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Dynamic optical response of solids following 
1-fs-scale photoinjection

Dmitry A. Zimin1,2, Nicholas Karpowicz1,3 ✉, Muhammad Qasim1,2, Matthew Weidman1,2, 
Ferenc Krausz1,2 & Vladislav S. Yakovlev1,2 ✉

Photoinjection of charge carriers profoundly changes the properties of a solid. This 
manipulation enables ultrafast measurements, such as electric-field sampling1,2, 
advanced recently to petahertz frequencies3–7, and the real-time study of many-body 
physics8–13. Nonlinear photoexcitation by a few-cycle laser pulse can be confined to its 
strongest half-cycle14–16. Describing the associated subcycle optical response, vital for 
attosecond-scale optoelectronics, is elusive when studied with traditional 
pump-probe metrology as the dynamics distort any probing field on the timescale of 
the carrier, rather than that of the envelope. Here we apply field-resolved optical 
metrology to these dynamics and report the direct observation of the evolving optical 
properties of silicon and silica during the first few femtoseconds following a near-1-fs 
carrier injection. We observe that the Drude–Lorentz response forms within several 
femtoseconds—a time interval much shorter than the inverse plasma frequency. This 
is in contrast to previous measurements in the terahertz domain8,9 and central to the 
quest to speed up electron-based signal processing.

The nonlinear interaction of an intense laser pulse with a medium 
changes its refractive index. These changes may disappear immedi-
ately after the end of the pulse, as in the case of the optical Kerr effect. 
They may also outlast the pulse if electrons are promoted to excited 
states. Notably, nonlinear processes are confined to a time interval 
shorter than the pulse duration, multiphoton excitation being a promi-
nent example17. Such a nonlinearity allows the shortest light pulses, 
with a single dominant half-cycle of the electric field, to photoinject 
most charge carriers within a fraction of that half-cycle. The resultant 
extreme temporal confinement of carrier injection opens new oppor-
tunities for ultrafast science18–23.

Here we investigate how the optical response of this electron–hole 
plasma forms after sudden, 1-fs-scale, photoexcitation of valence 
electrons. The time required for the response to build up depends 
not only on the duration of the laser pulse that creates the plasma, 
but also on how long it takes quasiparticles to acquire their proper-
ties. Collective behaviour, such as Coulomb screening and plasma 
scattering, is expected to form on the timescale of the inverse plasma 
frequency, henceforth called the plasma period8,24–27. Thus, a question 
of far-reaching implications is whether the plasma frequency sets a 
fundamental speed limit for future advancement of optoelectronic 
signal processing and metrology. The time it takes the plasma response 
to emerge is also essential for modelling the interaction of solids with 
intense laser pulses of a few cycles. This highly nonlinear interaction 
may populate states in hundreds of energy bands, which presents formi-
dable challenges for an ab initio description of many-electron dynam-
ics. Thus, efficient and accurate modelling of the physical processes 
underlying cutting-edge metrology and signal processing critically 
depends on the role that many-body physics plays during the first few 
femtoseconds after photoexcitation.

 
Field-resolved pump-probe measurements
In our experiments, a 3 fs (full-width at intensity half-maximum) linearly 
polarized near-infrared pump pulse (with a period of carrier frequency 
of 2.3 fs) photoexcited silicon (with a direct band gap of 3.2 eV) and 
fused-silica (with an energy gap of 9 eV) by multiphoton absorption. 
The arrival time, τ, of this pump pulse was varied with respect to a weak 
12 fs test pulse carried at a central wavelength of 2.1 μm (with a period of 
carrier frequency of 7 fs). For Si, photoinjection was confined to approx-
imately 2 fs, as shown by the green curve in Fig. 1b, which represents 
the nonlinear work performed by the pump field. This time-dependent 
work is mostly spent on creating charge carriers, and we calculated its 
value using time-dependent density functional theory28. The relatively 
long period of the test field is beneficial for studying light-driven elec-
tron motion. To decouple this motion from the photoinjection, the 
pump and test pulses were polarized orthogonally. The transmitted 
pump pulse was blocked using a wire-grid polarizer, while the oscillat-
ing electric field (henceforth, waveform) of the test pulse was recorded 
using the recently developed generalized heterodyne optical sampling 
technique (GHOST)29.

Figure 2 displays waveforms transmitted through a 230-nm-thick sili-
con sample. In Fig. 2a, we compare the reference waveform, Eref(t), which 
is the transmitted test pulse without photoinjection, with the wave-
forms E(t) recorded for two arrival times of the 0.8 V Å−1 pump pulse: 
before and at the centre of the test pulse. In the latter case, the waveform 
remains unchanged until photoinjection. Figure 2b plots the change in 
the transmitted test field (with and without carrier injection) for differ-
ent moments of injection. This change, ΔE(t) = E(t) – Eref(t),  builds up in 
the first half-cycle of the test field (that is, within 3–4 fs) following the 
peak of the pump pulse and starts decaying another half-cycle later. 
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The experiment provides a textbook example for how the material 
polarization (in this case induced by the injected charge carriers) is 
imprinted in the electric field transmitted through the sample.

The measured photoexcitation-induced waveform distortions carry 
information about how the optical thickness and absorption of the 
sample change with time. In the static case, these properties are fully 
described by a complex refractive index. In the Methods, we define 
a generalized refractive index that describes the medium’s dynamic 
response. For a dispersive medium, such a generalized refractive index 
depends on both frequency, ω,  and time, t. The formation of an elec-
tron–hole plasma decreases the real part of the refractive index, which 
increases the phase velocity of the test pulse and thus shifts its car-
rier wave to earlier times. The photoinjected electrons and holes also 
absorb light, which attenuates the test waveform transmitted after the 
pump pulse. We clearly see both these effects in Fig. 2a. From Fig. 2b we 
see that already 3–4 fs after the peak of the pump pulse the waveform 
distortions measured for slightly different delays merge within their 
standard deviations. We interpret this as a transition from ballistic to 
non-ballistic conduction.

Drude–Lorentz model
For gaining insight into how ultrafast photoinjection reshapes the test 
pulse, it is sensible to seek the simplest possible model able to account 
for the essential physics. For this purpose, we use the Drude–Lorentz 
model in the idealized case of instantaneous photoinjection. A textbook 
derivation of the Drude–Lorentz model30 considers the classical motion 
of free charge carriers and bound electrons in an oscillating electric 
field. In the Methods, we summarize and state again this derivation 
for the specific case in which pairs of charge carriers are created and 
begin their classical motion under the influence of the electric force 
of the test field at a certain moment τ (similar models were previously 
developed for terahertz time-domain spectroscopy31–33). The result is 
a complex time-dependent refractive index that describes the proper-
ties of the electron–hole plasma but does not account for wave-mixing 
processes that require the presence of the pump pulse, such as the 
optical Kerr effect or the dynamical Franz–Keldysh effect34,35. On the 
basis of this time-dependent refractive index, we investigate the extent 
to which the observed waveform distortion can be accounted for by 
the Drude–Lorentz model.

To this end, we numerically optimize the phenomenological param-
eters of the model to fit the measured waveform distortions in the 
time interval t ≥ τ + 5 fs. In this time window, we can neglect any non-
linear interaction of the 3 fs pump pulse with charge carriers that 
could induce a polarization response in the direction of the test field. 

The results are shown in Fig. 3, which compares the measurements 
with the 230-nm-thick silicon sample to those with a 12.7-μm-thick 
fused-silica sample, for which the pump pulse had a peak field strength 
of 1.4 V Å−1. In Fig. 3e,f, we plot the difference between the measured 
and reconstructed waveform distortions. For both materials, the model 
accurately reconstructs the measured delay-dependent waveform 
distortion except in a time interval of few femtoseconds around the 
centre of the pump pulse. In the fused-silica measurements (Fig. 3f), 
we evaluate an upper limit for the formation time of the Drude–Lorentz 
response to be 4 fs. This is notable given that the plasma period, which 
we retrieve from these measurements, is 110 fs. For silicon, we estimate 
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Fig. 1 | Field-resolved detection of charge-carrier motion controlled by 
sub-half-cycle photoinjection. a, A schematic of the pump-probe 
measurements in which the waveform of the test pulse (red) was measured 
after transmission through a thin sample (orange) for different delays of the 
pump pulse (blue), which created charge carriers by multiphoton absorption. 
b, The nonlinear nature of the photoinjection confines its duration to a time 
interval shorter than the half wave-cycle of the test pulse, even for the weaker 

(two-photon) nonlinearity occurring in Si (shown in the panel). The green curve 
shows the nonlinear work performed by the pump field. The grey area 
highlights the time between the moments at which the work reaches 10% and 
90% of its final value. In SiO2, this confinement is even stronger owing to the 
higher number of photons needed for promoting a valence electron to the 
conduction band16.
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Fig. 2 | The effect of ultrafast photoinjection on the test pulse transmitted 
through the 230-nm-thick silicon sample. a, The reference waveform E t( )ref  
(black), which is the electric field of the test pulse transmitted through the 
unperturbed sample, is compared with a test waveform with photoexcitation 
preceding the test pulse (blue) and the waveform measured with the 3 fs pump 
pulse arriving at t = 0 (orange). The shaded areas represent the standard 
deviations from three independent measurements. b, The measured 
photoexcitation-induced change in the transmitted electric field, ΔE, for several 
arrival times of the pump pulse, τ. The dashed curve shows the envelope of E t( )ref .
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the plasma period to be between 2 and 3 fs, which is comparable to the 
duration of carrier injection.

Time-dependent refractive index
Whereas the interaction with the pump pulse is nonlinear, the polariza-
tion response to the weak test pulse is linear. So, its transmission 
through the sample is fully described by the complex-valued, 
time-dependent refractive index n t( )ω , which does not depend on the 
shape of the test waveform and encodes all the information about the 
physical processes that make the medium’s optical properties evolve. 
It is possible to retrieve the time-dependent refractive index from the 
waveform distortions. We find, however, that a good first approxima-
tion to the time-dependent refractive index at the central frequency 
of the test pulse may be obtained without sophisticated reconstruction 
by applying the following analysis to delay-dependent waveforms.

A mere change in the optical thickness of a sample barely affects 
half-cycle amplitudes but it shifts the zero crossings of the electric 
field in time. At the same time, changes in absorption and reflection 
strongly affect the half-cycle amplitudes, but not the positions of the 
field’s zero crossings. This indicates that the delay dependence of 
zero-crossing shifts should be closely related to Re[n t( )ω ], whereas the 
delay dependence of the half-cycle amplitudes should be mainly deter-
mined by Im[n t( )ω ]. According to our modelling, this indeed is the case 
in our measurements. The error bars in Fig. 4 show how photoinjection 
shifts the zero crossings and reduces the half-cycle amplitudes in the 
measured data. These error bars represent standard deviations evalu-
ated from delay scans that were performed one after another (three 
scans for silicon and five scans for fused silica).

The solid curves in Fig. 4 were obtained by applying the same analy-
sis to the reconstructed waveforms, for which we used the Drude– 
Lorentz model with the same parameters as before (in Fig. 3). The real 
and imaginary parts of the refractive index in this model are depicted 
with empty circles and squares, respectively. More accurately, this 
time-dependent refractive index describes the propagation of a mon-
ochromatic test wave with a wavelength of 2.1 μm, which is the central 
wavelength of the test pulse. We see that the shape of Re[n t( )ω ] closely 
resembles that of the zero-crossing shift, whereas the shape of Im[n t( )ω ] 
matches that of the half-cycle amplitude reduction. We also observe 
here that neither the theoretical refractive index nor the reconstructed 
waveforms change abruptly even though photoinjection was modelled 
as an instantaneous event. This is because, in such measurements, E t∆ ( ) 
is approximately proportional to the electric current induced by the 
test field36, and the current gradually builds up as the field accelerates 
the charge carriers. For the same reason, the time dependence of n t( )ω  
does not end with photoinjection (see equation (16) in the Methods).

With these insights, Fig. 4 allows us to further analyse the part 
of the medium response that is not accounted for by our Drude– 
Lorentz model with instantaneous photoinjection. In the case of silicon 
(Fig. 4a), the modelled change in the refractive index is steeper than 
that inferred from the measurements: measured between 10% and 
90% of the maximum change, the rise time of absorption is 5.2 fs in the 
measurements and 1.4 fs in the simulations. This discrepancy can be 
largely explained by the approximation of instantaneous photoinjec-
tion that we made in our model. Even if we neglect phonon-assisted 
single-photon transitions, we expect that 80% of the charge carriers 
are photoinjected within a time interval of approximately 2 fs (Fig. 1b). 
We conclude that the results in Fig. 4a do not contain any unambigu-
ous evidence for many-body dynamics prolonging the buildup of the 
Drude–Lorentz response.

In the case of fused silica (Fig. 4b), photoinjection requires the 
absorption of at least four photons from the pump pulse. Hence, we 
expect that more than 70% of the charge carriers appeared during the 
central half-cycle of the pulse. Here the approximation of instantaneous 
photoinjection is more applicable, and other effects are responsible 

for the differences between the error bars and the solid curves. The 
test field’s zero crossings first get delayed and only then experience a 
negative time shift. We associate this transient increase in the optical 
thickness of the sample with the optical Kerr effect. We cannot fully 
explain why the positive zero-crossing shifts extend over 8 fs, which 
is three times as large as the full-width half-maximum of the pump 
pulse, but the propagation through the 12.7 μm sample may be partially 
responsible for it. We had to use a relatively thick fused-silica sample 
to achieve an acceptable signal-to-noise ratio in spite of the minis-
cule changes in the refractive index—the relative inefficiency of the 
high-order multiphoton absorption in fused silica puts an upper limit 
on the concentration of charge carriers that can be achieved without 
destroying the sample. In contrast to silicon, the contribution from the 
electron–hole plasma to Δn in fused silica was comparable in magni-
tude to that from wave-mixing processes enabled by the presence of 
the pump pulse. In addition to the optical Kerr effect, these processes 
include a transient increase in absorption, which is a manifestation of 
the Franz–Keldysh effect (the Keldysh parameter was close to 1 in the 
fused-silica measurements).

Conclusions
In summary, petahertz-scale optical-field metrology in a pump-probe 
setting enables the direct observation of how the optical properties 
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Fig. 3 | Distortion of the test waveforms induced by the pump pulse.  
These pseudocolor diagrams show E t τ∆ ( , ) normalized to the peak value of  
the reference field, E ref

(max). The black dashed lines show the middle of the pump 
pulse (t τ= ). The green dashed lines represent t = 0, at which the reference 
waveform reaches its maximal value. a,b, E t τ∆ ( , ) measured for silicon (a) and 
silica (b). c,d, E t τ∆ ( , ) reconstructed using the Drude–Lorentz model for  
silicon (c) and silica (d). e,f, By subtracting the reconstructed E t τ∆ ( , )  from the 
measured one, we obtain the non-Drude–Lorentz waveform distortions, which 
are shown for silicon (e) and silica (f), using the same colour schemes as those in 
the upper panels.
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of a medium evolve after 1-fs-scale photoinjection. For a sufficiently 
thin sample, the time dependence of the real part of the refrac-
tive index is closely matched by the delay dependence of the 
test waveform’s zero crossings, whereas the imaginary part of 
the refractive index matches the delay dependence of the half- 
cycle amplitudes.

Both in silicon and in fused silica, we observed that the Drude– 
Lorentz response forms within a few femtoseconds after photoinjec-
tion. In fused silica, this time was much shorter than the inverse plasma 
frequency. Under the premise that the plasma frequency sets the  
relevant timescale for the formation of charge–charge interactions in 
many-body systems, we may conclude that many-body phenomena 
have little effect on how a photoexcited wide-gap material, in this case 
fused silica, responds to visible or infrared light. This conclusion grants 
credibility to treating the interaction of abruptly injected carriers with 
optical fields in theoretical frameworks in which electrons are described 
with single-particle mathematical objects37,38, for example by means of 
time-dependent density functional theory39 or semiconductor Bloch 
equations40. At the same time, it is likely that future research will find 
examples in which collective processes are pronounced in suddenly 
photoexcited solids and petahertz-scale optical-field metrology will 
be a powerful tool for investigating them.
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Methods

The linear polarization response of a medium with 
time-dependent properties
When a pulse of light is transmitted through a material, the textbook 
description of the interaction between the electric field of the pulse and 
matter is generally given in terms of material parameters, such as the 
refractive index, dielectric function or susceptibility. When the material 
changes its properties slowly, the generalization of these quantities is 
straightforward. A more careful generalization is necessary when the 
properties substantially change within a single oscillation of the optical 
field. This is the purpose of this and the following sections.

Let us consider the polarization response induced by a light pulse 
that is so weak that the relationship between its electric field, E(t), and 
the induced polarization, P(t), can be assumed to be linear. By defini-
tion, a linear response must satisfy two requirements. First, if E(t) 
induces P(t), then aE(t) must induce aP(t), where a is a constant. Second, 
if E t( )1  induces P t( )1  and E t( )2  induces P t( )2 , then the sum of the fields, 
E t E t( ) + ( )1 2 , must induce the polarization that is equal to P t P t( ) + ( )1 2 . 
For simplicity, we regard the electric field and the induced polarization 
as scalar quantities and we assume that the polarization response is 
local. When the medium is static, the most general expression of the 
linear polarization response that satisfies causality is given by the 
well-known equation

∫P t τ χ τ E t τ( ) = d ( ) ( − ),
0

∞
(1)

which we have written in CGS units.
Here χ τ( )(1)  is the first-order, time-domain susceptibility. As the 

right-hand side of the above expression is a convolution, the linear 
polarization response of a static medium looks particularly simple in 
the frequency domain: ∼ ∼

P ω χ E ω( ) = ( )ω
(1) .

Let us now generalize this formalism to the case in which the optical 
properties of the medium evolve in time. The time-domain description 
is a convenient starting point for such a generalization.

The following equation satisfies the causality principle and the lin-
earity requirements:

∫P t τ χ τ t E t τ( ) = d ( , ) ( − ). (1)
0

∞
(1)

The linear susceptibility now depends on two arguments. The first 
one, τ, is required because the polarization response does not build up 
instantaneously. The second argument, t, represents the time depend-
ence of the medium’s properties. Because of this second argument, 
the Fourier transform of the integral is no longer a product of E(t) and 
a frequency-domain susceptibility; one must also perform a convolu-
tion when working in the frequency domain. This means that a medium 
with time-dependent properties can mix frequency components of E(t) 
and generate new ones. At this point, it is instructive to consider two 
special cases: the impulse response and the response to a monochro-
matic wave. These cases are useful because any pulse can be written 
as a linear superposition of delta spikes,

∫E t t E t δ t t( ) = d ( ) ( − ) (2)
−∞

∞

0 0 0

or monochromatic waves,

∼∫E t ω E ω( ) =
1

2π
d ( )e , (3)ωt

−∞

∞
−i

the latter equation being just the inverse Fourier transform. By substi-
tuting E t( )  with δ t t( − )0  in equation (1), we get the polarization 
response to a delta spike that arrives at time t0:

∫P t t τ χ τ t δ t τ t χ t t t Θ t t( , ) = d ( , ) ( − − ) = ( − , ) ( − ). (4)δ 0 0

∞
(1)

0
(1)

0 0

Here Θ is the Heaviside function, which can be incorporated into the 
definition of χ τ t( , )(1) . We can rewrite this equation in the form that 
gives the recipe for evaluating χ τ t( , )(1)  from the polarization response 
induced by a delta spike:

χ τ t P t t τ( , ) = ( , − ). (5)δ
(1)

We see that χ τ t( , )(1)  is simply the polarization that the delta spike 
arriving at time t τ−  induces at time t.

Let us now return to equation (1) and substitute E t( )  with e ωt−i . This 
yields the response to a monochromatic wave:

∫P t τ χ τ t χ t( ) = d ( , )e = e ( ) , (6)ω
ω t τ ωt

ω0

∞
(1) −i ( − ) −i

where χ t( )ω  is the Fourier transform of χ τ t( , )(1)  with respect to the 
first argument:

∫χ t τ χ τ t( ) = d ( , )e . (7)
ω

ωτ

0

∞
(1) i

We can regard χ t( )ω  as a time-dependent linear susceptibility to a 
monochromatic wave.

Equipped with χ t( )ω , we can evaluate the linear polarization response 
to an arbitrary pulse as

∼∫P t ω E ω χ t( ) =
1

2π
d ( )e ( ) (8)ωt

ω−∞

∞
−i

In the frequency domain, this translates into

∫P ω
π

dω E ω χ ω ω( ) =
1

2
′ ( ′) ( − ′) ,ω−∞

∞

′
∼ ∼ ∼

where

∼ ∫χ ω tχ t t τχ τ t( ) = d ( )e = � d d ( , )eω ω
ωt ωt ω τ

′ ∞

−∞

′
i

−∞

∞ (1) i ( + ′ )

is the two-dimensional Fourier transform of χ τ t( , )(1)  with respect to 
both arguments.

Time-dependent refractive index
For a static medium, the complex-valued refractive index, nω, describes the 
propagation of a monochromatic wave according to the following formula:

E z t
ω
c

n z E t( , ) = Re exp i e (0, ) ,ω ω
ωt

ω
−i 













which is consistent with Maxwell’s equations as long as c is the vacuum 
speed of light and n χ= 1 + 4πω ω

2 (1) (for a non-magnetic medium). Although 
it may look reasonable to define a time-dependent refractive index as 

π χ t1 + 4 ( )ω
(1) , this will not necessarily preserve the above expression 

for pulse propagation. Let us search for a definition of n t( )ω  that allows 
us to associate its real and imaginary parts with the optical thickness 
and the absorption of a thin film. The complex-valued transmittivity, 
Tω, of a thin sample relates the incident and transmitted fields: if the 
incident field is a monochromatic wave E eω

ωt(0) −i , then the transmitted 
field is T E eω ω

ωt(0) −i . Here the generalization to media with time-depend-
ent optical properties is unambiguous:

E t T t E t T t E( ) = ( ) ( ) = ( ) e . (9)ω ω ω ω ω
ωtout in (0) −i
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If Tω depends on time, E t( )ω

out  will no longer be a monochromatic 
wave—the ω subscript merely indicates the frequency of the incident 
wave. As long as the transmission is linear, knowing T t( )ω  allows one 
to evaluate the transmission of an arbitrary light pulse by decompos-
ing it into monochromatic waves, transmitting each of them separately 
and assembling the outcomes:

∫

∫ ∫

E t ωT t E ω

π
ωT t t E t

( ) =
1

2π
d ( )e ( )

=
1

2
d ( )e d ′e ( ′) .

(10)
ω

ωt

ω
ωt ωt

out

−∞

∞
−i in

−∞

∞
−i

−∞

∞
i ′ in

∼

The transmission of a plane-parallel plane with static properties is 
known to be

( )
T

δ n δ
=

1

cos( ) − + sin( )
, (11)ω

ω ω n ω
i
2

1

ω

where

δ
ω
c

n d= ,ω ω

and d is the thickness.
For a generalized time-dependent refractive index to describe the 

transmission through a thin sample, we define n t( )ω  via the time- 
dependent transmission:

( )
T t

δ t n t δ t
( ) =

1

cos( ( )) − ( ) + sin( ( ))
, (12)ω

ω ω n t ω
i
2

1
( )ω

δ t
ω
c

n t d( ) = ( ) . (13)ω ω

According to this definition, the effective refractive index may 
depend on the sample thickness, but this dependence disappears in 
the limit of an infinitesimally thin sample. To show this, we first consider 
δ t| ( )| 1ω ≪  and simplify the above two equations:

T t
ωd

c
n t( ) = 1 +

i
2

[1 + ( )] . (14)ω ω
2

Let us now relate n t( )ω  to χ t( )ω
(1) , which we defined earlier. Light 

transmitted through a sample is the superposition of the incident wave 
and that emitted by the electric current induced in the medium. If light 
propagates along the z axis, while the electric current J z t( , ) is confined 
to z d0 ≤ ≤  and flows in a direction perpendicular to the z axis, then 
Maxwell’s equations give the following expression for the electric field 
induced by the electric current:

∣ ∣





∫E z t

c
z J z t

z z
c

( , ) = −
2π

d ′ ′, −
− ′

.
d

sheet

0

The field of a transmitted monochromatic wave is then given by









∫E t e E

π
c

z J z t
d z

c
( ) = −

2
d ′ ′, −

− ′
.ω

ω
c d ωt

ω

d

ω
out i −i (0)

0

∣ ∣

For an infinitesimally thin sample, the dependence of J  on z can be 
neglected, and we arrive at

E t
ω
c

d E
πd
c

J t( ) = e 1 + i −
2

( ) . (15)ω
ωt

ω ω
out −i (0) 







By comparing this expression with equation (9), we derive

T t
ωd
c ω

J t

E
( ) = 1 +

i
1 +

2πi ( )
e .ω

ω

ω

ωt
(0)

i









By comparing this expression with equation (14), we relate the 
time-dependent refractive index to the electric current density:

n t
ω

J t

E
( ) = 1 +

4πi ( )
e . (16)ω

ω

ω

ωt2
(0)

i

We see that n t( )ω  indeed does not depend on d.
The electric current density J t( )ω  is the time derivative of the polar-

ization induced by a monochromatic wave:

J t P t
t

χ t E E χ t ωχ t( ) = ′ ( ) =
d

d
(e ( ) ) = e ( ′ ( ) − i ( )) .ω ω

ωt
ω ω

ωt
ω ω ω

−i (0) −i (0)

Substituting this equation into equation (16), we arrive at the sought 
after relationship between the generalized refractive index and the 
generalized linear susceptibility:

n t
ω t

χ t( ) = 1 + 4π 1 +
i d

d
( ) . (17)ω ω

2 







Although we derived this equation for an infinitesimally thin film, 
one can still use it in equation (12), as a first approximation, for the 
transmission of a sample with a small but finite thickness.

Drude–Lorentz model for instantaneous photoinjection
The optical properties of conducting solids are well approximated by 
the Drude–Lorentz model. This is a combination of the Drude model, 
which describes the motion of free charge carriers, and the Lorentz 
oscillator model, which describes various resonances that shape the 
polarization response. The rigorous derivation of the Drude–Lorentz 
model requires a quantum-mechanical treatment, but essentially the 
same result can be obtained classically. Here we repeat the the classical 
derivation for the case in which a solid suddenly changes its properties. 
At this moment, free charge carriers appear, which are accelerated by 
the electric field of the test pulse according to Newton’s second law:

x t γ x t
e

m
E t″ ( ) + ′ ( ) = − ( ) . (18)D

D

Here x is the electron displacement caused by the external electric 
field E t( ), subscript ‘D’ stands for ‘Drude’, γD is the rate of momentum 
relaxation, e > 0 is the elementary charge and mD is the average effective 
mass of charge carriers.

In addition to creating charge carriers, photoexcitation enables 
interband transitions that could not take place in the unperturbed 
solid: once an electron makes a transition from a valence state to a state 
in a conduction band, the electron can then be further excited into a 
higher conduction band by absorbing a photon, whereas the vacancy 
left in the valence band can be filled by photoexciting an electron from 
a deeper valence band. Each such transition gives rise to a separate 
Lorentz term, but it is often sufficient to consider just a few of them 
to approximate the linear polarization response in a limited spectral 
range. In the classical description, the Lorentz contribution to the 
polarization response emerges from the solution of the following form 
of Newton’s equation for the electron displacement:

x t γ x t ω x t
e

m
E t″ ( ) + 2 ′ ( ) + ( ) = − ( ) , (19)L r

2

L

where ωr is the frequency of a Lorentz resonance, γL is its relaxation 
rate, and mL is an effective mass. For simplicity, we will consider just 



one Lorentz term, and we will solve the differential equations with the 
following initial conditions: x t( ) = 00 , x t′ ( ) = 00 , where t0 is the moment 
of sudden photoexcitation. The polarization response is related to  
the classical electron displacement via P t eNx t( ) = − ( ). For the Drude 
response, N is the concentration of charge carriers; for the Lorentz 
response, it is the concentration of Lorentz oscillators. To write the 
final result without explicitly using the concentrations and effective 
masses, we introduce plasma frequencies. In CGS units, their standard 
definitions are

ω
e N

m
=

4π
,pl,D

2
D

D

ω
e N

m
=

4π
.pl,L

2
L

L

We express the polarization response to a monochromatic wave, 
e ωt−i , as P t χ t e( ) = ( )ω ω

ωt−i , solve the above differential equations and 
obtain the following equations for the time-dependent linear suscep-
tibility in the presence of instantaneous photoinjection:

χ t χ ∆ χ t ∆ χ t( ) = + ( ) + ( ) , (20)ω ω ω ω
(0) Drude Lorentz






















∆ χ t t Θ t
ω

ω γ ω γ ω ω γ
( + ) = − ( )

4π
1

+ i
+ i

e 1
−

e
+ i

, (21)ω

ωt t
Drude

0
pl,D
2

2
D

i

D

−γ

D

D

and






















(22)

χ t t

Θ t
ω

ω γ ω ω Ω Ω ω γ Ω ω γ

∆ ( + )

= ( )
4π

1
− 2i −

−
e e

2
e

− − i
+

e
+ + i

,

ω

γ t ωt Ωt Ωt

Lorentz
0

pl,L
2

r
2

L
2

− i −i

L

i

L

L

where

Ω ω γ= − . (23)r
2

L
2

In this implementation, the model has five adjustable parameters: 
ωpl,D, ωpl,L, γD, γL and ωr. The susceptibilities of unperturbed samples, 
χ ω

(0), were determined from separate field-resolved measurements, 
where the pump pulse was blocked and test waveforms were recorded 
with and without the sample. We then used equation (11) to evaluate 
χ ω

(0) and the sample thickness.
The reconstruction results that we present in the main text were 

obtained by numerically optimizing the fit parameters, for which we 
minimized the difference between the measured and reconstructed 
waveform distortions. The reconstructed waveforms were evaluated 
with the aid of equations (10), (12), (13), (17) and (20)–(23). Extended 
Data Table 1 lists the obtained values of the fit parameters.

Nonlinear work
In Fig. 1b, we show the time-dependent nonlinear work (green curve) 
as a means for illustrating the dynamics of photoinjection. We obtained 
these data using the SALMON code28, which implements the real-space 
real-time time-dependent density functional theory. Using the Tran–
Blaha meta-generalized-gradient-approximation exchange potential 
with Perdew–Wang correlation41, we calculated the macroscopic elec-
tric current density, J t( ), induced by a realistic laser pulse shown in 
Extended Data Fig. 1. The peak electric field of the pulse inside the 
silicon crystal was set to 0.35 V Å−1. The time-dependent work per-
formed by the electric field E t( ) is given by ∫W t E t J t t( ) = ( ′) ( ′)d ′

t

−∞
.  

To get the nonlinear work, we ran another simulation with a much 

weaker pulse (0.001 V Å−1), which gave us a good estimation of the  
linear work. In the absence of single-photon transitions, the linear work 
is responsible for the linear polarization that the pulse transiently 
induces in the medium. The linear work scales as the square of the peak 
electric field, which allows one to calculate the linear component of 
the work performed by an intense pulse. By subtracting the linear work 
from the total work, we obtained the nonlinear component of the total 
work, which is due to nonlinear interband transitions and, to a lesser 
extent, the motion of photoinjected charge carriers.

Optical system
A Ti:sapphire oscillator (Rainbow 2, Spectra Physics) was used to pro-
vide an octave-spanning bandwidth, centred at 750 nm (Extended Data 
Fig. 2). The carrier-envelope-phase (CEP) from the oscillator was stabi-
lized using a feed-forward scheme. The pulses were further amplified 
within a nine-pass cryo-cooled Ti:sapphire chirped-pulse amplifier at 
a repetition rate of 3 kHz and temporally compressed using a trans-
mission grating-based compressor, yielding 21 fs pulses with 2.5 W 
output power. The amplified pulses were spectrally broadened in a 
hollow-core fibre filled with neon gas (1.8 bar pressure), resulting in a 
spectral broadening that covered the wavelength range from 400 nm 
to 1,100 nm. Three pairs of chirped mirrors in combination with 6 mm 
of fused silica (and 50 cm of air) were used to compress the pulses to 
about 3 fs (full-width half-maximum of the intensity envelope, evalu-
ated from nonlinear photoconductive sampling3 measurements). The 
compressed pulses were then guided to the experimental setup for fur-
ther experiments. An extra CEP stabilization loop, for long-term drifts, 
was implemented using the fibre output and the f-to-2f technique.

Data acquisition
The electric-field waveforms were recorded with a recently demon-
strated GHOST29 with a heterodyne signal produced in a z-cut α-quartz 
crystal of about 12.3 μm thickness. The optical signal for GHOST detec-
tion was measured with a fast photodiode (Roither Lasertechnik). A 
transimpedance amplifier (DLPCA-200, FEMTO Messtechnik) was used 
to provide an amplified voltage signal to a gated integrator (SR250 
Stanford Research Systems) that was triggered by an electrical signal 
synchronized to the repetition rate of the laser. The integrator pro-
duced a d.c. voltage that was proportional to the integrated photodiode  
signal for all combinations of optical pulses (see the next section). 
The signal from the integrator was recorded using an oscilloscope 
(Tektronix) for analogue-to-digital conversion and recorded using 
a computer interface to the General Purpose Interface Bus (National 
Instruments).

Multiplexed detection of perturbed and unperturbed 
waveforms
Fluctuations and drifts in the laser system modify the test pulse dur-
ing a delay scan, which presents a major obstacle for measuring small 
changes in electric-field waveforms. To mitigate this problem, we meas-
ured the modified and reference waveforms almost simultaneously. 
For each arrival time of the sampling pulse, we measured the following 
three signals: (1) a signal generated by the sampling pulse interacting 
with the modified waveform; (2) a signal for which the sampling pulse 
interacted with the reference waveform and (3) a signal for which only 
the sampling pulse reached the photodetector. This form of detec-
tion was implemented using optical chopper wheels to transmit every 
third pump and block every third test pulse, generating the following 
sequence of pulses:

Pump pulse: 1 0 0

Test pulse: 1 1 0

Sampling pulse: 1 1 1
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Here ‘1’ indicates that the pulse is present, whereas ‘0’ indicates that 

the pulse is blocked by the chopper wheel.
This sequence of pulses is delivered to the photodiode. The current 

signal from the photodiode is then further amplified and converted 
to a voltage by means of a transimpedance amplifier (DLPCA-200, 
FEMTO Messtechnik). The output from a transimpedance amplifier 
provides a time-domain train of voltage signals (Extended Data Fig. 3a). 
A boxcar integrator (SR200, Stanford Research Systems) provides a 
d.c. output for each of these voltage pulses (Extended Data Fig. 3b): 
d.c.α, d.c.β  and d.c.γ  correspond to the three columns in the above table, 
respectively. The output from the boxcar integrator is digitized and 
stored. The pump pulse is blocked after the sample and does not reach 
the detector.

If the pump pulse does not change any properties of the sample 
medium, the d.c.α  and d.c.β  outputs are identical. If, however, the pump 
pulse changes the sample medium, then the difference between d.c.α 
and d.c.β outputs corresponds to a difference in the test waveform due 
to the change of the sample properties. The signal related to the mod-
ified waveform is d.c. − d.c.α γ, whereas the signal related to the refer-
ence waveform is d.c. − d.c.β γ.

The experimental setup
The optical setup is shown in Extended Data Fig. 4. The pump pulse, 
obtained from the reflection off the front surface of the first wedge in 
the wedge pair (WP 1), was delayed using a closed-loop piezo stage (PX 
200, Piezosystems Jena). The sampling pulse is obtained by taking the 
reflection from a 200-mm-thick ultraviolet-grade fused silica window 
(FS 2). The reflected light was delayed using another closed-loop piezo 
stage (PX 200, Piezosystems Jena). Wire-grid polarizers (WG 1, WG 2, 
WG 3 and WG 5) were used to control the energies of the test, pump 
and sampling pulses, whereas fused-silica wedge pairs (WP 1, WP 2, WP 
3) were used for fine dispersion compensation and CEP control. An 
off-axis protected silver parabolic mirror (OPM 2) was used to focus 
the test arm on a 0.8-mm-thick (θ = 10.3°, where θ  is the angle between 
the surface normal and the crystal axis) BiBo crystal (NL 1) for intra- 
pulse difference-frequency generation. A set of fused-silica and silicon 
plates (FS 1, Si) was used for the compression of the near-infrared pulses 
and for blocking the fundamental, respectively. The near-infrared light 
was collimated by a protected gold off-axis parabolic mirror (OPM 3).

The pump and test pulses were recombined using a wire-grid polar-
izer (WG 4), which transmitted the pump pulses and reflected the 
test pulses. The orthogonally polarized pulses were focused using 
a protected silver off-axis parabolic mirror (OPM 1) on the sample 
and re-collimated using another protected silver off-axis parabolic 
mirror (OPM 4). The pump pulses were transmitted through a hole in 
the re-collimation mirror (OPM 4). The collimated beam was recom-
bined with the sampling pulses using a wire-grid polarizer (WG 6). A 
12.34-mm-thick z-cut quartz crystal (NL 2) upconverted the sampling 
pulse. After spectral filtering by a bandpass filter (BP 1) and polarization 
control by a wire-grid polarizer (WG 7), this high-frequency light served 
as the local oscillator for generalized heterodyne optical sampling. 
At the same time, NL 2 enabled nonlinear wave mixing between the 
sampling and test pulses. The interference of this signal with the local 
oscillator was detected with a SiC-based photodiode (PD 1). Modula-
tion of the test and pump pulses was accomplished using chopper 
wheels (CW 1 and CW 2), generating the sequence of pulses for the 
almost simultaneous waveform detection.

Timing of the injection event
The following experimental procedure was used to determine the 
moment of photoinjection (delay zero). The experimental setup has 
two focal planes: the sampling and detection ones. The pump and test 
pulses interact with a thin sample in the sample plane. Before the trans-
mitted test pulse reaches the detection plane, the transmitted pump 
pulse is removed and a sampling pulse is added to the beam. GHOST 

detection then takes place in the detection plane, where the two pulses 
interact with the nonlinear crystal that is labelled as NL 2 in Extended 
Data Fig. 4. The wedge pair WP 2 was used to set the CEP of the pump 
pulse in the sample plane to 0 (cosine pulse). The wedge pair WP 3 was 
used to set the CEP of the sampling pulse in the detection plane to 0. 
The pump pulse in the sample plane is a replica of the sampling pulse 
in the detection plane because both pulses are derived from the same 
incoming pulse, they have the same CEP and they propagate through 
the wedges made of the same medium under conditions adjusted for 
maximum compression.

In the detection plane, the strong sampling pulse produces a nonlin-
ear gate confined to the vicinity of the strongest peak of the sampling 
pulse. The gate was scanned through the test pulse by a retroreflector 
consisting of mirrors M6 and M7 placed on piezo translation stage TS 2.  
As the nonlinear gate is confined to the vicinity of the strongest peak 
of the sampling pulse, the signal produced at each position of the TS 2 
corresponds to the temporal overlap between the strongest peak of the 
sampling pulse and the part of the test pulse within the window of the 
duration of the gate (less than 1 fs). Hence, by sampling the test-pulse 
waveform, one can the map positions of translation stage TS 2 to tem-
poral overlaps of the peak of the sampling pulse with various parts of 
the test waveform.

To determine the moment of photoinjection in the sample plane 
(delay zero with respect to the test pulse), the sample was removed 
and a nonlinear crystal NL 2 was installed in the sample plane. Then the 
test pulse was measured in the sample plane using the same GHOST 
scheme as in the detection plane but with the pump pulse playing the 
role of the sampling pulse. This not only allows one to characterize 
the test pulse in the sample plane but also to map the positions of the 
translation stage TS 1 to temporal overlaps of the peak of the pump 
pulse with various parts of the test pulse. Extended Data Fig. 5 shows 
an example of such a pair of measurements.

After measuring the test-pulse waveform in both sampling and detec-
tion planes, the relation between the positions of translation stages  
TS 1 and TS 2 can be determined. Hence, various moments of photoin-
jection in the sample plane can be projected onto the test-pulse wave-
form measured in the detection plane. When the injection translation 
stage is moved to position x, this corresponds to the excitation of the 
sample at the location on the test-pulse waveform that corresponds 
to the position of the translation stage in the detection plane being 
y x d= + .

The constant shift d was measured before each experimental cam-
paign by sampling the test pulse in the sample and detection planes with 
the same optics and electronics. Once d is determined, the moment of 
the photoinjection can be mapped directly on the measured test-pulse 
waveform in the detection plane.

Data availability
The measured and simulated data for all the figures in this paper 
are available from the Edmond Data Repository of the Max Planck  
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Extended Data Fig. 1 | The electric field of the pump pulse that was used in 
the TDDFT simulations. Figure 1b in the main text shows the central part of 
this waveform, which was obtained by first measuring the pump pulse with the 

aid of nonlinear photoconductive sampling and then adapting these 
measurement results for numerical simulations: suppressing the wings and 
removing the noise by spectral filtering.



Extended Data Fig. 2 | Diagram of the laser source layout. The output of the 
Ti:Sa oscillator is guided through the CEP4 module (Femtolasers) for CEP 
stabilization (Stage I carrier-envelope phase stabilization). The transmitted 
pulse is amplified in a chirped-pulse amplifier (Ti:CPA). The amplified pulse is 
guided into the hollow core fiber filled with neon gas. The beam is coupled into 
the fiber following active stabilization. After the hollow core fiber, the beam 

passes through three pairs of chirped mirrors (Ultrafast Innovations) which 
compensate for the spectral phase of the incident pulse as well as the additional 
dispersion of the experimental setup. In front of the compressor, an outcoupling 
mirror reflects a small fraction of the beam into the second stage of the carrier- 
envelope phase stabilization, which is based on the f-2f scheme.
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Extended Data Fig. 3 | Schematic representation of the multiplexing 
scheme. a, A photodiode registers three consecutive optical pulses labeled as 
α, β, and γ. Each pulse produces an electrical signal with the shape of a decaying 
exponential function (blue). The integral of this signal is proportional to the 

energy carried by the respective optical pulse. The orange outlines represent 
the windows of the integration time. b, The boxcar integrator generates an 
output d.c. signal after each integration window. This d.c. value can be further 
read out with an oscilloscope or any analog-to-digital converter device.



Extended Data Fig. 4 | Schematic of the experimental setup. An optical pulse 
from the laser source is split into three optical arms: test, injection and 
sampling. The pulse in the test arm is down-converted to a pulse with a central 
wavelength of 2.1 μm. The test and injection pulses are combined with a 
controlled delay between them and transmitted through a sample. The 

injection pulse is then filtered out, while the transmitted test pulse is combined 
with the sampling pulse, which nonlinearly interacts with the test pulse in the 
detection plane, sampling its electric field. This figure was created with the 
online 3Doptix platform (https://3doptix.com/).

https://3doptix.com/
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Extended Data Fig. 5 | Timing (translation stage positions) synchronization 
between two focal planes. Since photoinjection takes place in the sample 
plane, while the test pulse is sampled in the detection plane, it is necessary to 
calibrate the delay between the pump and test pulses. This is done by 

determining the mapping between the positions of piezo stages that control 
the pump-test and sampling-test delays, which is accomplished by comparing 
test waveforms measured in the sample and detection planes.



Extended Data Table 1 | The retrieved values of the fit 
parameters

The values of the parameters of the Drude–Lorentz model (see Methods) that minimize the 
discrepancies between the measured and simulated waveform distortions.
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