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Abstract:

The equations for the three-dimensional kinetic energy spectrum and temperature variance spectrum of
homogeneous turbulence have been solved numerically for the transfer in the wave number space and for
the cospectra of vertical momentum and heat flux. ITie equations have been closed by relating the spectral
transfer to the spectra of kinetic energy and temperature variance using the concept of a spectral eddy visco-
sity and thermal diffusivity. Instead of specifiing analytically the unknown eddy diffusivity and thermal
viscosity the three-dimensional spectra for kinetic energy and temperature variance, which have been deduced
from one-dimensional measured spectra, have been considered to be known. The spectral diffusivities, deter-
mined in this procedure, show a similar behaviour to Heisenberg’s assumption characterized by a - 4/3 slope
in the inertial subrange, but deviate from it in the ränge of the energy containing eddies, especially under un-
stable stratifications.
In consequence of the spectral diffusivities the cospectra of the vertical momentum flux reveal at small wave
numbers for unstable thermal stratifications a ränge, where eddies transport momentum upward against the
mean velocity gradient. Also, the resulting shift of the maximum spectral density to smaller wave numbers
with decreasing stability is in agreement with experimental results.

Zusammenfassung: Spektraler Transport von turbulenter Energie und Temperaturvarianz

Die Gleichungen für das dreidimensionale Spektrum für kinetische Energie und Temperaturvarianz bei
homogener Turbulenz wurden numerisch gelöst, um den Transport im Wellenzahlraum und die Kospek-
tren des vertikalen Impuls-und Wärmeflusses zu bestimmen. Durch einen einfachen Ansatz für die spek-
tralen Transporte von Energie und Temperaturvarianz mit Hilfe eines spektralen turbulenten Diffusions-
koeffizienten sind die Gleichungen geschlossen worden. Statt die unbekannten Diffusionskoeffizienten analy-
tisch in den Gleichungen vorzugeben, sind die dreidimensionalen Spektren für Energie und Temperatur-
varianz, die aus gemessenen eindimensionalen Spektren konstruiert wurden, als bekannt vorausgesetzt worden.
Die auf diese Weise errechneten spektralen Diffusionskoeffizienten zeigen im Inertialbereich ein dem Heisen-
berg’schen Ansatz ähnliches Verhalten mit einem - 4/3 Abfall für größer werdende Wellenzahlen, weichen
aber von diesem besonders bei instabiler Schichtung im Bereich der energiereichen Wirbel ab.
Als Folge davon zeigen die Kospektren für den Impulsfluß bei kleinen Wellenzahlen unter thermisch instabilen
Verhältnissen ein Gebiet, in dem die Turbulenzwirbel Impuls gegen den mittleren Windgradienten transpor-
tieren. Die berechnete Verlagerung der maximalen spektralen Dichte zu kleineren Wellenzahlen bei abneh-
mender Stabilität ist in Üereinstimmung mit dem experimentellen Befund.

Resume': Transfer! spectral d’energie turbulente et variance de la temperature
Les equations pour le spectre tridimensionnel de l’energie cinetique et le spectre de la variance de la
temperature en turbulence homogene sont resolues numeriquement afin de determiner le transfert dans
l’espace des nombres d’onde et les cospectres pour le flux vertical de quantite de mouvement et de chaleur.
On realise de fermeture des equations en liant le transfert spectral aux spectres de l’energie cinetique et de la
variance de la temperature, ä l’aide de coefficients spectraux de diffusion turbulente.
Au lieu de specifier analytiquement dans les equations les coefficients de diffusion inconnus, on suppose
connus les spectres tridimentionnels pour l’energie et la variance de la temperature, qui ont ete construits ä
partir de spectres unidimensionnels mesures.
Les coefficients spectraux de diffusion obtenus de cette maniere suivent, dans le domaine inertiel, une loi
analogue ä celle de Heisenberg, avec une decroissance en - 4/3 pour les nombres d’onde Croissants, mais s’en
ecartent dans le domaine des tourbillons contenant le maximum d’energie, surtout si la stratification est instable.
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Par suite, les cospectres pour le flux de la quantite de mouvement revelent, aux petits nombres d’onde et
pour une stratification thermiqe instable, un domaine dans lequel les tourbillons de turbulence transportent
de la quantite de mouvement vers le haut, contre le gradient moyen de la vitesse.
De plus, le glissement de la densite spctrale maximum vers les petits nombres d’onde quand la stabilite decroit
est en accord avec les resultats experimentaux.

1. Introduction
Many studies on spectral quantities based on measurements of atmospheric turbulence have

been published in the past, but only a comparatively small number of theoretical papers are concerned
with the spectral dynamics. This reflects the closure difficulty of turbulence. Available closure assump-
tions for the spectral energy transfer, e.g. by HEISENBERG (1948) which gives realistic results for the
spectrum except at very high wavenumbers (ORSZAG and RAILA, 1973), are limited to the case of Iso-
tropie turbulence. In spite of these limitations Heisenberg’s model has been used also as an approxima-
tion to the spectral energy transfer for atmospheric inhomogeneous and anisotropic turbulence. GISINA
(1966) and ROTH (1972), for example, applied this approximation in Order to predict spectra of turbu-
lent stress and vertical heat flux and the wind profiles along smooth and rough walls.
In this paper a different approach will be examined. Instead of using an analytical expression for the
spectral energy transfer functions, observed and theoretical power spectra of turbulent kinetic energy
and temperature variance will be used in order to deduce the unknown spectral energy transfer func-
tions and to study their Variation with stability. Fürther, the spectra of turbulent stress and heat flux
are deduced from the model computations and are compared with corresponding observed spectra.

2. Basic Equations

Spectral characteristics of atmospheric turbulence are generally interrelated to quantities of the
mean flow, the vertical gradients of mean velocity and temperature. In the case of a stationary and
homogeneous flow (wheh includes constant gradients in the vertical) the interaction between the
spectrum of turbulent kinetic energy E e (k) as function of wavenumber k,  the spectrum of temperature
fluctuations E T (k) and the vertical mean flow gradient dth/öxa and vertical mean temperature gra-
dient dT/dx 3 may be expressed by the dynamic equations of the energy spectrum and the temperature
variance spectrum. These equations may be derived from the equations of motion, continuity and heat
conductivity. A detailed explanation of the procedure is given in the Appendix.
These spectral equations are of the following form (see Equation (Al  7)  and (Al  8) in the Appendix).

k k

e - 2 p J k 2 E e (k) dk = 2 p (k) J k 2 Ee (k) dk + p (k)
o o

dT 1
dx 3 J (1)

k k

X 2 X J k 2 Et (k) dk = 2 a (k) p (k) J k 2 ET (k) dk + a (k) p (k)
o o

JT
dx 3 (2)

Here e and X are, respectively, the total dissipation of turbulent kinetic energy and of temperature va-
riance, p is kinematic viscosity, X molecular temperature conductivity, n(k) is turbulent viscosity, a(k)
specifies the difference of turbulent viscosity for kinetic energy transfer and temperature fluctuations
from small to larger wave-numbers, g is gravitational acceleration, T o is mean temperature of the flow.
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The left side of Equation (1) and (2) represents the dissipation of kinetic energy in the wave-number
ränge from k to infinity, i.e.

k 00

D e (k) = e - 2 v J k 2 E e (k) dk = 2 v J k 2 E e (k) dk (3)

0 k

and the dissipation of temperature variance in the same interval, i.e.
k 00

D T (k) = x - 2 X J k 2 E T (k) dk = 2X J k 2 ET (k )dk  (4)

0 k

The dissipation terms are given respectively as result of spectral kinetic energy production in the inter-
val (k, 00)

[79ÜA  2 g QTI
PE (k) = »-(k) -«O0-— j (5)

and production of temperature variance

PT (k) = a (k) p (k) = pt (k) (6)

In Equation (5) the first term on the right side represents mechanical production and the second term is
due to buoyant production, which may be positive or negative dependent on the sign of 9T/9x 3 .
In deriving these expressions (5) and (6) for production we assumed the weak interaction concept
(TCHEN 1953, 1954) between the mean flow and the turbulent eddies, which is consistent with our
assumption of a homogeneous flow field. This includes a scale of Variation of the mean flow being greater
than the scales of the turbulent eddies.
Finally, in Equation (1) and (2) the dissipation is dependent, respectively, on the amount of transfer of
turbulent energy TE (k) and temperature variance Tt (k) from the spectral ränge (0,  k) into the ränge
(k,  00) accross wave-number k:

k k

TE (k) = - J F E (k) dk = 2 p(k) J k 2 EE (k)dk  (7)

0 0

k k

T t (k) = - J Ft (k) dk = 2a (k )  p(k) J k 2 ET (k) dk (8)

0 0

F e (k) and FT (k) are the net-transfer rate,s at wave-number k. Equations (7) and (8) represent the
transfer model originally proposed by HEISENBERG (1948).

According to our assumptions the unknown spectra of turbulent stress and heat flux, which contribute
to the production of turbulent kinetic energy and temperature variance and the unknown transfer spectra
have been related to the spectra of turbulent kinetic energy and temperature variance.
In previous work (e.g. GISINA (1966), ROTH (1972)) assumptions have been introduced for the unknown
spectral turbulent viscosity to close the System. Our approacb differs from these papers in that observed
spectra Eg. (k) and E T (k) will be used. to find and from our assumptions the transfer spectra
F e (k) and F T (k) and the spectra of momentan! flux 0 U) u3 (k) and heat flux ü3  (k) (see Equation
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A13, A14, A15 and A16 in the Appendix). The spectral densities of transfer, production and dissipation
as related to turbulent kinetic energy and temperature variance are found directly from Equation (1)
and (2) by differentiation to k:

k

= - F E (k) = -2  p(k) k 2 E e (k) + 2 J k 2 Ee dk (9)
o

k
ai T (k) , avT (k) r ,
—rr“ = - FT (k) = 2 (k) k 2 ET (k) + 2 — - k 2 ET (k)dk (10)

OK OK I

0

dP E (k )_dUi  g 3i>(k) g 3T Mk)
dk ax 3 

0U1U3(  } t o 
0ÖU3(  J dk T o dx 3 dk

9Pt (k) dT / dT ? dp (k)
dk dx 3 

00U3( )  \ dx  3 / dk

dD E
— =-2 rk  2 E E (k)
OK

dDf
-rz— = — 2 X k 2 ET (k)

(U)

(12)

(13)

(14)

Fürther, from Equation (1) and (2) we obtain both the eddy viscosity p(k) and the turbulent thermal
diffusivity pt (k)

k

e - 2 v J k 2 E e (k) dk

p(k) = — — --------------- ------ +

2 k 2 E E (k)dk+ 1 1)
J \ 9x  3 /
0

k (15)
[x -2X f k 2 ET (k )dk l
L J J *0 dx  3

+ — --------- 0 — ------------ ---------------------
k k

[ 2 Jk  2 E E (k)dk+ [2 J k 2 ET (k)dk+ (fj]
0 0

and
k

X - 2 X j k 2 E T (k) dk

pT (k) = a (k) v (k) = — -----— ------------------- ( 1 6)
r / — \2

2 J k 2 Er (k )dk+
0
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Differentiation of equations (15) and (16) with respect to k yields also 9p(k)/9k and 9p? (k)/9k in
terrps of E e (k) and ET (k).
Having derived the necessary equations, we may now formulate the problem that is to be solved in this
paper: provided that both spectra, i.e. of energy E e (k) and of temperature variance E T (k) are known
as empirical data, both covariance spectra 0 U1 U3 (k), <pdU3  (k), the eddy viscosity p(k) and the turbulent
thermal diffusivity (k) may be gained as Solutions. In addition, all the individual terms in the equa-
tions of balance (1) and (2), i.e. corresponding terms of production P E (k), P T (k), transfer T E (k), and
T t (k) and the dissipation DE (k), D T (k), together with their spectral densities, will be found from the
given set of equations for all wave-numbers 0 < k < °o. As input variables for the System of equations
we choose the energy dissipation e and temperature dissipation x and the gradients of the mean flow
dUi/9x  3 and mean temperature 9T/9x 3 .
According to the similarity theory of Monin-Obukhov these variables may be written in the form:

9Uj u* / x 3 \

u*  / x 3 \
e ~KX3  \lJ

9T _ T* Zx 3 \
9x 3 

x 3 \L* /

KU* T*  / X 3 \
(17)

where the Monin-Obukhov length L*, the friction velocity u*, and the scaling temperature T* are
defined as follows:

1 H
KU* pC p

u* = x/ _ U!U 3 ; (18)T* =

In the Equations (17) and (18) the quantity H = pc  p 0u  3 denotes the turbulent flux of sensible heat in
the vertical direction, c p the specific heat at constant pressure and k 0.4 is von Kärmän’s constant. It
should be noted that the assumption of homogeneity includes constant vertical gradients of wind and
temperature, which contradicts equations (17). Therefore, we consider the relations only to be valid for
one height with a continuation of the same gradients into upper and lower levels and study the effect
of stability variations. Because of this restriction we also renounce to present the results in similarity
Coordinates. We relate the results, however, always to the same amount of energy production which is
identical to assuming the same energy dissipation e under stationary conditions.
The following empirical formulae for the stability functions have been gained from the measurements in
the surface boundary layer of the atmosphere (see KAIMAL et al. (1972) and GARRETT (1972)):

X 3

l7 >0

'/’M
X 3

if — <0
-L*

(19)

0.74 + 4.7 — if — > 0

I / v \~ 1 V

0.74 (1 -9  t 2 ) if <0
\ L* /  L*

‘Z’H
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■;an< X 3
if — >0

-L*

X 3
if -L*

(20)

One-dimensional spectra of energy and temperature variance (i.e. E 1E (kJ  and E 1T (kJ), are usually
presented in the form

ki Eie (k i )  , / .  x 3 \ k ,  E 1T (k) / x 3 \
------j * f ’ kJ — ------ = J't I f, 7~u* \ 7 T* \ u * /

ki  x 3 Ui Ui ?7rn
f = — ; E 1e (k, = 5; E,e (n ) ;  E 1T (k , )  = 3- E 1T (n);-k, =

Z7T Z7T Z7T

(21)

(22)

where

Here f is a dimensionless wavenumber and n is frequency. By Equation (22) frequency spectra may be
transformed into wave-number spectra according to Taylor’s frozen-wave hypothesis.
Since we use spectra averaged over spherical Shells (see Appendix), which depend then only on the
magnitude of the wave-number k, as an approximation to the anisotropic atmospheric turbulence, we
may also apply the corresponding relationship between one-dimensional spectra E 1E  (kJ  and E jT (kJ
and corresponding three-dimensional spectra E e (k) and ET (k) in Order to construct an approximated
three-dimensional Spectrum from measured one-dimensional spectra:

3 2 E 1E  (k , )  i
— sc --------- T k ,

3B  1E (k.) 3E  1T (k,)
3k,E E (k )= [ | k? [ -k . (23);E T (k) =

ki  =k

From Equations (17) to (23) it is evident that the parameters

2
X 3 = z, — t u* and k (24)

determine uniquely our input variables.
Thus our model of turbulence is completely defined, if the height z, the friction velocity u*, (z/L*) and
k are specified. Since e and u* are uniquely related to each other by equation (17) we prefer to choose
the energy dissipation e as independent variable, because then all different caseswith variable stability and
a constant value of e will have the same total production of energy and in the inertial subrange all energy
spectra fall together.
Therefore we take

z, p- , e and k (25)-L*

as independent variables and compute the friction velocity u*  from

as a dependent variable.

Thus, in Order to see the dependence of the turbulence field on the parameter of thermal stratification
(z/L*), we will vary in our computations only this parameter, while the height z and dissipation e will
be kept constant.
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2.2. Spectrum of energy Ee (k)

From measurements of atmospheric turbulence only one-dimensional spectra are known for
limited regions of wave numbers. What we need, however, in our model equations are three-dimensional
spectra which are valid for the whole wave number ränge. Of course, no complete theory is available as
yet which gives this three-dimensional spectrum in one analytical expression. What is known are deri-
vations of the spectral density function only for the inertial subrange and the viscous ränge and some
empirical descriptions of the one-dimensional spectra in the energy-containing ränge and inertial subrange.
Therefore, our procedure will be to construct from that knowledge a three-dimensional spectrum which
describes atmospheric turbulence as a function of stability and wave number.

EE (k)
E T (k)

inertial sub
ränge

dissipation
ränge

ränge of energy
containing eddies

k k

• Figure 1
Schematic sketch of the overlapping
langes of the kinetic energy and tempe-
rature variance spectra. For details see
text

• Bild 1
Schematische Darstellung der Überlap-
pungsbereiche des Spektrum der kine-
tischen Energie und der Temperatur-
varianz

At first, we will discuss a convenient formula for E e (k) expressing the properties of the energy spectrum
both in the inertial and dissipation ranges (see Figure 1), i.e. within those ranges where the energy pro-
duction can be neglected. Then, we will consider a formula for E e (k) which, on the contrary, will be
applicable not only in the inertial ränge but also in the energy-containing ränge. Although different from
each other, both formulae for E e (k) will satisfy equally well the law of Kolmogorow in the inertial
ränge, for having both the common limit

E e (k) = ae  2/3 k“ 5/3 .
Therefore, it will be easy to match the two spectra at a point inside of the inertial ränge, in order to find
the spectral density E e (k), which can be used in the wave number ränge 0 < k < +
According to LIN (1972) the three-dimensional energy spectrum in the inertial and dissipation ränge
(= ID) may be expressed by

E E (k) = EI
E
D (k) = «e  M k-  s '3 ( l  +e -  1/6  » 1 '2 k 2 '3 ) exp [ - a ( | e -  1 '3 xk  4/3 +e-  1 ' 2 K 3 ' 2 k 2) l  (27)

for k > k m , where k m is the wave number of the energy containing eddies. As it is seen, for k K > k > k m ,
E e 

5 (k) is identical to E e (k), the 5/3 law”. At wave numbers k of the order of k E the energy den-
sity decreases exponentially.
Let us now consider the extension of the spectrum to the ränge of the energy containing eddies. As
theoretical analyses for this ränge are not available we refer to empirical results and make use of some
hypotheses which are in accordance to our previous assumptions.
One-dimensional spectra are rather well-known from experimental studies, but only for the spectra of
the vertical velocity component an empirical relation is available, which describes energy densities also
as a function of stability. We will use this relation, convert this spectrum to a longitudinal spectrum
Eie (k) by

E 3E (k) = i [ E,e (k) - k ] (28)

66



whichis strictly correct, however, only for Isotropie turbulence. Since we use spectra averaged over spherical
Shells, this may be considered as a crude approximation for the whole Spectrum. In the same way, we
apply the transformation (23) from the Isotropie turbulence theory to derive a three-dimensional turbu-
lence spectrum.
According to BUSCH and PANOFSKY (1968) the one-dimensional spectrum of the vertical velocity com-
ponent can be described by

k,E,E (k l ) 1 075 £
u * i + i . 5 (~ )  s/3

Um /
(29)

nz
Here f = — and f m is the dimensionless wave number where E 3E shows its maximum. Converting this

spectrum to a spectrum E 1e (k) of the longitudinal component we obtain from Eqation (23) the three-
dimensional spectrum valid within the energy containing and the inertial ränge (= EI), henceforth be
denoted by E| t (k).
Now, the position of the maximum of the energy spectrum E 1 (k), as given through the dimensionsless

2rrfm
wave number fm (or through the wave number k m = —- — , which defines the ränge of the energy-contain-
ing eddies)

/ z \
fm = 0.32 <Pe ( )

\ /
(30)

/ z \depends on z/L*, since <pe I — ) is given by (20).

In a region far enough from the ränge of energy -containing eddies, i.e. inside of the inertial ränge

k i>k  m (31)

we find from (29)

E 1E  (kJ = 0.46 e 2/3 k[  5/3 (32)

Substituting (32) into (23), we obtain the corresponding three-dimensional energy spectrum E E (k), for
the inertial ränge

E e (k) = E| j (k) = 1 .42 e 2/3  k"  5/3  for k > k m

From the spectrum in Equation (27) we find for the same ränge

E e (k) = E IED (k) = ae  2/3 k’  s /3

(33)

(34)

The constant a is known quite well from the literature, e.g. a = 1 .44 is given by ROTTA (1972). These
two independently determined values for a agree quite well and a = 1 .44 will be used in the computa-
tions in this paper.
The two branches of the spectrum, i.e. E e 

t (k) and E P (k) are matched at a wave number k representing
the middle of the inertial subrange (km < k* < k K ) .
With values e = 20 cm 2 s -3  and v = 0.148 cm 2 s -1  that will be used later in our computations, we obtain
for the Kolmogorov wave number k K = (e p -3 ) 1/4  » 9 cm -1 .
As the maxima of  E e (k) appear in the ränge of wave numbers from 10 -3 to 10 -2  cm -1  the choice
k* = 0.09 cm -1 seems quite adequate. The energy dissipation e is one of the input parameters (25) and
moreover, it occurs as a parameter in (27).
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If k* has been chosen correctly, this value of e should agree well with
OO k* oo

6int = 2p  J k 2 E e (k) dk = 2 J k 2 E* 1 (k) dk + 2 v J k 2 E D (k) dk (35)
0 0 k*

Therefore, the difference of both values of  dissipation Ae = e - will serve as a measure of accuracy.
Numerical experiments have shown that I Ael < 4 • 10"  2 cm 2 s -3  if k* is in the ränge 0.13 cm'  1 < k* <

-1 z< 0.06 cm 1 and — varies from - 1 to  + 0.5.

2.3. Spectrum of Temperature Variance Ej (k)

The temperature fluctuions are carried by the wind fluctuations, since heat is a quasi passive
contaminant of the atmosphere. In consequence, it is quite reasonable to treat the temperature variance
Spectrum E T (k) in a similar way to that of turbulent kinetic energy.
Let us consider first the temperature variance spectrum inside of the inertial and dissipation ranges. In
both ranges, the following relations can be assumed

3Py(k) dTT (k)
and dPT (k) 9Dt (k)

3k 9k 9k 9k (36)

As has been shown by STRAKA et al. (1978), the three-dimensional spectral density of temperature
variance within the inertial and dissipation ränge (= ID), i.e. for k > k m , may be expressed by

E t (k) = E*P (k) = ßxe ’  1/3  k~ 5/3 ( l  + a 1 /2  e“ 1/6  X 1/2 k 2/3 ) •

r / 3  < 37  )
• exp |~ß  ~e  1/3 Xk4/3 + ct 1 /2  e 1/2  X 3/2 k 2 j j

7 is the Prandtl number andX
where a =

X - 2 X j k 2 ET (k) dk

o

(38)

is the dissipation of temperature variance by molecular heat conduction. The spectrum (37) results from
Equation (4) by an analogous treatment to the derivation of the turbulent energy spectrum in these
ranges. Under the condition k m <k<  ky where k T = (eX 3 ) 1 /4  Equation (37) leads to

ET (k) = E*P (k) = /?xe~ 1/3  k’  s/3 (39)

For the temperature -variance spectrum in the inertial and production ränge PANOFSKY (1969) has
shown that the one-dimensional spectrum E 1T (kJ obeys Monin-Obukhov similarity theory i.e.

kiErrtk.) 
4 ' 6Y  ™ (e?) £

t *
i f -  <0

if >0

(40)

and

(41)
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The corresponding three-dimensional spectrum of temperature variance E? (k) can again be obtained
by means of the relation

r dE 1T(k  1 ) ' |
E k >4-  k - - ik i -J  ki=k

which is correct only for isotropic turbulence and will be used here as an approximation.
From (40) and (41) we find

/ \ r i 2 r / n” 8/3

E? , (k) = -11 .5T iYm r k 1 + 1.5 k i f p -<0  (43)
an  d \ L * /  LZ7TI m J L \Z7TI m / J L*

, \ .8 /3  S/3  -2

E? I (k) = -6 .25T iYm p )  1 + 1.5 k s '3 k sz3 if >0  (44)\L* /  L ImJ L X- Im/ J L*

Both, the dimensionless wave number fm at the maximum of E 1T (kJ and the Ordinate Y m (z/L*) at that
maximum, are functions of z/L*. In this study empirical relationships for fm and Y m were used as ob-
tained earlier by PANOFSKY (1969).
From (42) it is evident that E 1T (kJ and E T (k) are similar in the inertial subrange, i.e. from (39) it
follows

E 1T (kJ = ßT x e"  1 /3  k? s /3

for k i  > k [ (45)

10

10’

10’ 10’ 10’

Figure 2
Three-dimensional energy spec-
trum for z/L* values from 0.5 to
- 2.0. Parameter is z/L*

Bild 2
Dreidimensionales Energiespek-
trum für z/L* Werte von 0.5 bis
- 2.0. Parameter is z/L* X

69



This spectrum overlaps with Equations (40) and (41), respectively in the inertial ränge. From (40) and
(41) we find with

ki  > k lm (46)

(k lm is the characterisic wave number of the one-dimensional spectrum, where it shows its maximum)
the one-dimensional spectra in the inertial ränge

E 1T (k 1 ) = T*  2.3 Y m (p - )  [27rf m ] M z-  2o  k? s '3 for CO (47)

and

E„(k  1 ) = T 2» 1 .7Ym (p - )  [2  Ir fm J M z-  M k[  5 ' 3 for S -0  (48)

Hence, Equations (47) and (48) have to be identical with (45).
Thus Equations (45) and (46) yield

,3T = K - °  2.3 Y m | 
Z- )  (2 Ir f m ] 2 ', L, c l 

Z - |  -PH Al  for CO.  (49)
XL* '  L \ L * /  J L \ L * /  -1

k E e ( k )  inK  2

10’

10' 10’

• Figure 3

Threedimensional temperature
variance spectrum for z/L* va-
lues from 0.5 to - 2.0. Parame-
ter is z/L*

• Bild 3

Dreidimensionales Spektrum
der Temperaturvarianz für z/L*
Werte von 0.5 bis - 2.0. Parame-
ter ist z/L*

k in cm" 1
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Here e and x have been expressed by Equation (17). From (45) and (47) we find for ßT in the case of
stable conditions (z/L* > 0)

ß r = K - 4 '3 1.7 Y m (jM (2nfm ] M Mr.)] [-(*)] 7
for > 0 (50)

Since Equation (45) expresses the Kolmogorow law for the one-dimensional spectrum Ej  T (kJ of tem-
perature variance, the quantity ßT should be constant in analogy with the law for the energy spectrum.
However, it is obvious from (49) and (50), that, if the used empirical relationships are not completely
consisteot to eädi ötitär, the values of ßr wfll changp slightly with stability. This is indeed the case as
can. be seen from die values given in Table l ; disrcrepancies appear near — = 0 what should be expected
because of experimental uncerlaintjes, e.g. of Y m (z/L*). *

z z
By averaging ßT over the stability ränge from — = - 1 to — = 0,5 we obtain:L* L*

ßr  0.85 (51)
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• Figure 4
Spectral eddy diffusivity for
different stabilities z/L* ranging
from 0.5 to - 2.0.

• Bild 4
Spektraler turbulenter Diffusions-
koeffizient für unterschiedliche
Stabilitäten z/L* im Bereich von
0.5 bis - 2.0.
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• Figure 5. Spectral eddy viscosity according to Heisenberg’s assumption (see Equation (55)) for values of z/L* = 0,
-0 .5 , -  2.0, and 0.5

• Bild 5. Spektraler turbulenter Diffusionskoeffizient entsprechend Heisenberg’s Annahme (siehe Gleichung (55)) für
Werte von z/L* = 0, - 0.5 , - 2.0 und 0.5

■ Table 1. Kolmogorov constant ßp for the one-dimensional temperature spectrum computed from Equation (49) and
(50) respectively

■ Tabelle 1. Kolmogorov Konstante ßp für das eindimensionale Temperaturspektrum berechnet aus Gleichung (49) bzw. (50)

z
— -1 ,0  -0 ,6  -10  -8  + 10 -8 +0,2  +0,4
L*

ßT 0,820 0,623 0,688 0,490 1,072 0,954
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L # 
= ' 2 ' 0

* = ♦0,5

® Figure 6
Spectral eddy thermal conductivity for
a stable (z/L# = 0.5) and unstable case
(z/L* = - 2.0)

• Bild 6
Spektraler turbulenter Wärmeleitkoef-
fizient für einen stabilen (z/L* = 0.5)
und einen instabilen Fall (z/L* = — 2.0)

GARRATT (1972) reported from boundary-layer measurements over water ßT =0.8  while measurements
over flat, uniform terrain supply ßr = 0.82 (KAIMAL, WYNGAARD,IZUMI and COTE, 1972). Both experi-
mental values show satisfactory agreement with our estimate. In the following calculations we used
ß'P =0.8.
Therefore, the corresponding constant ß in Kolmogorov’s law (39) for the three-dimensional spectrum
Et (k) will be taken to be

0 = 4/3 (52)

In consequence of (40), (41) and (42), the maxima of E T (k) should be observed in the ränge of wave
numbers from 4 X 10  -4 to 3 X 10~ 3 cm’ 1 (if: - 2 < z/L* < + 0.4), whereas the dissipation of tempe-
rature variance is expected to become important at kj = (g/X 3 ) 1/4  . Using the values e = 20 cm 2 s -3  and
X = 0.1 82 cm 2 s ’  1 , we obtain kT = 8 cm -1  . Hence, the point k* - - 0.09 an" 1 for matching the two
spectral functions lies well within the inertial ränge. Therefore, E ?' (k) and Ey’ (k) can be matched at
the same wave number k = 0.09 cm -1 where E}P (k) and Eg1 (k) bäve been connectßd.
Because of the uncertainties of the different empirical constants we define the spectrum of temperature
variance E T (k) in the ränge 0 < k < + °° by

c 2 E™ (k)

EjP (k)

if 0<k<k*

if k*<k<oo
(53)E t (k) =
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where

E‘ D (k„)

E?’(k.) '

As a measure of accuracy, we may again use the difference Ax  between the value of x as given by (17)
and

OO k* OO

Xin t=2X J k 2 ET (k) dk = 2 X J c 2 k 2 E™ (k) dk + 2 X J k 2 E*P(k)dk. (54)

0 0 k *

Using the above mentioned values for X, i> and e, numerical calculations show that the factor c 2 remains
between 0.75 and 1 .63, if k* = 0.09 cm' 1 and z/L* varies between -1 .0  and 0.4. x is of the Order 10“ 4

to 10 -3 cm 2 s" 1 ; the difference Ax = Ix - Xint I is, however, always smaller than 10"  7 cm 2 s -3  . No
considerable change of this Situation was found when k* was varied between 0.06 and 0.12 cm -1 .
The rather large value c 2 = 1 .63 occured for z/L* = + 10  -8  . As PANOFSKY (1969) pointed out, the
expressions for the temperature spectra will be erratic in the ränge of z/L* from - 0.05 to 0.05.
Avoiding this ränge, then c 2 remains close to one.

These spectral densities for E e (k) and E T (k) have been used as input data in order to study the behavior
of the spectral eddy viscosity v (k), thermal diffusivity (k), covariance spectra 0 U1 U3 (k), 0ÖU3 (k),
spectral transfer functions and the spectral distribution of production and dissipation.
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• Figure 7
Cospectra of the momentuni flux (log-log-plot) for
z/L* values ranging from 0.4 to — 2.0

• Bild 7
Kospektren für den Impulsfluß (log-log-Darstellung)
für z/L* Werte von 0.4 bis — 2.0
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Results and discussion3.

3 .1  . The three-dimensional spectra of turbulent energy and temperature variance

As has been pointed out in the previous section, three-dimensional spectra cannot be measured
directly but have to be deduced frorn accessible one-dimensional spectra. We have found them by trans-
forming one-dimensional spectra of the vertical velocity component valid in the energy -containing ränge
and in the inertial subrange and matching it to a three-dimensional spectrum which describes spectral
energy densities in the inertial and dissipation ränge. The composite spectra are shown in Figures 2 and 3.
Figure 2 shows the spectral density of the turbulent kinetic energy on a log-log-plot for different stabili-
ties. Since we held e constant, all curves are brought into coincidence in the inertial and in the dissipation
ränge. The dependence on stability then appears at smaller wave numbers where the spectral curves
split according to z/L*.

3.2. Spectral eddy viscosity v (k)  and thermal diffusivity v T (k)

The present paper differs from previous studies that v (k) and (k) have not been introduced
by hypothetical analytic functions but are deduced from empirical input spectra of turbulent kinetic
energy and temperature variance.
As is evident from (15) and (16) v (k) and pT (k) are specified if Ee (k) and Et (k) are known.
The results for p(k) are presented in Figure 4.  In neutral and stable stratification p(k) decrease mono-
tonically. However the decrease at small wave numbers, say k < 3 • 10"  3 cm -1  , is almost unnoticable and
p(k) is approximately equal to p(0) for this whole ränge. Under neutral conditions it is easy to see from
Equation (15) that

p(0) = K m = (55)

In general, the level of the plateau of r (k)  is determined by the thermal stratification. At larger wave
numbers all curves converge into one single curve, where the slope is in a small region close to  - 4/3 but
then it decreases more rapidly caused by the exponential decrease of the spectral density.
For comparison, p(k) has also been determined from Heisenberg’s formula

y(k) = a H (55)
k

where a H = 0.5. E e (k) was introduced according to Eqaution (27) and (29). The results for different
stabilities z/L* = 0.5, 0 ,  - 0,5, - 2.0 are summarized graphically in Figure 5. It may be noticed that both
results exhibit in the inertial subrange a - 4/3 slope but deviate substantially at smaller wave numbers.

The curves for pt (k) display much the same shape as the neutral and stable curves of v (k) as shown in
Figure 6 .  Only the plateau at small wave numbers is somewhat narrower for pT (k) and it Starts to decrease
at smaller wave numbers than p(k). The most interesting features of p(k) are shown up under unstable
conditions, when it is dominated by an increasing peak with decreasing stability at wave numbers
0.001 cm -1  to 0.01 cm -1  , This may be explained from the different locations of the maximum of
spectral density for turbulent energy and temperature variance. The maximum of Ej (k) occurs at sub-
stantially smaller k than that of E e (k). In unstable stratification (9T/9z < 0) the second term in Equation
(15) is negative.
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The shift of the maximum of the spectral density is determined through the given empirical data for
<pe (z/L*). These data were chosen from KAIMAL et al. (1972) and show a minimum at z/L* = 0.
A similar plot shows the spectral density of temperature variance (Figure 3). Since we did not normalize
these spectra by the dissipation of temperature variance x the temperature spectra do not appear as a
single curve at the high wave number ränge. The position of the maximum in these plots are again a
direct consequence of the empirical functions for fm (z/L*) and Y m (z/L*) as given by PANOFSKY (1969)
The composite spectra show both a - 5/3 ränge which extends for the temperature spectrum to lower
wave numbers compared to the turbulent kinetic energy spectrum.

However, its magnitude decreases more rapidly at small wave numbers with increasing k than the first
term because ET (k) exhibits a steeper positive slope than E e (k).
Physically, this may be interpreted as a counteraction of thermal induced turbulence to shear produced
turbulence at small wave numbers. Strong convection tends to produce organized motions and destroy
favorable conditions for shear induced turbulence. Fürther consequences of this maximum of p(k) will
be discussed in the following section.
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• Figure 8
Cospectra of the momentum flux
(linear-log-plot) for z/L* values
ranging from 0.4 to - 1.0

• Bild 8
Kospektren für den Impulsfluß
(linear-log-Darstellung) für z/L*
Werte von 0.4 bis - 1.0
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3.3. Cospectra 0 U1U3 (k) and 0 ÖU3 (k). Spectral densities of Transfer of energy and
temperature variance

We recall again our procedure of solving the equations for the energy and temperature spectra.
Instead of using one of the well-known assumptions for the spectral eddy viscosity and thermal diffusi-
vity we constructed three-dimensional spectra for the turbulent energy and temperature variance from
measured one-dimensional spectra. Therefore we find as a result eddy viscosity, thermal diffusivity and
the cospectra of vertical momentum flux and vertical heat flux. These cospectra will now be discussed.
Figure 7 shows the computed cospectra of momentum flux on a log-log plot for different stabilities.
The cospectra agree with a - 7/3 power law (- 4/3 for the logarithmic co-ordinate) in the inertial subrange.
According to our procedure we may conclude that the measured power spectra of turbulent kinetic
energy and temperature variance are in agrrement with a - 7/3 law in the momentum cospectra. Figure 8
shows the same spectra in a log-linear plot. Two interesting features may be noted. First, under stable
conditions the maximum of spectral density shifts to smaller wave numbers with decreasing stability.
For z/L* < 0 the curves display no shift of the location where the maximum appears but an increasing
maximum spectral density with decreasing z/L*. Second, there is a very interesting behavior of the
unstable cospectra at low wave numbers. For all negative z/L* the cospectra reveal a sign reversal indi-
cating an upward momentum flux caused by larger convective elements. Although the form of the
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• Figure 9
Cospectra of the momentum flux (log-log-plot) for
z/L* = - 0.025 and z ranging from 10 to 25 m

• Bild 9
Kospektren für den Impulsfluß (log-log-Darstellung)
für negative z/L* = - 0.025 und z von. 10 bis 25 m
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Spectrum may be uncertain in that region because of erratic estimates of the input power spectra this
sign reverse seems to be a real fact. In the last years several authors have reported such a behavior of
momentum flux spectra under unstable conditions. ZUBKOVSKY and KOPROV (1969) and WALK (1970)
have published spectra of the vertical momentum flux. Their results showed a clear tendency to positive
values at low wave numbers. The same behaviour was found by POND et al. (1971) and also by KAIMAL
et al. (1972). KAIMAL e t  al. mentioned a tendency to positive values of the spectral momentum flux
under unstable conditions for wave numbers k < 1 ,5 • 10  -4 cm -1 . The results in Figure 8 indicate a sign
reverse at wave numbers about k = IO -3  cm -1  . This may be a consequence of the strong anisotropy of
atmospheric turbulence at those scales. Since we used the energy spectrum of vertical velocity which is
distinctly different in this ränge from the energy spectrum of the longitudimal component, we applied
in an additional test one-dimensional spectra of the longitudinal and the vertical component and derived
a three-dimensional spectrum from

1 9E 1E (ki)  3E 3E (kJ
2 3ki k l  3k jEe (kJ = (56)

Using E 3E (kJ as given by BUSCH and PANOFSKY (1968) and the longitudinal spectrum E 1E (kJ from
a paper by FICHTL and MCVEHIL (1969) a cospectrum was found with a sign reversal approximately at
k « 10  -4 cm -1 (see Figure 9). This is in satisfactory agreement with observations.
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• Figure 10
Cospectra of the heat flux (log-
log-plot) for negative z/L* values
(unstable) ranging from - 0.05 to
-2 .0

• Bild 10
Kospektren für den Wärmefluß
(log-log-Darstellung) für negative
z/L* Werte von - 0.05 bis - 2.0
(labile Schichtung)
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• Figure 11
Cospectra of the heat flux (log-
log-plot) for positive z/L* values
(stable) ranging from 0.05 to 0.4

• Bild 1 1
Kospektren für den Wärmefluß
(log-log-Darstellung) für positive
z/L* Werte von 0.05 bis 0.4
(stabile Schichtung)

Figures 10 and 1 1 show the computed cospectra for the vertical heat flux for unstable (Figure 10) and
stable conditions (Figure 1 1). Again in the inertial subrange the heat flux cospectra 00U3  (k) show a
rather broad region with a - 7/3 shape which is supported by direct measurements by KAIMAL et al.
(1972).
Under stable conditions the shift of the maximum point is more pronounced than with the unstable
cospectra in much the same way as the cospectra of momentum flux. It may be noticed that heat at all
scales is transported in the same direction.

Finally, we consider the spectral transfer functions for turbulent energy (Figure 12) and temperature
variance (Figure 13). For large Reynolds numbers production and dissipation are separated wide enough
in scale. Therefore negative transfer (at small wave numbers) may be interpreted also as a production
spectrum and positive transfer as a dissipation Spectrum.
As a consequence of our input parameters with e being constant the transfer functions for different
stabilitites converge to a single curve where it is identical to the dissipation spectrum. The area of the
dissipation spectrum (positive values of transfer) is equal to the area at the negative side, the total
production having the same value for all stabilities. The production region shows a systematic progression
to smaller wave numbers with decreasing z/L* which breaks down as z/L* becomes negative. There is a
tendency at the low wave number end of the transfer spectrum to decrease again with decreasing z/L*
under unstable conditions so that production becomes confined to a narrow band in the spectrum. This
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• Figure 12

Spectral transfer of turbulent
kinetic energy for z/L* from
0.5 to - 2.0

• Bild 12

Spektraler Transport turbulen-
ter kinetischer Energie für z/L*
von 0.5 bis - 2.0

is a consequence of the behaviour of the cospectra of momentum and heat flux. Since the production
of kinetic energy is given by

dPE (k) äÜ!  g
- k —3k = { -  k 0ui u 3 (k)} + k 0 ÖU3 (k),

the sign reversal of 0 Uj  U3 (k) at low wave numbers under unstable conditions causes a decrease of pro-
duction of turbulent energy and narrows the production region.
From both Figures 12 and 13 the inertial subrange may be indentified as a region with small values of
production and dissipation. The ideal assumption, often applied with similarity arguments of vanishing
production and dissipation is only satisfied in a small region. The transfer function of temperature variance
is qualitatively similar to  the energy transfer except for the lack of a counteracting mechanism to pro-
duction at low wave numbers. Naturally, the transfer increase with increasing z/L*.

4. Conclusion

The dynamical equations for the spectrum of turbulent kinetic energy and for temperature
variance has been used to simulate the spectral transfer of kinetic energy and temperature variance.
Since the production terms were parameterized by a relation to the spectrum of kinetic energy and
temperature variance it was also possibele to describe the cospectra of vertical fluxes of momentum
and heat.
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Figure 13
Spectral transfer of temperature
variance for z/L* from 0.5 to
-2 .0

Bild 13
Spektraler Transport von Tem-
peraturvarianz für z/L* von 0.5
bis - 2 .0

Several features of the spectral components are of primary interest. The cospectra derived via the
elementary parameterization from empirical one-dimensional power spectra of turbulent energy and
temperature variance exhibit displacements of the maximum spectral density as is also given in observed
cospectra. This displacement is most pronounced in stable thermal conditions and disappears under un-
stable conditions. The momentum cospectra show a sign reversal at low wave numbers for negative z/L*
which compares well with observations. The physical mechanism leading to an upward momentum
transport at low wave numbers is, however, still not very clear. In the heat flux cospectra no sign reversal
was found.
The spectral transfer is negative at low wave umbers and positive at high wave numbers, corresponding
to a continual transformation of low wave number energy to high wave numbers by eddy Stretching. *
In the framework of the present model several assumptions had to be introduced, some of which are
connected with isotropy. The results indicate however, that useful Information on the turbulence in the
atmosphere may be derived.
In this way it is possible to derive a consistent picture of the different spectral components which are
known from measurements. Therefore, it seems promissing to proceed with similar studies although it
might be necessary to modify some of the introduced assumptions.
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Appendix

We consider a stationary and homogeneous turbulent flow with constant gradients of the mean
velocity Ui (in the Xj direction; U 2 = U 3 = 0) and of mean temperature T in the vertical, i.e. dUi/dx  3 =
const and dT/dx 3 = const. A Cartesian coordinate System (x j ,  x 2 , x 3 ) is used with x 3 increasing vertically
upward.
Applying Boussinesq’s approximation (LUMLEY and PANOFSKY, 1964) to velocity fluctuations
Ui = Uj - Ui (i = 1 , 2, 3) and to temperature fluctuations 6 = T - T (an overbar denotes an average value)
the following equations are obtained :

öui 3Ui _ 3uj öui 3ui i 3p 3 2 Ui g
— + u; — + Uj — + u; t ------ m — - = - - — + v - — ~ + — 6 S 3i3t J 3xj J 3xj J 3xj J 3xj P 3x, 3xj3xj T o

( i=  1 ,2 ,3 )
30 3T r . 3Ö 30 30 . 3 2 0
3t + Uj 3xj + j 3xj Uj 3xj U1 3xj 3xj 3xj

(Al )

(A2)

— = 0 (continuity equation) (A3)dXj

where p, p, g, T o , v and X are respectively pressure fluctuations, density, gravitational acceleration, mean
temperature of the flow field, kinematic viscosity and molecular thermal conductivity.
The covariances Cn(ir) = u iA  Uj B and C T y(ir) and 0 A 0 B between velocities and temperatures at two
points A and B a distance ir = (r l s  r 2 , r 3 ) = AB apart are then given by (HINZE, 1959)

3 dUj r 313Cü(ir) = 0 = - [ 2C  i3 (ir) + r 3 (ir) J - {S  i>k i  (ir) - S ik>i (ir)} (A4)

3 2 g+2  "äÄ c“ ( r )+2  f; T«. 3 (,r)

3 r 3T 3Ü. a 1
ät Ctt (ir) = 0 = " I? äT, T"- 3 (lr) + ' 3 äT, Ctt (,r)

a a 2 (A5)

“ [Sfl, kö ( ,r ) “ S0 k ,0 (ir)] + 2 X CTT (ir)3r k dr k 3r k

where

Si ,k i (  l r  ) - u iA u kB u iB , S j  k j  i ( i r )  - U iA  U kA U iB  , (ir) - 0 A U 3B

and

S«,ko ( , r) ~ 0A u kB 0 B , S 0k> ö (ir) - 0 A u kA 0 B

Introducing the Fourier transform of the covariance fuctions and averaging in the wave-number space
over spherical surfaces of the radius k = I Ik I = x/k 2 + k + k we find the dynamic equation for the
spectrum of kinetic energy Ee (k) and of one half of the temperature variance Ep (k):

3 3U, g
Ee (k,  t) = 0 = - 0 U] u , (k) + F e (k) - 2 pk  2 E e (k) + 0 8u  , (k) (A6)

Et (k,  t) = 0 = - 08U3  (k) jl- + F t (k) - 2 X k 2 Et (k) (A7)
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0m u 3 (k), 0öu 3 (k), Fg (k) and F T (k) are respectively the spectrum of the vertical momentum flux
UiU 3 , vertical temperature flux 0u  3 , spectral transfer of one half of temperature variance. In addition,
2 v k 2 E e (k) and 2 X k 2 ET (k) give the spectral distribution of viscous energy and temperature dissipa-
tion.
By integrating over all wave-numbers one obtains

00 00

E = J Eß (k) dk | Ä2 = J ET (k) dk
0 0

00 00

uTu; = J </>U1 U3 (k) dk

0

0u  3 = J 0 0U3  (k)dk

0
(A8)

00 00

e = 2 v J k 2 E e (k) dk X = 2 X J k 2 ET (k) dk

0 0

F t (k) dk0=  F E (k)dk

E is the mean turbulent kinetic energy, 0 2 temperature variance, Ü4Ü3 the vertical momentum flux, 0u  3
vertical temperature flux, e the viscous dissipation of turbulent kinetic energy and x temperature dissi-
pation.
Integrating Equation (A6) and (A7) both first over all k(0 ,  °o) and subtracting the same equations
integrated over the Intervall (0, k) leads to the budget equations of turbulent kinetic energy and tempe-
rature variance for wave-numbers from k to infinity (for the “smaller eddies”)

00 k 00 00

3 f C 3Ui r g r— J EE (k )dk  = 0 = - J F E (k )dk -— J 0 U1 U3 (k) dk + — J 0ÖU3 (k )dk -

k 0 k k

00 (A9)

- 2 v J k 2 Ee (k) dk
k

00 k 00 00

J E T (k) dk = 0 = j F T (k )dk - | J  [ 0 0U3  (k )dk -2X j k 2 ET (k )dk  (A10)

k 0 k k

In accordance with the transfer model proposed by HEISENBERG (1948) we can write
k k

T E (k) = - J  F E (k) dk = 2 p(k) J k 2 E e (k) dk (A l l )

0 0
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and k

T t (k) = - j Ft (k) dk = 2pt (k)

k

J k 2 ET (k )dk

0 0

where the spectral eddy viscosity p(k) and the spectral thermal diffusivity pt (k) have been introduced

(A12)

For the terms J 0 U]  U3

k
(1953, 1954)

(k) dk and J 0ÖU3 (k) dk we follow the assumptions introduced by TCHEN
k

- 0 U1 u 3 (k) dk = p* (k) —
J OÄ 3
k

and by MONIN(1962)

(A13)

- [ 0öu 3 (k) dk = Py (k)
k

with new spectral coefficients p(k) and Py (k). TCHEN (1954) concluded from a physical point of view
that the diffusivities appearing in the production term in the region (k, oo), i.e.

(A14)

- J 0 U1 U3 (k) dk and the ransfer term should be equal. Since passive contaminents of the at-

k

mosphere such as temperature fluctuations are carried by velocity fluctuations, it seems reasonable to
choose the corresponding assumptions for the temperature variance budget. Therefore we use

p(k) = p*(k) (Al  5)

pt (k) = p| (k) = a (k) p (k) (A 1 6)

where a(k) may be considered as a spectral reciprocal Prandtl number. This leads to our final model
equations

k —

J k 2 Ee (k) dk + v (k)

0

k

e - 2 p J k 2 E e (k) dk = 2 v (k)

o
“ (k) T o 9x 3

(A17)

k

k 2 E t (k) dk + a(k) v (k)

k

X - 2 X J k 2 E t (k) dk = 2 a (k) v (k) J

o o

2

(Al  8)

with the definition of dissipation of kinetic energy e = 2 p j k 2 E e (k) dk and dissipation of temperature

variance o

X = 2 X J k 2 ET (k) dk.
o
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