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Abstract
Bell nonlocality—the existence of quantum correlations that cannot be explained by classical
means—is certainly one of the most striking features of quantum mechanics. Its range of
applications in device-independent protocols is constantly growing. Many relevant quantum
features can be inferred from violations of Bell inequalities, including entanglement detection and
quantification, and state certification applicable to systems of arbitrary number of particles. A
complete characterisation of nonlocal correlations for many-body systems is, however, a
computationally intractable problem. Even if one restricts the analysis to specific classes of states,
no general method to tailor Bell inequalities to be violated by a given state is known. In this work
we provide a general construction of Bell expressions tailored to the graph states of any prime local
dimension. These form a broad class of multipartite quantum states that have many applications in
quantum information, including quantum error correction. We analytically determine their
maximal quantum values, a number of high relevance for device-independent applications of Bell
inequalities. Importantly, the number of expectation values to determine in order to test the
violation of our inequalities scales only linearly with the system size, which we expect to be the
optimal scaling one can hope for in this case. Finally, we show that these inequalities can be used
for self-testing of multi-qutrit graph states such as the well-known four-qutrit absolutely
maximally entangled state AME(4,3).

1. Introduction

The first Bell inequalities were introduced to show that certain predictions of quantum theory cannot be
explained by classical means [1]. In particular, correlations obtained by performing local measurements on
joint entangled quantum states are able to violate Bell inequalities and hence cannot arise from a local
hidden variable model. The existence of such non-local correlations is referred to as Bell non-locality or
simply non-locality.

Since then the range of applications of Bell inequalities has become much wider. In particular, they can
be used for certification of certain relevant quantum properties in a device-independent way, that is, under
minimal assumptions about the underlying quantum system. First, violation of Bell inequalities can be used
to certify the dimension of a quantum system [2] or the amount of entanglement present in it [3]. Then, Bell
violations are used to certify that the outcomes of quantum measurements are truly random [4], and to
estimate the amount of generated randomness [5–7].

The maximum exponent of the certification power of Bell inequalities is known as self-testing.
Introduced in [8], self-testing allows for almost complete characterisation of the underlying quantum system
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based only on the observed Bell violation. It thus appears to be one of the most accurate methods for
certification of quantum systems which makes self-testing a highly valuable asset for the rapidly developing
of quantum technologies. In fact, self-testing techniques have shown to be amenable for near-term quantum
devices, allowing for a proof-of-principle state certification of up to few tens of particles [9, 10]. For this
reason self-testing has attracted a considerable attention in recent years (see, e.g. [11]).

However, most of the above applications require Bell inequalities that exhibit carefully crafted features. In
the particular case of self-testing one needs Bell inequalities whose maximal quantum values are achieved by
the target quantum state and measurements that one aims to certify. Deriving Bell inequalities tailored to
generic pure entangled states turns out to be in general a difficult challenge. Even more so if one looks for
inequalities applicable to systems of arbitrary number of parties or arbitrary local dimension. The standard
geometric approach to derive Bell inequalities has been successful in deriving many interesting and relevant
inequalities [12–16], but typically fails to serve a self-testing purpose, providing inequalities with unknown
maximal quantum violation.

In order to construct Bell inequalities that are tailored to specific quantum states, a more promising path
is to exploit the ‘quantum properties’ of the considered system such as its symmetries. Two proposals in this
direction have succeeded in designing different classes of Bell inequalities tailored to the broad family of
multi-qubit graph states [17, 18] and the first Bell inequalities maximally violated by the maximally
entangled state of any local dimension [19]. The success of these methods was further confirmed by later
applications to design the first self-testing Bell inequalities for graph states [20] (see also [21] for the first
self-testing method for multi-qubit graph states which, however, is not directly based on violation of Bell
inequalities), for genuinely entangled stabilizer subspaces [22, 23] or maximally entangled two-qutrit states
[24], as well as to derive many other classes of Bell inequalities tailored to two-qudit maximally entangled
[25, 26] or many-qudit Greenberger–Horne–Zeilinger (GHZ) states [27]. Some of these constructions were
later exploited to provide self-testing schemes for the maximally entangled [25, 28] or the GHZ states [29] of
arbitrary local dimension.

In this work, taking inspiration from the above ideas, we provide the first general construction of Bell
expressions tailored to graph states of arbitrary prime local dimension. Graph states constitute one of the
most representative classes of genuinely entangled multipartite quantum states considered in quantum
information, covering the well-known GHZ, the cluster [30] or the absolutely maximally entangled states
[31], that have found numerous applications, e.g. in quantum computing [32–34] or quantum metrology
[35]. We analytically determine the maximal quantum value (called also Tsirelson’s bound) of each of our
Bell expressions by deriving a suitable sum-of-squares decomposition of the corresponding Bell operator. We
then show that this maximal value is achieved by the corresponding graph state. On the other hand, the
maximal classical values of our Bell expressions are yet to be determined. We nevertheless believe that our
inequalities are all nontrivial in the sense that their maximal quantum and classical values differ. In fact, in
the particular case of d= 3 we prove that they all allow for self-testing of the corresponding graph states, and
thus are certainly nontrivial in the above sense. Moreover, for the simplest bipartite graph corresponding to
the maximally entangled state of two qudits, the maximal classical value can be determined numerically for
the lowest values of d and it differs from the corresponding Tsirelson’s bound (see [24]). We thus believe that
all our Bell expressions feature this property and therefore in what follows, slightly abusing the terminology,
we also refer to them as to Bell inequalities.

Our construction thus provides the first example of Bell inequalities maximally violated by the absolutely
maximally entangled states of non-qubit local dimension such as the four-qutrit AME(4,3) state [31]. Our
Bell expressions are also scalable because the number of expectation values they are composed of scales only
linearly with the number of subsystems, which we expect to be the optimal scaling in the case of graph states.
This is a relevant factor as far as experimental tests of Bell non-locality or implementations of self-testing are
concerned; by lowering the number of expectation values one can lower the experimental effort to test a Bell
inequality violation. Let us finally notice that our construction generalizes and unifies in a way the recent
constructions of [20] and [24] to all graph states of arbitrary prime local dimension.

The manuscript is organized as follows. In section 2 we provide some background information which is
necessary for further considerations; in particular we explain in detail the notions of the multipartite Bell
scenario and graph states and also state the definition of self-testing we use in our work. Next, in section 3 we
introduce our general construction of Bell expressions for graph states. We then show in section 4 that our
new Bell inequalities allow for self-testing of all graph states of local dimension three. We conclude in
section 5 where we also provide a list of possible research directions for further studies that follow from
our work.
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2. Preliminaries

2.1. Bell scenario and Bell inequalities
Let us begin by introducing some notions and terminology. We consider a multipartite Bell scenario in which
N distant observers Ai share a quantum state ρ defined on the product Hilbert space

H=H1 ⊗ . . .⊗HN. (1)

Each observer Ai can perform one ofmi measurementsMi
xi ≡ {Mi

ai|xi}ai on their share of this state, where xi
stand for the measurement choices, whereas ai denote the outcomes; here we label them as xi = 1, . . . ,m and
ai = 0, . . . ,d− 1, respectively. Recall that the measurement operators satisfyMi

ai|xi ⩾ 0 for any choice of ai
and xi as well as

∑
ai
Mi

ai|xi = 1 for any xi.
The observers repeat their measurements on the local parts of the state ρ which creates correlations

between the obtained outcomes. These are captured by a collection of probability distributions
p⃗≡ {p(⃗a|⃗x)} ∈ R(md)N , where p(⃗a|⃗x)≡ p(a1, . . . ,aN|x1, . . . ,xN) is the probability of obtaining the outcome ai
by the observer i upon performing the measurementMi

xi and can be represented by the Born rule

p(⃗a|⃗x) = Tr
[
ρ
(
M1

a1|x1 ⊗ . . .⊗MN
aN|xN

)]
. (2)

A behaviour p⃗ is said to be local or classical if for any a⃗ and x⃗, the joint probabilities p(⃗a|⃗x) factorize in the
following sense,

p(⃗a|⃗x) =
∑
λ

µ(λ)p1(a1|x1,λ) · . . . · pN(aN|xN,λ), (3)

where λ is a random variable with a probability distribution µ(λ) representing the possibilities for the parties
to share classical correlations and pi(ai|xi,λ) is an arbitrary probability distribution corresponding to the
observer Ai. On the other hand, if a behavior p⃗ does not admit the above form, we call it Bell non-local or
simply non-local. In any Bell scenario correlations that are classical in the above sense form a polytope with
finite number of vertices, denoted LN,m,d.

Any non-local distribution p⃗ can be detected to be outside the local polytope from the violation of a Bell
inequality. The generic form of such inequalities is

I :=
∑
a⃗,⃗x

αa⃗,⃗x p(⃗a|⃗x)⩽ βL, (4)

where βL =max⃗p∈LN,m,d
I is the classical bound of the inequality and αa⃗,⃗x are some real coefficients defining

the inequality. Any p⃗ that violates a Bell inequality is detected as non-local.
Let us finally introduce another number characterizing a Bell inequality—the so-called quantum or

Tsirelson’s bound—which is defined as

βQ = sup
p⃗∈QN,m,d

I, (5)

where the maximisation runs on all quantum behaviours, i.e. all distributions p⃗ that can be obtained by
performing quantum measurements on quantum states of arbitrary local dimension. The set of quantum
correlations QN,m,d is in general not closed [36] and thus βQ is a supremum and not a strict maximum.
Determining the quantum bound for a generic Bell inequality is an extremely difficult problem. However,
interestingly, in certain cases it can still be found analytically. A way to obtain βQ or at least an upper bound
on it is to find a sum-of-squares decomposition of a Bell operator B corresponding to the Bell inequality.
More specifically, if for any choice of measurement operators one is able to represent the Bell operator as

B = η1−
∑
k

P†kPk, (6)

where Pk are some operators composed ofMi
ni|xi , then η is an upper bound on βQ. Indeed, equation (6)

implies that for all |ψ⟩, ⟨ψ|B|ψ⟩⩽ η, and thus, βQ ⩽ η. If a quantum state saturates this upper bound, then it
follows from (6) that Pk|ψ⟩= 0 for all k. As we will see later such relations are particularly useful to prove a
self-testing statement from the maximal violation of a Bell inequality.

3
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For further convenience we also introduce an alternative description of the Bell scenario in terms of
generalized expectation values (see, e.g. [27]). These are in general complex numbers defined through the
N-dimensional discrete Fourier transform of {p(⃗a|⃗x)},

⟨A1
n1|x1 . . .A

N
nN|xN⟩=

∑
a⃗

ωa⃗·⃗np(⃗a|⃗x), (7)

where ω = exp(2π i/d) is the dth root of unity, a⃗ := (a1, . . . ,aN) ∈ {0, . . . ,d− 1}N and n⃗ := (n1, . . . ,nN)
∈ {0, . . . ,d− 1}N, and a⃗ · n⃗=

∑
i aini. The inverse transformation gives

p(⃗a|⃗x) = 1

dN

∑
n⃗

ω−a⃗·⃗n⟨A1
n1|x1 . . .A

N
nN|xN⟩. (8)

Combining equations (2) and (8) one finds that if the correlations p⃗ are quantum, that is, originate from
performing local measurements on composite quantum states, the complex expectation values can be
represented as

⟨A1
n1|x1 . . .A

N
nN|xN⟩= Tr

[
ρ
(
A1
n1|x1 ⊗ . . .⊗AN

nN|xN

)]
, (9)

where Ai
ni|xi are simply Fourier transforms of the measurement operatorsMi

ai|xi given by

Ai
ni|xi =

d−1∑
ai=0

ωni aiM i
ai|xi . (10)

Clearly, due to the fact that the Fourier transform is invertible, for a given xi and i, the d operators Ai
ni|xi with

ni = 0, . . . ,d− 1 uniquely represent the corresponding measurementMi
xi .

Let us now discuss a few properties of the Fourier-transformed measurement operators that will prove
very useful later. For clarity of the presentation we consider a single quantum measurementM= {Ma} and
the corresponding An operators obtained via equation (10). First, one easily finds that A0 = 1. Second,

Ad−n = A−n = A†
n (11)

which is a consequence of the fact that ωd−n = ω−n = (ωn)∗ holds true for any n ∈ {0, . . . ,d− 1}. Third,
A†
nAn ⩽ 1 for any n= 0, . . . ,d− 1 (for a proof see [24]).
Let us finally mention that ifM is projective then all An are unitary and their eigenvalues are simply the

powers of ω; equivalently Ad
n = 1. It is also not difficult to see that in such a case, An are operator powers of

A1, that is, An = An
1 . Thus, a projective measurement can be represented by a single unitary (non-Hermitian

for d⩾ 3) operator A1, which by slightly abusing the standard terminology we call here quantum observable.
We exploit these properties later in our construction of Bell expressions as well as in deriving the self-testing
statement. In fact, in what follows we denote the observables measured by the party i by Ai,xi .

2.2. Self-testing
Here we introduce the definition of N-partite self-testing that we adopt in this work. Let us consider again
the Bell scenario described above, assuming, however, that the shared state ρ, the Hilbert space it acts on as
well as the local measurements are all unknown. The aim of the parties is to deduce their form from the
observed correlations p(⃗a|⃗x). Since the dimension of the joint Hilbert spaceH is now unconstrained
(although finite) we can simplify the latter problem by assuming that the shared state is pure, i.e. ρ= |ψ⟩⟨ψ|
for some |ψ⟩ ∈ H, and the measurements are projective, in which case they are represented by unitary
observables Ai,xi acting onHi.

Consider then a target state |ψ̂⟩ ∈ (Cd)⊗N and the corresponding measurements Âi,xi , giving rise to the
same behaviour {p(⃗a|⃗x)}. We say that the observed correlations self-test the given state and measurements if
the following definition applies.

Definition 1. If from the observed correlations {p(⃗a|⃗x)} one can identify a qudit in each local Hilbert space
in the sense that Hi = Cd ⊗H ′

i for some auxiliary Hilbert space H ′
i , and also deduce the existence of local

unitary operations Ui :Hi → Cd ⊗H ′
i such that

(U1 ⊗ . . .⊗UN)|ψ⟩= |ψ̂⟩⊗ |aux⟩ (12)

4
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for some |aux⟩ ∈ H ′
i ⊗ . . .⊗H ′

N, and, moreover,

UiAi,xi U
†
i = Âi,xi ⊗1i, (13)

where 1i is the identity acting onH ′
i , then we say that the reference quantum state |ψ̂⟩ andmeasurements Âi,xi

have been self-tested in the experiment.

Importantly, only non-local correlations can give rise to a valid self-testing statement. Moreover, since it
is based only on the observed correlations {p(⃗a|⃗x)}, self-testing can characterise the state and the
measurements only up to certain equivalences. In particular, the statement above includes two possible
operations that keep the correlations {p(⃗a|⃗x)} unchanged: (i) the addition of an auxiliary state |aux⟩ on
which the measurements act trivially and (ii) the rotation by an arbitrary local unitary operations. It is worth
mentioning, however, that there exist yet another operation that does not change {p(⃗a|⃗x)}, which is the
transposition map applied to the state and all the measurements. Taking into account this extra degree of
freedom would lead to a weaker definition of self-testing than the one formulated above (see, e.g. [24, 37]).
Since in our work we are concerned only with self-testing of the graph states, which are real and thus
invariant under the action of transposition, we do not need to take into account this other definition of
self-testing.

2.3. Graph states
Let us finally recall the definition of multipartite graph states of prime local dimension [38–40]. Consider a
graph G = (V,E ,R,d), where d is any prime number such that d⩾ 2, V := {1, . . . ,N} is the set of vertices of
the graph, E is the set of edges connecting vertices, andR := {ri,j} is a set of natural numbers from
{0, . . . ,d− 1} specifying the number of edges connecting vertices i, j ∈ V ; in particular, ri,j = 0 means there
is no edge between i and j. We additionally assume that ri,i = 0 for all i, meaning that the graph has no loops
as well as that the graph G is connected, meaning that it does not have any isolated vertices. ByNi we denote
the neighbourhood of the vertex i which consists of all elements of V that are connected to i.

Assume then that each vertex i ∈ V of the graph corresponds to a single quantum system held by the
party Ai and let us associate to it the following N-qudit operator

Gi = Xi ⊗
⊗
j∈Ni

Z
rij
j (i= 1, . . . ,N) (14)

with X and Z being the generalizations of the qubit Pauli matrices to d-dimensional Hilbert spaces defined
via the following relations

Z|i⟩= ωi|i⟩, X|i⟩= |i+ 1⟩ (i= 0, . . . ,d− 1), (15)

where the addition is modulo d. Due to the fact that XZ= ω−1ZX, it is not difficult to see that the operators
Gi mutually commute. It then follows that there is a unique pure state |G⟩ ∈ (Cd)⊗N, called graph state,
which is a common eigenstate of all Gi corresponding to the eigenvalue one, i.e.

Gi|G⟩= |G⟩ (i= 1, . . . ,N). (16)

Given the above property, the Gi are usually referred to as stabilizing operators. Notice also that in the
particular case of d= 2 this construction naturally reproduces the N-qubit graph states [40], where vertices
can only be connected by single edges.

Let us illustrate the above construction with a couple of examples.

Example 1 (Maximally entangled two-qudit state). Let us start with the simplest possible graph, consisting
of two vertices connected by an edge (cf figure 1(a)). The corresponding generators are given by

G1 = X⊗Z, G2 = Z⊗X, (17)

and stabilize a single state in Cd ⊗Cd which is equivalent up to local unitary operations to the maximally
entangled state of two qudits,

|ψ+
d ⟩=

1√
d

d−1∑
i=0

|ii⟩ (18)

5
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Figure 1. Three examples of graphs defining: (a) the maximally entangled state of two qudits, (b) the N-qudit GHZ state, (c) the
four-qutrit absolutely maximally entangled state AME(4,3).

in which both local Schmidt bases are the computational one. In fact, the above state is stabilized by another
pair of operators, namely,

G ′
1 = X⊗X, G ′

2 = Z⊗Z†, (19)

which are obtained from Gi by an application of the Fourier matrix to the second site.

Example 2 (GHZ state). The above two-vertex graph naturally generalizes to a star graph consisting of N
vertices (cf figure 1(b)). The associated generators are of the form

G1 = X1Z2 . . .ZN (20)

and

Gi = Z1Xi (i= 2, . . . ,N), (21)

and stabilize anN-qudit state which is equivalent under local unitary operations to the well-known GHZ state

|GHZN,d⟩=
1√
d

d−1∑
i=0

|i⟩⊗N. (22)

Example 3 (AME(4,3)). The third and the last example is concerned with the four-qutrit absolutely maxim-
ally entangled state4, named AME(4,3) [31]. The graph defining it is presented in figure 1(c). The stabilizing
operators corresponding to this graph read

G1 = X1Z2Z4, G2 = Z1X2Z3, G3 = Z2X3Z
2
4, G4 = Z1Z

2
3X4. (23)

They stabilize a three-qutrit maximally entangled state AME(4,3) which is equivalent under local unitary oper-
ations and relabelling of the subsystems to (see, e.g. [42]),

|AME(4,3)⟩= 1

3

2∑
i,j=0

|i⟩|j⟩|i+ j⟩|i+ 2j⟩, (24)

where the addition is modulo three.

3. Construction of Bell inequalities for arbitrary graph states of prime local dimension

Here we present our first main result: a general construction of Bell expressions whose maximal quantum
value is achieved by the N-qudit graph states of arbitrary prime local dimension and quantum observables
corresponding to mutually unbiased bases at every site. Our construction is inspired by the recent approach
to construct CHSH-like Bell inequalities for the N-qubit graph states presented in [20] and by another

4 A multipartite state is termed absolutely maximally entangled if any of its ⌊N/2⌋-partite subsystems is in the maximally mixed state
[41].

6
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construction of Bell inequalities maximally violated by the maximally entangled two-qudit state introduced
in [24].

First, in section 3.1 we recall the general class of Bell inequalities maximally violated by N-qubit graph
states of [20]. Then, in section 3.2 we introduce the main building block to generalise this construction to
arbitrary prime dimension. We illustrate the Bell inequality construction with some simple examples in
section 3.3 and then move to introduce the general form of the inequality valid of any N-qudit graph state of
prime dimension in section 3.4.

3.1. Multiqubit graph states
Let us assume that d= 2 and let us consider a graph G. Without any loss of generality we can assume that a
vertex with the largest neighbourhood is the first one, that is, N1 =maxi=1,...,N |Ni|. If there are many
vertices with the maximal neighbourhood in G, we are free to choose any of them as the first one.

To every generator Gi we associate an expectation value in which the X and Z Pauli matrices are replaced
by quantum observables or their combinations using the following rule. At the first qubit we make the
following assignment,

X→ 1√
2
(A1,0 +A1,1), Z→ 1√

2
(A0,1 −A1,1), (25)

whereas the Pauli matrices at the remaining sites are directly replaced by observables, that is,

X→ Ai,0, Z→ Ai,1 (26)

with i = 2, . . . ,N. Recall that the first index enumerates the parties, while the second one measurement
choices. This procedure gives us N expectation values which after being combined altogether lead us to the
following Bell inequality [20]:

IG : =
N1√
2

〈
(A1,0 +A1,1)

∏
i∈N (1)

Ai,1

〉
+

1√
2

∑
i∈N (1)

〈
(A1,0 −A1,1)Ai,0

∏
j∈N (1)\{1}

Aj,1

〉

+
∑

i/∈N (1)∪{1}

〈
Ai,0

∏
j∈N (i)

Aj,1

〉
⩽ βG

C , (27)

where the classical bound can directly be determined for any graph G and is given by βG
C = N+

(
√
2− 1)N1 − 1. More importantly, the maximal quantum value can also be analytically computed for

any graph and amounts to βG
Q = N+N1 − 1. This value is achieved by the graph state |G⟩ ∈ (C2)⊗N

corresponding to the graph G and the following observables:

A1,0 =
1√
2
(X+Z), A1,1 =

1√
2
(X−Z) (28)

for the first observer and Ai,0 = X and Ai,1 = Z for the remaining observers i = 2, . . . ,N.
It is worth stressing here that one of the key observations making the construction of [20] work is that for

any graph there exists a choice of observables at any site, given by the above formulas, turning the quantum
operators appearing in the expectation values of (27) into the stabilising operators Gi; in particular, it is a
well-known fact that combinations of the Pauli matrices in equation (28) are proper quantum observables
with eigenvalues±1. Let us also mention that the replacement in equations (25) and (26) guarantees that the
maximal quantum and classical values of the inequalities (27) can be determined basically by hand and that
they differ for any graph state, implying that all these inequalities are nontrivial.

3.2. Replacement rule for operators of arbitrary prime dimension
We now move on to introduce the main ingredient needed to generalise the above construction to graph
states of prime local dimension d⩾ 3.

A naive approach to constructing Bell inequalities for graph states of higher local dimensions would be to
directly follow the d= 2 strategy. That is, at a chosen site the X and Z operators are replaced by combinations
of general d-outcome observables A0 and A1. However, this simple approach fails to work beyond d= 3
because for any prime d⩾ 3 it is impossible find nonzero complex numbers α,β ∈ C for which

O= αX+βZ, (29)

is a valid quantum observable; in fact, for no complex numbers the above combinations can be unitary,
unless d= 2 (cf fact 2 in appendix A). This makes the transformation (28) irreversible. Phrasing differently,

7
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there are no unitary observables A0 and A1 such that X= αA0 +βA1 and Z= δA0 + γA1 for some complex
numbers α,β,γ,δ ∈ C.

Nevertheless, there exist other sets of d-outcome quantum observables which can be linearly combined to
form quantum observables, and thus are convenient for our purposes. One such choice is the following set of
d unitary matrices

Ok := XZk (k= 0, . . . ,d− 1). (30)

It is not difficult to check that Od
k = 1d for any k= 0, . . . ,d− 1 and prime d, meaning that the eigenvalues of

each of these unitary matrices belong to the set {1,ω, . . . ,ωd−1}, and thus are proper d-outcome observables
in our formalism. It is also worth mentioning that for any prime d⩾ 2 their eigenvectors together with the
standard basis in Cd form d+ 1 mutually unbiased bases.

Let us now assume that d is a prime number greater than two (d⩾ 3) and consider the following linear
combinations of Ok and their powers,

O
(n)
x =

λn√
d

d−1∑
k=0

ωnxkωnk(k+1)On
k , (31)

where x= 0,1, . . . ,d− 1 and λn are complex coefficients defined as [24]:

λn =
[
εd

(n
d

)]−1
ω−g(n,d)/48, (32)

where

εd :=

{
1, if d≡ 1 mod 4,

i, if d≡ 3 mod 4.
(33)

(
n
d

)
is the Legendre symbol5, and, finally, the coefficients g(n,d) are given by

g(n,d) =


n[n2 − d(d+ 6)+ 3] if n≡ 0mod 2 and n+ d+ 1/2≡ 0mod 2,

n[n2 − d(d− 6)+ 3] if n≡ 0mod 2 and n+ d+ 1/2≡ 1mod 2,

n(n2 + 3)+ 2d2(−5n+ 3) if n≡ 1mod 4,

n(n2 + 3)+ 2d2(n+ 3) if n≡ 3mod 4.

(34)

Importantly, it was proven in [24] (see appendix D therein) that O
(n)
x are unitary and satisfy[

O
(n)
x

]d
= 1d (35)

for any x= 0, . . . ,d− 1 and n= 1, . . . ,d− 1. What is more, O
(n)
x turns out to be the nth power of Ox, that is,

O
(n)
x = [Ox]

n. All this means that for any x the set {O(n)
x }n=0,...,d−1 represents a legitimate d-outcome

projective quantum measurement. Let us finally mention that the linear transformation (31) can be inverted,
giving

On
l =

ω−nl(l+1)

√
dλn

d−1∑
x=0

ω−nxlO
(n)
x . (36)

The fact that both Ok and Ok are unitary quantum observables that are related by a linear reversible
transformation given by equations (31) and (36) is the key ingredient in our construction. That is, we can
proceed in analogy to d= 2 case, where we used the replacement defined in equation (25) to define the Bell
inequality and we could later reverse it by a suitable choice of quantum observables (28) to obtain the
maximal quantum violation with a graph state.

The replacement rule we use for the case of arbitrary prime dimension becomes:

(
XZk

)n → Ã(n)
k :=

ω−nk(k+1)

√
dλn

d−1∑
t=0

ω−ntkAn
t , (37)

5 Recall that the Legendre symbol
(
n
d

)
equals+1 if n is a quadratic residue modulo d and−1 otherwise.
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where At with t= 0, . . . ,d− 1 are unitary observables. Notice that since we deal now with d-outcome
quantum measurements we need to also take into account the powers n of the corresponding observables. In
fact, these under the Fourier transform represent the outcomes of projective measurements. Crucially, this
transformation can be inverted in the sense that there exist a choice of observables Ai,t,

An
t =

λn√
d

d−1∑
k=0

ωntkωnk(k+1)
(
XZk

)n
. (38)

for which Ã(n)
k in equation (37) can be brought back to XZk.

These new operators Ã(n)
k satisfy the following relations (see fact 3 in appendix A for a proof):

(
Ã(n)
k

)†
= Ã(d−n)

k = Ã(−n)
k (39)

for any pair n,k= 0, . . . ,d− 1, and

d−1∑
k=0

Ã(d−n)
k Ã(n)

k = d1 (40)

for any n= 0, . . . ,d− 1.
The motivation for considering the above replacement rule to construct Bell inequalities tailored to

multi-qudit graph states stems from a few facts. First, the same rule was already used in [24] to derive Bell
inequalities maximally violated by the two-qudit maximally entangled states, which are the simplest
examples of the graph states. Second, the same rule in the simplest case of d= 2, outlined also in section 3.1,
allowed to construct nontrivial Bell inequalities for all multi-qubit graph states. We thus believe that,
similarly to the case d= 2, the assignment (37) prevents the local models achieve the maximal quantum
values of the resulting Bell expression. It also allows, as evidenced in [24], to easily construct sum-of-squares
decompositions of our inequalities, and thus analytically determine their maximal quantum vaues.

3.3. Examples
Before presenting our construction in full generality, let us first illustrate how to use the qudit replacement
rule to obtain valid Bell inequalities tailored to graph states by means of two examples.

Example 1 (AME(4,3)). Asmentioned in section 2.3, the four-qutrit absolutely maximally entangled state is a
graph state corresponding to the graph presented on figure 1. The stabilizing operators defining this state are
given in equation (23). We recall them here

G1 = X1Z2Z4, G2 = Z1X2Z3, G3 = Z2X3Z
2
4, G4 = Z1Z

2
3X4. (41)

Since the neighbourhood of all vertices of this graph is of size two, each vertex is equally good to implement
the transformation (37). For simplicity we choose it to be the first site. Moreover, as in the previous example,
we denote the observables measured by the four parties as Ax, By, etc.

Now, to create the set of matrices XZk (necessary for the transformation (37)) at the first site we consider
the stabilizing operators G1, G1G2, and G1G2

2. These are, however, insufficient to uniquely define |AME(4,3)⟩
as they do not include G3 and G4. Since G3 has the identity at the first position we can include it as it is,
whereas we need to take a product of G4 with G1 to create XZ at the first site. As a result, the final set of
stabilising operators which we use to construct a Bell inequality for |AME(4,3)⟩ consists of

G1 = X⊗Z⊗1⊗Z,

G1G2 = XZ⊗ZX⊗Z⊗Z,

G1G
2
2 = XZ2 ⊗ZX2 ⊗Z2 ⊗Z,

G3 = 1⊗Z⊗X⊗Z2

G1G4 = XZ⊗Z⊗Z2 ⊗ZX. (42)

Now, to each of these stabilising operators we associate an expectation value in which particular matrices
are replaced by quantum observables or their combinations. For pedagogical purposes, let us do it site by site.
As already mentioned, at the first site we use equation (37) which for d= 3 gives

9
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X → Ã0 :=
1√
3λ1

(A0 +A1 +A2) ,

XZ → Ã1 :=
1√
3λ1ω

(
A0 +ω−1A1 +ω−2A2

)
,

XZ2 → Ã2 :=
1√
3λ1

(
A0 +ω−2A1 +ω−1A2

)
, (43)

where λ1 =−iω2/3 = ω1/12 = exp(πi/18) and λ2 = λ∗1 (cf equations (32)–(34)) and we denoted for

simplicity Ãi ≡ Ã(1)
i . We dropped the subscript n appearing in the transformation (37) because for n= 2 one

has (XZk)2 = (XZk)† for k= 0,1,2 and Ã(2)
i = Ã†

i (cf equation (39)); nevertheless, we need to take into
account the case n= 2 when constructing the Bell inequality.

We then note that at the second site we also have three independent unitary observables Z, ZX and ZX2

[note that (ZX)3 = (ZX2)3 = 1], and therefore we can directly substitute

Z→ B0, ZX→ B1, ZX2 → B2. (44)

At the third site we have Z, Z2 which represent a single measurement (cf section 2.1), and X which is
independent of the other two. We thus substitute Zk → Ck

0 with k= 1,2 and X→ C1. Analogously, for the
fourth party we have Z→ D0 and ZX→ D1.

Taking all the above substitutions into account we arrive at the following assignments

G1 → ⟨Ã(1)
0 B0D0⟩, G1G2 → ⟨Ã(1)

1 B1C0D0⟩, G1G
2
2 → ⟨Ã(1)

2 B2C
2
0D0⟩, (45)

G1G4 → ⟨Ã(1)
1 B0C

2
0D1⟩, (46)

and for G3:

G3 → ⟨B0C1D0⟩. (47)

Notice that the expectation values corresponding to n= 2 in the assignment (37) are simply complex
conjugations of the above ones. By adding all the obtained expectation values, we finally obtain a Bell
inequality of the form

IAME :=
1√
3λ1

[
⟨(A0 +A1 +A2)B0D0⟩+ ⟨(A0 +ω2A1 +ωA2)B2C

2
0D0⟩

]
+

1

2
√
3λ1ω

[
⟨(A0 +ωA1 +ω2A2)B1C0D0⟩+ ⟨(A0 +ωA1 +ω2A2)B0C

2
0D1⟩

]
+ ⟨B0C1D0⟩+ c.c.⩽ βC

AME, (48)

where c.c. stands for the complex conjugation of all five terms and represents the expectation values obtained
for the case n= 2 of the assignment (37); in particular, it makes the Bell expression real. Moreover, the second
line comes with 1/2 coefficient for reasons that will become clear later. The classical value in this case is

βC
AME = 2+ 3(ω−1/3 +ω2/3 −ω4/3) = 7.638 16. (49)

Let us prove that the maximal quantum violation of this inequality is βQ
AME = 8. First, denoting by BAME a

Bell operator constructed from IAME, we can write the following sum-of-squares decomposition, which is
inspired by the sum-of-squares decompositions found in [24]:

81−BAME = (1− Ã0B0D0)
†(1− Ã0B0D0)+ (1− Ã2B2C

2
0D0)

†(1− Ã2B2C
2
0D0)

+
1

2
(1− Ã1B1C0D0)

†(1− Ã1B1C0D0)+
1

2
(1− Ã1B0C

2
0D1)

†(1− Ã1B0C
2
0D1)

+ (1−B0C1D0)
†(1−B0C1D0), (50)

where Ax, By, etc are arbitrary three-outcome unitary observables. To prove that this decomposition holds
true one simply expands its right-hand side and uses the property (cf equation (40)), which in the particular
case d= 3 reads,

Ã†
0Ã0 + Ã†

1Ã1 + Ã†
2Ã2 = 31. (51)

Now it becomes clear why the second line of IAME comes with 1/2.

10



New J. Phys. 25 (2023) 063018 R Santos et al

From this decomposition we immediately conclude that 81−BAME ⩾ 0 for any choice of the local
observables, which implies that also for any state |ψ⟩, ⟨ψ|BAME|ψ⟩⩽ 8. To show that this bound is tight it
suffices to provide a quantum realisation achieving it. Such a realisation can be constructed by inverting the
transformation in equations (43) and (44), that is, by taking

Ax =
λ1√
3

2∑
k=0

ωxkωk(k+1)Ok (k= 0,1,2), (52)

and By = ZXy with y= 0,1,2, C0 = Z and C1 = X, and Dw = ZXw with w= 0,1, we can bring the Bell
operator BAME to

BAME = G1 +G1G
2
2 +

1

2
(G1G2 +G1G4)+G3 + h.c., (53)

which is simply a sum of the stabilising operators of |AME(4,3)⟩. As a result, the latter achieves the maximal
quantum value of the Bell inequality (48).

Example 2 (Two-qudit maximally entangled state). Let us then consider the case of arbitrary prime d and
construct Bell inequalities for the simplest graph state which is the maximally entangled state (18) stabilised
by the two generators given in equation (19).

Since we are now concerned with the bipartite scenario we can denote the observables measured by the
parties by Ax and By; the numbers of observables on both sites will be specified later. As already explained, to
construct Bell inequalities we cannot simply use the replacement (25), we rather need to employ the one in
equation (37). Let us moreover assume that we implement this transformation at Alice’s site.

To be able to apply the above assignments, we need to consider a larger set of stabilising operators which
apart from X and Zk operators contain also (XZk)n with k= 0, . . . ,d− 1 and n= 1, . . . ,d− 1. To construct
such a set one can for instance take the following products of G ′

i given in equation (19):

G ′
1(G

′
2)

k = XZk ⊗XZ−k (k= 0,1, . . . ,d− 1). (54)

However, to take into account all the outcomes of the measurements performed by both parties we need to
also include the powers of the above stabilising operators (cf section 2.1) which leads us to the following
d(d− 1) stabilising operators of |ψ+

d ⟩:

Gn
k :=

[
G ′
1(G

′
2)

k
]n

=
(
XZk

)n ⊗ (XZ−k
)n

(k= 0, . . . ,d− 1; n= 1, . . . ,d− 1). (55)

We can now construct Bell inequalities maximally violated by the two-qudit maximally entangled states.
Precisely, to each of the stabilising operators Gn

k we associate an expectation value in which the particular
matrices appearing at the first site are replaced by the combinations (37) of the observables Ax,(

XZk
)n → Ã(n)

k , (56)

whereas at the second site we substitute directly(
XZ−k

)n → Bn
k . (57)

In other words, we associate

Gn
k →

〈
Ã(n)
k Bn

k

〉
(58)

with k= 0,1,2 and n= 1,2.
Adding then all the obtained expectation values and exploiting the fact that λ−1

n = λ∗n , we finally arrive at
Bell inequalities derived previously in [24]:

Imax :=
d−1∑
n=1

d−1∑
k=0

〈
Ã(n)
k Bn

k

〉

=
1√
d

d−1∑
n=1

λ∗n

d−1∑
x,y=0

ω−nxy
〈
An
xB

n
y

〉
⩽ βC

max, (59)
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Table 1.Maximal classical values of the Bell expression Imax given in equation (59) for d= 3,5,7. For comparison we also present the
maximal quantum values.

d βL βQ βQ/βL

3 6cos(π/9) 6 1.064
5 4(2+

√
5) 20 1.1803

7 ≃ 33.3494 42 1.2594

where βC
max stands for the maximal classical value of Imax. It is in general difficult to compute βC

max

analytically, however, for the lowest values of d= 3,5,7 it was found numerically in [24]; for completeness
we listed these values in table 1.

On the other hand, these Bell inequalities are designed so that their maximal quantum value can be
determined straightforwardly. Let us formulate and prove the following fact.

Fact 1. The maximal quantum value of the Bell expressions I(d)max is βQ
max = d(d− 1).

Proof. The proof is straightforward and consists of two steps. First, we denote by

Bmax =
1√
d

d−1∑
n=1

1

λn

d−1∑
x,y=0

ω−nxyAn
x ⊗Bn

y (60)

a Bell operator associated to the expression I(d)max, where Ax and By are arbitrary d-outcome unitary observ-
ables. Second, one uses equation (40) as well as the fact that the Bell operator is Hermitian to observe that the
following sum-of-squares decomposition holds true

d(d− 1)1−Bmax =
1

2

d−1∑
n=1

d−1∑
y=0

(
1− Ã(n)

y ⊗Bn
y

)†(
1− Ã(n)

y ⊗Bn
y

)
. (61)

Consequently, d(d− 1)1−Bmax is a positive semi-definite operator for any choice of local observables,

and thus β(d)
max ⩽ d(d− 1). To prove that this inequality is tight we can construct a quantum realisation for

which I(d)max = d(d− 1). Precisely, we notice that for the following choice of observables for Alice and Bob (cf
equation (38)),

An
x =

λn√
d

d−1∑
k=0

ωnxkωnk(k+1)(XZk)n, Bn
y = (XZ−k)n (62)

the Bell operator Bmax simply becomes a sum of the stabilising operators of |ψ+
d ⟩,

Bmax =
d−1∑
n=1

d−1∑
k=0

[
G ′
1(G

′
2)

k
]n
, (63)

meaning that ⟨ψ+
d |Bmax|ψ+

d ⟩= d(d− 1). As a result β(d)
max = d(d− 1), which completes the proof.

3.4. General construction
We are now ready to provide our general construction of Bell inequalities for arbitrary graph states. Let us
first set the notation.

Consider a graph G = (V,E ,R,d) and choose two of its vertices that are connected. Without any loss of
generality we can label them by 1 and 2. Let thenN1 and N1 be respectively the neighbourhood of the first
vertex, i.e. the set of all vertices that are connected to it, and its cardinality. Clearly, we can relabel all the
other neighbours of vertex 1 by j ∈N1 \ {2} ≡ {3, . . . ,N1 + 1}. We finally label the remaining vertices that
are not connected to the first vertex as l ∈ V \ {1,N1} ≡ {N1 + 2, . . . ,N}. The generators corresponding to
the graph G are denoted Gi (see equation (14) for the definition thereof), whereas the graph state stabilised
by them by |G⟩.

Let us then define the Bell scenario. It will be beneficial for our construction to slightly modify the way
we denote the observers and the observables they measure. Precisely, the observables measured by the first
two parties are denoted by Ax and By with x,y= 0, . . . ,d− 1, respectively; notice that both them can choose
among d different settings. Then, the other observers connected to the first party Ameasure three

12
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observables which we denote C(i)
z with z= 0,1,2 and i ∈N1 \ {2}. The remaining observers (that do not

belong toN1) have only two observables at their disposal, denoted D(i)
0 ,D

(i)
1 where i ∈ {N1 + 2, . . . ,N}.

Before providing our construction in detail let us first present a short overview of it. Analogously to the
examples presented above, for a given graph G and the corresponding graph state |ψG⟩, we first construct a
sufficiently large set of stabilising operators (together with their matrix powers) obtained from the generators
Gi. Then, to each of these stabilising operators we associate an expectation value in which the local matrices
are replaced by arbitrary observables of their combinations; in fact, at the first site we implement the
replacement rule (37), whereas at the remaining sites the operators are directly replaced by the observables.
The motivation to use (37) is that it allows to obtain nontrivial Bell inequalities for which the quantum and
classical values differ (see [20, 24]). Then, a suitable combination of the obtained expectation values gives rise
to a Bell expression (cf equation (84)) whose maximal value can be analytically determined by constructing a
suitable sum-of-squares decomposition, as shown in theorem 2 below. Importantly, the above replacement
rule can be reversed in the sense that by choosing suitable observables for each of the observers—in particular
the first observer measures the observables defined in equation (38)—one can bring the corresponding Bell
operator to a sum of the stabilising operators of the given graph state (cf equation (97)), which allows one to
show that the graph state |ψG⟩ achieves the maximal quantum value of the given Bell expression.

Let us now present our construction in more detail. To derive a Bell inequality tailored to the graph state
|G⟩ we begin by rewriting the stabilising operators Gi corresponding to G by explicitly presenting operators
acting on the first two sites as well as on the neighbourhoodN1. The first two stabilising operators read

G1 = X1 ⊗Z
r1,2
2 ⊗

⊗
m∈N1\{2}

Z
r1,m
m (64)

and

G2 = Z
r1,2
1 ⊗X2 ⊗

⊗
m∈N1\{2}

Z
r2,m
m ⊗

N⊗
m=N1+2

Z
r2,m
m . (65)

Then, those associated to the other vertices belonging toN1 are given by

Gi = Z
r1,i
1 ⊗Z

r2,i
2 ⊗Xi ⊗

⊗
m∈N1\{2,i}

Z
ri,m
m ⊗

N⊗
m=N1+2

Z
ri,m
m , (66)

where j = 3, . . . ,N1, whereas the remaining Gi’s for i ∈ {N1 + 2, . . . ,N} are of the following form

Gi = 11 ⊗Z
r2,i
2 ⊗

⊗
m∈N1\{2}

Z
ri,m
m ⊗Xi ⊗

⊗
m∈{N1+2,...,N}\{i}

Z
ri,m
m . (67)

It is worth adding here that since by assumption the first two vertices are connected, r1,2 ̸= 0. Moreover, G1

acts trivially on all sites that are outsideN1 ∪{1}.
Given the stabilising operators, let us then follow the procedure outline already in the previous examples.

We begin by constructing a suitable set of stabilising operators. First, to create at the first site the operators
XZk required for the assignment (37), we consider products G1Gk

2 with k= 0, . . . ,d− 1. This set, however,
does not uniquely define the graph state |G⟩ as it lacks the other generators. To include them we first notice
that any Gi with i ∈N1 \ {2} contains the Z operator or its power at the first position and therefore we take
their products with G1, that is, G1Gi with i ∈N1 \ {2}, again to obtain XZk at the first site. On the other
hand, the remaining generators Gi for i ∈ {N1 + 2, . . . ,N} have the identity at the first position and therefore
we directly add them to the set.

Thus, the total list of the stabilizing operators that we use to construct a Bell inequality is

Gn
1,k := (G1G

k
2)

n (k= 0, . . . ,d− 1),

Gn
2,k := (G1Gk)

n
(k= 3, . . . ,N1 + 1), (68)

Gn
3,k := Gn

k (k= N1 + 2, . . . ,N),

where we have added powers to include all outcomes in the Bell scenario. Let us now write these operators
explicitly

Gn
1,k =

(
XZkr1,2

)n
1
⊗
(
Zr1,2Xk

)n
2
⊗

⊗
m∈N1\{2}

Z
n(r1,m+kr2,m)
m ⊗

⊗
m∈{N1+2,...,N}

Z
nkr2,m
m (69)
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for k= 0, . . . ,d− 1,

Gn
2,k = (XZr1,k)

n
1 ⊗Z

n(r1,2+r2,k)
2 ⊗ (Zr1,kX)nk ⊗

⊗
m∈N1\{2,k}

Z
n(r1,m+rk,m)
m ⊗

⊗
m∈{N1+2,...,N}

Z
nrk,m
m (70)

for k= 3, . . . ,N1 + 2, and

Gn
3,k = 11 ⊗Z

nr2,k
2 ⊗

⊗
m∈N1\{2}

Z
nrk,m
m ⊗Xn

k ⊗
⊗

m∈{N1+2,...,N}\{k}

Z
nrk,m
m (71)

for k ∈ {N1 + 2, . . . ,N}.
We associate to each of these stabilising operators an expectation value in which the local operators are

replaced by d-outcome observables or combinations thereof. Let us begin with the first site where we have
(XZkr1,2)n with k= 0, . . . ,d− 1, XZ r1,i with i = 3, . . . ,N1 and the identity. It is important to notice here that
due to the fact that d is a prime number, for any r1,2 ̸= 0, kr1,2 spans the whole set {0, . . . ,d− 1} for
k= 0, . . . ,d− 1; in other words, the function f(k) = kr1,2 defined on the set {0, . . . ,d− 1} is a one-to-one
function. Thus, XZkr1,2 contains all the d different matrices appearing in the transformation (37). We thus
substitute

(XZkr1,2)n → Ã(n)
kr1,2

:=
ω−nkr1,2(kr1,2+1)

√
dλn

d−1∑
x=0

ω−nkr1,2xAn
x . (72)

Analogously, we substitute

(XZ r1,i)n → Ã(n)
r1,i :=

ω−nr1,i(kr1,i+1)

√
dλn

d−1∑
x=0

ω−nr1,ixAn
x (73)

for i = 3, . . . ,N1 + 1; in both cases n= 1, . . . ,d− 1.
Let us then move to the second site. The matrices appearing there are Zr1,2Xk with k= 0, . . . ,d− 1 and

Z n(r1,2+r2,i) with i = 3, . . . ,N1 + 1. Since for any r1,2 the former are all proper observables in our scenario,
that is, they are unitary and their spectra belong to {1,ω1, . . . ,ωd−1}, we can directly substitute them by
observables Bk. Specifically, for k= 0 we assign

Zn → Bn
0 (74)

which implies in particular that

Znr1,2 → B
nr1,2
0 , (75)

and for the remaining k= 1, . . . ,d− 1,

(Zr1,2Xk)n → Bn
k . (76)

We distinguish the case k= 0 to simplify the assignment of observables to the other set of matrices Z n(r1,2+r2,i)

with i = 3, . . . ,N1 + 1. These are simply powers of Z and thus we associate with them a single observable B0;
precisely,

Z n(r1,2+r2,i) → B
n(r1,2+r2,i)
0 . (77)

Let us now consider all sites fromN1 \ {2}. From equations (69), (70) and (71) it follows that the
operators appearing there are Z r1,iX with i = 3, . . . ,N1 + 1 and powers of Z, and thus we can make the
following replacements

Z → C(i)
0 and Z r1,iX → C(i)

1 (78)

for any i = 3, . . . ,N1. Finally, for the remaining sites we have simply the X operator at various sites and
powers of Z. Thus, for any i = N1 + 2, . . . ,N,

Z → D(i)
0 and X → D(i)

1 . (79)
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Collecting all these substitutions together we have

Gn
1,0 → G̃(n)

1,0 := Ã(n)
0 ⊗B

nr1,2
0 ⊗

N1+1⊗
i=3

[
C(i)
0

]nr1,i
(80)

and

Gn
1,k → G̃(n)

1,k := Ã(n)
kr1,2

⊗Bn
k ⊗

N1+1⊗
i=3

[
C(i)
0

]n(r1,i+kr2,i)
⊗

N⊗
i=N1+2

[
D(i)
0

]nkr2,i
(81)

for k= 1, . . . ,d− 1. Then,

Gn
2,k → G̃(n)

2,k := Ã(n)
r1,k ⊗B

n(r1,k+r2,k)
0

k−1⊗
i=3

[
C(i)
0

]n(r1,i+rk,i)
⊗
[
C(k)
1

]n
⊗

N1+1⊗
i=k+1

[
C(i)
0

]n(r1,i+rk,i)
N⊗

i=N1+2

[
D(i)
0

]nrk,i
(82)

with k ∈ {3, . . . ,N1 + 1}, and, finally,

Gn
3,k → G̃(n)

3,k := B
nr2,k
0

N1+1⊗
i=3

[
C(i)
0

]nrk,i k−1⊗
i=N1+2

[
D(i)
0

]nrk,i
⊗
[
D(k)
1

]n
⊗

N⊗
i=k+1

[
D(i)
0

]nrk,i
(83)

for k ∈ {N1 + 2, . . . ,N}.
Lastly, by taking a weighted sum of expectation values of the above operators, we arrive at the following

class of Bell expressions for a given graph state:

IG :=
d−1∑
n=1

〈G̃(n)
1,0

〉
+

d−1∑
k=1

c1,k
〈
G̃(n)
1,k

〉
+

N1+1∑
k=3

c2,k
〈
G̃(n)
2,k

〉
+

N∑
k=N1+2

〈
G̃(n)
3,k

〉 , (84)

where ci,k > 0 are some free parameters that satisfy

c1,k +
N1+1∑
j=3

{j:r1,j=kr1,2}

c2,j = 1 (85)

for each k= 1, . . . ,d− 1, where the second sum goes over all j such that for a fixed k, r1,j = kr1,2. As we will
see below the conditions (85) are used for constructing sum-of-squares decompositions of the Bell operators
corresponding to IG , which in turn are crucial for determining the maximal quantum values of IG . In fact, we
can prove the following theorem.

Theorem 2. The maximal quantum value of IG is

βQ
G = (d− 1)(N−N1 + d− 1). (86)

Proof. To prove this statement let us consider a Bell operator corresponding to IG ,

BG =
d−1∑
n=1

G̃(n)
1,0 +

d−1∑
k=1

c1,k G̃(n)
1,k +

N1+1∑
k=3

c2,k G̃(n)
2,k +

N∑
k=N1+2

G̃(n)
3,k

 , (87)

where G̃(n)
i,k are defined in equations (80)–(83). We show that BG admits the following sum-of-squares decom-

position

BG = (d− 1)(N−N1 + d− 1)1

− 1

2

d−1∑
n=1

[(
1− G̃(n)

1,0

)†(
1− G̃(n)

1,0

)
+

d−1∑
k=1

c1,k
(
1− G̃(n)

1,k

)†(
1− G̃(n)

1,k

)

+

N1+1∑
k=3

c2,k
(
1− G̃(n)

2,k

)†(
1− G̃(n)

2,k

)
+

N∑
k=N1+2

(
1− G̃(n)

3,k

)†(
1− G̃(n)

3,k

) . (88)
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To verify that this decomposition holds true let us expand the expression appearing in the square brackets
for a particular n,(

1+
d−1∑
k=1

c1,k +
N1+1∑
k=3

c2,k +N−N1 − 1

)
1−B(n)

G −
[
B(n)
G

]†
+
(
G̃(n)
1,0

)†
G̃(n)
1,0

+
d−1∑
k=1

c1,k
(
G̃(n)
1,k

)†
G̃(n)
1,k +

N1+1∑
k=3

c2,k
(
G̃(n)
2,k

)†
G̃(n)
2,k +

N∑
k=N1+2

(
G̃(n)
3,k

)†
G̃(n)
3,k , (89)

where B(n)
G is a part of the Bell operator corresponding to a particular n, that is,

B(n)
G = G̃(n)

1,0 +
d−1∑
k=1

c1,k G̃(n)
1,k +

N1+1∑
k=3

c2,k G̃(n)
2,k +

N∑
k=N1+2

c3,k G̃(n)
3,k . (90)

We now notice that by summing all the conditions (85) one can deduce that

d−1∑
k=1

c1,k +
N1+1∑
k=3

c2,k = d− 1, (91)

which implies that the coefficient in front of the identity simplifies to d+N−N1 − 1. Using the definitions of

G̃(n)
i,k one then has that

(
G̃(n)
1,0

)†
G̃(n)
1,0 +

d−1∑
k=1

c1,k
(
G̃(n)
1,k

)†
G̃(n)
1,k +

N1+1∑
k=3

c2,k
(
G̃(n)
2,k

)†
G̃(n)
2,k +

N∑
k=N1+2

(
G̃(n)
3,k

)†
G̃(n)
3,k

=
(
Ã(n)
0

)†
Ã(n)
0 +

d−1∑
k=1

c1,k
(
Ã(n)
kr1,2

)†
Ã(n)
kr1,2

+

N1+1∑
k=3

c2,k
(
Ã(n)
r1,k

)†
Ã(n)
r1,k +(N−N1 − 1)1

=
d−1∑
k=0

(
Ã(n)
k

)†
Ã(n)
k +(N−N1 − 1)1= (d+N−N1 − 1)1, (92)

where the second line follows from the fact that apart from the first position all the local operators in G̃(n)
i,k are

unitary (notice also that G̃(n)
3,k have the identity at the first position), whereas the second line stems from the

conditions (40) and (85). All this allows us to rewrite (89) simply as 2(d+N−N1 − 1)1−B(n)
G −B(n)†

G . Taking
finally the sum of these terms over n= 1, . . . ,d− 1 we arrive at the decomposition (88), which completes the
first part of the proof.

From the decomposition (88) one directly infers that (d− 1)(d+N−N1 − 1)1−BG is a positive semi-
definite operator for any choice of the local observables, which is equivalent to say that for any Bell operator
BG corresponding to IG and any pure state |ψ⟩, the following inequality is satisfied

⟨ψ|BG |ψ⟩⩽ (d− 1)(d+N−N1 − 1). (93)

To show that this inequality is tight, and at the same time complete the proof, let us provide a particu-
lar quantum realisation that achieves it. To this end, we can invert the transformation we used to con-
struct IG . Precisely, we let the first party measure d observables Ak with k= 0, . . . ,d− 1 which are defined

in equation (38); for them Ã(n)
k = (XZk)n. The remaining parties measure

Bn
0 = Z n, Bn

k = (Zr1,2Xk)n (k= 0, . . . ,d− 1) (94)

C(i)
0 = Z, C(i)

1 = Z r1,iX (95)

for i = 3, . . . ,N1 + 1, and, finally,

D(i)
0 = Z, D(i)

1 = X (96)

for i = N1 + 2, . . . ,N.
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It is not difficult to see that for this choice of quantum observables the Bell operator reduces to a combin-
ation of the stabilising operators of the given graph state |G⟩, that is,

BG =
d−1∑
n=1

Gn
1 +

d−1∑
k=1

c1,k(G1G
k
2)

n +

N1+1∑
k=3

c2,k(G1Gk)
n +

N∑
k=N1+2

Gn
k

 . (97)

Owing to the conditions (85) as well as (91), one finds that

⟨G|BG |G⟩= (d− 1)(N−N1 + d− 1), (98)

which is what we aimed to prove.

We have thus obtained a family of Bell expressions whose maximal quantum values are achieved by graph
states of arbitrary prime local dimension. To turn them into nontrivial Bell inequalities one still needs to
determine their maximal classical values which is in general a hard task. For the simplest cases such as Bell
inequalities for the AME(4,3) state or those tailored to the maximally entangled state of two qudits for low
d’s, the classical bounds can be determined numerically (cf equation (49) and table 1). On the other hand, in
the next section we show that our inequalities allow to self-test the graph states of local dimension three, and
thus for all of them the classical bound is strictly lower than the Tsirelson’s bound. It is also worth
mentioning that the ratio between the maximal quantum and classical values will certainly depend on the
choice of vertices 1 and 2, in particular on the number of neighbours of the first vertex N1 because this
number appears in the formula for βQ (86).

Let us finally mention that our inequalities are scalable in the sense that the number of expectation values
they are constructed from scales linearly with N. Indeed, it follows from equation (84) that the number of
expectation values in IG is

(d− 1)[N+(N1 + d)(d− 1)] (99)

which in the worst case N1 = N− 1 reduces to (d− 1)[Nd+(d− 1)2]. This number can still be lowered twice
because the expectation values in IG for n= ⌈d/2⌉, . . . ,d− 1 are complex conjugations of those for
n= 1, . . . ,⌊d/2⌋. Another possibility for lowering it number is to choose as the first vertex the one with the
lowest neighbourhood. While it is an interesting question whether it is possible to design another
construction which requires measuring even less expectation values, it seems that the linear scaling in N is
the best one can hope for.

4. Self-testing of qutrit graph states

Here we show our second main result: we demonstrate that our Bell inequalities can be used to self-test
arbritrary graph states of local dimension d= 3. In this particular case the general Bell expression (84) can be
written as

IG :=
〈
G̃(n)
1,0

〉
+

d−1∑
k=1

c1,k
〈
G̃(n)
1,k

〉
+

N1+1∑
k=3

c2,k
〈
G̃(n)
2,k

〉
+

N∑
k=N1+2

〈
G̃(n)
3,k

〉
+ c.c., (100)

or explicitly as,

IG :=

〈
Ã0B

r1,2
0

N1+1∏
i=3

[
C(i)
0

]r1,i〉

+
2∑

k=1

c1,k

〈
Ãkr1,2Bk

N1+1∏
i=3

[
C(i)
0

]r1,i+kr2,i
N∏

i=N1+2

[
D(i)
0

]kr2,i〉

+

N1+1∑
k=3

c2,k

〈
Ãr1,kB

r1,k+r2,k
0

k−1∏
i=3

[
C(i)
0

]r1,i+rk,i
C(k)
1

N1+1∏
i=k+1

[
C(i)
0

]r1,i+rk,i
N∏

i=N1+2

[
D(i)
0

]rk,i〉

+
N∑

k=N1+2

〈
B
r2,k
0

N1+1∏
i=3

[
C(i)
0

]rk,i k−1∏
i=N1+2

[
D(i)
0

]rk,i
D(k)
1

N∏
i=k+1

[
D(i)
0

]rk,i〉
+ c.c., (101)
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where c.c. stands for the complex conjugation and represents the n= 2 term in equation (84), whereas the
coefficients c1,k and c2,k satisfy the condition (85).

Let us now prove that maximal violation of IG can be used to self-test the corresponding graph state
according to definition 1. To this aim, we state the following theorem.

Theorem 3. Consider a connected graph G and assume that the maximal quantum value of the corresponding
Bell expression IG is achieved by a pure state |ψ⟩ ∈ H1 ⊗ . . .⊗HN and observables Ax, By, etc acting on the local
Hilbert spacesHi. Then, each Hilbert spaceHi decomposes asHi = C3 ⊗H ′

i and there exist local unitary
operators Ui with i = 1, . . . ,N such that

(U1 ⊗ . . .⊗UN)|ψ⟩= |ψG⟩⊗ |aux⟩ (102)

with |aux⟩ being some state from the auxiliary Hilbert spaceH ′
1 ⊗ . . .⊗H ′

N.

Before we present our proof let us mention that it is follows a similar reasoning to the proof of self-testing
of N-qubit graph states in [20], but since we deal here with qutrits it also makes a use of one of the results of
[24], which for completeness we state in appendix B as fact 5.

Proof. Let us first notice that it is convenient to assume that the local reduced density matrices of the state
|ψ⟩ are full rank; otherwise we are able to characterize the observables only on the supports of these reduced
density matrices. Moreover, we assume for simplicity that r1,2 = 1; recall that by construction r1,2 ̸= 0. The
proof for the other case of r1,2 = 2 goes along the same lines.

The sum-of-squares decomposition (88) implies the following relations for the state and observables that
achieve the maximal quantum value of the Bell expression IG ,

G̃(n)
1,k |ψ⟩= |ψ⟩ (103)

for k= 0,1,2,

G̃(n)
2,k |ψ⟩= |ψ⟩ (104)

for k= 3, . . . ,N1 + 1, and

G̃(n)
3,k |ψ⟩= |ψ⟩ (105)

for k= N1 + 2, . . . ,N.
Before we employ the above relations in order to prove our self-testing statement let us recall that Ã(n)

x

(x= 0,1,2) are combinations of the first party’s observables and are not unitary in general; still, they satisfy

Ã(2)
x = Ã(1)†

x . At the same time By, C
(i)
z , and D(i)

w are all unitary observables which in the particular case d= 3

satisfy B2
y = B†

y etc. This implies that G̃(2)
i,k = G̃(1)†

i,k .
The main technical step we need is to identify at each site two unitary observables whose anticommutator

is unitary. This allows us tomake use of fact 5 and corollary 4 (see appendix B) to define local unitary operators
that map the two unkown observables to the qutrit ones. For parties having three measurement choices, the
remaining observable will be directly mapped to other qutrit operators thanks to anticommutation relations
that can be inferred from the sum-of-squares decompositions.

Our proof is quite technical and long and therefore to make it easier to follow we divide it into a few steps.
In the first four we characterize every party’s observables that give rise to the maximal quantum violation of
the inequality, while in the last one we prove the self-testing statement for the state.

Step 1. (Ax observables). Let us first determine the form of the first party’s observables Ax. To this end, we
concentrate on conditions (103) which for n= 1 and r1,2 = 1 can be rewritten as

Ã0 ⊗B0 ⊗C1|ψ⟩= |ψ⟩,

Ã1 ⊗B1 ⊗C1C2 ⊗D|ψ⟩= |ψ⟩,

Ã2 ⊗B2 ⊗C1C
†
2 ⊗D

†|ψ⟩= |ψ⟩, (106)

where Ci and D are short-hand notations for

Ci =

N1+1⊗
m=3

[
C(m)
0

]ri,m
, D=

N⊗
m=N1+2

[
D(m)
0

]r2,m
, (107)
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where i = 1,2, and, finally,

Ãk ≡ Ã(1)
k =

ω−k(k+1)

√
3λ1

2∑
t=0

ω−tkAt. (108)

Recall that in the case d= 3, Ã(2)
k = Ã(1)†

k . Moreover, since G̃(2)
i,k = G̃(1)†

i,k , equation (103) for n= 2 gives another
set of conditions, similar to (106) but with all local operators being Hermitian-conjugated. By the very defin-

ition, Bi, Ci and D are unitary and satisfy B3
i = C

3
i = D

3
= 1.

The above equations contain all three operators Ãi (i = 0,1,2). Let us then concentrate on the first condi-
tion in (106) and use the fact that B0 and C1 are unitary to rewrite it as

Ã0|ψ⟩= B†
0 ⊗C

†
1|ψ⟩, (109)

which, taking into account that B3
0 = 1 as well as C

3
1 = 1, implies also that

Ã2
0|ψ⟩= B0 ⊗C1|ψ⟩. (110)

We can now use again the first condition in equation (106) but with all local operators being ‘daggered’ (recall
that it follows from equation (103) for n= 2), which allows us to obtain Ã2

0|ψ⟩= Ã†
0|ψ⟩. Since the reduced

density matrix corresponding to the first subsystem of |ψ⟩ is full rank, the latter is equivalent to the following
relation

Ã2
0 = Ã†

0. (111)

Using similar arguments one then shows that Ã0 is unitary, which together with (111) implies that Ã3
0 = 1 and

thus Ã0 is a proper quantum observable.
Employing then the second and the third relation in equation (106), one can draw the same conclusions

for the other two operators on Alice’s side, Ã1 and Ã2. As a consequence, all three Ãi are quantum observables;
in particular, they satisfy

Ã2
i = Ã†

i (i= 1,2,3). (112)

Let us now use (112) to characterize Ax observables. By substituting equation (108) into it one finds, after
a bit of algebra, that the observables Ax are related via the following formula:

{Ai,Aj}=−ωA†
k , (113)

where i, j,k= 0,1,2 and i ̸= j ̸= k. Using again equation (108) one can also derive similar relations for the tilted
observables,

{Ãi, Ãj}=−Ã†
k (114)

with i, j,k= 0,1,2 such that i ̸= j ̸= k.
Importantly, equation (113) and, analogously, (114) were solved in [24]. In fact, it was proven there (cf

fact 5 and corollary 4 in appendix B) that one can identify a qutrit Hilbert space in H1 in the sense that
H1 = C3 ⊗H ′

1 for some auxiliary Hilbert space H ′
1, and that there exists a unitary operation U1 :H1 →H1

such that (notice that the third observable Ã2 is obtained from the first two by using (114))

U1 ÃiU1 = XZi ⊗ P(1)1 +(XZi)T ⊗ P(1)2 (i= 0,1,2), (115)

where P(1)i (i = 1,2) are two projectors such that P(1)1 + P(1)2 = 1 ′
1, where 1

′
1 is the indentity onH ′

1. There are
thus two inequivalent sets of observables at the first site that give rise to the maximal quantum value of our
Bell expressions: XZi with i = 0,1,2 and their transpositions.

Step 2. (By observables).We can now move on to characterizing the By observables. First, by combining the

identities in (106) with equation (114) and then by using the fact that C1 and C2 commute as well as that Ãi

are unitary, one finds the following equations

{Bi,Bj}|ψ⟩=−B†
k |ψ⟩ (116)
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for all triples i, j,k such that i ̸= j ̸= k. By virtue of the fact that all the single-party reduced density matrices of
|ψ⟩ are full rank, these are equivalent to the following matrix equations

{B0,B1}=−B†
2,

{B0,B2}=−B†
1,

{B1,B2}=−B†
0, (117)

and thus the By observables satisfy analogous relations to Ax. This implies thatH2 = C3 ⊗H ′
2 for some auxil-

iary Hilbert spaceH ′
2, and there exists a unitary operation U2 :H2 →H2 such that (cf fact 5 and corollary 4)

U2BiU
†
2 = ZX i ⊗ P(2)1 +(ZX i)T ⊗ P(2)2 . (118)

for i = 0,1,2, where P(2)1 and P(2)1 are two orthogonal projectors such that P(2)2 + P(2)2 = 1 ′
2, where 1

′
2 is the

identity acting onH ′
2 (notice that as before the form of the third observable B2 follows from (117)).

Step 3. (C(i)
z observables). Let us now move on to the C(i)

z observables that are measured by the observ-
ers numbered by i = 3, . . . ,N1 + 1, and consider the first equation in (106) and the conditions that follow
from (104), which for our purposes we state as

Ã0 ⊗B0 ⊗
[
C(k)
0

]r1,k
⊗C0,k|ψ⟩= |ψ⟩ (119)

and

Ãr1,k ⊗B
r1,k+r2,k
0 ⊗C(k)

1 ⊗C
′
0,k ⊗Dk|ψ⟩= |ψ⟩ (120)

with k= 3, . . . ,N1 + 1, and

C0,k =

N1⊗
m=3
m̸=k

[
C(m)
0

]r1,m
, C

′
0,k =

N1⊗
m=3
m̸=k

[
C(m)
0

]r1,m+rk,m
, Dk =

N⊗
m=N1+1

[
D(m)
0

]rk,m
. (121)

Importantly, r1,k ̸= 0 for any k= 3, . . . ,N1 + 1, and hence all equations in (120) contain either Ã1 or Ã2.
Let us then exploit the fact that all local operators in both equations (119) and (120) are unitary and therefore
these equations can be rewritten as[

C(k)
0

]r1,k
|ψ⟩= Ã†

0 ⊗B†
0 ⊗C

†
0,k|ψ⟩,

C(k)
1 |ψ⟩= Ã†

1 ⊗B
−(r1,k+r2,k)
0 ⊗

[
C

′
0,k

]†
⊗D

†
k |ψ⟩. (122)

Crucially, C0,k, C
′
0,k commute and therefore we deduce that{[

C(k)
0

]r1,k
,C(k)

1

}
|ψ⟩= {Ã0, Ã1}† ⊗Bλk

0 ⊗C
†
0,k

[
C

′
0,k

]†
⊗D

†
k |ψ⟩, (123)

where for simplicity we denoted λk =−(1+ r1,k + r2,k). In a fully analogous way we can derive{[
C(k)
0

]r1,k
,C(k)

1

}†
|ψ⟩= {Ã0, Ã1}⊗B−λk

0 ⊗C0,kC
′
0,k ⊗Dk|ψ⟩. (124)

Both these conditions when combined with equation (114) allow us to conclude that{[
C(k)
0

]r1,k
,C(k)

1

}†{[
C(k)
0

]r1,k
,C(k)

1

}
=
{[

C(k)
0

]r1,k
,C(k)

1

}{[
C(k)
0

]r1,k
,C(k)

1

}†
= 1k, (125)

i.e. the above anticommutator is unitary. We can therefore use fact 5 and corollary 4 (see appendix B) which
say that for any k= 3, . . . ,N1 + 1, Hk = C3 ⊗H ′

k with H ′
k being some auxiliary Hilbert space of unknown

dimension, as well as that there exist unitary operations Uk such that

Uk

[
C(k)
0

]r1,k
U†

k = Zr1,k ⊗1 ′
k, (126)
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and

UkC
(k)
1 U†

k = Zr1,kX⊗ P(k)1 +(Zr1,kX)T ⊗ P(k)2 , (127)

where P(k)1 + P(k)2 = 1 ′
k.

Step 4. (D(i)
w observables). Let us finally focus on the D observables. We first consider all vertices i ∈ {N2 +

2, . . . ,N} that are connected to the second vertex. For them r2,k ̸= 0 and therefore we have from equation (105),

B
r2,k
0 ⊗ C̃0,k ⊗D

′
0,k ⊗D(k)

1 |ψ⟩= |ψ⟩, (128)

where

C̃0,k =

N1⊗
m=3

[
C(m)
0

]rk,m
, D

′
0,k =

N⊗
i=N1+1

i̸=k

[
D(i)
0

]rk,i
. (129)

At the same time, equation (103) for k= 1 gives

Ãr1,2 ⊗B1 ⊗C1C2 ⊗
[
D(k)
0

]r2,k
⊗D0,k |ψ⟩= |ψ⟩ (130)

where

D0,k =
N⊗

i=N1+1
i̸=k

[
D(i)
0

]r2,i
. (131)

We then rewrite both equations (128) and (131) as

D(k)
1 |ψ⟩= B

−r2,k
0 ⊗ C̃†

0,k ⊗
[
D

′
0,k

]†
|ψ⟩,[

D(k)
0

]r2,k
|ψ⟩= Ã†

1 ⊗B†
1 ⊗C

†
1C

†
2 ⊗D

†
0,k|ψ⟩. (132)

Since as already proven, the anticommutator of B
−r2,k
0 and B1 is unitary for any k such that r2,k ̸= 0, the above

equations imply that for all k= N1 + 2, . . . ,N for which r2,k ̸= 0, the anticommutator of D(k)
1 and [D(k)

0 ]r2,k is
unitary too.

We can nowmove on to those vertices i ∈ {N1 + 2, . . . ,N} that are connected to the remaining neighbours
of the first vertex. In this case we proceed in the same way as above, however, we now combine the condi-

tions (104) and (105) as well as we employ the forms of C(i)
z operators given in equations (126) and (127) to

observe that for any site k which is connected to a neighbourm of the first vertex the anticommutator of D(k)
1

and [D(k)
0 ]rm,k is unitary and therefore D(k)

0/1 satisfy the assumptions of fact 5 in appendix B.
Let us finally consider the remaining vertices that are not neighbours of the first vertex. For each of them

we can prove that the anticommutator of the local observablesD(k)
0/1 or powers thereof is unitary in a recursive

way starting from vertices connected to those that are connected to the neighbours of the first vertex and
employing the relations (105). Step by step we can prove the same statement for all D sites exploiting the fact
that the graph is connected and therefore for each vertex there is a path connecting it with any other vertex in
the graph.

We thus conclude that for all vertices k= N1 + 2, . . . ,N the local Hilbert isHk = C3 ⊗H ′
k for some finite-

dimensionalH ′
k and that there exists a unitary Uk such that (cf fact 5 and corollary 4 in appendix B)

UkD
(k)
0 U†

k = Z⊗1 ′
k (133)

and

UkD
(k)
1 U†

k = X⊗ P(k)1 +XT ⊗ P(k)2 . (134)
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The state.Having determined the form of all local observables we can nowmove on to proving the self-testing
statement for the state. After substituting the above observables, the ‘rotated’ Bell operator corresponding to
the Bell inequality which is maximally violated can be expressed as

UBGU
† =

1∑
m1,...,mN=0

Bm⊗ P(1)m1
⊗ . . .⊗ P(N)mN

, (135)

where U= U1 ⊗ . . .⊗UN and P(i)mi are projections introduced above that satisfy P(i)1 P(i)2 = 0 for any site i =
1, . . . ,N, Bm withm :=m1 . . .mN, wheremi = 0,1, are N-qutrit Bell operators obtained from

B= G1,0 +
2∑

l=1

c1,lG1,l +

N1+1∑
l=3

c2,lG2,l +
N∑

l=N1+2

G3,l + h.c., (136)

through the application of the identity map (mi = 0) or the transposition map (mi = 1) to the observables
appearing at site i. Here, Ga,b are the stabilising operators of the graph state |G⟩ defined in equations (68) for
n= 1 and d= 3, which for completeness we restate here as

G1,0 = X1 ⊗Z2 ⊗
N1+1⊗
i=3

Z
r1,i
i , (137)

G1,k =
(
XZk

)
1
⊗
(
ZXk

)
2
⊗

N1+1⊗
i=3

Z
r1,i+kr2,i
i ⊗

N⊗
i=N1+2

Z
kr2,i
i , (138)

with k= 1,2,

G2,k = (XZr1,k)1 ⊗Z
r1,k+r2,k
2 ⊗

k−1⊗
i=3

Z
r1,i+rk,i
i ⊗ (Zr1,kX)k ⊗

N1+1⊗
i=k+1

Z
r1,i+rk,i
i ⊗

N⊗
i=N2+2

Z
rk,i
i (139)

with k= 3, . . . ,N1 + 1

G3,k = Z
r2,k
2 ⊗

N1+1⊗
i=3

Z
rk,i
i ⊗

k−1⊗
i=N1+2

Z
rk,i
i ⊗Xk ⊗

N⊗
i=k+1

Z
rk,i
i , (140)

with k= N1 + 2, . . . ,N. The subscripts were added to X and Z to denote the site at which these operators act;
recall also that we fixed r1,2 = 1.

The formula (135) takes into account the fact that at each site we have two choices of measurements,
with and without the transposition. Thus, the Bell operator is composed of 2N N-qutrit Bell operators. For
instance, for m1 = . . .=mN = 0 no partial transposition is applied to B and therefore B0...0 ≡ B, whereas for
m1 = . . .=mN = 1 the partial transposition is applied to every site and hence B1...1 = BT, where T stands for
the global transposition.

In order to find the form of the state maximally violating our inequality we now determine the eigen-
vector(s) of the Bell operator BG corresponding its maximal eigenvalue which is 2(N−N1 + d− 1) (cf
equation (86)). To this end, let us focus on the N-qutrit operators Bm and prove that the latter number is an
eigenvalue of only two of them, B and BT , which correspond to the casesm1 =m2 = . . .=mN = 0,1, whereas
the eigenvalues of the remaining operators are all lower.

Clearly, B is composed of the stabilising operators of the graph state |G⟩ and therefore its maximal eigen-
value coincides with the maximal quantum violation of the inequality which is 2(N−N1 + d− 1). The same
applies to BT because the transposition does not change the eigenvalues and the graph state is real.

Let us then move on to the remaining cases, i.e. mi are not all equal. We will show that in all those 2N − 2
cases the Bm operators have eigenvalues lower than 2(N−N1 + 2) because for all those cases one can pick a
few stabilizing operators Ga,b whose partial transpositions cannot stabilize a common pure state anymore. For
further benefits let us denote by Gm

a,b the stabilizing operators which are partially transposed with respect to
those subsystems i for which mi = 1. We divide the proof into three parts corresponding to three cases: (i)
m1 =m2 = 0, (ii)m1 =m2 = 1 and (iii)m1 = 0,m2 = 1 orm1 = 1,m2 = 0, and also a few sub-cases.

• The first one assumes that either m1 = 1 and m2 = 0 or m1 = 0 and m2 = 1, i.e. we take the transposed
observables at the first or the second site, but not both at the same time. For simplicity let us then fixm1 =
1 and m2 = 0. We consider three operators GT1

1,i with i = 0,1,2, where T1 is the transposition applied to
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the observables at the first site. It is not difficult to observe that using the explicit forms of the stabilizing
operators (cf equations (137) and (138)) and including the transposition at the first site, one obtains

GT1
1,0G

T1
1,1G

T1
1,2 = [XT(XZ)T(XZ2)T]1 ⊗ [ZZXZX2]2, (141)

where we also used the fact that the products of the observables at the remaining sites amounts to identity.
Using then the fact that ZX= ωXZ, the above simplifies to

GT1
1,0G

T1
1,1G

T1
1,2 = ω1. (142)

This simple fact precludes that there exists a common eigenvector of GT1
1,i (i = 1,2,3) with eigenvalue one.

• Next, we consider the case when the observables at the first two sites are not transposed, i.e. m1 =m2 = 0.
There thus exists i ̸= 1,2 such that mi = 1. Let us first assume that this particular vertex belongs to i ∈
{3, . . . ,N1 + 1}, i.e. we take the transposed observables for this site. We then consider two operators G1,0

and G2,i. Notice then that the first of these operators has the Z observable at site i because i ∈N1, i.e. it is
connected to the first vertex, whereas the second one has Z r1,iX at this position. At the remaining positions
different than the first two they have only Z observable or the identity which do not feel the action of trans-
position. All this means that in this case Gm

1,0 = G1,0 and Gm
2,i = GTi

2,i. Due to the fact that the transposition

at site i modifies X appearing in G2,i to X†, the operators G1,0 and GTi
2,i do not commute (recall that by the

very definition the stabilising operators without the transposition commute). By virtue of fact 4 stated in
appendix A this implies that G1,0 and GTi

2,i do not stabilize a common pure state.

Let us now move on to the second sub-case in which mi = 1 for any i ∈N1 and there exist i ∈ {N1 +
2, . . . ,N} such that mi = 2. Since the graph is connected there exist another vertex j ̸= 1, i which is con-
nected to i. Analogously to the previous case, we consider two operators: Gm

3,i and one of Gm
a,b, where the

choice of the latter operator is dictated by the choice of the vertex j which i is connected to: for j= 2 we take
Gm
1,1; for j ∈ {3, . . . ,N1 + 1} we take Gm

2,j; finally, for j ∈ {N1 + 2, . . . ,N} we take Gm
3,j.

Now, Gm
3,i has theX operator at site i and the Z operator at the remaining ‘D’ sites, whereas all the other oper-

ators Gm
a,b for a= 1,2,3 and b ̸= i listed above have only either the Z operator or the identity at all ‘D’ sites.

Thus, Gm
a,b = Ga,b for any a= 1,2,3 and b ̸= i and any sequencem in whichml = 1 for l= 1, . . . ,N1 + 1, and

Gm
3,i = GTi

3,i. Now, it clearly follows that Gm
3,i does not commute with the chosen Ga,b because the transposition

at site i changes the X operator to X2 and because, by the very definition, G3,i (without the transposition)
commutes with any other Ga,b. As before this implies that Gm

3,iGa,b = ωqGa,bGm
3,i for some q= 1,2, and there-

fore these two operators cannot stabilize a common pure state (cf fact 4 in appendix A).
• The last case to consider is when m1 =m2 = 1; the remaining mi can take arbitrary values except for being
all equal to one, which corresponds to the already-considered case of all observables being transposed. Here
we can use the fact that Gm

a,b for all a,b stabilize the graph state |G⟩ if and only if [Gm
a,b]

T does, where T is the
global transposition. We can thus apply the global transposition to all the operators Gm

a,b and consider again
the case whenm0 =m2 = 0 and there is some i ̸= 1,2 such thatmi = 1, which has already been considered
above.

Knowing that among all the Bm operators only B and BT give rise to the maximal quantum violation of the
Bell inequality corresponding to the considered graph, we can determine the form of the state |ψ⟩maximally
violating the inequality. Due to the fact that each local Hilbert space decomposes as Hk = C3 ⊗H ′

k we can
write the state as

|ψ⟩=
∑

i1,...,iN

|ψi1,...,iN⟩⊗ |i1⟩1 ⊗ . . .⊗ |iN⟩N, (143)

where |ψ ′⟩= (U1 ⊗ . . .⊗UN)|ψ⟩, |ψi1,...,iN⟩ are some vectors from (C3)⊗N and the local bases |ik⟩ are the
eigenbases of the projectors P(k)mk . The fact that |ψ⟩ achieves the maximal quantum value of the inequality,
βQ = 2(N−N1 + 2), means that the following identity

BG |ψ⟩= 2(N−N1 + 2)|ψ⟩ (144)

holds true. Plugging equations (143) and (135) into the above equation one finds that it is satisfied iff for every
sequencem,

Bm|ψi1,...,iN⟩= 2(N−N1 + 2)|ψi1,...,iN⟩, (145)

holds true for all those sequences i1, . . . , iN for which the local vectors |i⟩k at site k are the eigenvectors of the
operator P(k)mk . As already discussed above, this condition can be met for only two of these operators, B and BT .
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Moreover, the stabilising operators that B (and thus also BT) are composed of stabilize a unique state, which
is the graph state |G⟩. Consequently, |ψi1,...,iN⟩= |G⟩ for any sequence i1, . . . , iN for which the corresponding

local vectors are the eigenvectors of P(k)0 (or P(k)1 in the case of BT).
On the other hand, we showed that the eigenvalues of the remaining operators Bm are lower than the

maximal violation of the Bell inequality and thus in all those cases equation (145) can be satisfied iff the
corresponding vectors vanish, |ψi1,...,iN⟩= 0. Taking all this into account, we conclude that the state |ψ ′⟩ has
the following form

(U1 ⊗ . . .⊗UN)|ψ⟩= |ψG⟩⊗ |φ⟩, (146)

where |φ⟩ is some state from the auxiliary Hilbert spacesH ′
1 ⊗ . . .⊗H ′

N that satisfies(
P(1)i ⊗ . . .⊗ P(N)i

)
|φ⟩= |φ⟩ (i= 0,1). (147)

This completes the proof.

5. Conclusions and outlook

In this work we introduced a family of Bell expressions whose maximal quantum values are achieved by
graph states of arbitrary prime local dimension. While at the moment we are unable to compute their
maximal classical values, we believe the corresponding Bell inequalities are all nontrivial. This belief is
supported by a few examples of Bell expressions for which the classical bound was found numerically, and
the fact that in the particular case of qutrit states they enable self-testing of all graph states. We thus
introduced a broad class of Bell inequalities that can be used for testing non-locality of many interesting and
relevant multipartite states, including the absolutely maximally entangled states. Moreover, in the particular
case of many-qutrit systems our inequalities can also be employed to self-test the graph states, in particular
the four-qutrit absolutely maximally entangled state.

There is a few possible directions for further research that are inspired by our work:

• First, it would be interesting to generalize our method to the case of composite d, in particular for prime
powers. The present approach is based on that of [24] which, in order to prove that the linear combinations
in equation (31) are unitary operators which when raised to d are identities employed certain relations for
quadratic Gauss sums that hold true for prime d.

• Second of all, as far as implementations of self-testing are concerned it is a problem of a high relevance to
understand how robust our self-testing statements are against noises and experimental imperfections.

• Another possible direction that is related to the possibility of experimental implementations of self-testing
is to find Bell inequalities maximally violated by graph states that require performing the minimal number
of two measurement per observer to self-test the state. For instance, for the GHZ state such a Bell inequality
[27] and a self-testing scheme [29] (see also [28]) based on the maximal violation of this inequality were
introduced recently; this inequality is based, however, on a slightly different construction which is not dir-
ectly related to the stabilizer formalism used by us here.

• Fourth, it is interesting to explore whether one can derive self-testing statements based on the maximal
violation of our inequalities for higher prime dimensions d⩾ 0. While it is already known (see [24]) that
these inequalities do not serve the purpose as far as quantum observables are concerned because there exist
many different choices of them that are not unitarily equivalent (such as those appearing in the proof of
theorem 3 for d= 3 which are related by the transposition), whether they enable self-testing of graph states
remains open. In other words, it is unclear whether the given graph state is the only one (up to the above
equivalences) that meets the necessary and sufficient conditions for the maximal quantum violation of the
corresponding Bell inequality stemming from the sum-of-squares decomposition.

• The fifth possible direction is to generalize our construction so that it allows for designing Bell inequalities
that are maximally violated by other classes of states such as for instance the hyper-graph states [43] (see
also [44] in this context).

• Last but not least, one can also explore the possibility of self-testing of genuinely entangled subspaces within
the stabiliser formalism in Hilbert spaces of arbitrary prime local dimension along the lines of [22, 23].
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Appendix A. A few facts

Fact 2. Consider the generalized Pauli matrices defined through the following formulas

X|i⟩= |i+ 1⟩, Z|i⟩= ωi|i⟩, (148)

where |i⟩ (i = 0, . . . ,d− 1) are the elements of the standard basis ofCd. There are no complex numbersα,β ̸=
0 for which αX+βZ is unitary.

Proof. The proof is elementary. We first expand

(αX+βZ)†(αX+βZ) = (|α|2 + |β|2)1+α∗βX†Z+β∗αZ†X. (149)

Let us then show that for any d⩾ 3, the operators X†Z and Z†X are linearly independent. To this end, we
assume that X†Z and Z†X are linearly dependent and thus X†Z= ηZ†X for some η ∈ C. By using the fact that
ZX= ωXZ, we can rewrite this equation as X†Z= ηωd−1XZ†, which, taken into account the fact that X and Z
are unitary further rewrites as Z2 = ηωd−1X2 which for d⩾ 3 is satisfied iff η= 0.

It now follows that the expression (149) equals 1 if and only if α or β vanishes. This completes the proof.

Let us notice that the above fact fails to be true for d= 2 because in this case ZX=−XZ and therefore XZ
and ZX are linearly dependent, which makes it possible to find α,β such that αX+βZ is unitary. In fact, any
pair of real positive numbers obeying α2 +β2 = 1 makes this matrix unitary.

Let us finally provide a proof of the properties (39) and (40). For this purpose we recall Ã(n)
k to be given by

Ã(n)
k :=

ω−nk(k+1)

√
dλn

d−1∑
t=0

ω−ntkAn
t , (150)

where At are unitary observables.

Fact 3. Consider the following matrices

Ã(n)
k :=

ω−nk(k+1)

√
dλn

d−1∑
t=0

ω−ntkAn
t , (151)

where At are unitary observables. For any n= 0, . . . ,d− 1, the following identity holds true:

d−1∑
k=0

Ã(d−n)
k Ã(n)

k =
d−1∑
k=0

[
Ã(n)
k

]†
Ã(n)
k = d1. (152)

Proof. After plugging equation (151) into equation (152), one obtains

d−1∑
k=0

Ã(d−n)
k Ã(n)

k =
1

d|λn|2
d−1∑
s,t=0

d−1∑
k=0

ωnk(s−t)A−n
s An

t . (153)

Employing then the following identity

d−1∑
k=0

ωnk(s−t) = dδs,t (154)

and the fact that |λn|2 = 1 for any n, one directly arrives at equation (152), which completes the proof.
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Fact 4. Consider two N-qudit operators S1 and S2 which are N-fold tensor products of XiZj with i, j =
0, . . . ,d− 1 with prime d. Assume also that Sd1 = Sd2 = 1. If [S1,S2] ̸= 0, then they cannot stabilize a common
pure state in; in other words, no nonzero |ψ⟩ ∈ (Cd)⊗N exists such that Si|ψ⟩= |ψ⟩ for i = 1,2.

Proof. Let us first notice that the Weyl–Heisenberg matrices Wi,j = XiZj satisfy the following commuta-
tion relations Wi,jWk,l = ωf(i,j,k,l)Wk,lWi,j with f : {0, . . . ,d− 1}4 →{0, . . . ,d− 1}, and thus there exists q=
{1, . . . ,d− 1} such that

S1S2 = ωqS2S1 (q= 1, . . . ,d− 1), (155)

where q ̸= 0 due to the assumption that Si do not commute.
Now, let us assume that Si stabilise a common pure state, Si|ψ⟩= |ψ⟩ for i = 1,2. Then, the relation (155)

implies |ψ⟩= ωq|ψ⟩ which is satisfied iff |ψ⟩= 0, which leads to a contradiction. This ends the proof.

Appendix B. Characterisation of observables

The following proposition was proven in appendix B of [24].

Fact 5. Let R0 and R1 acting on some finite-dimensional Hilbert space B be unitary operators satisfying R3
0 =

R3
1 = 1. If the anticommutator {R0,R1} is unitary, then H= C3 ⊗H ′ for some Hilbert space H ′ and there

exists a unitary U :H→ C3 ⊗H ′ such that

UR0U
† = X⊗Q+X⊗Q⊥ = X⊗1 ′,

UR1U
† = X2Z⊗Q+Z2 ⊗Q⊥, (156)

where Q and Q⊥ are orthogonal projections satisfying Q+Q⊥ = 1 ′ and 1 ′ stands for the identity acting
onH ′.

Based on the above fact let us now show demonstrate that for each of the subsets of observables Ax, By,

C(i)
z and D(i)

w there exist local unitary operations bringing them to the forms used in equations (115), (118),
(126) and (127), and finally, (133) and (134).

Corollary 4. The following statements can be verified by a direct check:

• (Ax observables) By using U1 = F†V1F⊗Q1 + F†V∗
1V2F⊗Q2, where F, V1 and V2 are unitary operations

given by

F=
1√
3

 1 1 1
1 ω ω2

1 ω2 ω

 , V1 =

 1 0 0
0 1 0
0 0 ω

 , V2 =

 1 0 0
0 0 1
0 1 0

 , (157)

one can bring the observables in equation (156) into the following form used in equation (115):

X⊗Q+XT ⊗Q⊥,

XZ⊗Q+(XZ)T ⊗Q⊥. (158)

• (By and C(i)
z observables) By using U2 = V3F⊗Q+(V1V3)

∗F⊗Q⊥, and relabelling Q↔ Q⊥ one brings
the observables (156) to those in equation (118), that is,

Z⊗Q+Z⊗Q⊥ = Z⊗1,

ZX⊗Q+(ZX)T ⊗Q⊥, (159)

where

V3 =

 1 0 0
0 ω2 0
0 0 ω2

 . (160)

Then, by applying U3 = (V1V3)
∗ ⊗Q+V ′

2 ⊗Q⊥ operation we can bring (159) to

Z⊗Q+Z⊗Q = Z⊗1,

Z2X⊗Q+(Z2X)T ⊗Q⊥. (161)

Depending on the value of r1,k ̸= 0, both (159) and (161) are used in equations (126) and (127).
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• (D(i)
w observables) By applying U4 = V1V3 ⊗Q+(V1V3)

∗ ⊗Q⊥ to the above observables (159) one can
bring them to the following form

Z⊗Q+Z⊗Q⊥ = Z⊗1,

X⊗Q+XT ⊗Q⊥, (162)

which is used in equations (133) and (134).
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[22] Baccari F, Augusiak R, Šupíc I and Acín A 2020 Device-independent certification of genuinely entangled subspaces Phys. Rev. Lett.

125 260507
[23] Makuta O and Augusiak R 2021 Self-testing maximally-dimensional genuinely entangled subspaces within the stabilizer formalism

New J. Phys. 23 043042
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