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REGULAR ARTICLE
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ABSTRACT
Neuronal populations code similar concepts by similar activity patterns across the human brain’s
semantic networks. However, it is unclear to what extent such meaning-to-symbol mapping
reflects distributional statistics, or experiential information grounded in sensorimotor and
emotional knowledge. We asked whether integrating distributional and experiential data better
distinguished conceptual categories than each method taken separately. We examined the
similarity structure of fMRI patterns elicited by visually presented action- and object-related
words using representational similarity analysis (RSA). We found that the distributional and
experiential/integrative models respectively mapped the high-dimensional semantic space in left
inferior frontal, anterior temporal, and in left precentral, posterior inferior/middle temporal
cortex. Furthermore, results from model comparisons uncovered category-specific similarity
patterns, as both distributional and experiential models matched the similarity patterns for action
concepts in left fronto-temporal cortex, whilst the experiential/integrative (but not distributional)
models matched the similarity patterns for object concepts in left fusiform and angular gyrus.
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Introduction

Recent brain imaging research taking advantage of the
information carried by population codes (e.g. neurones
or voxels) in the brain has demonstrated that similar
concepts and word meanings are represented by
similar activity patterns (e.g. Carlson et al., 2014; Carota
et al., 2017, 2021; Devereux et al., 2013; Fernandino
et al., 2022; Kriegeskorte et al., 2008; Liuzzi et al., 2017)
and that the statistical distributions of words, as cap-
tured by co-occurrence frequency vectors (Landauer &
Dumais, 1997; Mikolov et al., 2013), relate to such rep-
resentational patterns in the language networks (e.g.
Carlson et al., 2014; Carota et al., 2017, 2021; Fu et al.,
2022; Pereira et al., 2018; Wang et al., 2020; Xu et al.,
2018). Distributional statistics, capturing the meanings
of words and concepts by the company they take,
have been proposed to provide a basis for language
comprehension (e.g. Landauer, 1998; Landauer &
Dumais, 1997).

However, distributional data in isolation fail to
provide a cognitively realistic model of semantic knowl-
edge (e.g. Harnad, 1990), because they do not clarify the
links between word symbols and “the world” – the
domain of referential semantics. Symbols becomemean-
ingful if anchored, or grounded, in the experiences of
perceptions and actions that link them up with their
extralinguistic referents (see Barsalou, 1999, 2008,
2017; Gallese & Lakoff, 2005; Glenberg & Robertson,
2000; Harnad, 2012; Marino et al., 2012; Pulvermüller,
1999, 2018) – for example, the object-related word
peach with grounded semantic features such as [ +
ROUND], [ + YELLOW] and the action word hike with [
+ LEGS], [ + MOVEMENT]. Such experiential attributes
can be used to efficiently code conceptual and semantic
structure (Binder et al., 2016). They are reflected in reac-
tion times during semantic judgments and lexical
decision tasks (Andrews et al., 2014; Barsalou, 1999; Bar-
salou et al., 2008; Kousta et al., 2011; Paivio, 1971;

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted
Manuscript in a repository by the author(s) or with their consent.

CONTACT Francesca Carota francesca.carota@mpi.nl Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, The Netherlands
This article has been corrected with minor changes. These changes do not impact the academic content of the article.

LANGUAGE, COGNITION AND NEUROSCIENCE
2024, VOL. 39, NO. 8, 1020–1044
https://doi.org/10.1080/23273798.2023.2232481

http://crossmark.crossref.org/dialog/?doi=10.1080/23273798.2023.2232481&domain=pdf&date_stamp=2024-09-13
http://orcid.org/0000-0002-6315-9858
http://creativecommons.org/licenses/by/4.0/
mailto:francesca.carota@mpi.nl
http://www.tandfonline.com


Vigliocco et al., 2014; Zwaan, 2014), and likewise in the
spatial distributions of brain activity patterns elicited
by different semantic categories and indeed individual
symbols (Fernandino et al., 2016, 2022; Hauk et al.,
2004; Martin, 2007; Pulvermüller, 2018). Psycholinguistic
theory holds that such experiential knowledge is linguis-
tically encoded as a function of language use and task at
hand (Symbol Interdependency hypothesis: Louwerse,
2008; 2018; 2021), so that an increase in perceptual
simulation allows for richer and more detailed concep-
tual representations. Corroborating this view, recent
behavioural results suggest that the sensorimotor prop-
erties of concepts enable a more precise specification of
semantic categories, resulting into a best mapping of
semantic similarities among concepts, as compared to
distributional statistics per se (e.g.: Binder et al., 2016).
As suggested by Carota et al. (2021), experiential proper-
ties are intercorrelated to a different degree with distri-
butional data and with the hierarchical/taxonomic
structure. The latter define categorical similarity
between words, e.g. peach and plum, on their distance
from their shared superordinate node, in this case
“fruit”, and their shared overarching node, here
“object”. Likewise, semantic dissimilarity, e.g. between
swan and hike, depends on distance from the superordi-
nate nodes “animal”/“object”, and “action”, respectively
(see Carota et al., 2021 for discussion). In turn, distribu-
tional models coding word meaning in terms of linguis-
tic contexts, based on word co-occurrences in texts, tend
to produce semantic clusters that align with linguistic (or
visual) context (Baroni et al., 2014; Bonner & Epstein,
2021; Crutch et al., 2013; Popham et al., 2021).

The goal of the present study is to investigate the
commonalities and differences between grounded
experiential and distributional semantic similarity map-
pings, and their integration.

It is well known that concepts and word meanings
belonging to different categories are processed differ-
ently in the human brain; for example, action-related
words and object words activate different sets of brain
areas (Carota et al. 2012; Damasio et al., 1996; Hauk
et al., 2004). The differences in activation patterns cru-
cially depend on the different sensory and motor attri-
butes that are pertinent for defining a given concept
(Carota et al., 2017; Fernandino et al., 2016, 2022; Pulver-
müller et al., 2009).

Previous work indicated that experiential semantic
attributes are better reflected in the representational
patterns of the brain’s “semantic network” than distri-
butional information not only in these unimodal
regions, but also in regions in multimodal association
cortex (Fernandino et al., 2022), which integrate unim-
odal sensory and motor features. Different accounts

have ascribed an integration role to anterior temporal
cortex (aTL: Lambon Ralph et al., 2017; Patterson
et al., 2007), middle temporal gyrus (MTG: Hickok,
2014; Turken & Dronkers, 2011), inferior temporal
gyrus (ITG, Price, 2000), angular gyrus (AG: Binder
et al., 2009; Fernandino et al., 2016; Geschwind, 1965),
or a range of fronto-parieto-temporal “connector hub”
areas (Garagnani & Pulvermüller, 2016). Some of these
multimodal integration regions are also good candi-
dates for encoding distributional information, as they
are part of the thematic network (Mirman et al., 2017;
Wang et al., 2020; Xu et al., 2018), as well as intercorre-
lated experiential semantic properties flexibly mediated
in multiple cortical regions (e.g. Reilly et al., 2016). In
particular, recent evidence (Carota et al., 2021)
suggested that the angular gyrus is important to inter-
face distributional representations of concepts and
their action-related properties, whereas anterior
aspects of left inferior frontal gyrus (LIFG, BA 45-47),
known to enable semantic combinatorial operations
unifying simpler meaningful units (e.g. words) into
larger semantic structures (e.g. sentences) (e.g.
Hagoort, 2005, 2015, 2019), may primarily support rep-
resentational similarity based on the distributional stat-
istics (Carota et al., 2021). The relevance of this region
for semantic combinatorics has been explained as
rooted in its executive – rather than representational
– functions (e.g. Hoffman et al., 2018). Intriguingly
though, some studies indicate that also category-pre-
ferential visual and motor regions may take a role in
representing distributional similarities for specific
semantic word categories (Bonner & Epstein, 2021;
Carlson et al., 2014; Carota et al., 2017; Hauk et al.,
2004; Liuzzi et al., 2020; Mitchell et al., 2008; Popham
et al., 2021; Pulvermüller, 1999). For instance, distribu-
tional semantic similarities among words were
indexed in posterior inferior temporal cortices (e.g.
Carlson et al., 2014), for which previous studies demon-
strated category selectivity for different types of objects
and nouns (e.g. places, foods, tools, and animals)
(Mitchell et al., 2008; Mitchell and Cusack, 2016), and
in prefrontal and posterior middle temporal regions,
in which earlier work demonstrated the presence of
representational similarities linked to rated experiential
properties (particularly action-relatedness), and hier-
archical taxonomies for action-related concepts
(Carota et al., 2021 for detailed discussion). Reflections
of the distributional links among action-related words
has been also found in the dorsal region of the LIFG
(BA44-45) (Carota et al., 2017), where the similarity in
action-relatedness of the stimuli was also highly corre-
lated with the similarity structure of the brain activity
patterns (Carota et al., 2021).
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These results lead to the hypothesis that qualitatively
distinct sources of semantic information may be redun-
dantly represented both in higher-order association
cortex and in lower-level category-preferential regions
depending on category information.

Here, we asked to what extent

1) Experientially-grounded and distributional semantic
representational similarities are differently mapped
in modality-preferential and multimodal areas and
a multidimensional vector space combining
grounded semantic information (based on human
ratings of semantic properties) and distributional
statistics (modelled using GloVe: Pennington et al.,
2014) captured the semantic similarity structure of
word representations better, or more completely,
than each of these models on its own;

2) higher-order regions (e.g. LIFG, aTL, MTG/ITG, AG)
and lower-level unimodal regions best indexed the
neurometabolic correlates of the semantic simi-
larities between concepts and whether such rep-
resentational similarity mapping differed spatially
between different word types (action- and object-
related words).

To elucidate the relative contribution of experiential
and distributional information, as well as their combi-
nation, to the mapping of the brain’s multidimensional
semantic space, we reanalysed an existing dataset of
recorded fMRI responses (Carota et al., 2021), which
had previously been scrutinised using Representational
Similarity Analysis (RSA) (Kriegeskorte et al., 2008).

Materials and methods

Participants

Twenty-three healthy volunteers participated in the
study. All participants were healthy right-handed, mono-
lingual English native speakers, aged on average 29
years (SE = 2.8). All participants gave their informed
consent to take part in the study and were remunerated
for their time. Ethical approval was obtained from the
Cambridge Psychology Research Ethics Committee.

Experimental procedure

Stimuli. Ninety-six words, sixteen from each individual
category of leg-, arm-, face-related actions and tool-,
animal-, food-related objects, were selected based on
established semantic ratings (Carota et al., 2012, 2017,
2021; Hauk et al., 2008; Pulvermüller, 1999). Stimulus
word groups were matched for a range of

psycholinguistic properties, including word length
(counted in number of letters), letter bigram and
trigram frequency, logarithmic word frequency,
number of orthographic neighbours, and standardised
lexical frequency, while differing in imageability, concre-
teness, and action-relatedness (see Table 1).

Relevant values were obtained from the CELEX data-
base (Baayen et al., 1993) and the WordSmyth Web site
(www.wordsmyth.net/). 21% of the action words were
lexically unambiguous verbs and the lexically ambigu-
ous ones which could be used as nouns and verbs
were in the average 14 times more frequently used as
verbs than as nouns (according to the Celex database;
SE 4.2). 58% of the object words were lexically unam-
biguous nouns and the lexically ambiguous ones
which could be used as nouns and verbs were in the
average 6 times more frequently used as nouns than
as verbs (SE 2). The object categories exhibited a gradi-
ent in action-relatedness, as animals were not associated
with action (note that no pets were included), but to
visual properties, food afford the actions of mouth and
hand related to eating and preparing food, and tools
afforded a greater variety of hand, foot, and mouth
actions. The tool concepts were still highly associated
with visual properties. We included object words with
differing in their action-relatedness in order to test the
power of the test models used here to capture the simi-
larity and differences between the classes of object con-
cepts and action concepts. This was indeed a part of the
experimental design we were interested in, which also
differs from most of earlier studies focusing on either
action or object concepts.

Strings of meaningless hash marks matched in length
to the stimulus words were used as low-level baseline
stimuli during 120 trials. Null events consisting of a
fixation cross displayed at the centre of the screen
were presented during additional 60 trials. 60 trials con-
sisting of misspelled words to be detected by the partici-
pants throughout the experimental task were presented.
These “typo” trials did not include words from any of the
semantic categories from which the 96 target words
were taken – so as to avoid a bias towards one of
these categories – and were discarded from the analysis.
Statistical comparisons were carried out between brain
activation patterns elicited by matched word categories.

After the fMRI experiment, participants completed an
unannounced word recognition test containing both
novel distractor and experimental words. They per-
formed above chance (average hit rate: 85% [STD:
8.3%]), indicating their attention to the words and com-
pliance with the task. Results were used to confirm that
subjects had been attentive continuously during the
silent reading task.

1022 F. CAROTA ET AL.
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Table 1. Psycholinguistic properties and semantic ratings are shown for each word sub-category, as well as for the categories of action- and object-related words. Means and standard
errors (in brackets) are reported for each word category, along with results of an ANOVA comparing ratings between word groups.

Arm Leg Face Animal nouns Food nouns
Tool
nouns

Main effect of
word-type (F)

Action
verbs

Object
nouns Action x Object

Length 4.81 (.16) 4.63 (.16) 4.50 (.13) 4.69 (.15) 4.56 (.13) 4.63 (.16) .533 p=.751 4.65 (.09) 4.63 (.082) .030 p=.862
Bigram freq. 31248.64 (3138.66) 32472.14 (4035.53) 29029.40 (2887.87) 31538.82 (2985.33) 32699.44 (3939.17) 30550.20 (3422.15) .155 p=.978 30916.73 (1926.37) 31596.15 (1964.98) .061 p=.806
Trigram freq. 2475.48 (283.17) 2673.85 (367.88) 2535.13 (301.53) 2601.56 (399.53) 2825.27 (299.75) 2209.20 (300.13) .401 p<.847 2561.49 (180.96) 2545.34 (193.65) .004 p=.952
No. of neighbours 5.19 (0.91) 5.06 (0.60) 5.44 (0.84) 5.25 (0.76) 4.81 (0.79) 5.25(0.84) .071 p=.996 5.23 (.45) 5.10 (.45) .039 p=.845
No. of meanings 1.06 (0.06) 1.13 (0.09) 1.13 (0.09) 1.13 (0.09) 1.06 (0.06) 1.19 (0.10) .333 p=.892 1.10 (.05) 1.13 (.05) .101 p=.752
Log. word freq. 0.66 (0.11) 0.57 (0.13) 0.56 (0.10) 0.61 (0.11) 0.61 (0.14) 0.72 (0.12) .250 p=.939 .60 (.06) .65 (.70) .266 p=.607
Imageability 4.47 (0.17) 4.45 (0.27) 3.97 (0.26) 6.32 (0.09) 5.48 (0.27) 5.35 (0.35) 11.969 p<.001 4.30 (.14) 5.72 (.16) 44.722 p<.0001
Concreteness 4.14 (0.16) 3.59 (0.19) 3.62 (0.19) 6.60 (0.08) 6.21 (0.19) 5.73 (0.21) 62.306 p<.001 3.78 (.11) 6.18 (.11) 250.451 p<.001
Action-relatedness 4.83 (0.23) 4.91 (0.24) 5.31 (0.25) 1.60 (0.10) 2.02 (0.30) 3.22 (0.41) 34.967 p<.001 5.02 (.14) 2.28 (.19) 129.953 p<.001
Face-relatedness 1.56 (0.10) 1.40 (0.08) 5.75 (0.23) 1.20 (0.07) 2.06 (0.26) 1.27 (0.10) 123.410 p<.001 2.90 (.31) 1.51 (.11) 18.344 p<.001
Arm-relatedness 5.68 (0.13) 1.93 (0.17) 1.33 (0.09) 1.11 (0.06) 1.37 (0.12) 2.85 (0.36) 89.026 p<.001 2.98 (.29) 1.78 (.17) 12.816 p=.001
Body Sensation 3.74 (0.29) 3.55 (0.22) 3.92 (0.31) 1.16 (0.07) 1.35 (0.11) 1.40 (0.16) 40.353 p<.001 3.74 (.16) 1.30 (.07) 28.050 p<.001
Valence 3.45 (0.27) 4.05 (0.20) 3.66 (0.31) 3.52 (0.09) 4.08 (0.13) 3.85 (0.14) 1.626 p=.161 3.71 (.15) 3.81 (.08) .377 p=.541
Arousal 3.25 (0.27) 2.98 (0.20) 2.60 (0.29) 1.30 (0.21) 1.44 (0.16) 1.65 (0.19) 14.464 p<.001 2.94 (.15) 1.46 (.11) 65.591 p<.001
Colour 2.10 (0.27) 1.56 (0.11) 1.43 (0.18) 2.55 (0.19) 3.39 (0.37) 1.41 (0.15) 11.707 p<.001 1.70 (.12) 2.45 (.19) 11.543 p=.001
Shape 2.96 (0.30) 2.46 (0.21) 1.73 (0.21) 3.67 (0.20) 2.90 (0.26) 3.21 (0.21) 8.140 p<.001 2.38 (.16) 3.26 (.13) 18.231 p<.001
Sound 1.39 (0.90) 1.03 (0.02) 1.85 (0.34) 57.105 p<.001 1.42 (.12)
Taste/Smell 1.93 (0.24) 4.46 (0.30) 1.11 (0.08) 4.114 p=.023 2.49 (.25)
Motion 3.11 (0.21) 4.37 (0.10) 2.63 (0.15) 1.63 (0.07) 1.41 (0.15) 2.23 (0.30) 4.716 p=.014 1.75 (.12)
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Experimental Design. We adopted a rapid, periodic
single trial, event-related paradigm. Fixation cross was
presented at the centre of the screen whenever no
stimulus was shown. Word and hash string stimuli
were presented tachistoscopically, to discourage sub-
jects from eye movements, for 100 ms. The stimulus
onset asynchrony (SOA) was randomly varied
between 3.5 and 4s. This design yielded overlapping,
yet detectable haemodynamic responses (Kriegeskorte
et al., 2008; Nili et al., 2014). The 96 stimulus words
were presented in a different pseudo-random order
in each of the 6 runs. Each stimulus occurred once
per run (6 repetitions of each word in total). Stimuli
were visually presented by means of E-Prime software
(Psychology software Tools, Inc., Sharpsburg, USA,
2001) through a back-projection screen positioned in
front of the scanner and viewed on a mirror placed
on the head coil.

Task. Participants were engaged in a typo-detection
task. They were given the instruction to attend to all
the stimuli, to silently read the words and to understand
their meaning. In addition, they were instructed to press
a button with their left index finger if a misspelled word
appeared at the centre of the screen. To avoid confound-
ing by body movements and responses, all catch trials
with or without manual responses to typos were
excluded from any analyses.

As the study made use of data from previously
published work (Carota et al., 2017, 2021), we will sum-
marise the principal method points, and refer the
reader to the original article for the details (Carota
et al., 2021).

Imaging methods
Subjects were scanned in a Siemens 3 T Tim Trio using a
head coil. Echo-planar imaging (EPI) sequence par-
ameters were TR = 2000 msec, TE = 30msec, and flip
angle = 78°. The functional images consisted of 32
slices covering the whole brain (slice thickness 3 mm,
in-plane resolution 3 × 3 mm, inter-slice distance 0.75
mm).

Differences with earlier work
Previous work reporting on the present data set focused
on related, yet different questions. A first study investi-
gated the brain correlates of distributional semantics
by evaluating brain responses averaged across semantic
categories (Carota et al., 2017), whilst a second study
focused on item-specific analyses of brain responses
reflecting distributional semantics (using LSA methods)
and hierarchical semantic structure (based on data
from WordNet) (Carota et al., 2021). However, none of
the previous studies explored the relative contribution

of different sensorimotor attributes and distributional
semantics. Here, we now ask how distributional and
grounded experiential semantics are reflected in the
similarity structure of word-elicited brain activation
and whether a combination of both semantic
approaches leads to a closer relationship between
semantic similarities and similarities of the brain
responses of the words. Furthermore, in the present
study (but not in our previous ones), the analyses were
conducted for the entire group of words, irrespective
of their category, as well as for specific categories of
action and object words, in order to detect represen-
tational differences between category-general groups
of concepts, and specific categories of concepts. Impor-
tantly, to do this, we directly compared our three target
models in a whole set of regions of interest, as well as in
each region of interest individually.

Data analysis: general linear model for
representational similarity analysis (RSA)
For multivariate RSA (Kriegeskorte et al., 2008; Nili
et al., 2014), the analysis was carried out in participant
native space, using realigned, unsmoothed and non-
normalised functional data, which were co-registered
with MPRAGE of each subject. Data were analysed
using the general linear model. Response-amplitude
was estimated for each voxel and for each of the 96
stimuli by performing single univariate linear model
fit. Runs were concatenated along the temporal
dimension. A separate haemodynamic predictor was
included for each of the 96 stimulus words. As each
word stimulus occurred once in each run, each of
the 96 stimulus words had one distinct haemodynamic
response per run, extended across all 6 runs. The
response-amplitude (beta) estimate map associated
with each stimulus trial across all (6) runs was con-
verted into a t map by contrasting them against the
implicit baseline in order to compute the represen-
tational dissimilarity matrices for RSA (Carota et al.,
2021; Nili et al., 2014).

Model specification

In order to test for the contribution of grounded experi-
ential and distributional semantics on the representation
of different word categories, we built up a semantic
vector combining these qualitatively different properties
(see Figure 1).

Experiential Model. The grounded experiential seman-
tic model was constructed based on the following rated
semantic properties relevant for the test words (for dis-
cussion, see Pulvermüller, 1999; and Binder et al.,
2016): (1) action-relatedness (for discussion regarding
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action-relatedness for object concepts, see Carota et al.,
2012), (2) arm-relatedness, (3) leg-relatedness, (4) face-
relatedness, (5) colour, (6) shape, (7) visual-relatedness,
(8) imageability, (9) body-sensation, (10) arousal, and
(11) valence. The ratings were acquired in a separate
study using Lime Survey (http://www.limesurvey.org
LimeSurvey Project Team/Carsten Schmitz, 2013).
Fifteen native speakers of English were recruited to
provide ratings for each word for a number of semantic
variables, covering (1) sensorimotor meaning features –
including imageability, concreteness, visual-relatedness
(colour, shape), body-relatedness, and action-related-
ness – and (2) affective–emotional features – including

arousal and valence (Bradley & Lang, 1994; Osgood
et al., 1975). We administered explicit semantic ratings
asking the following questions:

1. Is this word easy to imagine?
2. Is this word typically used to speak about something

you can concretely experience (touch, see, hear)?
3. Is this word typically used to speak about visually

perceived scenes or objects?
4. Is this word typically used to speak about colour?
5. Is this word typically used to speak about shape?
6. Is this word typically used to speak about activities

you perform yourself (e.g. to move)?

Figure 1. Representational dissimilarity matrices (RDM) displaying the semantic distances among the 96 stimulus words based on (a)
the grounded “experiential”model reflecting human ratings (bottom left); (b) the distributional model based on GloVe (bottom right)
and (c) the integrative model (top panel). The dissimilarity values from the two matrices were normalised before integration by aver-
aging. Dark blue ( = 0) indicates maximal similarity between identity pairs and yellow ( = 1) indexes maximal dissimilarity. Each square
in the model RDM shows (dis)similarities between the individual word items, which are plotted from top to bottom and from left to
right – with dark blue indicating great semantic similarity or identity and red/yellow indexing dissimilarity. Therefore, the first diag-
onal in the matrix indicates the semantic identity of each single item with itself. Note that the integrated model at the top (see Table 2
for statistical tests) reflects a the categorial semantic structure of the stimulus vocabularies; please note the series of six blue squares
form top left to bottom right representing semantic similarities within each of the six semantic subtypes. Also, the lexical categories of
verbs and nouns are clearly revealed by this integrated model (big red/yellow “dissimilarity squares” at lower left and upper right). The
only exception from the between-lexical category-dissimilarity is seen for tool words, which are indeed semantically associated with
action verbs (for example, “knife” and “carve”/ “peel”). The sensorimotor model shows the similarities differences in lexicosemantic
categories comparably. The distributional model also reflects the categorical semantic structure of the previous models to a lesser
extent.
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7. Is this word typically used to speak about activities
you perform with the face?

8. Is this word typically used to speak about activities
you perform with the arm?

9. Is this word typically used to speak about activities
you perform with the legs?

10. Is this word typically used to speak about something
exciting (arousal)?

11. Is this word typically used to speak about negative
or positive emotions (valence)?

Participants used a 1-7 Likert scale to provide their
judgements. Please see Pulvermüller (1999) for further
discussion.

Therefore, in the experiential model, each word was
represented as n(11)-dimensional vector, where dimen-
sions correspond to the semantic properties (see list
above) and the value for each dimension was the
average rating of a given property. For each word pair,
we calculated the correlation distance (1-r) between
the values of each of these vectors, and entered the
resulting values in each cell of a Representational Dis-
similarity Matrix (RDM) (Figure 1, left bottom panel).
We reasoned that 1-correlation (Pearson correlation
across space) could be preferred for the experiential
models and the neural RDMs (Kriegeskorte et al., 2008),
because it is the most commonly used measure for
RDMs. To construct the distributional vector model, we
adopted cosine similarity to follow the classical metric
for the calculation of semantic similarity based on co-
occurrence frequencies in the tradition of Latent Seman-
tic Analysis, as described in the next paragraph. Please
note that Pearson correlation and cosine similarity are
closely related, differing only in the fact that Pearson cor-
relation subtractively normalises the mean to each
pattern (to 0), while both methods divisively normalise
the pattern variance (to 1).

Distributional Model. We applied a state-of-art exten-
sion of Latent Semantic Analysis (LSA, Landauer &
Dumais, 1997), GloVe (Pennington et al., 2014). Similar
to LSA, the model assumes that words have similar
meaning if they tend to occur, beyond the same
textual span, in similar contexts. Therefore, our distribu-
tional model indexes the semantic relationships
between both words which co-occur in the same texts
and paragraphs (first-order co-occurrence: for example,
words linked to a common event or function, e.g. cake
and spoon, peach and to peel, harp and to play), and,
most importantly, words which do not appear in the
same text, but can co-occur in similar contexts (second
order co-occurrence). For instance, although play and
music may not appear in the same text, they may separ-
ately co-occur with words like symphony, orchestra or

recording. Thus, the distributional model captures
abstract, second-order semantic information about
word meanings, reflecting statistical knowledge about
their actual usage in language. The distributional
model was generated from a lexical corpus, according
to established methods (see Bruffaerts et al., 2013 for a
discussion on the use of different types of semantic
models in neuroimaging). We used the pretrained
word vectors that the GloVe authors (Pennington et al.,
2014) reported their highest model performance with
on the word analogy and word similarity tasks. These
vectors have a length of 300 dimensions and were
obtained by training on 42 billion tokens of text. The
Glove method is a “global log-bilinear regression
model that combines the advantages of the two major
model families in the literature: global matrix factoriz-
ation and local context window methods” (Pennington
et al., 2014). In natural language processing, global
matrix factorisation is based on matrix factorisation
methods from linear algebra to reduce large term fre-
quency matrices representing the occurrence or
absence of words in a document. The model is based
on weighted least squares, and trains on global word-
word co-occurrence counts exploiting only the
nonzero elements in a word-word co-occurrence
matrix, rather than on the entire sparse matrix or on indi-
vidual context windows in a large corpus. The embed-
dings are then optimised directly, so that the dot
product of two-word vectors corresponds to the log of
the number of times the two words will occur near
each other. For example, if the two words “apple” and
“pear” occur in the context of each other, say 20 times
in a 10-word window in the document corpus, then:
Vector(apple). Vector(pear) = log(10). This forces the
model to encode the frequency distribution of words
that occur near them in a more global context.

The model comprised 300 dimensions, the number
yielding the highest model performance in the semantic
task (word analogy task) evaluated by the authors
(Pennington et al., 2014). Semantic similarity between
words was then measured as the cosine between two-
word vectors: the smaller the cosine, the greater the
similarity between word stimulus pairs. These values
were expressed as a dissimilarity matrix (Figure 1, right
bottom panel).

Integrative (Experiential and Distributional) Model. The
third semantic model integrated rated semantic proper-
ties and distributional properties of words, and was
obtained by pointwise averaging the values contained
in the two model RDMs. The similarity values from the
two matrices were normalised before integration by
averaging. The resulting RDM is displayed in the right
panel of Figure 1 (top panel). Such integrative semantic
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model expressed the contribution of the distributional
and sensorimotor information about the test words in
terms of pairwise similarity and dissimilarity relations,
positing a mutual relationship between the experiential
properties of two words and their co-occurrence likeli-
hood. In particular, the smaller the dissimilarity
between the set of experiential properties for two
items (e.g. for the pair peach/plum: similarity in shape,
“round”; action-related, “edible/manipulable”, taste,
odour, etc.), the higher their likelihood to co-occur in a
similar and coherent semantic context (e.g. groceries
at the market, or cooking recipe). Reversely, the bigger
the experiential property dissimilarity between two
items (e.g. peach and jive), the smaller their likelihood
to fit similar contexts.

Whole-brain RSA searchlights

Data were extracted for each participant individually
using a “sphere of information” searchlight approach
(roaming sphere with 10 mm radius: Kriegeskorte
et al., 2008; Nili et al., 2014; this included about 121
voxels). See Carota et al. (2021) for method details. The
correlation distances (1-correlation) between the
response patterns for each word paired with every
other word were expressed as representational dissimi-
larity matrices (RDMs), which are symmetric about a
diagonal of zeros (Kriegeskorte et al., 2008). These
brain data RDMs were then correlated with our model
RDMs (using Spearman’s rank correlation) at each brain
location. FDR correction at 0.05 for multiple comparisons
across voxels and number of models was applied. 10,000
permutations were used in the analysis. In order to
ensure that the searchlight maps we reported did not
suffer from distortion due to either the searchlight size
or the detection of fewer informative voxels, we per-
formed additional analyses testing for the relatedness
of the models and the brain activity patterns in selected
regions of interest, as described below.

Analyses per regions of interest

Definition of ROIs. An exploratory analysis was run in
hypothesis-based, pre-selected Regions of Interest
(ROIs) in the left hemisphere with well-studied semantic
roles in language comprehension (for reviews: Binder &
Desai, 2011; Pulvermüller, 2013), as described in the
introduction. These included the (1) LIFG (BA 44, BA 45
and BA47); (2) superior, middle, and inferior temporal
gyrus (STG, MTG, ITG), further divided into anterior
(aSTG, aMTG, aITG) and posterior (pSTG, pMTG, pITG)
sections; (3) temporal pole, TP; (4) fusiform gyrus (FuG:
Mion et al., 2010); (5) precentral gyrus (PCG); and (6)

inferior parietal cortex (both supramarginal gyrus:
SMG, and angular gyrus: AG) (see Figure 3(A)). We auto-
matically defined these ROIs using the standard Wake
Forest University (WFU) Pickatlas toolbox, which gener-
ates ROI masks in standard MNI space based on the
Automated Anatomical Labelling (AAL) parcellation. In
order to carry out multivariate analysis within individ-
ual-subject native space, all ROI-masks were transformed
to subject native space by inverting the spatial normal-
isation applied during GLM analysis. See Carota et al.
(2021) for method details.

Relatedness between fMRI patterns and models as
assessed by RSA
RDMs were computed for each participant for the
abovementioned ROIs and related to the model RDMs.
In order to test for the sensitivity of each of our three
semantic models (i.e.: experiential, distributional, and
the integrative model resulting from their combination)
to semantic word categories, a first analysis in the whole
brain (searchlights) and in selected ROIs was performed
using the 96 × 96 matrix containing all words.

Results from statistical model comparisons
Analyses were run to statistically compare the model-
fMRI pattern fit in all the abovementioned ROIs (results
are reported only for the ROIs exhibiting significant
semantic similarity effects). A first analysis directly com-
pared the performance of the distributional, experien-
tials and integrative models focusing on the 96 × 96
RDMs containing all words in order to assess the respect-
ive successes of the models in mapping of semantic
similarity in different cortical areas. A second analysis
compared the performance of the distributional, experi-
entials and integrative models based on the 48 × 48
RDMs specific to action and object words in mapping
category-specific semantic similarity in different cortical
areas. A third analysis focused on the dominant attri-
butes of action and object words, known to be
reflected in the corresponding action and perception
systems (e.g. Hauk et al., 2008), in order to test for the
replicability of more specific category-specific semantic
similarity effects in our data. To this aim, for the semantic
sub-spaces of action and object words, two 48 × 48
model RDMs were constructed, a first one coding for
the rated action-related properties (obtained from the
ratings of action-relatedness, leg-, arm-, face-related-
ness), and a second one coding for the rated visual prop-
erties (colour, shape, imageability). The model-fMRI
pattern comparisons were performed by computing,
for each subject, non-parametric Spearman’s rank corre-
lations between model and brain activity RDMs. The two
models were compared by subtracting the r-value of the
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correlation between the second model and the brain
activity patterns (fMRI RDM) from the r-value of the cor-
relation between the first model and the brain activity
patterns (fMRI RDM). The difference in r-value across all
subjects was then tested against the null hypothesis of
the value 0, to test for a difference in correlation, using
a 1-sided Wilcoxon signed-rank test for all comparisons
(both 96 × 96 RDM and 48 × 48 RDM). P-values surviving
FDR correction for multiple comparisons are reported
(Benjamini & Hochberg, 1995).

Discriminability of semantic categories. We further
tested the hypothesis that action and object words are
respectively encoded in fronto-central and temporal
regions which are engaged by the processing of
grounded action-related and visual properties of
words. To this aim, an ANOVA contrasted the correlation
values (as obtained from RSA) between the experiential
model RDMs (48 × 48) specific to action and object
words and the brain activity RDMs in a hypothesis-
driven sub-set of frontal and temporal regions associ-
ated with the processing of action and object word
(Hauk et al., 2004). These ROIs covered (1) the pars trian-
gularis (BA 45) and (2) and opercularis (BA 44) of the
LIFG, (3) a premotor region which was non adjacent to
inferior premotor cortex and BA 44 (4) anterior temporal
cortex (Patterson et al., 2007), (5) fusiform gyrus, and (6)
angular gyrus (Binder & Desai, 2011). We additionally
performed a 2 × 2 ANOVA (design: Region (6 levels,
with 3 frontocentral and 3 temporo-parietal ROIs)×Word
Category (2 levels: action and object words)) to test for a
double dissociation for the representations of action-
and object-related words, contrasting r values between
the corresponding experiential sub-models and the
brain activity patterns in the abovementioned ROIs
between word groups.

Results

Behavioural results

To evaluate the relationship between experiential
semantic properties and the six semantic word cat-
egories, results of the behavioural semantic rating exper-
iment were evaluated. Mean values and standard errors
for both semantic properties, for which word groups
differed, and psycholinguistic variables, for which they
were matched, are summarised in Table 1.

Semantic similarities revealed by three linguistic
models

The discriminability of semantic word categories in each
model RDM was analysed by comparing (t-test) the

within-category dissimilarity values for each semantic
type with the between-category similarity values. The
resulting t-values were larger for the combination of
experiential ratings and distributional semantics (t =
6.30; p < 0.0001) than for each individual model of
experiential information (t = 5.40; p < 0.0001) and distri-
butional semantics (t = 4.50; p < 0.0001). This suggests
that the combined model of integrative experiential
and distributional information produces better semantic
category discrimination than each of the two measures
alone on the level of purely cognitive-linguistic
classification.

For both distributional and experiential models, the
within-category dissimilarities were lower (M = 0.75 for
Distributional; M = 0.26 for Experiential) than the
between-category dissimilarities (M = 0.80 for Distribu-
tional; M = 0.62 for Experiential), as revealed by a Wil-
coxon rank sum test (Z =−3.08, p = .002 for
Distributional; Z =−3.23, p = .001 for Experiential). The
integrative model combining distributional and sensori-
motor dissimilarities showed a similar pattern (M = 0.51
within-category; M = 0.66 between-category; Z =−6.15,
p < .001), i.e. the difference between the within/
between category dissimilarities (D = 0.16) was larger
than that for the distributional model (D = 0.05) but
smaller than that of the experiential model (D = 0.26).

Results from whole-brain RSA searchlights

Whole-brain RSA searchlights revealed that the integra-
tive model correlated with the similarity structure of the
brain activity patterns in fronto-temporal and parieto-
occipital cortex (see Table 2 and the top panel of
Figure 2). A major cluster of activity was identified in
left pITG and FuG, followed by a second one in left occi-
pital lobe, and AG. A third cluster was seen in the pars
orbitalis (BA 47), pars triangularis (BA 45) and pars oper-
cularis of the LIFG (BA 44), extending to premotor cortex.

Additional significant correlations were found in the
right MTG, and, to a lesser extent, in right parieto-occipi-
tal regions. The grounded experiential related to the
brain activity patterns in the same regions as the integra-
tive model, except the LIFG BA 47 (see Table 3 and
Figure 2, middle panel).

Semantic similarity mapping of the distributional
model led to pronounced correlations with the neural
pattern in more anterior fronto-temporal regions, includ-
ing bilateral IFG (BA 47), bilateral dorsal pre-supplemen-
tary motor area (pre-SMA), and AG, which showed
pronounced correlations with the model in the right
hemisphere (see Table 4 and bottom panel of Figure 2).

When the activity correlated with the experiential
model was subtracted from the activity correlated with
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the integrative model (Integrative minus Experiential:
Table 5, Figure 2; right top panel), we found correlation
differences in left posterior ITG and MTG.

In turn, when the activity correlated with the distribu-
tional model was subtracted from the activity correlated
with the integrative model (Integrative minus distribu-
tional: Table 6; Figure 2, right bottom panel), we found
correlation differences in dorsal pre-supplementary
motor area, and right AG.

RSA results per ROI for all words

The three models produced significant correlations
between semantic and brain activity differences in 3 (dis-
tributional), 7 (experiential) and 9 (integrative model)
areas (see bar diagrams in Figure 3). Therefore, the inte-
grative model returned significant correlations in a
greater number of ROIs than the other two models, pro-
ducing significant semantic similarity effects in pITG-
MTG and LIFG (BA 44-45) with additional significant
effects in left angular gyrus, precentral, anterior temporal
cortex and fusiformgyrus (see Table 7, Figure 3, right top).

Likewise, the grounded experiential revealed signifi-
cant effects across subjects in pITG-MTG, LIFG BA44-45,
and angular gyrus (Table 7, Figure 3, right middle) and
thus in more areas than the distributional model. The
distributional model led to significant effects only in
LIFG, and anterior ITG (Table 7, Figure 3, right bottom).

Results from the distributional statistical model
comparisons respectively reveal distributional-
and experiential-specific similarity in LIFG (BA
47) and pITG

As shown in Figure 4, the brain activation similarities cor-
related differently with the semantic similarities
obtained from the 3 models. In left pITG, we found sig-
nificantly higher correlations for integrative and experi-
ential models, as compared with distributional ones,
whereas the opposite result was achieved for LIFG.
Only significant differences are reported.

Double dissociation of action and object words in
motor and temporo-parietal regions

Contrasting the experiential and the distributional sub-
models for action and object words separately revealed
category-specific differences between the two semantic
types. For action concepts (see Table 8), both experien-
tial and the distributional models correlated with the
patterns of activity in LIFG (BA 44-45-47), and left pos-
terior middle temporal cortex.

The integrative model performed comparably to both
models, and also revealed a significant correlation with
the brain activity patterns in PCG (Figure 5(A)). In con-
trast, for object concepts (see Table 9), the experiential
model performed better than the distributional model
in a network of regions comprising the LIFG (BA 44-
45), left pITG, left FuG, and left AG.

The integrative model performed similarly well as the
experiential, and was significantly superior to the distri-
butional model in the left pMTG, AG, and FuG (Figure 5
(B)). This indicates that mapping of semantic similarities
of action-related words is relatively robust across distri-
butional and experiential methods, whereas the
meaning of object word is relatively better mapped by
the experiential method.

Overall, then, this pattern of results confirmed cat-
egory-specific semantic mapping differences across dis-
tributional, experiential, and integrative models in left
frontotemporal and inferior parietal cortex. Semantic
mappings were generally more robust for models
including experiential semantic information about the
items. Indeed, the results also suggest that the distribu-
tional model captured the similarity for action concepts
in frontotemporal and inferior parietal cortex well, but
less so those of object concepts. Semantic mappings
for object words were present in left pMTG, FuG and
AG reflected experiential (and integrative) information.

In turn, the direct statistical comparisons between the
models of the experiential visual and action-related
semantic properties for action and object words

Table 2. Results from searchlight RSA for the integrative model.
Table of coordinates and significance voxel-level peak values (p)
in each activation cluster that was correlated with the integrated
semantic model integrating distributional and sensorimotor
information.

Coordinates

Regions
Cluster
Extent

Voxel-
level P

Pseudo
T x y z

Left fusiform 2850 0.017 4.2 −39 −46 −24
Left Inferior
Temporal

0.017 4.45 −51 −46 −12

Left Mid Occipital 0.017 4.31 −24 −64 −36
Left Mid Frontal 1021 0.017 4.68 −33 23 48
Left Insula 0.018 4.14 −30 23 −1
Left Inferior Frontal
Opercularis

0.026 3.77 −51 11 29

Left Precentral
Gyrus

120 0.030 3.60 −45 11 32

Right Middle
Temporal

1514 0.017 4.52 51 −64 10

Right Middle
Temporal

0.018 4.23 45 −73 21

Right Angular 0.018 4.20 36 −70 44
Right Inferior
Frontal Orbitalis

1604 0.019 4.27 33 32 −12

Right Inferior
Frontal
Opercularis

0.019 4.02 51 11 25

Right Inferior
Frontal
Triangularis

0.019 3.74 48 26 2
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revealed a clear differentiation between the underlying
representations respectively in the LIFG (BA 44), PCG,
and SMG, and in the FuG and AG (see Figure 6(A)).
These significantly distinct patterns (FDR = 0.05) indi-
cated a double dissociation between the representation
of action and object words based on their respective

experiential attributes. These results confirm category-
specificity in model-performance differences in motor
and higher-order visual regions supporting the compre-
hension of action and object concepts.

Additional ROI analyses were performed to compare
semantic similarities between the large lexicosemantic

Figure 2. Results from whole-brain searchlight RSA (on the left). Left top panel: widespread activity triggered by the integrative model
RDM in distributed prefrontal, premotor, inferior temporal and parieto-occipital cortex. Left middle panel: comparable correlational
effects of the experiential model in the pars opercularis of the inferior frontal cortex (BA 44), premotor, inferior temporal and parietal
cortex. Left bottom panel: activity triggered by the distributional model RDM in higher-order regions in left inferior frontal cortex (BA
47) and anterior temporal cortex. Results from model comparisons for the whole-brain searchlight RSA (on the right). Right top panel:
correlation differences between the brain activity RDMs correlating with integrative model RDM minus the brain activity RDMs corre-
lating with experiential model RDM in left posterior ITG and MTG. Right bottom panel: correlation differences between brain activity
RDMs correlating with the integrative model RDM minus the brain activity RDMs correlating with distributional model RDM were seen
in dorsal pre-supplementary motor area, and right AG.
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categories of action-related verbs and object related
nouns, as a further sanity check of the data. A statistical
analysis of pooled values from category-preferential
frontal and posterior areas (see Methods) indicated a
differential mapping of lexicosemantic categories
(ANOVA design: Word Category (action verbs vs. object
nouns)×Region (frontal vs. temporo-occipital)). Please
refer to Figure 6(B).

Discussion

In the present study, we asked how experiential
semantic information about the actions and percep-
tions in which word meaning is grounded and distri-
butional data about word co-occurrences in texts are

mapped to distinct neurometabolic activity patterns
of the human brain and whether integrating these
approaches with each other may lead to improved
semantic mappings, including any category discrimin-
ability of semantically related action and object con-
cepts. We found that the experiential and integrative
models produced semantic mappings in a range of
areas, including lateral prefrontal, parietal and
middle temporal association cortices. In contrast, the
distributional model best correlated with a more
focused region in left inferior frontal cortex (BA 47).
The integrative model performed better than the dis-
tributional model alone in left posterior inferior and
middle temporal cortex, and it performed better than
the experiential in left supplementary motor area,
and right AG.

A further major result concerns the differences in
our models’ performance when separately analysing
their relatedness to brain activity patterns for the
large categories of action and object related concepts
and words. Both the experiential and the distributional
models, as well as the integrative one, explained the
neural similarity structure for action words/concepts
(although to a different extent) in LIFG and pMTG,
whilst only the experiential and integrative models pro-
duced significant correlations with semantic similarities
of object words in the pITG, FuG, and AG. Both com-
bined and grounding models showed a double dis-
sociation with selected frontal lobe areas better
mapping action semantic features and posterior areas

Table 3. Results from searchlight RSA for the experiential. Table
of coordinates and significance voxel-level peak values (p) in
each activation cluster that was correlated with the
sensorimotor semantic model.

Coordinates

Regions
Cluster
Extent

Voxel-
level P

Pseudo
T x y z

Left Inferior
Temporal

694 0.016 5.44 −51 −46 −12

Left fusiform 0.016 4.45 −39 −46 −24
Left Mid Temporal 0.016 3.60 −48 −40 4
Left Occipital 312 0.017 4.27 −33 −70 40
Left Angular 0.026 2.97 −30 −55 −31
Left Inferior Frontal
Triangularis

153 0.016 4.13 −48 26 21

Left Inferior Frontal
Opercularis

0.017 4.03 −48 10 29

Left Precentral 0.017 4.52 −48 14 31
Left Mid Frontal 45 0.027 4.05 −33 23 48
Right Middle
Temporal

196 0.018 4.23 51 −64 10

Right Middle
Temporal

0.018 4.20 45 −73 21

Table 4. Results from searchlight RSA for the distributional
model. Table of coordinates and significance voxel-level peak
values (p) in each activation cluster that was correlated with
the distributional semantic model.

Coordinates

Regions
Cluster
Extent

Voxel-
level P

Pseudo
T x y z

Left Inferior
Frontal (BA 47)

581 0.0051 6.38 −21 23 −20

Right Middle
Frontal Gyrus

0.0051 6.23 30 50 25

Left Inferior
Parietal (BA 40)

629 0.0051 4.73 −48 −49 48

Left Angular
(BA 39)

190 0.0051 4.44 −39 −70 40

Right Precuneus 90 0.0051 5.12 15 −73 44
Left Middle
Temporal (BA
22)

518 0.0051 3.52 −57 −64 −24

Left Precentral 0.0051 3.32 −54 5 29
Right Inferior
Frontal (BA 47)

581 0.0051 5.27 51 38 −5

Table 5. RSA results from model comparisons in the searchlight
framework. Table of coordinates and significance voxel-level
peak values (p) in each activation cluster that was correlated
with the integrative model contrasted against the
distributional semantic model.

Coordinates

Regions
Cluster
Extent

Voxel-
level P

Pseudo
T x y z

Left Inferior
Temporal

320 0.019 2.98 −51 −46 −12

Left Mid
Temporal

0.019 2.30 −39 −46 −24

Table 6. RSA results from model comparisons in the searchlight
framework. Table of coordinates and significance voxel-level
peak values (p) in each activation cluster that was correlated
with the integrative model contrasted against the experiential
model.

Coordinates

Regions
Cluster
Extent

Voxel-level
P Pseudo T x y z

Left Mid
Frontal

138 0.024 2.98 −33 23 48

Right Angular 200 0.024 2.60 36 −70 44
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indexing object related perceptual ones. These results
suggest that both distributional statistics and
grounded experiential data contribute to a reliable

decoding of symbol meaning of different semantic
types, thus supporting the view that both grounding
and distributional information are relevant for the

Figure 3. RSA results in the selected ROIs projected onto a flat map of the left hemisphere (the left panel). On the right: The bar graph
depicts the averaged model-fMRI pattern correlations for each of the ROI under examination (the corresponding bar is indicated with
the same colour as the ROI) across subjects (23). Spearman’s rank correlations were calculated to assess the relatedness between brain
activity and model RDMs and statistical inference was applied on the single subject correlations using a one-sided signed-rank test
across subjects, testing whether the resulting correlation coefficients were significantly greater than zero. Below each bar, the signifi-
cance value for the test is reported, corrected for multiple testing across brain regions by applying the FDR procedure (marked with an
asterisk); the expected FDR was less than 5% (Benjamini & Hochberg, 1995). The horizontal bars in black indicate significant differ-
ences from model comparisons after FDR correction across ROIs (FDR = 0.05). Left panel: Effects specific to the LIFG (BA 44), where the
distributional model differed significantly from both the sensorimotor and integrative models. Left panel: Effects specific to the left
pITG. There was a significant difference (FDR = 0.05) between the effects of the sensorimotor and integrative models and the ones
triggered by the distributional model.
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discrimination and representation of concepts (see, for
example, Barsalou et al., 2008; Louwerse, 2008). Con-
sistent with earlier work (Fernandino et al., 2022), our
results also suggest that grounding information about
the actions and perceptions words are used to speak
about are generally better reflected in brain response
similarities than distributional information about word
co-occurrences.

The task applied in the present experiment involved
attentive silent reading with occasional typo detection.
This task was chosen to ascertain alertness and
focused attention to the stimuli. As we were interested
in semantic processes elicited by attended-to written
stimuli, we avoided a task forcing subjects towards a
specific type of semantic processing. Note that a seman-
tic task, such as semantic judgements under a pre-
defined aspect or matching to a target concept or
category, would have elicited neurocognitive processes
of comparison, which would have overlaid, modulated
and thus potentially confounded the process of interest,

namely word meaning access. One may still argue that
our methodological choice leaves the theoretical possi-
bility that subjects attended to the words but did not
understand or semantically process them. However, it
is widely believed that skilled readers and users of a
language cannot avoid understanding written words
they see and attend to. This position is supported by a
range of previous neurocognitive studies revealing con-
sistent brain correlates of word and sentence meaning in
passive and non-semantic tasks (see, for example, Carota
et al., 2012, 2017; Hauk et al., 2004; Pulvermüller et al.,
2005; for reviews see Binder & Desai, 2011; Pulvermüller,
2018). Consistent with this claim, the present dataset
showed semantic signatures of the word materials that
mapped semantic similarities obtained from different
linguistic methods. Therefore, the correlation of brain
activation similarities with semantic similarities provides
clear evidence that the words presented were also
understood and their meaning processed. Consistent
with earlier work, these results thus show semantic

Table 7. RSA results from ROI analyses testing for relatedness between models and brain activity patterns for all words. Table of
correlation values (r) and significance values (P) between the brain activity patterns in ROIs and the three models for all words
per ROI. Correlations values which survive FDR correction for multiple comparisons and the model are indicated by asterisk (*).

Integrative model Experiential Distributional model

ROI mean r-val p-val sig mean r-val p-value mean r-val p-value sig

LIFG BA44 0.021 0.000319 ** 0.021 0.000175 ** 0.009 0.067067
LIFG BA45 0.019 0.000127 ** 0.018 0.001363 ** 0.011 0.020763
LIFG BA47 0.011 0.001363 ** 0.006 0.037435 0.018 7.63E-05 **
PCG 0.013 0.003726 * 0.011 0.006764 * 0.011 0.052271
TP −0.001 0.600114 −0.0002 0.699477 0.006 0.032518
aITG 0.013 0.032518 * 0.011 0.059323 0.012 0.003355 *
aMTG 0.006 0.157277 0.004 0.196536 0.007 0.084762
aSTG −0.002 0.7774 −0.003 0.811739 0.005 0.055713
pITG 0.025 9.07E-05 ** 0.029 5.33E-05 ** −0.002 0.117004
pMTG 0.022 0.006764 * 0.022 0.001726 ** 0.009 0.123375
pSTG 0.005 0.172342 0.003 0.365694 0.007 0.006764 *
FuG 0.016 0.001208 ** 0.018 0.001726 ** 0.001 0.446606
SMG 0.018 0.016335 * 0.017 0.020763 * 0.01 0.024221
AG 0.017 0.012711 * 0.017 0.006147 * 0.006 0.061209

Figure 4. RSA results from model comparisons across all words for selected ROIs and for each of the three models: distributional
(green), experiential (dark blue), and integrative model (light blue) (lines above bars indicating significance, p < 0.05 FDR corrected).
Left panel: Semantic similarity effects specific to the left pITG, where the sensorimotor and integrative models matched the brain
activity patterns significantly better than the distributional model. Right panel: Semantic similarity effects specific to the LIFG (BA
47), where the distributional model fits the brain activity patterns significantly better than the sensorimotor and the integrative
models. The diagrams are based on the Spearman’s rank correlations calculated to assess the relatedness between brain activity
and model RDMs.
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processing occurring independently of the application
of a semantic task.

The importance of experiential information for
the representations of concepts

Ourpresent results demonstrate that thegroundedexperi-
ential and the distributional models predict the represen-
tational patterns across different regions considered in the
present study. This confirms earlier evidence suggesting

that experiential information is representationally predo-
minant over distributional data in multimodal semantic
regions (Fernandino et al., 2022). However, the present
data further reveal striking differences in model perform-
ance when the models are compared within separate
regions, as the distributional and experiential models
respectively mapped the high-dimensional semantic
space in left inferior frontal gyrus (LIFG, BA 47) and in left
inferior posterior temporal cortex, in which also the inte-
grative model performed best.

Table 8. RSA results from ROI analyses testing for relatedness between models and brain activity patterns for action words. Table of
correlation values (r) and significance values (P) between the brain activity patterns in ROIs and the three models for object words per
ROI. Correlations values which survive FDR correction for multiple comparisons and the model are indicated by asterisk (*).

Integrative model Experiential Distributional model

ROI mn(r) p-value sig mn(r) p-value sig mn(r) p-value sig

LIFG BA 44 0.0297 0.0008 ** 0.0242 0.0107 * 0.0185 0.0374
LIFG BA 45 0.0255 0.0027 ** 0.0212 0.0107 * 0.0168 0.0459
LIFG BA 47 0.0205 0.0027 ** 0.0154 0.0374 0.0140 0.0303
PCG 0.0163 0.0281 0.0127 0.0755 0.0106 0.0557
TP 0.0081 0.1234 0.0042 0.1113 0.0080 0.1501
aITG 0.0099 0.1001 0.0076 0.3110 0.0017 0.3110
pITG 0.0310 0.0019 ** 0.0272 0.0037 * 0.0151 0.0401
aMTG 0.0067 0.1363 0.0027 0.3434 0.0032 0.1723
pMTG 0.0222 0.0034 ** 0.0149 0.0242 0.0202 0.0208
aSTG 0.0042 0.2410 −0.0003 0.4822 0.0099 0.1001
pSTG 0.0046 0.1965 0.0022 0.2800 0.0042 0.6675
TP 0.0081 0.1234 0.0042 0.1113 0.0080 0.1501
FuG 0.0137 0.0401 0.0089 0.0801 0.0120 0.0490
SMG 0.0194 0.0082 * 0.0163 0.0046 * 0.0148 0.1723
AG 0.0164 0.0593 0.0149 0.8353 0.0036 0.3545

Figure 5. Category-specific results for object- and action-related concepts from model comparisons. The bar graphs depict the aver-
aged correlations between the brain activity RDMs in selected ROIs and the (48 × 48) RDMs for the distributional (green), the experi-
ential (dark blue), and the integrative (light blue) models for the sub-spaces of action and object words. Significant differences are
indicated by the horizontal bars in black after FDR correction across models (FDR = 0.05). (A) For action words, there was no significant
difference in model performance, as the three models performed equally for LIFG (BA 44-45-47); similar results were seen in pITG and
pMTG. (B) For object words, the integrative and experiential models were significantly superior to the distributional model in the
pMTG, FuG, and AG.
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Furthermore, based on both experiential and distribu-
tional data, the semantic spaces of action-related verbs
and object related nouns could be respectively
mapped in specific category-preferential and category-
general frontal (motor) and temporo-parietal (visual)
areas. In turn, the distributional model complemented
these effects, by capturing the brain activity patterns
in left frontotemporal regions for action words, but did
not match the brain activity patterns specific to object
words. Furthermore, these category-specific represen-
tational profiles corresponded to the effects seen if the
pertinent set of action-related and visually-related prop-
erties was selected for model comparison, when a clear
double dissociation became manifest in the spatial dis-
tribution of their respective representations in cat-
egory-preferential premotor, and higher-level regions
in the ventral and dorsal visual streams in posterior tem-
poral and parietal cortex.

Overall, then, our results from direct measures of
metabolic signals during word comprehension support
the assumption that the combinatorial knowledge of
statistical regularities with which word symbols co-
occur in linguistic contexts (e.g. texts or speeches), are
not sufficient to form semantic representations of
symbol meanings (Andrews et al., 2014; Cangelosi &
Harnad, 2001; Harnad, 1990; Searle, 1980; Vigliocco
et al., 2004). Rather, a condition sine qua non for a com-
plete picture of the semantic similarity space is the
grounding of these symbols in the motor, perceptual,
and affective properties of their referents in the
“world”, as mediated by dedicated action and percep-
tion systems (Barsalou, 2008, 2017; Harnad, 1990; Pulver-
müller, 2013, 2018; Searle, 1980). On the basis of earlier
work (Cangelosi & Harnad, 2001; Harnad, 1990;
Vincent-Lamarre et al., 2016), an integrative model was
expected to lead to a better approximation of human

semantic similarity judgments as compared to the use
of each estimate taken separately. Here though, we
found no significant difference in performance on the
entire word set as compared to the experiential model,
although the numerically larger numbers of areas with
significant semantic similarity mappings were greater
for the integrative model compared with the other
two. The extent to which the explanatory power of inte-
grative models combining distributional and experien-
tial semantics has proven successful for describing the
multidimensional semantic space is an empirical issue,
and may depend on the linguistic meaning and
context under examination. For example, distributional
models alone are performing well in decoding sentential
meaning, as well as in computing the similarity structure
between the semantic content of sentences (e.g. Pereira
et al., 2018). Furthermore, successful decoding in senten-
tial contexts could not be achieved based on the experi-
ential semantics of single words alone but requires
additional information not explained by compositional
semantics (e.g. about the meaning of idioms) for which
combinatorial distributional information is essential. A
recent study showed that the distributional GloVe
model could predict fMRI representational similarities
well when applied in isolation, model integration with
a model including semantic attributes significantly
improved fMRI prediction of sentence meaning (over
GloVe alone and attributes alone) in left lateral temporal
lobe and left inferior frontal gyrus (also see Anderson
et al., 2019, 2020, 2021). Therefore, language-based com-
putational models may come to the fore for predicting
multi-faceted concepts/memories (as described by sen-
tences), whereas they may be less valuable for isolated
word-related concepts (current study and especially Fer-
nandino et al., 2022). Although the extent to which dis-
tributional and experiential models are successful for

Table 9. RSA results from ROI analyses testing for relatedness between models and brain activity patterns for object words. Table of
correlation values (r) and significance values (P) between the brain activity patterns in ROIs and the three models for object words per
ROI. Correlations values which survive FDR correction for multiple comparisons and the model are indicated by asterisk (*).

Integrative model Experiential Distributional model

ROI mn(r) p-value sig mn(r) p-value sig mn(r) p-value sig

LIFG BA 44 0.0117 0.1113 0.0162 0.0801 −0.0107 0.8828
LIFG BA 45 0.0122 0.1234 0.0180 0.0848 −0.0163 0.9776
LIFG BA 47 0.0114 0.1363 0.0091 0.2226 0.0052 0.1802
PCG 0.0133 0.0261 0.0151 0.0303 −0.0030 0.6675
TP 0.0007 0.7495 0.0003 0.6675 −0.0125 0.9926
aITG 0.0060 0.2410 0.0051 0.3657 0.0019 0.4584
pITG 0.0167 0.0557 0.0169 0.0948 −0.0004 0.2317
aMTG 0.0114 0.0755 0.0099 0.1723 −0.0005 0.5297
pMTG 0.0192 0.0631 0.0209 0.0303 −0.0031 0.4466
aSTG 0.0015 0.6890 0.0010 0.5885 −0.0133 0.9949
pSTG 0.0029 0.3545 0.0005 0.5769 −0.0014 0.3884
TP 0.0007 0.7495 0.0003 0.6675 −0.0125 0.9926
FuG 0.0113 0.1234 0.0164 0.0459 −0.0150 0.9776
SMG 0.0065 0.2050 0.0070 0.1363 −0.0031 0.6890
AG 0.0174 0.0163 0.0222 0.0061 −0.0078 0.3434
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describing the multidimensional semantic space is an
inherently empirical issue, their explanatory power
may depend on the type of linguistic meaning and the
semantic context under examination, and may increase

for semantic contexts beyond single words. Integrating
experiential attributes with distributional data is also
beneficial for predicting autobiographical event imagin-
ation fMRI data (using GloVe models constructed from

Figure 6. (A) Category-specific results for object- and action-related concepts from model comparisons. The bar graphs depict the
averaged correlations between the 48 × 48 brain activity RDMs in specific cortical areas and the model RDMs based on action-
related semantic properties (top panels) and visual properties (bottom panel) for the sub-spaces of action (orange) and object
(green) words. Significant differences are indicated by the horizontal bars in black after FDR correction across models (FDR = 0.05).
Top panel: in LIFG (BA 44), PCG and SMG, the model based on action-related semantic properties was correlated more strongly
with the similarity patterns specific to action words as compared to the ones specific to object words. Bottom panel: in the FuG
and AG, the opposite was found, i.e. greater correlations between the similarity structure based on the visual properties and the simi-
larity structure of the brain activity patterns for object words than for action words. (B) Results from statistical analyses showing differ-
ential mapping of lexicosemantic categories obtained (ANOVA design: Word Category (action verbs vs. object nouns)×Region (frontal
vs. temporo-occipital regions of interest)), with a significant cross-over interaction between the factors Region and Word Category (F
[1, 22] = 7.45, p = 0.01). This effect obtained by employing the integrated semantic vector model revealed a double dissociation in the
semantic similarity mappings of action and object words onto focal category-preferential (BA 44, PCG) and category general (SMA, AG,
FUG) regions. A comparable interaction effect was also found when the experiential model alone was applied (F [1, 22] = 7.85, p =
0.012). The distributional model did not reveal any semantic mapping differences across word categories.
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participants offline descriptions of what they imagined)
(Anderson et al., 2020). One reason is that sentential con-
texts may constrain distributional statistics to the com-
putation of the words that they actually contain (first-
order co-occurrence) for estimating semantic similarity,
thus reducing the need to exploit second-order co-
occurrence in similar contexts, as is the case for single
words (as performed here exploiting a large corpus of
sentences, paragraphs, etc.).

As mentioned, the present study is not the first to
apply the distributional semantic model in RSA of
brain signals to words (e.g. Anderson et al., 2019;
Carota et al., 2017; Fernandino et al., 2022; Liuzzi et al.,
2020; Mirman et al., 2017; Pereira et al., 2018; Wang
et al., 2020; Xu et al., 2018). In our earlier studies, we
used the classical approach of latent semantic analysis
(Landauer & Dumais, 1997; see Carota et al., 2017), and
a more state-of-art word embedding model
(Word2Vec: Mikolov et al., 2013; see Carota et al.,
2021), whereas the more recent GloVe method (Pen-
nington et al., 2014) was applied here. When comparing
the results, there is surprising consistency regarding
anterior inferior frontal cortex, where the highest corre-
lations between semantic and activation similarities
were obtained. In addition, consistent similarity map-
pings were found in parietal cortex (AG). The GloVe
method also led to additional significant similarity
mapping in dorsal premotor and anterior temporal
areas (see Figure 2). In contrast to our first study
(Carota et al., 2017), where a range of inferior frontal
areas (BA 44, 45, 47) revealed the clearest distributional
semantic mapping correlates, the more posterior areas
(44, 45) just missed the significance threshold in the
present analysis.

A clear performance difference between distribu-
tional and grounded models was seen in the analyses
of the action vs. object word analyses, where both
models performed equally well in frontal areas, but
only the grounded model succeeded in similarity
mapping in posterior temporal cortex. The reason
why, for our data set, the GloVe distributional model
explained the similarity structure of the brain activity
patterns for action words better than the ones for
object words (where sometimes negative RDM corre-
lation values were observed) might be found in the
richer argument structure of action words (verbs) as
compared to object nouns, that is, the lexical represen-
tation of the lexical arguments they take, such as other
verbs, nouns and nominalizations, adjectives, and even
prepositions, which provides specific information not
only about the syntactic expression of the items that
can be realised but also about their semantics (e.g.
the verb “drink” requiring two noun phrases, one

related to a living being and the other to a liquid).
However, this suggestion should be addressed in
future experiments. Still, these considerations lead to
an important caveat concerning our results on cat-
egory-specificity from the comparison of action and
object concepts based on GloVe. Because the perform-
ance of different types of distributional language
models varies due to the particular type of techniques
their metrics rely on (Anderson et al., 2021; Pereira
et al., 2018), it is possible that even if different distribu-
tional models still differentiate between semantic cat-
egories, they may capture category-specific patterns
to different extent depending on how much contextual
information they take into account, and how. It is also
possible that other models are better optimised for
explaining object concept similarity. For instance,
recent neuroimaging evidence suggested that topolo-
gical network models may outperform both cooccur-
rence and experientials in language-specific regions
when object-related words are considered (Fu et al.,
2022). In particular, Fu et al. (2022) evaluated the per-
formance of different models to assess task-invariant
neural representations. The authors employed brain
imaging fMRI data from two different tasks, involving
picture naming and word familiarity judgements of
written words. They constructed one model based on
complex network (graph) path relations, with words
as nodes and their simple co-occurrences as edges,
and proposed that when language is represented as
a graph, rich topological properties (node and edge
layout patterns) can be computed, capturing infor-
mation that affects semantic knowledge and language
learning. They assessed the performance of the
network graph topological models (graph-common-
neighbours and graph-shortest-path), of a standard
word embedding model such as Word2Vec (Mikolov
et al., 2013), and of a model based on simple (edge)
co-occurrence. They found that the distributional
(Word2Vec) model correlated with activity in left occi-
pital and posterior MTG when the brain imaging data
from the picture naming task were examined. The
same model correlated with activity in a greater
number of cortical regions, also including bilateral
anterior temporal lobe when the data from the famili-
arity judgement were included. However, a conjunction
analysis testing for task-invariant effects by assessing
the overlapping regions that showed significant posi-
tive correlations between neural activity and models
showed effects (no surviving voxels). The study of Fu
et al. (2022) employed a partial correlation approach
regressing out of each language model potential con-
founds such as visual co-occurrence features, and sen-
sorimotor information. The results bring novel insights
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on the potential relevance of the (so far little tested)
network graph topological models (describing edges
and nodes arrangements in a network) to the semantic
similarity structure of object-related words. However,
important methodological differences regarding the
type of tasks, the stimulus set (object nouns), the
language (Chinese), the models themselves, none of
which was based on the GloVe model employed
here, make it difficult to establish a comparison with
our present data. Also, these interesting results
require further validation in the context of other
word semantic classes, such as action verbs. Concern-
ing the results from the RSA analyses, in our present
study, our main semantic similarity effect in posterior
middle/inferior temporal cortex was linked to the
experiential model. However, the corresponding sen-
sorimotor model was only used as a control model
for partial correlation analyses, and not compared
with the brain activity patterns on its own. Further-
more, no direct comparison of the models was per-
formed, as we did in our present study. However, it
is interesting to note that Fu et al. (2022) report task-
invariant effects of the network graph topological
model just in the two regions highlighted in our
present results: the LIFG and the left posterior ITG/
MTG. Therefore, despite the abovementioned meth-
odological differences, our present results match the
ones by Fu and colleagues in the loci of semantic simi-
larity effects, but also diverge from those results
because the semantic similarity mapping in the LIFG
and in posterior inferior/middle temporal regions
emphasises distributional and experiential information,
respectively.

Hierarchical architecture of the representational
semantic systems: category-general semantic
similarity mapping in higher-level association
cortex

The present results highlight a hierarchical architecture
of the representational systems encoding lexical
meaning, according to which distributional and
grounded experiential semantic properties of word
symbols are represented in partly dissociable sets of
category-general and category-specific regions in
motor and sensory cortex. Our data are consistent
with models positing the co-presence of multimodal
semantic properties in several higher-order conver-
gence zones holding conjunctive representations
derived from multiple low-level sensory and motor rep-
resentations (Binder & Desai, 2011; Damasio, 1989a,
1989b; Meyer & Damasio, 2009; Pulvermüller 2013,
2021; Pulvermüller et al., 2009; Reilly et al., 2016).

Indeed, we found that the LIFG and the pITG respect-
ively best reflected similarity in distributional and
experiential properties of the stimulus words. These
areas had been found active to written words from a
range of different semantic categories, as shown by
earlier univariate fMRI studies and likewise by applying
k-means cluster analysis (Pulvermüller et al., 2009).
Interestingly, these observations are also in line with
results from connectivity analyses showing that a corti-
cal network comprising left inferior frontal, and pos-
terior inferior temporal, and inferior parietal cortex
supports semantic processing functions specifically
(e.g. Xiang et al., 2010). In particular, posterior inferior
temporal cortex is known to store lexical information
about conceptual features in memory (Carlson et al.,
2014; Coutanche et al., 2016; Devereux et al., 2013;
Ghio et al., 2016; Hagoort, 2019; Mitchell and Cusack,
2016; Mitchell et al., 2008; Tyler et al., 2013; Clarke
and Tyler, 2014), thus supporting a semantic route to
reading (e.g. Price, 2000).

Neuronal populations coding for representations of
lexical-semantic similarities in the posterior temporal
memory circuit may communicate via long-distance
connections with population codes in inferior frontal
regions, especially in the LIFG (see Fuster, 1997; Pulver-
müller, 1999, 2018), as recently confirmed across
imaging modalities (e.g. Lau et al., 2008; Pulvermüller,
2013; Xiang et al., 2010). Strengthened activity in this
network may arise as a result of the spread of activation
from the LIFG.

In turn, the more anterior/ventral aspect of the left
inferior frontal cortex is critical for unification of seman-
tic information into linguistic structures (e.g. Hagoort,
2015), a process which operates on combinatorial
semantic information and which may require access to
the representation of statistical knowledge, such as the
one captured by our distributional model. The present
results fit this picture well, stressing the importance of
the LIFG (BA 47) in semantic processing highlighted in
previous literature (e.g. Poldrack et al., 1999; Thomp-
son-Schill et al., 1997), and particularly in the encoding
of distributional representations, a finding confirming
earlier results (Carota et al., 2017, 2021).

Also, anterior temporal regions showed a relatively
stronger correlation of activity patterns with the distri-
butional semantic model, which however did not reach
a significant difference compared with the other two
models, and did not stand out from the other language
regions. In conclusion, the present study confirms a role
of the anterior temporal regions in the encoding of
semantic similarity, but failed to confirm this region as
a possible apex for all forms of semantic knowledge to
be brought together, as expected on the basis of the
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“Hub-and-spokes” model (Hoffman et al., 2018; Lambon
Ralph et al., 2017; Patterson et al., 2007), highlighting its
contribution within a widespread network of distributed
language representations.

Category-specific representations of action-
related and visually-related words

A major finding of the present study was that a sub-
network of inferior parietal (AG) and fusiform (FuG)
regions reflected object-specific representations of visu-
ally-related semantic similarity. Previous fMRI studies
have shown that the preferential response of different
portions of the FuG to different object categories, for
example animals and tools as employed here (Chao
et al., 1999; Forseth et al., 2018; Martin, 2007; Tyler
et al., 2013; Warrington & Shallice, 1984). Such categori-
cal differentiation has been proposed to arise from
higher and lower levels of shared features across the
members of different categories of objects, giving
origin to category structure (Tyler et al., 2013). It is inter-
esting that, in the present data, the AG may become co-
activated with an object-specific FuG region in the
ventral visual pathway to code for an intermediate
and more specialised level of object-specific
representation

The AG encodes cross-modally integrated represen-
tations of semantic knowledge (e.g. Fernandino et al.,
2015, 2016), as well as category-general representations
of statistical knowledge about object words, as our
present results show. This area may thus be a multimo-
dal association region binding together different
formats and modalities of semantic representations to
enable the comprehension of complex conceptual infor-
mation about object concepts. For instance, earlier evi-
dence suggests that the AG supports the
representation of complex object concepts (e.g. plaid
jacket), based on simple conceptual constituents (e.g.
jacket and plaid) (Price et al., 2015). The semantically
coherent representation of these conceptual combi-
nations presupposes the multimodal integration of
cross-modal attributes in this well-established semantic
“hub” area (Binder et al., 2009; Binder & Desai, 2011; Fer-
nandino et al., 2015, 2022).

In turn, we here found that the posterior ITG/MTG
reflected experiential and integrative similarities, but
not distributional codes for the set of object words,
whilst all models predicted the brain activity patterns
for action words in posterior MTG. These differences
are consistent with a role taken by this region in
storing experiential information, and particularly
action-relatedness (Carota et al., 2017, 2021), and
action semantics (Hauk et al., 2008). The greater

importance of the pMTG in coding for distributional
similarities among action verbs as compared to object
concepts is also consistent with the it responds specifi-
cally to verbs (Elli et al., 2019).

Other studies also found sensitivity of the posterior
ITG/MTG to the semantic similarity for a variety of
object categories, including tools, when using distribu-
tional metrics (Word2Vec) and visual features, including
shape (Liuzzi et al., 2020). Discrepancies between these
results and our present research outcomes can depend
not only on the distributional model employed (see
discussion above), but also, more obviously, on the
definition of the ROIs in terms of size and locus. For
instance, the MTG is more sensitive to action-related
tool nouns than nouns referring to animals (Carota
et al., 2012, 2017; Desai et al., 2009; Fernandino et al.,
2015; Hauk et al., 2008; Martin et al., 1996; Pillon &
d’Honincthun, 2011; Vannuscorps & Pillon, 2011). Fur-
thermore, responses to object nouns are more pos-
terior and inferior relative to the ones specific to
verbs (Bedny & Caramazza, 2011; Perini et al., 2014),
and this can explain differences in the semantic simi-
larity effects reported for object words across recent
studies in these regions. Finally, also the use of
different distributional methods for generating seman-
tic vectors (e.g.: Word2Vec vs. GloVe) could underlie
these differences.

In the current data, it was noteworthy that specialised
sub-networks encode distinctive information supporting
the disambiguation and identification of specific cat-
egories of words and concepts. The additional results
from the comparisons of the models coding for
specific visual and motor properties clearly further
demonstrate the neurocognitive distinctiveness, and
distinction, of action and object words. Our present
findings thus point to a genuinely experiential semantic
origin of category-specific representations: classifying an
object and the word used to name it as a member of a
category may require simple conjunction of experiential
attributes, which confines activity to category-specific
temporo-parietal regions.

The semantic sub-space in left motor, inferior frontal
(LIFG BA 44), motor, and the SMG was, in turn, well
mapped by the model coding for rated action-related
properties of the words, consistent with earlier findings
on the role of these regions in action semantics (e.g.
Damasio & Tranel, 1993; Davey et al., 2015; Dreyer
et al., 2020; Grossman et al., 2008; Hauk et al., 2004;
Hillis et al., 2004, 2006; Kemmerer et al., 2012; Kemmerer
& Tranel, 2003; Pulvermüller et al., 2005; Rueschmeyer
et al., 2010; Vukovic & Shtyrov, 2019). Interestingly,
these same regions reflected both distributional and
experiential data as well.
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The need for integration of distributional data with
grounded experiential semantics
On the basis of earlier work (Cangelosi & Harnad, 2001;
Harnad, 1990; Vincent-Lamarre et al., 2016), an integra-
tive model was expected to lead to a better approxi-
mation of human semantic similarity judgments as
compared to the use of each estimate taken separately.
Here though, we found no significant difference in per-
formance as compared to the experiential model.

Our results support the theoretical assumption that
the distributional information resulting from the compu-
tational manipulation of symbols alone is insufficient for
making those symbols interpretable (Andrews et al.,
2014; Cangelosi & Harnad, 2001; Harnad, 1990; Searle,
1980; Vigliocco et al., 2004). As postulated by the well-
known Searlean Chinese room example, a computer
could manipulate strings of Chinese symbols so well to
perform as convincingly as a Chinese speaker would,
even passing the Turing test, yet it would not under-
stand their meaning. As this would require knowledge
of what these symbols are used to communicate about
(Harnad, 1990; Searle, 1980). Rather, the grounding of
arbitrary symbolic word forms in action and perception
knowledge and corresponding brain systems holding
this information, at least for some of the symbols
(“grounding kernel”: Cangelosi & Harnad, 2001), is essen-
tial for building the referential links between the arbi-
trary and symbolic word forms and the actions, objects
and entities in the external world they are used to talk
about (Barsalou, 2008, 2017; Harnad, 1990, 2012; Pulver-
müller, 2013, 2018; Searle, 1980). The present data are
consistent with the view that both linguistic context
and the action and object context, in which concepts
are experienced since the early stages of language
acquisition, critically contribute to coherent word
meaning representations (Wittgenstein, 1953/2009).

Conclusions

We showed that distributional and experiential simi-
larities between concrete written words is reflected by
the similarities between word-elicited graded activation
patterns in partly distinct networks of frontal and
temporo-parietal regions. The resulting neurocognitive
picture informs semantic theories suggesting that a rep-
resentationally complete characterisation of the com-
plexity of lexical meaning cannot be based on
distributional information alone, but requires experien-
tial knowledge about the grounding of symbol
meaning in action and perception. In the present data,
the conjunction of a limited amount of specific experien-
tial properties, such as the dominant action-related and

visual attributes of action and object words, was
sufficient for mapping the semantic spaces of the corre-
sponding categories in category-specific motor and
visual cortex, as well as multimodal connector hub
areas, thus being consistent with the relevance of cat-
egory-specific as well as category-general semantic
grounding information (Binder et al., 2016; Fernandino
et al., 2016, 2022; Pulvermüller et al., 2009). Still, distribu-
tional information contributed to the differentiation
between categories as well, drawing upon slightly
different and sometimes overlapping association areas
(e.g. left inferior frontal cortex). Semantic similarity-map-
pings of the categories of action and object words were
equally successful in frontal cortex with both grounded
experiential and distributional models, whereas only
the former model succeeded in similarity mapping of
object words in temporal cortex. Further work is
needed for determining to what extent the different
sources of semantic information (e.g. distributional and
experiential properties of words, and their interplay, as
employed here) contribute to the mapping of the rep-
resentational content of language in relevant brain net-
works for different types of concepts, and beyond single
words (e.g. sentence, discourse, naturalistic contexts).
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