltonian, as a function of cir-
cuit depth d for a system of N = 40 spins, with two-qubit
gate parameter θ = 0.05, depolarizing noise rate of p = 3%
and varying MPO ansatz bond dimensions D. Grey dashed
line indicates G.S. energy, grey shaded area indicates region of
trivial bounds (less than G.S. energy), blue dashed line indi-
cates energy of the completely mixed state 1/2N . The y-axis
is scaled by a constant multiplicative factor in the trivial re-
gion for visual clarity. The Hamiltonian is shifted and scaled
such that its spectrum is in [0, 1].

Proposition 4. There exists a 1D circuit and a N -qubit
Hamiltonian H with Tr(H) = 0 and ∥H∥ = N , such that

ℓI = −N(1 − p)O(d), while ℓdualD = −N(1 − p)Ω(d2) +

O(
√
N) for a choice of D ≤ O(N).

Proof sketch (see appendix A for details): Consider a
Clifford circuit chosen at random from the ensemble of
entangle-unentangle circuits analyzed in Ref. [26] — it
was shown for this ensemble that, for a 1D circuit, on
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Figure 4. Comparison of the trace purity-based dual bound (h(σ⃗h,D) in Eq. 8) and the bound based on just the information
content of the output state (ℓIλc

in Eq. 13) for 1D many-body spin systems. Both bounds are lower bounds on the ground
state (G. S.) energy of the same target Hamiltonian as considered for the results in Fig. 3 (see description of Hamiltonian in
caption of Fig. 3). Plots show the bounds as a function of brick-wall quantum circuit depth d [Fig. 3(a)] for a system of N = 40
spins, varying MPO ansatz bond dimensions D, with depolarizing noise rates of (a) p = 3%, (b) p = 5%, (c) p = 10%, and
(d) p = 20%. Two-qubit unitaries in the brick-wall circuit are chosen to be exp(−iθX ⊗ X) with θ = 0.1 and single-qubit
unitaries are independently Haar random. Grey dashed line indicates G.S. energy, grey shaded area indicates region of trivial
bounds (less than G.S. energy), blue dashed line indicates energy of the completely mixed state 1/2N . The y-axis is scaled
by a constant multiplicative factor in the trivial region for visual clarity. The Hamiltonian is shifted and scaled such that its
spectrum is in [0, 1].

average, the energy of the output state with respect to a
2-local Hamiltonian converges to the energy of the max-

imally mixed state as ∼ poly(N) × (1 − p)Ω(d2). Con-

sider now the Hamiltonian H = −
∑N

i=1 Zi and initial
state |0⟩⊗N . In the Heisenberg picture, each Zi will
be mapped to exactly one Pauli string under the ac-
tion of Clifford gates [42, 43]. Since a Pauli string is
representable as an MPO of bond dimension 1, σt ob-
tained from Heisenberg picture evolution will be a sum
of N MPOs of bond-dimension 1 and will thus be a MPO
of bond-dimension at most N . Thus, from Proposition
1, the purity-based dual exactly matches the energy of
the output of the quantum circuit, which will scale as

−N(1 − p)Ω(d2) [26, 44]. As the bound without circuit
constraints is agnostic to the unitaries in a circuit, it is
also a lower bound on the circuit where all the unitaries
are just the identity operation. For this trivial circuit,
the energy of the state after d layers of just depolariz-
ing noise scales as −N(1− p)d. Hence, the lower bound
without circuit constraints ℓI = −N(1− p)O(d).

B. Numerical studies

For non-Clifford circuits, MPO parametrization with
bond dimension poly(N) is no longer expected to fully
capture Heisenberg picture evolution. Even so, we nu-
merically demonstrate for a 1D spin system that the cir-
cuit dual function Eq. 8 can be used to compute circuit-
specific bounds that perform better than bounds that
only take into account the information content of the
output state. We compute the bounds by evaluating the
dual function h(σ⃗) at the dual variables obtained from
TEBD on the Heisenberg picture as in Eq. 9. Fig. 4
shows numerical studies of the bounds h(σ⃗h,D) computed
in this manner — we consider a 1D spin system of size
N = 40 and circuits designed to prepare the ground state
of a commuting local Hamiltonian (see figure caption
for details). The plots in Fig. 4 show the bounds for
MPO ansatzes with different bond dimensions D plot-
ted against the circuit depth d for circuits with noise
rates p = 3% [Fig. 4(a)], p = 5% [Fig. 4(b)], p = 10%
[Fig. 4(c)], and p = 20% [Fig. 4(d)]. However, for the low-
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est noise rate p = 3%, the circuit dual bounds at interme-
diate depths are trivial i.e. lower than the ground state
energy of H — this can be attributed to the fact that the
intermediate depth regime is the regime where the MPO
ansatz is least representative. For shorter depths, the
bond dimension of the Heisenberg picture operator would
have not grown very much while for very long depths, the
action of the depolarizing noise reduces the bond dimen-
sion of the Heisenberg picture operator.

Figure 4 also compares the trace purity-based dual
bound to the information content-based bound. How-
ever, since the duality-based bound is exactly computable
on a classical computer, to make a fair comparison
we need to use a certifiable method for computing the
information-content based bound. In particular, using
Lagrangian duality, the information content-based bound
can be reframed in terms of the Gibbs free energy of the
problem Hamiltonian i.e.

ℓI = minimize
ρ:I(ρ)≤N(1−p)d

Tr(Hρ)

= maximize
λ≥0

λSd +G(H,λ), (12)

where Sd = N − N(1 − p)d and G(H,λ) =
−λ log Tr exp(−H/λ) is the Gibbs free energy of H at
temperature λ. However, since H is generally a many-
body Hamiltonian, an accurate evaluation of G(H,λ) can
only be guaranteed at sufficiently high temperatures [45].
Thus, instead of evaluating the bound ℓI in Eq. 12, we
introduce a lower bound λc on the temperature λ and
evaluate

ℓIλc
= maximize

λ≥λc

λSd +G(H,λ), (13)

For spatially local Hamiltonians, λc can be chosen de-
pending on the norms of the local terms in the Hamilto-
nian, the dimensionality of the lattice, and the interac-
tion range. In our calculations, we make the choice of λc

as provided in Ref. [45], which provides an algorithm for
evaluating G(H,λ) at temperatures above λc.

We see from Fig. 4 that the dual provides a tighter
lower bound on the output than the bound based on just
the information content of the output state. The infor-
mation content-based bounds shown in Fig. 4 are also
trivial (i.e. lower than the ground-state energy) for inter-
mediate and short depths — this is due to the tempera-
ture lower bound that needs to be introduced to ensure
computability of the Gibbs free energy. We also observe
that the separation between the information content-
based and circuit dual bounds increases with the bond di-
mension D as the MPO ansatz becomes more expressive
with increasing bond dimension. In the limit of large cir-
cuit depth at non-zero depolarizing noise rates, the state
of the circuit approaches the completely mixed state, and
we observe that both bounds also approach the energy
corresponding to the completely mixed state.

Finally, we demonstrate that the dual bounds are able
to capture the extent of entanglement being generated in
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Figure 5. Trace purity-based dual bounds (h(σ⃗h,D) in Eq. 8)
for a 1D system of N = 32 spins, the same target Hamilto-
nian as considered for the results in Fig. 3 (see description
of Hamiltonian in caption of Fig. 3), and brick-wall quantum
circuits [Fig. 3(a)] where two-qubit unitaries are chosen to be
exp(−iθX ⊗X) and single-qubit unitaries are independently
Haar random. Plots show dual bounds as a function of noise
rate p and circuit parameter θ for circuit depth d = 25 and
bond dimensions (a) D = 32 and (b) D = 64. The Hamilto-
nian is shifted and scaled such that its spectrum is in [0, 1].

a circuit. In the brick-wall quantum circuits we consider,
the two-qubit gates in the circuit exp(−iθX ⊗ X) are
parametrized by an angle θ which controls the entangle-
ment being produced — for example, at θ = 0, π/2, there
is no entanglement at all. Fig. 5 shows the bounds as a
function of the angular parameter θ and the noise rate
p, for constant bond dimensions D and circuit depths d,
for a 1D system of N = 32 spins and Fig. 6(d,e) show
the same for a 2D system of N = 36 spins in a 6 × 6
lattice. For the 2D system, we consider the MPO ansatz
to have a ‘snake-like’ bond structure on the 2D lattice
[Fig. 6(c)] — such a snake-like structure is a numeri-
cally convenient approach for performing TEBD for 2D
systems. This ansatz is useful for moderate system sizes
but due to gates along the vertical edges of the lattice the
bond dimension required grows rapidly. For larger sys-
tem sizes, we expect that a tensor network ansatz that
matches the architecture of the circuit [46–48] would give
better bounds. For both the 1D and 2D systems, the
target Hamiltonians are shifted and scaled such that the
ground state energies are zero and any bounds lower than
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Figure 6. (a) Schematic of quantum circuits considered for 2D spin systems on a square lattice: colored boxes indicate unitaries
and grey circles depolarizing noise. Each unitary layer consists of two-qubit unitaries exp(−iθX ⊗X) (blue boxes) followed by
independently Haar random single-qubit unitaries (green boxes). The first d/2 layers serve to increase the entanglement in the
state. The remaining layers invert the action of the previous d/2 such that, in the absence of noise, the output of the circuit is
the ground state of H = −

∑
⟨i,j⟩ ZiZj where Zi is the Pauli-Z operator for the ith spin and ⟨i, j⟩ indicates nearest-neighbors.

(b) Circuits considered have a brick-wall structure: two-qubit unitary layers cycle between gates on odd horizontal edges (U1),
even horizontal edges (U2), odd vertical edges (U3), and even vertical edges (U4). Single-qubit gates (Us) are applied on every
qubit after every two-qubit gate layer. (c) Structure of matrix product operator (MPO) considered for 2D spin systems: yellow
squares indicate tensors at each site in the 2D lattice and lines emerging from them indicate tensor indices. Horizontal lines
indicate bond indices with dimension D and diagonal lines indicate physical indices. (d,e) Trace purity-based dual bounds
(h(σ⃗h,D) in Eq. 8) for the ground state energy of the target Hamiltonian H as a function of noise rate p and circuit parameter
θ for a system of N = 36 spins arranged in a 6× 6 lattice, circuit depth d = 32 and MPO bond dimensions (d) D = 64 and (e)
D = 362. The Hamiltonian is shifted and scaled such that its spectrum is in [0, 1].

zero are considered trivial and represented as zero in the
plots — the black regions in the plots thus correspond to
trivial bounds. We observe that, near θ = 0, π/2, where
the entanglement is small, the MPO ansatz of constant
bond dimension used for the bounds is able to capture
it and we obtain non-trivial bounds for small noise rates
p ≈ 6%. For values of θ away from these limits, the re-
gion of triviality is larger but non-trivial dual bounds can
still be obtained for higher noise rates.

IV. INFORMATION CONTENT-BASED
LOWER BOUNDS

The trace purity-based dual function Eq. 8 contains

terms with Frobenius norms
√
Tr(H2

t ) which, in the
worst case, could grow exponentially with the system size
N . Hence, the trace purity-based dual tends to become

trivial in the limit of large system size. Alternatively, we
can choose the purity function to be the information con-
tent I(ρ) = N+Tr(ρ log2(ρ)). In this case, we can obtain
an analytical expression for the dual function by restrict-
ing the domain S to be the space of all N -qubit density
operators, i.e. Hermitian, positive semi-definite opera-
tors with unity trace. However, classically computing
the dual function arising from considering the informa-
tion content is difficult — we show below that it requires
calculation of the Gibbs free energy of general Hamilto-
nians at arbitrary temperatures.

Considering the information content, the free energy
defined in Eq. 7b becomes the Gibbs free energy with an
offset,

FS,P (H,λ) = inf
ρ≥0,Tr(ρ)=1

(
Tr[Hρ] + λI(ρ)

)
(14)

= Nλ− λ log Tr exp (−H/λ) , (15)
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leading to the following dual function,

g̃(σ⃗, λ⃗) = −Tr[ρ0E†
1(σ1)]

+

d∑
t=1

(
− λt log Tr exp (−Ht/λt) + λt(N − It)

)
,

(16)

where It = N(1 − p)t is the analytical bound on the
information content under depolarizing noise defined in
Lemma 1.

To benchmark the performance of the information
content-based dual, we consider Gaussian fermionic sys-
tems where the dual function Eq. 16 can be computed
exactly. We study N fermions arranged on a lattice and
choose H to be a quadratic Hamiltonian,

H = i
∑

α,α′,x,x′

hα,α′

x,x′ c
α
xc

α′

x′ ,

where c1x, c
2
x are the Majorana operators for the fermion

at point x on the lattice, and hα,α′

x,x′ are real numbers
specifying H. We additionally assume the unitaries in
the circuit that prepares the ground state of H from an
initial vacuum state to be Gaussian unitaries.

Since both Gaussian unitaries and the depolarizing
channel map a quadratic Hermitian operator to another
quadratic Hermitian operator, Proposition 1 indicates
that the dual function is maximized for σt which them-
selves are quadratic Hermitian operators. This motivates
the following ansatz for σt

σt = i
∑

α,α′,x,x′

d(x,x′)≤r

sα,α
′

x,x′;tc
α
xc

α′

x′ ,

for real sα,α
′

x,x′;t. In our study, we restrict σt to be lo-
cal operators with interaction range r while maximizing

g(σ⃗, λ⃗) to obtain the lower bound — when r ∼ lattice
size, we expect to obtain the best possible lower bound
but since the ansatz always includes the point σ⃗ = 0,
we expect from Proposition 2 to obtain a bound better
than that predicted by only considering the information
content of the output state, even for small r. Choosing
σt to be quadratic Hermitian operators allows for exact,
classically efficient computation of the Gibbs free energy
terms in the dual function and, furthermore, even the cir-
cuit output can be computed exactly by considering the
covariance matrix describing the state — see appendix

B for details. We obtain bounds by maximizing g(σ⃗, λ⃗)
through a gradient-based local optimization algorithm
(L-BFGS-B), starting from the initial point where σt are
chosen to be the Heisenberg picture evolution of −H, but
projected on to the space of quadratic fermionic Hamil-
tonians with interaction range r after each time step —
much like the compression into MPOs of bond dimension
D in Eq. 9.

Figure 7 shows a numerical study of the bounds that
we obtain — we consider systems with ∼ 50 fermions
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Figure 7. (a) Schematic of SSH model quadratic fermionic
Hamiltonians with alternating hopping strengths in 1D and
2D. (b,c) Comparison of information content-based dual
bounds with and without circuit constraints, and the out-
put energies of noisy Gaussian circuits for systems consisting
of (b) N = 48 fermions arranged in a 1D lattice, (c) N = 49
fermions arranged in a 7 × 7 2D lattice. Dual bounds are
shown for ansatzes with varying interaction range r. The
horizontal axis represents the depth d of a Gaussian brick-
wall circuit that outputs the ground state of the SSH model.
Fermions are independently subject to depolarizing noise with
probability p = 5% after every unitary layer. The Hamiltoni-
ans are shifted and scaled such that their spectrum is in [0, 1].

arranged both on 1D [Fig. 7(b)] and 2D lattices [Fig. 7(c)]
and experiencing depolarizing noise at a rate of 5%. H is
chosen to be a SSH model, nearest neighbor Hamiltonian
with alternating hopping strengths [Fig. 7(a)]. For the
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1D benchmarks, we choose

H =
∑
x

(
va,ba

†
xbx + vb,ab

†
xax+1 + h.c.

)
, (17a)

and for 2D benchmarks, we choose

H =
∑
x,y

( ∑
p,q∈

{(a,b),(e,f)}

(
vp,qp

†
x,yqx,y + vq,pq

†
x,ypx+1,y + h.c.

)

+
∑
p,q∈

{(a,e),(b,f)}

(
vp,qp

†
x,yqx,y + vq,pq

†
x,ypx,y+1 + h.c.

))
,

(17b)

where we choose va,b = vef = vx, vb,a = vf,e = wx, va,e =
vb,f = vy and ve,a = vf,b = wy. For the numerical stud-
ies shown in Fig. 7, H is shifted and scaled such that
the ground and highest excited state energies are zero
and one, respectively. We consider circuits of depth d
consisting of two-mode Gaussian unitaries arranged in a
brick-wall layout, where the first d/2 layers are composed
of randomly generated two-mode Gaussian unitaries that
serve to increase the entanglement in the state. The re-
maining layers invert the action of the previous d/2 such
that, in the absence of noise, the output state is the ini-
tial state, which is chosen to be the ground state of H.
In Fig. 7, for comparison, we also include the exact out-
put of the noisy Gaussian circuit, as well as the bound
obtained by neglecting the circuit constraints and only
considering the information content of the output state.
As expected, we find that on accounting for the circuit
constraint, we obtain bounds that are more representa-
tive of the output. We also observe that the dual bounds
get closer to the output as the dual ansatz’s interaction
range r increases, since the ansatz becomes more expres-
sive.

V. CONCLUSION

In conclusion, we demonstrate a method to rigorously
lower bound the performance of any given quantum cir-
cuit subject to a constant rate of depolarizing noise. We
achieve this by constructing a Lagrangian dual specific
to the circuit, which takes into consideration not only
the decreasing purity of the state through the circuit due
to noise, but also the details of the gates in the circuit,
allowing the study of the effect of entanglement gener-
ation in the circuit that can worsen the detrimental ef-
fects of noise. We presented numerical studies in spin
systems and showed that it is possible to efficiently cal-
culate circuit-specific lower bounds that are tighter than
bounds obtained by just considering the information con-
tent of the output state. We provided an interpretation
of the trace purity-based dual evaluated at dual variables
obtained from TEBD in the Heisenberg picture in terms
of the compression errors. We also showed that the dual
can be formulated in terms of the information content of
the state instead of trace purity — we computed infor-
mation content-based circuit dual bounds for Gaussian
fermionic systems where the Gibbs free energy can be
computed exactly.
Our method opens the door to promising avenues of fu-

ture research. Larger-scale tensor-network numerics can
allow us to also study higher dimensional circuits, with a
number of qubits reaching state-of-the-art experiments.
Numerical optimization algorithms can be explored for
obtaining better lower bounds than those from evaluat-
ing the dual function at a specific point. Moreover, ex-
tensions of the methods of this paper to continuous-time
would better capture the experimental system, and even
allow us to apply this method for understanding quantum
adiabatic algorithms [4]. Finally, the Lagrangian dual
formulation of lower bounds, apart from being a numer-
ical tool, could also shed rigorous theoretical insights in
understanding resilience of quantum circuit architectures
to noise.
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Appendix A: Proof of proposition 4

We first recall the main result of Ref. [26] which analyzed error propagation in a family of random quantum circuits.
Specifically, they considered brick-wall quantum circuits of depth d (assumed to be even) with unitaries U1, U2 . . . Ud,
where

Ud/2+1 = U†
d/2, Ud/2+2 = U†

d/2−1, Ud/2+3 = U†
d/2−2 . . . Ud = U†

1 .

The unitaries U1, U2 . . . Ud/2 are chosen randomly depending on the circuit architecture. We will specifically consider
the 1D case, where U1, U3, U5 . . . are formed by applying random 2-qubit gates between qubits (1, 2), (3, 4)(5, 6) . . .
and U2, U4, U6 . . . are formed by applying random 2-qubit gates between qubits (2, 3), (4, 5), (6, 7) . . . . All the two
qubit gates are chosen independently at random from an ensemble that forms a 2-design. Furthermore, we consider
the noisy setting where depolarizing noise with probability p is applied to each qubit after every unitary layer. Ref. [26]
establishes the following result characterizing the average energy of the output state for a 2-local Hamiltonian. While

the result of Ref. [26] holds for arbitrary two-local Hamiltonians, we will only consider the HamiltonianH = −
∑N

i=1 Zi.

Lemma A.1 (Ref. [26]). The expectation value E of the Hamiltonian H = −
∑N

i=1 Zi with respect to the the output
state of a circuit chosen randomly from the ensemble described above satisfies,

Prob
(∣∣∣E +N(1− p)Ω(d2)

∣∣∣ ≤ α0

√
N
)
≥ 1− 2e−2α2

0/2d
2

.

Proof of proposition 4: Consider the Hamiltonian H = −
∑N

i=1 Zi, and choose the two qubit gates to be a Haar-
random Clifford gate — since Haar-random Clifford gates form a 2-design [49], we can use lemma A.1. H satisfies
Tr(H) = 0 and has operator norm ∥H∥ = N . We evaluate the dual function at the dual variables obtained by
Heisenberg picture evolution of −H,

σd = −H,σt = −E†
t+1E

†
t+2 . . . E

†
d(H).

Note that for Clifford circuits, Zi will be mapped to a single Pauli string [43], which is expressible as an MPO with
bond dimension 1, and consequently σt will have a bond-dimension of at-most N . Since the Heisenberg picture
evolution can be captured exactly with a MPO ansatz of bond dimension O(N), the dual bound ℓdualD with D ≤ O(N)
is exactly equal to the energy E of the output of the noisy quantum circuit. Now, from lemma A.1, it follows that
there must exist at least one 1D circuit such that

ℓdualD = −N(1− p)Ω(d2) +O(
√
N),

with D ≤ O(N).
We now consider the lower bound ℓI obtained by only considering the information content of the state at the output

of the circuit and neglecting the circuit constraints:

ℓI = minimize
ρ:I(ρ)≤N(1−p)d

Tr(Hρ).

A negative upper bound on ℓI which converges to Tr(H/2N ) = 0 exponentially with d can be obtained by computing
Tr(Hρ) at

ρ =

(
pd|0⟩⟨0|+ (1− pd)

I

2

)⊗N

where pd = (1− p)d.

Note that this ρ satisfies I(ρ) = N(1− p)d, and consequently Tr(Hρ) is an upper bound on ℓI . For H =
∑N

i=1 Zi, we

then obtain Tr(Hρ) = −N(1− p)d which implies ℓI ≤ −N(1− p)O(d). □

Appendix B: Free fermion formulation

In this section, we describe our approach to numerical studies of Gaussian fermionic systems. We describe the
fermionic system model and how the energy of the state at the output of the noisy circuit and the information content-
based dual function (16) can be efficiently calculated by utilizing covariance matrices and quadratic Hamiltonian
transformations.
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1. Model

We consider N fermions arranged in a lattice and define for each lattice site x the Majorana operators c1x, c
2
x as

satisfying the following anti-commutation relations,

{c1x, c1x′} = {c2x, c2x′} = δxx′

{c1x, c2x′} = 0, ∀x, x′ ∈ lattice. (B1)

We choose the target Hamiltonian H to be quadratic,

H = i
∑

α,α′,x,x′

hα,α′

x,x′ c
α
xc

α′

x′ .

Defining the operator valued vector,

c⃗ =
(
c11, c12, . . . , c1N , c21, c22, . . . , c2N

)T
, (B2)

the target Hamiltonian can be written as H = i⃗c Thc⃗ where the matrix h specifying the Hamiltonian H is real and
anti-symmetric. The ground state energy of the target Hamiltonian can be computed by diagonalization of its compact
representation h [50].

2. Calculation of the noisy circuit output

The output energy, with respect to the quadratic target Hamiltonian H, can be computed from the covariance
matrix of the state at the end of the circuit. We define the covariance matrix of a state ρ as,

γα,α′

x,x′ = iTr(ρ[cαx , c
α′

x′ ]), (B3)

where [., .] denotes the commutator. The energy of a state ρ with respect to the target Hamiltonian H is then [50],

Tr(ρH) = −Tr(hγ)

2
. (B4)

The covariance matrix of the state after each instance of Gaussian unitary or noise in the circuit can be calculated
by evolving the covariance matrix γ0 of the vacuum (γ0 can be analytically calculated [50]) using the following
transformations,

1. Unitary: Any Gaussian unitary can be expressed as U = exp(−iHU ), where HU = i⃗c ThU c⃗ is the generating
quadratic Hamiltonian, and it transforms the covariance matrix of the state as [50],

γ → e2hUγe−2hU . (B5)

2. Noise: Depolarizing noise with probability p acting on the fermion at lattice site x transforms the covariance
matrix in the following manner [50, 51],

γ → pγ̃ + (1− p)γ, (B6)

where the matrix γ̃ is obtained from the input covariance matrix γ by zeroing out the rows and columns
corresponding to the fermion at site x, i.e.,

γ̃α,α′

x′,x′′ =

{
0, if x′ = x or x′′ = x

γα,α′

x′,x′′ , else.
(B7)
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3. Calculation of the dual function

We choose the dual variables σ1, σ2, . . . , σd to be quadratic Hamiltonians, i.e. we consider the following ansatz,

σt = i
∑

α,α′,x,x′

d(x,x′)≤r

sα,α
′

x,x′;tc
α
xc

α′

x′ = i⃗c T stc⃗, t ∈ {1, . . . , d},

where d(x, x′) is a distance measure between two lattice sites and the coefficients sα,α
′

x,x′;t are real and can be arranged
into an anti-symmetric matrix st. σt are thus local Hamiltonians with interaction range r.
In order to evaluate the circuit dual function (16), we calculate the effect of the circuit channels on the dual variables

first, i.e. E†
t (σt). Each such channel is the composition of a Gaussian unitary channel and the depolarizing channel

and both the unitary and noise channels map quadratic operators to quadratic operators. Hence, the channel’s action
can be expressed as a transformation of the compact Majorana representation st of the dual variable σt using the
following transformation rules,

1. Unitary: Any Gaussian unitary can be expressed as U = exp(−iHU ), where HU = i⃗c ThU c⃗ is the generating
quadratic Hamiltonian. Conjugation of the dual variable σt = i⃗c T stc⃗ by U transforms it into another quadratic
operator σ̃t = UσtU

† = i⃗c T s̃tc⃗, with the transformed Majorana representation s̃t,

s̃t = e2hU ste
−2hU . (B8)

This transformation can be derived by expanding the conjugation using the Baker-Campbell-Hausdorff formula
eBAe−B = A+ [B,A] + 1

2! [B, [B,A]] + 1
3! [B, [B, [B,A]]] + . . ., and using the commutation relation,

[cα1
x1
cα2
x2
, cα3

x3
cα4
x4
] =− cα1

x1
cα3
x3
δα2,α4

δx2,x4
+ cα1

x1
cα4
x4
δα2,α3

δx2,x3

− cα3
x3
cα2
x2
δα1,α4

δx1,x4
+ cα4

x4
cα2
x2
δα1,α3

δx1,x3
. (B9)

2. Noise: The noise channel Nx corresponding to depolarizing noise on the fermion at site x with probability p
transforms the dual variable σt as,

Nx(σt) = (1− p)σt + pTrx(σt)⊗
1

2
, (B10)

where Trx(.) denotes partial trace over fermion at site x. Expanding out the partial trace term using linearity,

Trx(σt)⊗
1

2
=

∑
α′,α′′,x′,x′′

isα
′,α′′

x′,x′′;tTrx(c
α′

x′ cα
′′

x′′ )⊗
1

2
,

=
∑

α′,α′′,x′,x′′

isα
′,α′′

x′,x′′;t(1− δx,x′)(1− δx,x′′)cα
′

x′ cα
′′

x′′ , (B11)

where we obtain the second line by using Tr(cα
′

x′ ) = 0 and sα
′,α′

x′,x′;t = 0 ∀(x′, α′). Thus, the noise channel transforms

the dual variable into another quadratic operator σ̃t = i⃗c T s̃tc⃗ with the transformed Majorana representation,

s̃t = pst + (1− p)zt, (B12)

where, using (B11), the matrix zt is obtained from st by zeroing out the rows and columns corresponding to the
fermion at site x, i.e.,

zα
′,α′′

x′,x′′;t =

{
0, if x′ = x or x′′ = x

sα
′,α′′

x′,x′′;t, else.
(B13)

To calculate the dual function (16), we need to calculate the Gibbs free energy of Ht = σt − E†
t+1(σt+1) where Ht

is a quadratic operator itself because, as mentioned earlier, the channel E†
t+1 maps quadratic operators to quadratic

operators. Therefore, Ht = i⃗c Thtc⃗ where the Majorana representation ht can be obtained using the transformations
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described above. We calculate the free energy by diagonalizing Ht. This can be achieved by diagonalizing ht — as ht

is anti-symmetric, it is possible [50] to find an orthogonal transformation O such that,

OThtO =
⊕
α,x

(
0 ϵx;t

−ϵx;t 0.

)

We define the operator valued vector ⃗̃c = OT c⃗ = (c̃11, c̃
1
2, . . . , c̃

1
N , c̃21, c̃

2
2, . . . , c̃

2
N )T and, due to the orthogonality of O,

the operators c̃αx satisfy the Majorana anti-commutation relations (B1). Using the newly defined Majorana operators,
Ht can be written in a diagonal form as,

Ht = i
∑
x

ϵx;t
(
c̃1xc̃

2
x − c̃2xc̃

1
x

)
.

Using the diagonal form, the Gibbs free energy for Ht is,

F(Ht, λt) = logTr exp

(
− i

λt

∑
x

ϵx;t
(
c̃1xc̃

2
x − c̃2xc̃

1
x

))

= log
∏
x

Tr exp

(
− iϵx;t

λt

(
c̃1xc̃

2
x − c̃2xc̃

1
x

))
.

The operator exponentials above can be represented in the Fock space basis of the fermion at site x,

exp

(
− iϵx;t

λt

(
c̃1xc̃

2
x − c̃2xc̃

1
x

))
=

(
eϵx;t/λt 0

0 e−ϵx;t/λt .

)
The free energy then simplifies to,

F(Ht, λt) =
∑
x

log(eϵx;t/λt + e−ϵx;t/λt),

and therefore it can be calculated just from the diagonalization of the 2N × 2N dimensional matrix ht.
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