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Classically Computing Performance Bounds on Depolarized Quantum Circuits
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Quantum computers and simulators can potentially outperform classical computers in finding ground
states of classical and quantum Hamiltonians. However, if this advantage can persist in the presence of
noise without error correction remains unclear. In this paper, by exploiting the principle of Lagrangian
duality, we develop a numerical method to classically compute a certifiable lower bound on the minimum
energy attainable by the output state of a quantum circuit in the presence of depolarizing noise. We provide
theoretical and numerical evidence that this approach can provide circuit-architecture-dependent bounds
on the performance of noisy quantum circuits.
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I. INTRODUCTION

Fault-tolerant quantum computers hold promise for out-
performing classical computers at several computational
tasks. One of the most explored computational tasks is the
problem of finding the ground state of a given many-body
Hamiltonian—a problem that naturally arises in study-
ing equilibrium properties of condensed matter systems
[1]. Moreover, classical optimization problems can also be
framed as finding ground states of commuting Hamilto-
nians [2]. Unsurprisingly, quantum algorithms for finding
Hamiltonian ground states have been extensively studied
[3–5] in search of a possible quantum advantage [6–
8]—algorithms based on phase estimation and adiabatic
evolution have been proposed for solving this problem, and
have even been shown to be efficient for specific classes of
Hamiltonians [9,10]. Furthermore, due to the constraints
on available quantum hardware, there has been intense
activity in exploring hardware-efficient heuristics for solv-
ing this problem, such as quantum adiabatic algorithms or
variational quantum algorithms [11–14].

Current noisy intermediate-scale quantum devices, how-
ever, do not perform quantum error correction and con-
sequently noise places a severe constraint on the perfor-
mance of these quantum algorithms. From a theoretical
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standpoint, it has thus become of interest to develop no-go
results by providing theoretical bounds on the minimum
energy that a noisy quantum circuit can achieve for a
given Hamiltonian—if a classical algorithm [15–17] could
obtain an energy better than this lower bound then we
can conclude that a reduction in noise rate is necessarily
needed for a possible quantum advantage. An approach
to assessing the impact of noise on quantum algorithms
is to directly simulate the circuit more so since the pres-
ence of noise in quantum circuits is expected to make them
easier to classically simulate [18,19]. In fact, there have
been several recent demonstrations of noisy quantum cir-
cuit simulations using tensor network methods [20–22].
However, most of the tensor network methods lack rig-
orous accuracy guarantees and cannot certify an accurate
simulation of the quantum circuit. In particular, they are
expected to deviate significantly from the circuit output as
the noise rate continues to decrease and thus fall short of
rigorously providing a no-go result for quantum advantage.

Alternatively, this problem can be approached analyt-
ically using tools from quantum information theory. For
instance, Refs. [23–25] analyzed the increase in entropy
of the quantum state due to noise, and showed that it can
allow for an analytical lower bound on the attainable min-
imum energy. However, while providing rigorous no-go
results, these analyses were circuit-architecture indepen-
dent and were thus expected to underestimate the impact of
noise. Certain circuit architectures are expected to signifi-
cantly worsen the impact of noise, and this phenomenon
has been theoretically demonstrated in random quantum
circuits models [26,27]. However, it remains unclear if it is
possible to provide an architecture-dependent lower bound
for a specific engineered quantum circuit.
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In this article, we propose a method for efficiently com-
puting rigorous bounds on the performance of any spec-
ified quantum circuit in the presence of a constant rate
of depolarizing noise. The key insight behind our pro-
posed method is the formulation of a Lagrangian dual
corresponding to the circuit dynamics, which allows us
to account for the circuit architecture in addition to the
increase in the entropy, or, equivalently, the decrease in the
purity of the quantum state. We show that the Lagrangian
dual yields a hierarchy of classically computable lower
bounds on energy, with respect to a specified Hamilto-
nian, obtained at the output of a noisy quantum circuit.
We provide numerical and analytical evidence that this
formulation can capture the circuit-architecture-dependent
propagation of errors through the noisy quantum circuit
and thus provide more stringent lower bounds than cur-
rently available. Our work is, in part, motivated by the
application of Lagrangian duality to provide performance
bounds on classical physical systems [28–33] and quantum
optical devices [34,35].

II. NOTATION

Given a finite-dimensional Hilbert space H, we use
D1(H) to denote the set of all density matrices on H, and
M(H) to denote the set of Hermitian linear operators on
H. Unless otherwise mentioned, for any linear operator A
on H, ‖A‖ will denote its operator norm, i.e., the maximum
singular value of A, and ‖A‖F =

√
Tr(A†A) will denote its

Frobenius norm.
We use the computer-science big-O notation for func-

tion asymptotics. In particular, given two functions f , g :
[0, ∞) → [0, ∞), f = O(g) if, for some c > 0, f (x) ≤
cg(x) as x → ∞ and f = �(g) if, for some c > 0, f (x) ≥
cg(x) as x → ∞.

III. DUALITY-BASED BOUNDS

A. Single-qubit example

As a simple illustrative example of the Lagrangian
dual formulation, we first consider a single-qubit circuit
[Fig. 1(a)]—consider a qubit initially in |0〉, with a gate
U = e−iθY being applied on it followed by depolarizing
noise with probability p . We would like to find the param-
eter θ to minimize the energy corresponding to the Hamil-
tonian H = �Z—in the absence of noise (p = 0), it is
straightforward to verify that this would be accomplished
by setting θ = π/2 to obtain an energy −�.

However, in the presence of depolarizing noise, the
qubit will necessarily be in a mixed state. The extent
to which the state is mixed can be quantified with a
purity measure, for instance the von Neumann entropy
of the qubit state, its trace purity, or even higher-order
Rényi entropies [36]. For concreteness, we use the trace
purity measure of a state ρ: P(ρ) = Tr(ρ2)—P(ρ) = 1 if

(a)

(b)

FIG. 1. (a) Schematic of the circuit considered in the single-
qubit circuit example. It consists of a Y-axis rotation followed by
depolarizing noise acting with probability p . (b) Comparison of
bounds, with and without accounting for circuit constraints, on
the minimum energy corresponding to the Hamiltonian H = �Z
attainable by the output of the single-qubit circuit shown in the
schematic.

and only if ρ is a pure state; otherwise, P(ρ) < 1. Now,
since the state ρθ at the output of the single-qubit cir-
cuit in Fig. 1(a) is obtained by applying the depolarizing
noise channel to a single-qubit pure state, P(ρθ ) = P0 :=
p2/4 + (1 − p/2)2 < 1. Since ρθ is necessarily mixed, it
cannot produce the pure ground state of Hamiltonian H
perfectly, irrespective of the choice of θ—in fact, this sim-
ple observation can be used to lower bound the energy that
can possibly be obtained at the output of the circuit by min-
imizing it with respect to states with purity at most P0, i.e.,
solving the optimization problem

minimize
ρ∈D1(C2)

Tr(Hρ)

subject to P(ρ) ≤ P0,
(1)

where D1(C
d) is the space of density matrices on the

Hilbert space Cd. The optimization problem in Eq. (1) is
solved by ρ = (1 − p/2)|1〉〈1| + (p/2)|0〉〈0| with energy
−�(1 − p). This bound clearly exhibits the intuitively
expected dependence on the noise rate p—if p = 0 then
the energy attained coincides with the ground-state energy
of −�, and if p = 1, it is simply the energy obtained by
the maximally mixed state.

However, this bound does not account for the unitary
being applied on the qubit, and a better bound can be
obtained by explicitly accounting for the circuit. To do so,
we use the method of Lagrange duality [28,37]. For this,
we extend the problem in Eq. (1) by adding an additional
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constraint due to the circuit:

minimize
ρ∈D1(C2)

Tr(Hρ) (2a)

subject to ρ = Eθ (ρ0), (2b)

P(ρ) ≤ P0. (2c)

Here ρ0 = |0〉〈0| and Eθ is the channel corresponding to
the unitary e−iYθ followed by the single-qubit depolariz-
ing noise. Note that the purity constraint P(ρ) ≤ P0 is
redundant and is already implied by the circuit constraint
ρ = Eθ (ρ0). However, as we will see in the following dis-
cussion, while redundant constraints do not impact the
solution of an optimization problem, depending on the
specific technique used to obtain a lower bound on the
problem, they can have a considerable impact.

To provide a lower bound on this optimization, we
construct its Lagrangian L(σ , λ) by introducing Lagrange
multipliers σ ∈ M(C2), and λ ≥ 0:

L(ρ, σ , λ) = Tr[Hρ] + Tr[σ(ρ − Eθ (|0〉〈0|))]
+ λ[P(ρ)− P0]. (3)

Lagrangian L(ρ, σ , λ) can be considered to be a modified
energy function that, in addition to the energy Tr[Hρ],
also penalizes violation of the two constraints: ρ = Eθ (ρ0)

imposed by the circuit and P(ρ) ≤ P0 on the purity of state
ρ. Minimizing the Lagrangian with respect to ρ, we obtain
the dual function

g(σ , λ) = min
ρ

L(ρ, σ , λ), (4)

which is a function of σ , λ, the dual variables. It follows
from the principle of Lagrange duality that, for any σ and
λ ≥ 0, g(σ , λ) is a lower bound on the energy attained by
the circuit. This can easily be seen from Eq. (3) by not-
ing that, when L is evaluated at the circuit output ρθ =
Eθ (|0〉〈0|), we obtain

L(ρθ , σ , λ) = Tr[Hρθ ] + λ[P(ρθ )− P0] ≤ Tr[Hρθ ],

since P(ρθ ) ≤ P0 and λ ≥ 0. Since from Eq. (4) g(σ , λ)
is the smallest attainable value of L(ρ, σ , λ) on vary-
ing ρ, we obtain g(σ , λ) ≤ Tr[Hρθ ]. We emphasize that
the dual function g(σ , λ), evaluated at any σ , λ ≥ 0, is a
lower bound on the energy Tr[Hρθ ] attained by the circuit,
and the best lower bound can be obtained by maximizing
g(σ , λ) with respect to σ , λ. Furthermore, since the con-
struction of the dual function explicitly accounts for the
circuit constraint, it gives a better bound than obtained
from the problem in Eq. (1), i.e., by just accounting for
the final purity of the state. This is exhibited in Fig. 1(b),
where maxσ ,λ≥0 g(σ , λ) compared with −�(1 − p) and it
can be seen that the dual function provides a better lower

bound for most values of θ . For the simple example of a
single qubit, the duality-based bound that we can compute
coincides exactly with the circuit output and thus models
it exactly. As we will see in the next sections, this will not
be the case for circuits over a large number of qubits.

B. General formulation

We can now extend the duality lower bound to more
general quantum circuits [Fig. 2]—consider a quantum cir-
cuit of depth d, consisting of unitaries U1, U2, . . . , Ud that
have been designed to approximate the ground state of a
target Hamiltonian H of N qubits. In the presence of noise,
the state becomes increasingly mixed as the unitaries are
applied on it—while it is typically hard to compute exactly
how mixed the state is, an analytical upper bound on sev-
eral purity measures can be obtained. In particular, explicit
upper bounds for two purity measures after t time steps
were established in Refs. [23,25]—the information content
of the quantum state, as well as its trace purity.

Lemma 1 (Refs. [23,25]). Suppose that ρt is the quan-
tum state on N qubits obtained from an initial pure state
after applying t unitaries and single-qubit depolarizing
channels; then

I(ρt) := N + Tr[ρt log2(ρt)] ≤ N (1 − p)t,

Ptr(ρt) := Tr(ρ2
t ) ≤ 2−N [1−(1−p)t],

where p is the probability of applying the depolarizing
noise at each time step independently on each qubit.

Both the information content and trace purity can be
viewed as measures of how mixed the given state is.
Both are largest for a pure state [I(|ψ〉〈ψ |) = N and
Ptr(|ψ〉〈ψ |) = 1], and are lowest for the maximally mixed
state [I(I/2N ) = 0 and Ptr(I/2N ) = 2−N ].

FIG. 2. Schematic depiction of the problem setting considered
in this paper. The unitaries (colored boxes) implement a quan-
tum algorithm to prepare an approximation of the ground state
of a target Hamiltonian H in the absence of noise. Each layer of
the unitary is followed by single-qubit depolarizing noise (gray
circles) on the qubits applied with a probability p .
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In the remainder of this subsection, we denote by Pt
an upper bound on the purity of the state at the tth time
step—we formulate the results of this subsection for gen-
eral convex purity measures, and specialize them to con-
crete purity measures (such as the information content or
trace purity) in the following sections. Now, as with the
single-qubit case, the energy attained at the output of the
circuit can now be written as

minimize
ρ1,ρ2,...,ρd∈S

Tr(Hρd) (5a)

subject to ρt = Et(ρt−1), t ∈ {1, . . . , d}, (5b)

P(ρt) ≤ Pt, t ∈ {1, . . . , d}, (5c)

where Et(·) is the quantum channel that applies the unitary
Ut for the tth layer of the circuit followed by depolar-
izing noise acting individually on the qubits, and ρ0 is
a fixed and known initial state. Importantly, in Eq. (5),
S is the set of N -qubit operators over which we allow
the states ρ1, ρ2, . . . , ρd to vary—this set can be chosen
to be any set containing density matrices over N qubits
D1[(C2)⊗N ] since the circuit constraints [ρt = Et(ρt−1)]
enforce ρ1, ρ2, . . . , ρd to be valid density matrices. For
instance, S can be chosen to be just the set of N -qubit Her-
mitian operators, or the set of N -qubit Hermitian operators
with unity trace. As we will see below, the choice of this
set together with the purity measure determines the form
of the dual function.

To construct the dual function corresponding to Eq. (5),
we introduce the dual variables �σ = {σ1, σ2, . . . , σd},
which are N -qubit Hermitian operators, corresponding to
the circuit constraints, and �λ = {λ1, λ2, . . . , λd ≥ 0}, corre-
sponding to the purity constraints. The Lagrangian is now
constructed by adding penalties corresponding to the cir-
cuit constraints and purity constraints at each time step to
the output energy:

L( �ρ, �σ , �λ) = Tr[Hρd] +
d∑

t=1

Tr{σt[ρt − Et(ρt−1)]}

+
d∑

t=1

λt[P(ρt)− Pt],

=
d∑

t=1

Tr(ρtHt)+ λt[P(ρt)− Pt] (6)

with Hd = H + σd, Ht = σt − E†
t+1(σt+1) for t ∈ {1, 2, . . . ,

d − 1}. The dual function is obtained by minimizing the

Lagrangian with respect to ρ1, ρ2, . . . , ρd ∈ S , i.e.,

g(�σ , �λ) = min
ρ1,ρ2,...,ρd∈S

L( �ρ, �σ , �λ),

=
d∑

t=1

min
ρt∈S

{[Tr(ρtHt)+ λtP(ρt)] − λtPt},

=
d∑

t=1

[FS,P(Ht, λt)− λtPt], (7a)

where

FS,P(H , λ) = min
ρ∈S

{Tr[Hρ] + λP(ρ)}. (7b)

As with the single-qubit example, the dual function is a
lower bound on the energy produced at the circuit output
for any �σ , �λ ≥ 0, i.e.,

g(�σ , �λ) ≤ Tr[ρdH ] for all σt ∈ M[(C2)⊗N ], λt ≥ 0.

The function FS,P(H , λ) can be interpreted as a gener-
alized free energy corresponding to Hamiltonian H at
temperature λ that depends on both the domain S and
the purity measure P. For instance, if the purity mea-
sure is taken to be the information content I(ρ) = N −
Tr[ρ log2(ρ)] then it reduces to the Gibbs free energy with
an offset of Nλ. However, by choosing different purity
measures P as well as different domains S , the dual func-
tion allows us to obtain a family of bounds on the noisy
quantum circuit. As we will see in the next section, cer-
tain choices of P and S provide lower bounds that can be
classically computed.

Consider first the best lower bound that can be obtained
from the dual function. In the following proposition, we
show that the best lower bound attained by the dual func-
tion is exactly equal to the energy attained by the quantum
circuit, and the choice of dual variables σ1, σ2, . . . , σd that
yields the largest value dual function corresponds to the
Heisenberg picture evolution of Hamiltonian H .

Proposition 1. For the dual function defined in Eq. (7),
it follows that its maximum over the dual variables is equal
to the output energy of the noisy circuit, i.e.,

maximum
σ1,σ2,...,σd∈M[(C2)⊗N ]

λ1,λ2,...,λd≥0

g(�σ , �λ) = Tr[HEdEd−1 · · · E1(ρ0)],

and the maximum is attained at

σd = −H , σt = −E†
t+1E†

t+2 · · · E†
d (H),

and λ1 = λ2 = · · · = λd = 0.

020317-4



CLASSICALLY COMPUTING PERFORMANCE BOUNDS. . . PRX QUANTUM 5, 020317 (2024)

Proof. The proof of this proposition follows simply by
noting that, from the definition,

FS,P(0, 0) = 0.

Now, if σd = −H , and σt = −E†
t+1E†

t+2 · · · E†
d (H), then

Ht = 0. Hence, at this value of �σ and at �λ = 0, we obtain
g(�σ , �λ)= Tr[ρ0E†

1E†
2 · · · E†

d (H)] = Tr[HEdEd−1 · · · E1(ρ0)].
Since Tr[HEdEd−1 · · · E1(ρ0)] is also an upper bound of
g(�σ , �λ), the proposition follows. �

This proposition establishes that finding the best dual
bound is equivalent to exactly simulating the circuit, which
we expect to be hard to do on classical computers. This
hardness fundamentally stems from the fact that the dual
variables σ1, σ2, . . . , σd are operators in an exponentially
large space. However, since the dual function g(�σ , �λ) is a
lower bound on the output energy for any �σ , �λ, a natural
approach to evaluate a lower bound would be restrict σi
to subsets of M[(C2)⊗N ] where the dual function could
be evaluated efficiently—the specific subset would depend
on the choice of the purity measure. In Sec. IV below, we
will see that the dual function obtained on choosing the
purity measure to be the trace purity and the domain S =
M[(C2)⊗N ] of N -qubit Hermitian operators can be eval-
uated efficiently if σ1, σ2, . . . , σd are chosen to be matrix
product operators (MPOs) of bond dimension poly(N ). In
Sec. V below, we consider the dual function obtained on
choosing the purity measure to be the information content
of the state, in which case σ1, σ2, . . . , σd can be restricted
to the space of geometrically local Hamiltonians, allowing
for an exact evaluation of the dual function.

Restricting the dual variables σ1, σ2, . . . , σd to a subset
of M[(C2)⊗N ] raises the question of whether the max-
imum value that the dual function can attain within this
restricted set of dual variables gives a better lower bound
on the energy compared to neglecting the circuit con-
straints and just accounting for the purity of the final state,
i.e., does the duality-based bound still account for the cir-
cuit architecture. Our next proposition answers this ques-
tion affirmatively, and shows that a better lower bound can
be obtained as long as the restricted set of dual variables
contains 0.

Proposition 2. Suppose that Sσ ⊂ M[(C2)⊗N ], such
that 0 ∈ Sσ ; then

maximum
σ1,σ2,...,σd∈Sσ
λ1,λ2,...,λd≥0

g(�σ , �λ) ≥ minimize
ρ∈S, P(ρ)≤Pd

Tr(Hρ).

Proof. Since 0 ∈ Sσ ,

maximum
λ≥0

g({0 · · · 0}, {0 · · · λ}) ≤ maximum
σ1,σ2,...,σd∈Sσ
λ1,λ2,...,λd≥0

g(�σ , �λ).

Now, we can note that

g({0 · · · 0}, {0 · · · λ}) = FS,P(H , λ)− λPd.

It can be noted that g({0 · · · 0}, {0 · · · λ}) is simply the dual
function of the convex problem

minimize
ρ∈S

Tr(Hρ)

subject to P(ρ) ≤ Pd.

Furthermore, this convex problem trivially satisfies
Slater’s conditions [37,38]. This can be checked by noting
that Slater’s conditions are satisfied if there is a ρ ∈ S such
that P(ρ) < Pd—this follows by noting that P(I/2N ) < Pd
and I/2N ∈ D1[(C2)⊗N ] ⊆ S . Since Slater’s conditions
are satisfied, this problem is strongly dual and, conse-
quently, the optimal duality bound is equal to the solution
of the optimization problem, i.e.,

maximum
λ≥0

g({0 · · · 0}, {0 · · · λ}) = minimize
ρ∈S,P(ρ)≤Pd

Tr(Hρ),

which proves the proposition. �

While this proposition indicates that accounting for the
circuit constraints while constructing the lower bound
results in an improvement over only accounting for the
final purity even with a restricted space of dual variables, it
says nothing about the extent to which the bound improves.
We expect the improvement to be strongly dependent on
the purity function P, the domain set S , and the dual set
Sσ used in formulating and evaluating the bound. In the
next section, we consider a specific formulation of the dual
function that uses the trace purity measure, and show that
the lower bound obtained on accounting for the circuit
constraints can be exponentially better than if the circuit
constraints were not accounted for.

IV. TRACE PURITY–BASED LOWER BOUND

A. Formulation

In this section, we now consider a specific choice of
the purity function and the domain S that results in a dual
function that can be computed exactly when the dual vari-
ables are parametrized as matrix product operators with
poly(N ) bond dimension. We choose the purity measure
to be the trace purity P(ρ) = Ptr(ρ) = Tr(ρ2), and the
domain S in Eq. (5) to be the space of Hermitian N -qubit
operators M[(C2)⊗N ]. It then follows that FS,P(H , λ)
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defined in Eq. (7b) evaluates to

FS,P(H , λ) = −Tr(H 2)

4λ
,

and, therefore, we obtain

g(�σ , �λ) = −Tr[ρ0E†
1 (σ1)] −

d∑

t=1

(
Tr(H 2

t )

4λt
+ λtPt

)
,

where Hd = H + σd and Ht = σt − E†
t+1(σt+1). Further-

more, for this dual function, it is possible to perform the
maximization over �λ analytically to obtain

h(�σ) = maximum
�λ≥0

g(�σ , �λ)

= −Tr[ρ0E†
1 (σ1)] −

d∑

i=1

√
PtTr(H 2

t ). (8)

From the expression for h(�σ), we immediately note that
if σ1, σ2, . . . , σd are restricted to be matrix product oper-
ators with bond dimension D then h(�σ) can be evaluated
classically in time NdD4. However, as we established in
Proposition 1, the best lower bound is h(�σ) when evaluat-
ing it at �σ corresponding to a Heisenberg picture evolution
of Hamiltonian H . While, for most problems of interest
(e.g., where H is a local or spatially local Hamiltonian), H
can be represented as a matrix product operator of a modest
bond dimension, the unitaries involved in the circuit can, in
general, grow its bond dimension exponentially. A natural
choice of σ1, σ2, . . . , σd would then be to perform time-
evolving block decimation (TEBD) [39–43] on the Heisen-
berg evolution and compress the operators in each step into
bond dimension D, i.e., at �σ h,D = {σ h,D

1 , σ h,D
2 , . . . , σ h,D

d },

σ
h,D
d = −H

and σ
h,D
t = 
DE†

t+1(σ
h,D
t+1 ) for t ∈ {1, 2, . . . , d − 1},

(9)

where 
D compresses an N -qubit operator to an operator
with bond dimension D [44].

1. Duality bound and TEBD truncation errors

If a Heisenberg picture TEBD simulation, for some bond
dimension D, of the noisy quantum circuit is exact, then, by
Proposition 1, the duality-based bound h(�σ h,D) is exactly
equal to the expected energy at the output of the cir-
cuit. In practice, for small bond dimensions D, the TEBD
algorithm is not exactly correct, but incurs an error. How-
ever, as shown below, an upper bound on this error can also
be efficiently computed for the TEBD algorithm. Conse-
quently, tracking the error incurred in the TEBD algorithm

allows us to calculate another lower bound on the output of
the quantum circuit, i.e., if the TEBD algorithm produces
an estimate ETEBD, the output energy E of the circuit within
an additive error δ, then ETEBD − δ also lower bounds the
energy E. A natural question to ask is if the duality-based
bounds are more informative than the bound obtained from
just a TEBD simulation.

Consider now the problem of estimating the TEBD error
following Ref. [40]. The TEBD estimate of the energy at
the circuit output, ETEBD, can be expressed as

ETEBD = Tr
[
E1(ρ0)

( d∏

t=2


DE†
t

)
(H)

]
,

while the true energy at the circuit output can be expressed
as

E = Tr
[
E1(ρ0)

( d∏

t=2

E†
t

)
(H)

]
.

Denoting by ρt the state of the qubits in the quantum circuit
at time step t, ρt = EtEt−1 · · · E1(ρ0), we note that

E − ETEBD = Tr
[
ρ1

( d∏

t=2

E†
t −

d∏

t=2


DE†
t

)
(H)

]
,

=
d∑

t=2

Tr
[
ρ1

( t−1∏

s=2

E†
s

)
(E†

t −
DE†
t )

×
( d∏

s=t+1


DE†
s

)
(H)

]
,

=
d∑

t=2

Tr[ρt−1(σ
h,D
t−1 − E†

t (σ
h,D
t ))]

=
d−1∑

t=1

Tr(ρtHt),

where, in the last step, we have used the fact that, by
definition, Ht = σ

h,D
t−1 − E†

t (σ
h,D
t ). Now, an upper bound on

the error |E − ETEBD| can be obtained via

|E − ETEBD| ≤
d−1∑

t=1

|Tr(ρtHt)| ≤
d−1∑

t=1

‖Ht‖F , (10)

where ‖A‖F =
√

Tr(A†A) and we have used the fact that,
by Holder’s inequality, |Tr(ρtHt)| ≤ ‖ρt‖1‖Ht‖ ≤ ‖Ht‖F
since ‖ρt‖1 = 1 and ‖Ht‖ ≤ ‖Ht‖F . We point out that an
important reason why we express the error bound in terms
of the Frobenius norm of Ht, instead of its operator norm, is
because the Frobenius norm can be efficiently computed if
Ht is a matrix product operator of a small bond dimension
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(which is the case while performing the TEBD simulation).
The deviation bound in Eq. (10) implies a lower bound

E ≥ ETEBD − δ = −Tr[ρ0E†
1 (σ1)] −

d∑

i=1

√
Tr(H 2

t ). (11)

This bound is significantly worse than the duality-based
bound in Eq. (8) as Pt � 1 for all time steps t. The key
reason why just accounting for a worst-case accumulation
of TEBD errors yields a loose lower bound is that the upper
bound in |E − ETEBD| does not account for the decrease
in the trace purity of the quantum state in the presence of
noise, which is explicitly factored into the formulation of
the dual.

In Fig. 3, we numerically exhibit the difference between
the bound in Eq. (11) and h(�σ h,D) for a one-dimensional
(1D) circuit on N = 40 qubits [Fig. 3(a)], which is chosen
to find the ground state of a commuting 1D Hamiltonian
(see the figure caption for the exact circuit and Hamil-
tonian). As can be seen from Fig. 3(b), the lower bound
computed from the trace purity–based dual is significantly
larger, and thus more representative of the impact of noise
on the output energy, than the lower bound provided by
Eq. (11). We point out that the dual variables �σ h,D obtained
by TEBD in the Heisenberg picture are not necessarily the
globally optimal choice in the space of all MPOs with
bond dimension D to evaluate the dual function h(�σ).
The function h(�σ) can potentially be optimized beyond
the TEBD-based value to obtain better lower bounds. In
practice, we observe that local optimization of h(�σ) with
a gradient-based method starting from the initial point of
�σ = �σ h,D yields only a modest improvement over h(�σ h,D).

Next, we study the improvement that the duality-based
bounds that account for the circuit constraint provide over
bounds in existing literature that just account for the infor-
mation content at the circuit output. In particular, we
numerically compare the best lower bound �dual

D that we
can obtain by evaluating h(�σ) at σ1, σ2, . . . , σd ∈ MPOD
(the space of all N -qubit MPOs of bond dimension D),

�dual
D = maximize

σ1,σ2,...,σd∈MPOD
h(�σ),

to the lower bound �I analyzed in Ref. [24],

�I = minimize
ρ:I(ρ)≤N (1−p)d

Tr(Hρ),

i.e., where they accounted only for the decreased informa-
tion content I(ρ) = N − Tr[ρ log2 ρ] of the final state as
per Lemma 1. First, we show that there exists a Hamil-
tonian and a 1D circuit where �dual

D , with D = O(N ) [45],
scales superexponentially with the depth of the circuit and
thus captures the propagation of errors through the circuit,
while �I scales at most exponentially with the circuit depth.

(a)

(b)

FIG. 3. (a) Schematic of benchmark circuits considered for
one-dimensional spin systems: colored boxes indicate unitaries
and gray circles depolarizing noise. Two-qubit unitaries are
chosen to be exp(−iθX ⊗ X ) and single-qubit unitaries are inde-
pendently Haar random. The Hamiltonian is chosen to be H =
−UH (

∑
i Zi)U

†
H , where UH is the first layer of unitaries, making

H a 4-local commuting Hamiltonian. The first layer of unitaries
UH thus transforms the initial state |0〉⊗N into the ground state of
H . The last (d − 1)/2 layers are chosen to be the inverse of the
previous (d − 1)/2 layers—in the absence of noise, the output
of the circuit is the ground state of H . (b) Plot shows the trace
purity–based dual bound [h(�σ h,D) in Eq. (8); solid lines, circular
markers] and the bound obtained by only considering the TEBD
errors [ETEBD − δ in Eq. (11); dotted lines, diamond markers]
for the ground-state (g.s.) energy of the target Hamiltonian, as
a function of the circuit depth d for a system of N = 40 spins,
with two-qubit gate parameter θ = 0.05, a depolarizing noise rate
of p = 3%, and varying MPO ansatz bond dimensions D. The
gray dashed line indicates the g.s. energy, the gray shaded area
indicates the region of trivial bounds (less than the g.s. energy),
and the blue dashed line indicates the energy of the completely
mixed state 1/2N . The y axis is scaled by a constant multiplica-
tive factor in the trivial region for visual clarity. The Hamiltonian
is shifted and scaled such that its spectrum is in [0, 1].

Proposition 3. There exists a 1D circuit and an N -
qubit Hamiltonian H with Tr(H) = 0 and ‖H‖ = N , such
that �I = −N (1 − p)O(d), while �dual

D = −N (1 − p)�(d
2) +

O(
√

N ) for a choice of D ≤ O(N ).

Sketch of proof (see Appendix A for details). Consider a
Clifford circuit chosen at random from the ensemble of
entangle-unentangle circuits analyzed in Ref. [26]. It was
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shown for this ensemble that, for a 1D circuit, on aver-
age, the energy of the output state with respect to a 2-local
Hamiltonian converges to the energy of the maximally
mixed state as ∼ poly(N )× (1 − p)�(d

2). Consider now
the Hamiltonian H = −∑N

i=1 Zi and initial state |0〉⊗N . In
the Heisenberg picture, each Zi will be mapped to exactly
one Pauli string under the action of Clifford gates [46,47].
Since a Pauli string is representable as an MPO of bond
dimension 1, σt obtained from Heisenberg picture evolu-
tion will be a sum of N MPOs of bond dimension 1 and
will thus be an MPO of bond dimension at most N . Thus,
from Proposition 1, the purity-based dual exactly matches
the energy of the output of the quantum circuit, which will
scale as −N (1 − p)�(d

2) [26,48]. As the bound without cir-
cuit constraints is agnostic to the unitaries in a circuit, it is
also a lower bound on the circuit where all the unitaries
are just the identity operation. For this trivial circuit, the
energy of the state after d layers of just depolarizing noise
scales as −N (1 − p)d. Hence, the lower bound without
circuit constraints �I = −N (1 − p)O(d). �

B. Numerical studies

For non-Clifford circuits, MPO parametrization with
bond dimension poly(N ) is no longer expected to fully
capture Heisenberg picture evolution. Even so, we numer-
ically demonstrate for a 1D spin system that the circuit
dual function given in Eq. (8) can be used to compute
circuit-specific bounds that perform better than bounds that
only take into account the information content of the out-
put state. We compute the bounds by evaluating the dual
function h(�σ) at the dual variables obtained from TEBD
on the Heisenberg picture as in Eq. (9). Figure 4 shows
numerical studies of the bounds h(�σ h,D) computed in this
manner—we consider a 1D spin system of size N = 40 and
circuits designed to prepare the ground state of a commut-
ing local Hamiltonian (see the figure caption for details).
The plots in Fig. 4 show the bounds for MPO ansatzes
with different bond dimensions D plotted against the circuit
depth d for circuits with noise rates p = 3% [Fig. 4(a)],
p = 5% [Fig. 4(b)], p = 10% [Fig. 4(c)], and p = 20%
[Fig. 4(d)]. However, for the lowest noise rate p = 3%,
the circuit dual bounds at intermediate depths are trivial,
i.e., lower than the ground-state energy of H—this can be
attributed to the fact that the intermediate depth regime is
the regime where the MPO ansatz is least representative.
For shorter depths, the bond dimension of the Heisen-
berg picture operator would have not grown very much,
while, for very long depths, the action of the depolariz-
ing noise reduces the bond dimension of the Heisenberg
picture operator.

Figure 4 also compares the trace purity–based dual
bound to the information content–based bound. However,
since the duality-based bound is exactly computable on a
classical computer, to make a fair comparison, we need

to use a certifiable method for computing the information
content–based bound. In particular, using Lagrangian dual-
ity, the information content–based bound can be reframed
in terms of the Gibbs free energy of the problem Hamilto-
nian, i.e.,

�I = minimize
ρ:I(ρ)≤N (1−p)d

Tr(Hρ)

= maximize
λ≥0

λSd + G(H , λ), (12)

where Sd = N − N (1 − p)d and G(H , λ) = −λ log Tr
exp(−H/λ) is the Gibbs free energy of H at temperature
λ. However, since H is generally a many-body Hamil-
tonian, an accurate evaluation of G(H , λ) can only be
guaranteed at sufficiently high temperatures [49]. Thus,
instead of evaluating the bound �I in Eq. (12), we
introduce a lower bound λc on the temperature λ and
evaluate

�I
λc

= maximize
λ≥λc

λSd + G(H , λ), (13)

For spatially local Hamiltonians, λc can be chosen depend-
ing on the norms of the local terms in the Hamiltonian, the
dimensionality of the lattice, and the interaction range. In
our calculations, we make the choice of λc = 8e3—this is
based on Ref. [49] that, to the best of our knowledge, pro-
vides the only rigorous algorithm that works for evaluating
G(H , λ) at temperatures above λc.

We see from Fig. 4 that the dual provides a tighter
lower bound on the output than the bound based on just
the information content of the output state. The informa-
tion content–based bounds shown in Fig. 4 are also trivial
(i.e., lower than the ground-state energy) for intermedi-
ate and short depths—this is due to the temperature lower
bound that needs to be introduced to ensure computabil-
ity of the Gibbs free energy. We also observe that the
separation between the information content–based and cir-
cuit dual bounds increases with the bond dimension D as
the MPO ansatz becomes more expressive with increas-
ing bond dimension. In the limit of large circuit depth at
nonzero depolarizing noise rates, the state of the circuit
approaches the completely mixed state, and we observe
that both bounds also approach the energy corresponding
to the completely mixed state.

Finally, we demonstrate that the dual bounds are able
to capture the extent of entanglement being generated
in a circuit. In the brick-wall quantum circuits we con-
sider, the two-qubit gates in the circuit exp(−iθX ⊗ X )
are parametrized by an angle θ that controls the entangle-
ment being produced—for example, at θ = 0,π/2, there
is no entanglement at all. Figure 5 shows the bounds as
a function of the angular parameter θ and the noise rate
p for constant bond dimensions D and circuit depths d,
for a 1D system of N = 32 spins and Figs. 6(d) and 6(e)
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FIG. 4. Comparison of the trace purity–based dual bound [h(�σ h,D) in Eq. (8)] and the bound based on just the information content
of the output state [�I

λc
in Eq. (13)] for 1D many-body spin systems. Both bounds are lower bounds on the ground-state (g.s.) energy

of the same target Hamiltonian as considered for the results in Fig. 3 (see the description of the Hamiltonian in the caption of Fig. 3).
Plots show the bounds as a function of brick-wall quantum circuit depth d [Fig. 3(a)] for a system of N = 40 spins, varying MPO
ansatz bond dimensions D, with depolarizing noise rates of (a) p = 3%, (b) p = 5%, (c) p = 10%, and (d) p = 20%. Note that at
p = 10% and 20%, approximately the same duality-based lower bound is obtained for different bond dimensions. Two-qubit unitaries
in the brick-wall circuit are chosen to be exp(−iθX ⊗ X ) with θ = 0.1 and single-qubit unitaries are independently Haar random. The
gray dashed line indicates the g.s. energy, the gray shaded area indicates the region of trivial bounds (less than the g.s. energy), and
the blue dashed line indicates the energy of the completely mixed state 1/2N . The y axis is scaled by a constant multiplicative factor
in the trivial region for visual clarity. The Hamiltonian is shifted and scaled such that its spectrum is in [0, 1].

show the same for a 2D system of N = 36 spins in a
6 × 6 lattice. For the 2D system, we consider the MPO
ansatz to have a “snakelike” bond structure on the 2D
lattice [Fig. 6(c)]—such a snakelike structure is a numer-
ically convenient approach for performing TEBD for 2D
systems. This ansatz is useful for moderate system sizes,
but due to gates along the vertical edges of the lattice, the
bond dimension required grows rapidly. For larger system
sizes, we expect that a tensor network ansatz that matches
the architecture of the circuit [50–52] would give better
bounds. For both the 1D and 2D systems, the target Hamil-
tonians are shifted and scaled such that the ground-state
energies are zero and any bounds lower than zero are con-
sidered trivial and represented as zero in the plots—the
black regions in the plots thus correspond to trivial bounds.
We observe that, near θ = 0,π/2, where the entanglement
is small, the MPO ansatz of constant bond dimension used
for the bounds is able to capture it and we obtain nontriv-
ial bounds for small noise rates p ≈ 6%. For values of θ
away from these limits, the region of triviality is larger, but

nontrivial dual bounds can still be obtained for higher noise
rates.

While we have restricted ourselves to an MPO ansatz
even for the 2D problem, we point out that we can likely
get better results by using a projected entangled-pair oper-
ator (PEPO) ansatz for the dual variables. However, con-
tracting PEPOs is a computation that is, in the worst case,
hard on classical computers [53] and we might lose the
rigorous guarantee associated with the lower bound. How-
ever, several numerical studies do point out that, outside
of the worst case, projected entangled-pair states and oper-
ators could still be contracted accurately with classically
efficient heuristics [54–56]. Furthermore, there are certain
physically meaningful subclasses of tensor networks on 2D
lattices where classical algorithms for contraction, often
with rigorous guarantees, are available and thus could be
used as ansatzes for the dual variables. An example of such
a subclass are sequentially generated projected entangled-
pair tensors [57]. Other subclasses, such as string bond
tensors [58,59] and entangled plaquette tensors [60,61],

020317-9



DEB MISHRA, FRÍAS-PÉREZ, and TRIVEDI PRX QUANTUM 5, 020317 (2024)

0.00 0.05 0.10 0.15 0.19 0.24 0.29 0.34 0.38 0.43 0.48

θ/π

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.30

N
oi

se
ra

te
p

1D system, bond dimension D = 64

0.0

0.1

0.2

0.3

0.4

0.5

0.00 0.05 0.10 0.15 0.19 0.24 0.29 0.34 0.38 0.43 0.48

θ/π

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.30

N
oi

se
ra

te
p

1D system, bond dimension D = 32

0.0

0.1

0.2

0.3

0.4

0.5

(a)

(b)

FIG. 5. Trace purity–based dual bounds [h(�σ h,D) in Eq. (8)]
for a 1D system of N = 32 spins, the same target Hamiltonian
as considered for the results in Fig. 3 (see the description of
the Hamiltonian in the caption of Fig. 3), and brick-wall quan-
tum circuits [Fig. 3(a)] where two-qubit unitaries are chosen
to be exp(−iθX ⊗ X ) and single-qubit unitaries are indepen-
dently Haar random. Plots show dual bounds as a function of the
noise rate p and circuit parameter θ for circuit depth d = 25 and
bond dimensions (a) D = 32 and (b) D = 64. The Hamiltonian
is shifted and scaled such that its spectrum is in [0, 1].

can be classically contracted using Monte Carlo methods.
We leave a detailed theoretical and numerical investigation
of these ansatzes for future work.

C. Nondepolarizing noise models

Up until now, we have modeled the noise present in the
circuit as depolarizing. However, noise in several experi-
mental systems might have a more complex structure. In
this subsection, we consider these other noise models and
show that the duality-based bounding procedure can be
reformulated slightly to provide informative bounds even
without the assumption of the depolarizing noise. The only
assumption that we make that the noise channel under
consideration has a full Kraus rank (i.e., the Kraus oper-
ators describing the noise channel span the entire space of
single-qubit operators). This assumption could be seen as
a reasonable physical assumption for sufficiently generic
noise models—if the Kraus operators are interpreted effec-
tively as operators that randomly act on the qubit when it
is experiencing noise, the Kraus operators not spanning the

full space of linear operators would mean that the noise is
special and does not apply an entire subspace of operators
on the qubit. Nevertheless, for channels that do not have
full Kraus rank, the methods presented in this section do
not apply and we leave it as an open problem for future
work.

First, consider noise channels that are unital and prim-
itive (i.e., have identity as a fixed point). In this case, the
noise channel N with noise rate p can always be expressed
as

N (ρ) = (1 − p)ρ + V
( ∑

P∈{X ,Y,Z}
pPPUρU†P

)
V† (14)

for single-qubit unitaries U, V and pX , pY, pZ ∈ (0, 1)
with p = pX + pY + pZ < 1. In this case, as detailed in
Appendix B, it follows from an application of a corollary
of Ref. [62] that Lemma 1 can be extended to this
class of channels with the noise rate being chosen as
min(pX , pY, pZ).

Lemma 2 (Follows from Corollary 5.6 of Ref. [62]).
Suppose that ρt is the quantum state on N qubits obtained
from an initial pure state after applying t unitaries followed
by single-qubit noise channels of the form of Eq. (14); then

Ptr(ρt) := Tr(ρ2
t ) ≤ 2−N {1−[1−min(px ,py ,pz)]t}. (15)

The case of nonunital noise channels is more com-
plex, and it is not possible to get architecture-independent
bounds on the entropy or the trace purity of the time-
dependent state of the quantum circuit. We restrict our-
selves to the case where the nonunital noise channel under
consideration has a unique fixed point τ—this noise chan-
nel, then, tends to drive the output of a quantum circuit
on N qubits to the state τ⊗N . Therefore, instead of using
a trace purity constraint while formulating the dual, as we
have for unital noise channels, we instead use a constraint
on ‖ρt − τ⊗N ‖2

F , where ‖X ‖2
F = Tr(X †X ) is the Frobenius

norm of X . To obtain a simple analytical upper bound on
‖ρt − τ⊗N ‖2

F , we assume that the two-qubit gates in the
quantum circuit are diagonal in the basis of eigenvectors
of τ . This is the case, e.g., if the nonunital noise channel
is amplitude damping and the two-qubit gates used in the
quantum circuit are all control phase gates. We point out
that if prior information about the fixed point of the noise
channel is known (e.g., from a previous noise tomography)
then a universal gate set can always be chosen such that the
two-qubit gates satisfy this requirement.

More concretely, suppose that the unitary in time step t
has single-qubit gates V(1)t,α . We also assume that the noise
channel, N , is nonunital and has a full Kraus rank, which
we expect to be true for noisy systems if the noise is suf-
ficiently generic. Denoting the fixed point of N by τ , we
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FIG. 6. (a) Schematic of quantum circuits considered for 2D spin systems on a square lattice: colored boxes indicate unitaries
and gray circles depolarizing noise. Each unitary layer consists of two-qubit unitaries exp(−iθX ⊗ X ) (blue boxes) followed by
independently Haar random single-qubit unitaries (green boxes). The first d/2 layers serve to increase the entanglement in the state.
The remaining layers invert the action of the previous d/2 such that, in the absence of noise, the output of the circuit is the ground state
of H = −∑

〈i,j 〉 ZiZj , where Zi is the Pauli-Z operator for the ith spin and 〈i, j 〉 indicates nearest neighbors. (b) Circuits considered
have a brick-wall structure: two-qubit unitary layers cycle between gates on odd horizontal edges (U1), even horizontal edges (U2),
odd vertical edges (U3), and even vertical edges (U4). Single-qubit gates (Us) are applied on every qubit after every two-qubit gate
layer. (c) Structure of the MPO considered for 2D spin systems: yellow squares indicate tensors at each site in the 2D lattice and
lines emerging from them indicate tensor indices. Horizontal lines indicate bond indices with dimension D and diagonal lines indicate
physical indices. (d),(e) Trace purity–based dual bounds [h(�σ h,D) in Eq. (8)] for the ground-state energy of the target Hamiltonian H
as a function of the noise rate p and circuit parameter θ for a system of N = 36 spins arranged in a 6 × 6 lattice, circuit depth d = 32,
and MPO bond dimensions (d) D = 64 and (e) D = 362. The Hamiltonian is shifted and scaled such that its spectrum is in [0, 1].

show in Appendix B that if N has a full Kraus rank then

N = �τ ,qN ′ (16)

for some channel N ′ that also has τ as a fixed point
and �τ ,q(X ) = (1 − q)X + qTr(X )τ for 0 < q < 1. The
parameter q can be interpreted as the probability with
which the noise channel traces out the qubit and replaces it
with τ , and it can be computed by solving the semidefinite
program

max
q

q (17a)

such that �N − qI ⊗ τ � 0, (17b)

q > 0, q < 1, (17c)

where �N is the Choi state corresponding to N . For such
noise channels and unitary circuits, we have the following
result.

Lemma 3 (Follows from Lemma 1 of Ref. [24]). Sup-
pose that ρt is the quantum state on N qubits obtained from
an initial state ρ0 after applying t unitaries followed by a
single-qubit noise channel N of the form of Eq. (16); then
it follows that

D(ρt||τ⊗N ) ≤ D(ρ0||τ⊗N )(1 − q)t + 2
t−1∑

s=0

∑

α

(1 − q)t−s

× log2(||τ−1/2Vα,sτV†
α,sτ

−1/2||), (18)

where D(ρ1||ρ2) = Tr[ρ1 log2 ρ1 − ρ1 log2 ρ2] is the quan-
tum relative entropy between ρ1 and ρ2.

We outline a full proof of this lemma in Appendix B. To
translate the upper bound on the quantum relative entropy
to an upper bound on ‖ρt − τ⊗N ‖F , we note that

‖ρt − τ⊗N ‖2
F ≤ 2‖ρt − τ⊗N ‖1 ≤ [2D(ρt||τ⊗N )]1/2,

020317-11



DEB MISHRA, FRÍAS-PÉREZ, and TRIVEDI PRX QUANTUM 5, 020317 (2024)

where we have used the fact that ‖O‖2
2 ≤ ‖O‖1‖O‖

and Pinsker’s inequality ‖ρ1 − ρ2‖1 ≤
√

1
2 D(ρ1||ρ2). We

remark that our bounds become trivial (i.e., → ∞) when
τ is not full rank, which would also imply by the quantum
Perron-Frobenius theorem that the noise channel does not
have a full Kraus rank.

Following the same procedure as in Sec. III, we can
now formulate the following optimization problem for the
energy at the output quantum circuit:

minimize
ρ1,ρ2,...,ρd∈S

Tr(Hρd) (19a)

subject to ρt = Et(ρt−1), t ∈ {1, . . . , d}, (19b)

‖ρt − τ⊗N ‖2
F ≤ d2

t , t ∈ {1, . . . , d}.
(19c)

Here, instead of a trace purity bound as in Eq. (5), we use
an upper bound on the Frobenius norm distance between
ρt and τ⊗N with dt given by Lemma 3. Again, intro-
ducing the dual variables σ1, σ2, . . . , σd ∈ M[(C2)⊗N ] and
λ1, λ2, . . . , λt ≥ 0, we can construct the Lagrangian

L( �ρ, �σ , �λ) = Tr[Hρd] +
d∑

t=1

Tr{σt[ρt − Et(ρt−1)]}

+
d∑

t=1

λt[‖ρt − τ⊗N ‖2
F − Pt]. (20)

Minimizing the Lagrangian over �ρ and then maximizing it
over �λ yields the dual function

h(�σ) = −Tr(σ1E1(ρ0))+
d∑

t=1

[
Tr(Htτ

⊗N )− dt

√
Tr(H 2

t )
]
,

where, again, Hd = H + σd and Ht = σt − E†
t+1(σt+1) for

t ∈ {1, 2, . . . , d − 1}. Similar to the case in the previous
subsections, due to Lagrangian duality, g(�σ) evaluated
at any �σ provides a lower bound on the energy at the
output of the circuit. Following the strategy in the pre-
vious sections, we again evaluate g(�σ) at �σ h given by
a TEBD algorithm in the Heisenberg picture [Eq. (9)].
As an example shown in Fig. 7, the bounds obtained in
a 1D circuit on N = 30 qubits, at a noise rate of 3%,
with noise modeled by the nonunital replacement channel
N (X ) = (1 − q)ρ + qTr(X )τ , where we assume that τ =
I/2 + εZ. Here ε controls how “nonunital” the noise chan-
nel is—ε = 0 corresponds to the previously studied case of
a depolarizing noise channel, and in the limit of ε → ±1/2
we obtain an amplitude damping channel (which does not
have a full Kraus rank). We also compute the bounds
obtained by considering only the quantum relative entropy
of the circuit output (ρd) with respect to the noise chan-
nel fixed point τ⊗N as given by Eq. (18)—to obtain this,

(a)

(b)

FIG. 7. Bounds on the output energy for the case of a nonunital
noise channel. The structure of the circuits are identical to those
considered in Fig. 3(a) with parameters N = 32, d = 102, and
θ = 0.1. The local noise after each layer of unitaries is given by
N (X ) = (1 − q)X + q Tr(X )τε , where τε = (1/2 + ε)|0〉〈0| +
(1/2 − ε)|1〉〈1|, with q = 0.03 in (a) and q = 0.05 in (b). In
orange, we show the bounds derived on the output energy from
our dual problem with an MPO ansatz with D = 128 for the dual
variables σ1, σ2, . . . , σd. The black lines show the lower bound
Tr(Hτ⊗N )− ‖H‖ ‖ρd − τ⊗N ‖1 that is obtained by disregarding
the circuit architecture.

we note that, given an upper bound on D(ρd||τ⊗N ), we
can translate it to an upper bound on ‖ρd − τ⊗N ‖1 via
Pinkser’s inequality, i.e.,

‖ρd − τ⊗N ‖1 ≤
√

1
2 D(ρd||τ⊗N ),

and therefore the expected energy Tr(Hρd) at the cir-
cuit observable can deviate from τ⊗N by at most
‖H‖||ρd − τ⊗N ||1. Thus we obtain the lower bound

Tr(Hρd) ≥ Tr(Hτ⊗N )− ‖H‖||ρd − τ⊗N ||1,

≥ Tr(Hτ⊗N )− ‖H‖
√

1
2 D(ρd||τ⊗N ). (21)
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We find that using the duality-based bound continues to
give informative bounds that are significantly better com-
pared to the bounds attained by just accounting for the
distance between the noisy output state and the noise chan-
nel fixed point τ⊗N . Specifically, as the noise channel
becomes increasingly nonunital then the dual formulation
continues to provide nontrivial bounds since it accounts
for the circuit architecture, and the bounds attained with-
out accounting for the circuit architecture become trivial
for even slightly nonunital channels.

V. USING DUALITY WITH INFORMATION
CONTENT

In the previous sections, we investigated the impact of
noise using the trace purity as a measure of the mixedness
in the noisy circuit. The trace purity–based dual func-
tion given in Eq. (8) contains terms with Frobenius norms√

Tr(H 2
t ) that, in the worst case, could grow exponentially

with the system size N . Hence, the trace purity–based dual
tends to become trivial in the limit of large system size
and intermediate circuit depths. An alternative better con-
ditioned purity measure is the information content based
on the von Neumann entropy, I(ρ) = N − S(ρ) = N +
Tr[ρ log2(ρ)]. In this section, we formulate a duality-based
bound using the information content as a purity measure.
However, as we illustrate below, the duality bound here
is harder to compute than that based on the trace purity
for a general spin model—to still gauge the efficacy of
this bound, we numerically study in the simpler but physi-
cally relevant case of Gaussian fermions. While our results
are suggestive that using the information content–based
bounds could be useful for spin models, the associated dual
function is harder to compute classically—we leave it as an
open problem to develop classical algorithms to compute
informative bounds using this strategy for spin models.

Considering the information content, the free energy
defined in Eq. (7b) becomes the Gibbs free energy with
an offset,

FS,P(H , λ) = inf
ρ�0,Tr(ρ)=1

[Tr[Hρ] + λI(ρ)],

= Nλ+ inf
ρ�0,Tr(ρ)=1

[Tr(Hρ)− λS(ρ)],

= Nλ− λ log Tr exp(−H/λ), (22)

which together with Eq. (7) yields

g̃(�σ , �λ) = −Tr[ρ0E†
1 (σ1)] +

d∑

t=1

[−λt log Tr exp(−Ht/λt)

+ λt(N − It)], (23)

where It = N (1 − p)t is the analytical bound on the
information content under depolarizing noise defined in
Lemma 1.

To benchmark the performance of the information con-
tent–based dual, we consider Gaussian fermionic systems
where the dual function given in Eq. (23) can be computed
exactly. We study N fermions arranged on a lattice and
choose H to be a quadratic Hamiltonian,

H = i
∑

α,α′,x,x′
hα,α′

x,x′ cαx cα
′

x′ ,

where c1
x , c2

x are the Majorana operators for the fermion at
point x on the lattice, and the hα,α′

x,x′ are real numbers speci-
fying H . We additionally assume the unitaries in the circuit
that prepares the ground state of H from an initial vacuum
state to be Gaussian unitaries.

Since both Gaussian unitaries and the depolarizing
channel map a quadratic Hermitian operator to another
quadratic Hermitian operator, Proposition 1 indicates that
the dual function is maximized for σt, which themselves
are quadratic Hermitian operators. This motivates the fol-
lowing ansatz for σt:

σt = i
∑

α,α′,x,x′
d(x,x′)≤r

sα,α′
x,x′;tc

α
x cα

′
x′

for real sα,α′
x,x′;t. In our study, we restrict σt to be local oper-

ators with interaction range r while maximizing g(�σ , �λ) to
obtain the lower bound—when r ∼ lattice size, we expect
to obtain the best possible lower bound, but, since the
ansatz always includes the point �σ = 0, we expect from
Proposition 2 to obtain a bound better than that predicted
by only considering the information content of the out-
put state, even for small r. Choosing σt to be quadratic
Hermitian operators allows for exact, classically efficient
computation of the Gibbs free-energy terms in the dual
function and, furthermore, even the circuit output can be
computed exactly by considering the covariance matrix
describing the state; see Appendix B for details. We obtain
bounds by maximizing g(�σ , �λ) through a gradient-based
local optimization algorithm, starting from the initial point
where the σt are chosen to be the Heisenberg picture evo-
lution of −H , but projected onto the space of quadratic
fermionic Hamiltonians with interaction range r after each
time step—much like the compression into MPOs of bond
dimension D in Eq. (9).

Figure 8 shows a numerical study of the bounds that we
obtain—we consider systems with ∼ 50 fermions arranged
both on 1D [Fig. 8(b)] and 2D lattices [Fig. 8(c)] and expe-
riencing depolarizing noise at a rate of 5%. We choose
H to be an Su–Schrieffer–Heeger (SSH) model, nearest-
neighbor Hamiltonian with alternating hopping strengths
[Fig. 8(a)]. For the 1D benchmarks, we choose

H =
∑

x

(va,ba†
xbx + vb,ab†

xax+1 + H.c.), (24a)
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FIG. 8. (a) Schematic of SSH model quadratic fermionic
Hamiltonians with alternating hopping strengths in one and two
dimensions. (b),(c) Comparison of information content–based
dual bounds with and without circuit constraints, and the out-
put energies of noisy Gaussian circuits for systems consisting
of (b) N = 48 fermions arranged in a 1D lattice, (c) N = 49
fermions arranged in a 7 × 7 2D lattice. Dual bounds are shown
for ansatzes with varying interaction range r. The horizontal
axis represents the depth d of a Gaussian brick-wall circuit that
outputs the ground state of the SSH model. Fermions are inde-
pendently subject to depolarizing noise with probability p = 5%
after every unitary layer. The Hamiltonians are shifted and scaled
such that their spectrum is in [0, 1].

and for 2D benchmarks, we choose

H =
∑

x,y

( ∑

p ,q∈{(a,b),(e,f )}
(vp ,qp†

x,yqx,y + vq,pq†
x,ypx+1,y + H.c.)

+
∑

p ,q∈{(a,e),(b,f )}
(vp ,qp†

x,yqx,y + vq,pq†
x,ypx,y+1 + H.c.)

)
,

(24b)

where we choose va,b = vef = vx, vb,a = vf ,e = wx, va,e =
vb,f = vy , and ve,a = vf ,b = wy . For the numerical stud-
ies shown in Fig. 8, H is shifted and scaled such that
the ground- and highest-excited-state energies are zero
and one, respectively. We consider circuits of depth d
consisting of two-mode Gaussian unitaries arranged in a
brick-wall layout, where the first d/2 layers are composed
of randomly generated two-mode Gaussian unitaries that
serve to increase the entanglement in the state. The remain-
ing layers invert the action of the previous d/2 such that,
in the absence of noise, the output state is the initial state,
which is chosen to be the ground state of H . In Fig. 8,
for comparison, we also include the exact output of the
noisy Gaussian circuit, as well as the bound obtained by
neglecting the circuit constraints and only considering the
information content of the output state. As expected, we
find that on accounting for the circuit constraint, we obtain
bounds that are more representative of the output. We also
observe that the dual bounds get closer to the output as the
dual ansatz’s interaction range r increases, since the ansatz
becomes more expressive.

VI. CONCLUSION AND OUTLOOK

In conclusion, we demonstrate a method to rigorously
lower bound the performance of any given quantum circuit
subject to a constant rate of depolarizing noise. We achieve
this by constructing a Lagrangian dual specific to the cir-
cuit, which takes into consideration not only the decreasing
purity of the state through the circuit due to noise, but also
the details of the gates in the circuit, allowing the study
of the effect of entanglement generation in the circuit that
can worsen the detrimental effects of noise. We presented
numerical studies in spin systems and showed that it is pos-
sible to efficiently calculate circuit-specific lower bounds
that are tighter than bounds obtained by just considering
the information content of the output state. We provided
an interpretation of the trace purity–based dual evaluated
at dual variables obtained from TEBD in the Heisenberg
picture in terms of the compression errors. We also showed
that the dual can be formulated in terms of the information
content of the state instead of the trace purity—we com-
puted information content–based circuit dual bounds for
Gaussian fermionic systems where the Gibbs free energy
can be computed exactly.

Our method opens the door to promising avenues
of future research. We already demonstrate numerically
that this approach can provide informative lower bounds
even when the TEBD simulation is inaccurate—e.g., in
Figs. 4(a) and 4(b), it can be seen that the obtained lower
bound changes with MPO bond dimension, indicating that
the bond dimension is not large enough to accurately sim-
ulate the circuit dynamics, but still continues to provide
nontrivial energy lower bounds. We expect that we are
able to handle circuits with moderate entanglement using
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our strategy, but, indeed, we expect to obtain trivial lower
bounds for highly entangled circuits (e.g., circuits perform-
ing fault-tolerant quantum computation). Moving forward,
larger-scale tensor network numerics can allow us to also
provide energy lower bounds in higher-dimensional cir-
cuits, with a number of qubits reaching state-of-the-art
experiments even if the tensor network methods are not
good enough for accurately simulating circuit dynamics.
Specifically, for 2D circuits, using projected entangled-
pair operators (or their subclasses) as the ansatz for the
dual variables is an important avenue for future explo-
ration. Furthermore, better numerical optimization algo-
rithms can be explored for improving the lower bounds
than those from evaluating the dual function at a specific
point. Moreover, extensions of the methods of this paper
to continuous time would better capture the experimental
system, and even allow us to apply this method for under-
standing quantum adiabatic algorithms [4]. Finally, the
Lagrangian dual formulation of lower bounds, apart from
being a numerical tool, could also shed rigorous theoret-
ical insights into understanding the resilience of quantum
circuit architectures to noise.
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APPENDIX A: PROOF OF PROPOSITION 4

We first recall the main result of González-García et al.
[26] in which error propagation in a family of random
quantum circuits was analyzed. Specifically, they consid-
ered brick-wall quantum circuits of depth d (assumed to be
even) with unitaries U1, U2, . . . , Ud, where

Ud/2+1 = U†
d/2, Ud/2+2 = U†

d/2−1,

Ud/2+3 = U†
d/2−2, . . . , Ud = U†

1.

The unitaries U1, U2, . . . , Ud/2 are chosen randomly
depending on the circuit architecture. We specifically
consider the 1D case, where U1, U3, U5, . . . are formed
by applying random two-qubit gates between qubits
(1, 2), (3, 4), (5, 6), . . . and U2, U4, U6, . . . are formed
by applying random two-qubit gates between qubits
(2, 3), (4, 5), (6, 7), . . .. All the two qubit gates are cho-
sen independently at random from an ensemble that forms
a 2-design. Furthermore, we consider the noisy setting
where depolarizing noise with probability p is applied
to each qubit after every unitary layer. González-García
et al. [26] established the following result characterizing
the average energy of the output state for a 2-local Hamil-
tonian. While the result of Ref. [26] holds for arbitrary

2-local Hamiltonians, we only consider the Hamiltonian
H = −∑N

i=1 Zi.

Lemma 4 (Ref. [26]). The expectation value E of the
Hamiltonian H = −∑N

i=1 Zi with respect to the output
state of a circuit chosen randomly from the ensemble
described above satisfies

Prob[|E + N (1 − p)�(d
2)| ≤ α0

√
N ] ≥ 1 − 2e−2α2

0/2d2
.

Proof of Proposition 4. Consider the Hamiltonian H =
−∑N

i=1 Zi, and choose the two-qubit gates to be Haar-
random Clifford gates. Since Haar-random Clifford gates
form a 2-design [63], we can use Lemma 4. Hamiltonian H
satisfies Tr(H) = 0 and has operator norm ‖H‖ = N . We
evaluate the dual function at the dual variables obtained by
Heisenberg picture evolution of −H ,

σd = −H , σt = −E†
t+1E†

t+2 · · · E†
d (H).

Note that, for Clifford circuits, Zi will be mapped to a sin-
gle Pauli string [47], which is expressible as an MPO with
bond dimension 1, and, consequently, σt will have a bond
dimension of at most N . Since the Heisenberg picture evo-
lution can be captured exactly with an MPO ansatz of bond
dimension O(N ), the dual bound �dual

D with D ≤ O(N ) is
exactly equal to the energy E of the output of the noisy
quantum circuit. Now, from Lemma 4, it follows that there
must exist at least one 1D circuit such that

�dual
D = −N (1 − p)�(d

2) + O(
√

N )

with D ≤ O(N ).
We now consider the lower bound �I obtained by only

considering the information content of the state at the
output of the circuit and neglecting the circuit constraints:

�I = minimize
ρ:I(ρ)≤N (1−p)d

Tr(Hρ).

A negative upper bound on �I that converges to
Tr(H/2N ) = 0 exponentially with d can be obtained by
computing Tr(Hρ) at

ρ = [pd|0〉〈0| + (1 − pd)I/2]⊗N , where pd = (1 − p)d.

Note that this ρ satisfies I(ρ) = N (1 − p)d, and, con-
sequently, Tr(Hρ) is an upper bound on �I . For H =∑N

i=1 Zi, we then obtain Tr(Hρ) = −N (1 − p)d, which
implies that �I ≤ −N (1 − p)O(d). �

APPENDIX B: NONDEPOLARIZING NOISE
CHANNELS

In this appendix, we obtain bounds on the trace purity
in the presence of nondepolarizing noise channels. The
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bounds presented here are already contained in or can be
straightforwardly obtained from existing results (e.g., in
Refs. [24,25,62]). We include this appendix for a self-
contained derivation of the results used in the main text.

1. Unital noise channels

We first consider unital noise channels that are also
primitive. It is a standard result from the characterization of
qubit channels that such a noise channel can be expressed
as

N (X ) = (1 − p)X +
∑

a∈{x,y,z}
paU [AV(X )A], (B1)

where p = px + py + pz can be considered to be the noise
rate, and V(·) = V · V†, U(·) = U · U† are unitary channels
with V, U being unitaries. Furthermore, if N is primitive
(i.e., has I/2 as the unique fixed point) then px, py , pz > 0.
To obtain a bound on the trace purity of the qubit’s state
in a quantum circuit impacted by such a noise, we need
the following lemma from Ref. [62]. Here, || · ||2→2 of a
superoperator refers to the Schatten-2 norm, i.e.,

||E ||22→2 = sup
X �=0

Tr[E(X )†E(X )]
Tr(X †X )

.

Furthermore, for σ � 0, D2(ρ||σ) is the sandwiched 2-
Rényi divergence that is given by

D2(ρ||σ) = log2 Tr(σ−1/2ρσ−1/2ρ).

In particular, note that if ρ is an N -qubit density matrix and
σ = (I/2)⊗N , we obtain

D2(ρ||σ) = N + log Tr(ρ2).

Lemma 5 (Corollary 5.6 of Ref. [62]). Suppose that
�σ ,p is the channel described by �σ ,q(X ) = (1 − q)X +
qTr(X )σ . For σ � 0, define �σ to be the superoperator
�σ (X ) = σX σ−1. Suppose that N is a channel with σ as
its fixed point; then if ||�−1/2

σ N�−1
σ ,q�

1/2
σ ||

2→2
≤ 1, for any

N > 0 and N − qubit density matrix ρ,

D2[N⊗N (ρ)||σ⊗N ] ≤ αD2(ρ||σ⊗N ),

where α = 22(1−||σ−1||−1
) log2(1−p)/ log2(||σ−1||).

Proof of Lemma 2. We pick N to be the unital noise
channel in Eq. (B1), and σ = I/2. With this choice, we
have �I/2,q(X ) = (1 − q)X + qTr(X )I/2 and �σ (X ) =
4X . Note that ||�−1/2

I/2 N�−1
σ ,p�

1/2
I/2 ||

2→2
= ||N�−1

I/2,p ||2→2
and that �−1

I/2,p(X ) = (1 − p)−1[X − pTr(X )I/2]. Further
analysis is simplified in the Pauli basis—since both N and

�−1
I/2,q are unital superoperators, it follows that, if written

as 4 × 4 matrices in the Pauli basis, they have the forms

�−1
I/2,q

∼=
[

1 0
0 �̃−1

I/2,q

]
and N ∼=

[
1 0
0 Ñ

]
.

Furthermore we can explicitly calculate �̃−1
I/2,q and Ñ to

obtain

�̃−1
I/2,q = 1

1 − q
I and Ñ = (1 − p)I + Ũ

×
⎡

⎣
px − py − pz 0 0

0 py − px − pz 0
0 0 pz − px − py

⎤

⎦ Ṽ,

where Ũ is a 3 × 3 unitary matrix with matrix ele-
ments given by Ũa,a′ = Tr(AUA′U†) for A, A′ ∈ {X , Y, Z},
and Ṽ is defined similarly. Now, ||N�−1

I/2,q||2→2
=

max(1, ||�̃−1
I/2,qÑ ||) and

||�̃−1
I/2,qÑ || = 1

1 − q
||Ñ || ≤ 1

1 − q
[1 − p + max(px − py

− pz, py − px − pz, pz − px − py)].

Now, we clearly have max(px − py − pz, py − px − pz, pz

− px − py) ≤ p − min(px, py , pz) and thus ||�̃−1
I/2,qÑ || ≤

[1 − min(px, py , pz)]/(1 − q). Thus, choosing q = min
(px, py , pz) yields ||�−1/2

I/2 N�−1
σ ,p�

1/2
I/2 ||

2→2
= ||N�−1

I/2,q||2→2≤ 1; thus, we can now apply Lemma 5 with σ = I/2,
q = min(px, py , pz), which yields α = 1 − min(px, py , pz).
In particular, if ρ is an N -qubit density matrix, we obtain,
from Lemma 5,

D2

(
N⊗N (ρ)

∣∣∣∣

∣∣∣∣
I⊗N

2N

)
≤ [1 − min(px, py , pz)]D2

(
ρ

∣∣∣∣

∣∣∣∣
I⊗N

2N

)
.

Now consider the setting where starting from a pure
state ρ0, a sequence of N -qubit unitaries U1, U2, . . . , Ud is
applied interspersed with the noise channel N acting on
each qubit. Since D2[UiρU†

i ||(I/2)⊗N ] = D2[ρ||(I/2)⊗N ],
the final state ρd = N⊗NUdN⊗NUd−1 · · ·N⊗NU1(ρ0) sat-
isfies

D2

(
ρd

∣∣∣∣

∣∣∣∣
I⊗N

2N

)
≤ [1 − min(px, py , pz)]dD2

(
ρ0

∣∣∣∣

∣∣∣∣
I⊗N

2N

)

= N [1 − min(px, py , pz)]d.

This completes the proof. �

020317-16



CLASSICALLY COMPUTING PERFORMANCE BOUNDS. . . PRX QUANTUM 5, 020317 (2024)

2. Nonunital noise channels

Next, we consider nonunital noise channels on Cd

(where we are typically interested in d = 2)—we restrict
ourselves to noise channels that have a full Kraus rank, i.e.,
the Kraus operators K1, K2, . . . , Kd2 span the entire space
of operators on Cd. Given a noise rate p , we assume that
the noise channel N is given by

N (X ) = (1 − p)X + p
d2∑

i=1

KiXK†
i , (B2)

where
∑d2

i=1 K†
i Ki = I . A common example of such a chan-

nel would be N (X ) = (1 − p)X + pTr(X )τ , where τ �
0, i.e., a channel that traces the qudit and replaces it with
a, generally nonidentity, full rank state. Physically, this
would be a good model for an environment that disentan-
gles the qubits in the quantum circuit, and brings them to a
finite temperature state.

For channels of the form of Eq. (B2), the following
lemma straightforwardly follows.

Lemma 6. Suppose that N is a channel of the form
given in Eq. (B2) with unique fixed point τ � 0, and that
there exists another channel N ′ with fixed point τ such
that N (X ) = �τ ,qN ′(X ), where �τ ,q(X ) = (1 − q)X +
qTr(X )τ for some q ∈ (0, 1). Furthermore, the largest such
q can be computed by solving the semidefinite program

max
q

q (B3a)

such that �N − qI ⊗ τ � 0, (B3b)

q > 0, q < 1, (B3c)

where �N is the Choi state of N .

Proof. Since N has a full Kraus rank, we can find
linearly independent operators L1, L2, . . . , Ld2 such that
∑d2

i=1 L†
i Li = I and N (X ) = ∑d2

i=1 LiXL†
i . Furthermore,

since L1, L2, . . . , Ld2 are linearly independent, it fol-
lows that, for any M ∈ Cd×d, Tr(L†

i M ) = 0 for all i ∈
{1, 2, . . . , d2} implies that M = 0. Consequently, there
exists λ0 > 0 such that

d2∑

i=1

|Tr(L†
i M )|2 ≥ λ0Tr(M †M ) for all M ∈ C

d×d. (B4)

Now, suppose that q ∈ (0, 1) and that N ′ = [N −
qTr(·)τ ]/(1 − q). It is clear that N ′ is trace preserving. We
need to establish that N ′ is also completely positive. For

that, consider the Choi state corresponding to N ′, �N ′ :

�N ′ = (N ′ ⊗ id)(|�〉〈�|),

= 1
1 − q

( d2∑

i=1

d∑

j ,k=1

Li|j 〉〈k|L†
i ⊗|j 〉〈k| − qI ⊗ τ

)
,

= 1
1 − q

( d2∑

i=1

d∑

j ,k,j ′,k′=1

(Li)j ′,j (Li)
∗
k′,k|j ′〉〈k′|

⊗ |j 〉〈k| − qI ⊗ τ

)
.

For N ′ to be completely positive, it is necessary and suf-
ficient for �N ′ � 0. To impose this condition, consider a
state |ψ〉 ∈ Cd ⊗ Cd; then

〈ψ |�N ′ |ψ〉 = 1
1 − q

( d2∑

i=1

d∑

j ,k,j ′,k′=1

(Li)j ′,j (Li)
∗
k′,kψ

∗
j ′,jψk′,k

− q〈ψ |I ⊗ τ |ψ〉
)

,

= 1
1 − q

( d2∑

i=1

|Tr(L†
i�)|2 − q〈ψ |I ⊗ τ |ψ〉

)
,

where � ∈ Cd×d is state |ψ〉 reshaped as a matrix. Using
Eq. (B4), we obtain

〈ψ |�N ′ |ψ〉 ≥ 1
1 − q

[Tr(�†�)λ0 − q‖τ‖‖|ψ〉‖2]

= λ0 − q‖τ‖
1 − q

‖|ψ〉‖2.

Thus, for q = λ0/‖τ‖, we obtain �N ′ � 0 and hence N ′
is completely positive. This establishes that there exists
q > 0 such that N = (1 − q)N ′ + qTr(·)τ . Furthermore,
it trivially follows that N ′(τ ) = τ from this definition
of N ′. It therefore also follows that N = �τ ,qN ′. The
optimization problem written for the calculation of q in
Eq. (17) is simply a reformulation of the condition that the
Choi state of N ′ needs to be positive semidefinite. �

Finally, we now consider the setting of N qubits that
have unitaries U1, U2, . . . , Ud applied to them, along with
noise N acting on each qubit at every time step. As
described in the main text, we assume that each unitary Ut
is composed of two-qubit and single-qubit gates, with the
gate set being chosen such that the two-qubit gates leave
σ⊗2 invariant (i.e., the two-qubit gate is diagonal on the
basis of eigenvectors of σ ).
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Proof of Lemma 3. Suppose that ρ is an N -qubit density
matrix, and consider the state N⊗N (ρ). We first establish
that

D(N⊗N (ρ)||τ⊗N ) ≤ (1 − q)D(ρ||τ⊗N ). (B5)

Let N = �τ ,qN ′ and N⊗N = �⊗N
τ ,q N ′⊗N . Suppose that

ρ ′ = N ′⊗N
(ρ) and then D[N⊗N (ρ)||τ⊗N ] = D[�⊗N

τ ,q (ρ
′)||

τ⊗N ]. We point out that �τ ,q can be viewed as gener-
ated from the Lindbladian Lτ = id − Tr(·)τ with evolu-
tion time t = − log(1 − q). It now follows from Theorem
19 of Ref. [64] that if L̃τ := ∑N

i=1 L(i)τ , where L(i)τ is
the Lindbladian Lτ acting on the ith qubit, satisfies
D[eL̃τ t(ρ ′)||τ⊗N ] ≤ e−tD[ρ ′||τ⊗N ]. Setting t = − log(1 −
q) in this inequality, we obtain D[�⊗N

τ ,q (ρ
′)||τ⊗N ] ≤ (1 −

q)D(ρ ′||τ⊗N ). Now, this yields

D[N⊗N (ρ)||τ⊗N ] ≤ (1 − q)D[N ′⊗N
(ρ)||τ⊗N ]

= (1 − q)D[N ′⊗N
(ρ)||N ′(τ⊗N )]

≤ (1 − q)D(ρ||τ⊗N ).

Next, we consider one of the unitaries applied in the cir-
cuit, Ut. The two-qubit gates in this unitary, by assumption,
leave τ⊗2 unchanged. Thus, if V(2) is a two-qubit unitary
that satisfies this condition, we have

D(V(2)ρV(2)
†||τ⊗N ) = D(ρ||V(2)†τ⊗N V(2)) = D(ρ||τ⊗N ).

Furthermore, if V(1) is a single-qubit gate, from the data
processed triangle inequality we obtain

D(V(1)ρV(1)
†||τ⊗N ) ≤ D(ρ||τ⊗N )+ D∞(V(1)τV(1)

†||τ).
Suppose that the single qubits applied in Ut are V(1)t,α for
α ∈ {1, 2, 3, . . .}; then from the above two inequalities we
obtain

D(UtρU†
t ||τ⊗N ) ≤ D(ρ||τ⊗N )+

∑

α

D∞(V
(1)
t,α τV(1)t,α

†||τ).
(B6)

Recursing Eqs. (B5) and (14), it follows that ρt =
UtUt−1 · · · U1ρ0U†

1 · · · U†
t−1U†

t satisfies

D(ρt||τ⊗N ) ≤ (1 − q)tD(ρ0||τ⊗N )

+
t−1∑

s=0

∑

α

(1 − q)t−sD∞(V
(1)
s+1,ατV(1)†s+1,α||τ).

Finally, this bound can be translated to a bound on
‖ρt − σ⊗N ‖F by a standard application of Pinsker’s
inequality:

‖ρt − τ⊗N ‖2
F ≤ 2‖ρt − τ⊗N ‖1 ≤

√
2D(ρt||τ⊗N ).

This completes the proof. �

APPENDIX C: FREE FERMION FORMULATION

In this appendix, we describe our approach to numer-
ical studies of Gaussian fermionic systems. We describe
the fermionic system model and how the energy of the
state at the output of the noisy circuit and the informa-
tion content–based dual function (23) can be efficiently
calculated by utilizing covariance matrices and quadratic
Hamiltonian transformations.

1. Model

We consider N fermions arranged in a lattice and define
for each lattice site x the Majorana operators c1

x , c2
x as

satisfying the anticommutation relations

{c1
x , c1

x′ } = {c2
x , c2

x′ } = δxx′ ,

{c1
x , c2

x′ } = 0 for all x, x′ ∈ lattice.
(C1)

We choose the target Hamiltonian H to be quadratic,

H = i
∑

α,α′,x,x′
hα,α′

x,x′ cαx cα
′

x′ .

Defining the operator-valued vector

�c = (c1
1, c1

2, . . . , c1
N , c2

1, c2
2, . . . , c2

N )
T, (C2)

the target Hamiltonian can be written as H = i�cTh�c, where
matrix h specifying Hamiltonian H is real and antisym-
metric. The ground-state energy of the target Hamilto-
nian can be computed by diagonalization of its compact
representation h [65].

2. Calculation of the noisy circuit output

The output energy, with respect to the quadratic tar-
get Hamiltonian H , can be computed from the covariance
matrix of the state at the end of the circuit. We define the
covariance matrix of a state ρ as

γ
α,α′
x,x′ = iTr(ρ[cαx , cα

′
x′ ]), (C3)

where [·, ·] denotes the commutator. The energy of a state
ρ with respect to the target Hamiltonian H is then [65]

Tr(ρH) = −Tr(hγ )
2

. (C4)

The covariance matrix of the state after each instance of
a Gaussian unitary or noise in the circuit can be calcu-
lated by evolving the covariance matrix γ0 of the vacuum
(γ0 can be analytically calculated [65]) using the following
transformations.
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(1) Unitary. Any Gaussian unitary can be expressed as
U = exp(−iHU), where HU = i�c ThU�c is the gener-
ating quadratic Hamiltonian, and it transforms the
covariance matrix of the state as [65]

γ → e2hUγ e−2hU . (C5)

(2) Noise. Depolarizing noise with probability p act-
ing on the fermion at lattice site x transforms the
covariance matrix as [65,66]

γ → p γ̃ + (1 − p)γ , (C6)

where matrix γ̃ is obtained from the input covari-
ance matrix γ by zeroing out the rows and columns
corresponding to the fermion at site x, i.e.,

γ̃
α,α′
x′,x′′ =

{
0 if x′ = x or x′′ = x,
γ
α,α′
x′,x′′ otherwise.

(C7)

3. Calculation of the dual function

We choose the dual variables σ1, σ2, . . . , σd to be
quadratic Hamiltonians, i.e., we consider the ansatz

σt = i
∑

α,α′,x,x′
d(x,x′)≤r

sα,α′
x,x′;tc

α
x cα

′
x′ = i�c Tst�c, t ∈ {1, . . . , d},

where d(x, x′) is a distance measure between two lat-
tice sites and the coefficients sα,α′

x,x′;t are real and can be
arranged in an antisymmetric matrix st. The σt are thus
local Hamiltonians with interaction range r.

In order to evaluate the circuit dual function given in
Eq. (23), we calculate the effect of the circuit channels
on the dual variables first, i.e., E†

t (σt). Each such chan-
nel is the composition of a Gaussian unitary channel and
the depolarizing channel, and both the unitary and noise
channels map quadratic operators to quadratic operators.
Hence, the channel’s action can be expressed as a trans-
formation of the compact Majorana representation st of
the dual variable σt using the following transformation
rules.

(1) Unitary. Any Gaussian unitary can be expressed as
U = exp(−iHU), where HU = i�c ThU�c is the gen-
erating quadratic Hamiltonian. Conjugation of the
dual variable σt = i�c Tst�c by U transforms it into
another quadratic operator σ̃t = UσtU† = i�c Ts̃t�c
with the transformed Majorana representation

s̃t = e2hUste−2hU . (C8)

This transformation can be derived by expanding the
conjugation using the Baker-Campbell-Hausdorff

formula eBAe−B = A + [B, A] + [B, [B, A]]/2!
+ [B, [B, [B, A]]]/3! + · · · , and using the commuta-
tion relation

[cα1
x1

cα2
x2

, cα3
x3

cα4
x4

] = −cα1
x1

cα3
x3
δα2,α4δx2,x4

+ cα1
x1

cα4
x4
δα2,α3δx2,x3

− cα3
x3

cα2
x2
δα1,α4δx1,x4

+ cα4
x4

cα2
x2
δα1,α3δx1,x3 . (C9)

(2) Noise. The noise channel Nx corresponding to depo-
larizing noise on the fermion at site x with probabil-
ity p transforms the dual variable σt as

Nx(σt) = (1 − p)σt + pTrx(σt)⊗ 1

2
, (C10)

where Trx(·) denotes the partial trace over the
fermion at site x. Expanding out the partial trace
term using linearity,

Trx(σt)⊗ 1

2
=

∑

α′,α′′,x′,x′′
isα

′,α′′
x′,x′′;tTrx(cα

′
x′ cα

′′
x′′ )⊗ 1

2

=
∑

α′,α′′,x′,x′′
isα

′,α′′
x′,x′′;t(1 − δx,x′)(1 − δx,x′′)

cα
′

x′ cα
′′

x′′ , (C11)

where we obtain the second line by using Tr(cα
′

x′ ) =
0 and sα

′,α′
x′,x′;t = 0 for all (x′,α′). Thus, the noise

channel transforms the dual variable into another
quadratic operator σ̃t = i�c Ts̃t�c with the transformed
Majorana representation

s̃t = pst + (1 − p)zt, (C12)

where, using Eq. (C11), matrix zt is obtained from st
by zeroing out the rows and columns corresponding
to the fermion at site x, i.e.,

zα
′,α′′

x′,x′′;t =
{

0 if x′ = x or x′′ = x,
sα

′,α′′
x′,x′′;t otherwise.

(C13)

To calculate the dual function given in Eq. (23), we need
to calculate the Gibbs free energy of Ht = σt − E†

t+1(σt+1),
where Ht is a quadratic operator itself because, as men-
tioned earlier, the channel E†

t+1 maps quadratic operators
to quadratic operators. Therefore, Ht = i�c Tht�c, where the
Majorana representation ht can be obtained using the trans-
formations described above. We calculate the free energy
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by diagonalizing Ht. This can be achieved by diagonaliz-
ing ht—as ht is antisymmetric, it is possible [65] to find an
orthogonal transformation O such that

OThtO =
⊕

α,x

(
0 εx;t

−εx;t 0

)
.

We define the operator-valued vector �̃c = OT�c = (c̃1
1, c̃1

2,
. . . , c̃1

N , c̃2
1, c̃2

2, . . . , c̃2
N )

T and, due to the orthogonality of
O, the operators c̃αx satisfy the Majorana anticommuta-
tion relations given in Eq. (C1). Using the newly defined
Majorana operators, Ht can be written in a diagonal form
as

Ht = i
∑

x

εx;t(c̃1
x c̃2

x − c̃2
x c̃1

x).

Using the diagonal form, the Gibbs free energy for Ht is

F(Ht, λt) = log Tr exp
(

− i
λt

∑

x

εx;t(c̃1
x c̃2

x − c̃2
x c̃1

x)

)

= log
∏

x

Tr exp
(

− iεx;t

λt
(c̃1

x c̃2
x − c̃2

x c̃1
x)

)
.

The operator exponentials above can be represented in the
Fock space basis of the fermion at site x as

exp
(

− iεx;t

λt
(c̃1

x c̃2
x − c̃2

x c̃1
x)

)
=

(
eεx;t/λt 0

0 e−εx;t/λt

)
.

The free energy then simplifies to

F(Ht, λt) =
∑

x

log(eεx;t/λt + e−εx;t/λt),

and therefore it can be calculated from just the diagonal-
ization of the (2N × 2N )-dimensional matrix ht.
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