Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Adapting the PyCBC pipeline to find and infer the properties of gravitational waves from massive black hole binaries in LISA

MPG-Autoren
/persons/resource/persons266282

Wu,  Shichao
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons206600

Nitz,  Alexander
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Weaving, C. R., Nuttall, L. K., Harry, I. W., Wu, S., & Nitz, A. (2024). Adapting the PyCBC pipeline to find and infer the properties of gravitational waves from massive black hole binaries in LISA. Classical and Quantum Gravity, 41(2): 025006. doi:10.1088/1361-6382/ad134d.


Zitierlink: https://hdl.handle.net/21.11116/0000-000D-66A0-B
Zusammenfassung
The Laser Interferometer Space Antenna (LISA), due for launch in the mid
2030s, is expected to observe gravitational waves (GW)s from merging massive
black hole binaries (MBHB)s. These signals can last from days to months,
depending on the masses of the black holes, and are expected to be observed
with high signal to noise ratios (SNR)s out to high redshifts. We have adapted
the PyCBC software package to enable a template bank search and inference of
GWs from MBHBs. The pipeline is tested on the LISA data challenge (LDC)'s
Challenge 2a ("Sangria"), which contains MBHBs and thousands of galactic
binaries (GBs) in simulated instrumental LISA noise. Our search identifies all
6 MBHB signals with more than $98\%$ of the optimal signal to noise ratio. The
subsequent parameter inference step recovers the masses and spins within their
$90\%$ confidence interval. Sky position parameters have 8 high likelihood
modes which are recovered but often our posteriors favour the incorrect sky
mode. We observe that the addition of GBs biases the parameter recovery of
masses and spins away from the injected values, reinforcing the need for a
global fit pipeline which will simultaneously fit the parameters of the GB
signals before estimating the parameters of MBHBs.