

Supplementary Information for

Examining the generalizability of research findings from archival data

Andrew Delios^{†*}, Elena Giulia Clemente[†], Tao Wu[†], Hongbin Tan, Yong Wang, Michael Gordon, Domenico Viganola, Zhaowei Chen, Anna Dreber, Magnus Johannesson, Thomas Pfeiffer, Generalizability Tests Forecasting Collaboration, Eric Luis Uhlmann^{†*}

† The first three and last authors contributed equally.

* Corresponding authors: Andrew Delios; Eric Luis Uhlmann Email: <u>andrew@nus.edu.sg; eric.luis.uhlmann@gmail.com.</u> Generalizability Tests Supplement

Table of Contents

Appendix A: Names and affiliations of forecaster-authors
Supplement 1: Overview of articles included in the generalizability initiative
Supplement 2: Process for conducting reproductions and generalizability tests
Supplement 3: Forecasting survey materials18
Supplement 4: Pre-registered analysis plan for the forecasting survey61
Supplement 5: Reproduction and generalizability tests for each effect
Supplement 6: Detailed report of the forecasting analyses
Supplement 7: Further analyses of reproducibility and generalizability107

Appendix A – Names and affiliations of forecaster-authors.

The following co-authors lent their time and expertise as contributors to the forecasting study and are credited as "Generalizability Tests Forecasting Collaboration" in the author string. Names and affiliations are listed in this online appendix solely due to word length constraints in the main manuscript.

Ahmad M. Abd Al-Aziz, The British University in Egypt (BUE), Faculty of Arts and Humanities

Ajay T. Abraham, Seattle University

Jais Trojan, Keele University, Newcastle, UK (School of Pysch)

Matus Adamkovic, Institute of Social Sciences CSPS, Slovak Academy of Sciences & Institute of Psychology, Faculty of Arts, University of Presov

Elena Agadullina, National Research University Higher School of Economics

Jungsoo Ahn, Ivey business school, Western University

Cinla Akinci, University of St Andrews

Handan Akkas, Ankara Science University

David Albrecht, Maastricht University

Shilaan Alzahawi, Stanford University, Graduate School of Business

Marcio Amaral-Baptista, Center for International Studies - ISCTE - University Institute of Lisbon

Rahul Anand, Aarhus BSS

Kevin Francis U. Ang, Value Care Health Systems

Frederik Anseel, UNSW Sydney Business School

John Jamir Benzon R. Aruta, De La Salle University, Manila, Philippines

Mujeeba Ashraf, University of the Punjab, Lahore

Bradley J. Baker, Temple University

Xueqi Bao, INSEAD

Ernest Baskin, Saint Joseph's University

Hanoku Bathula, The University of Auckland

Christopher W. Bauman, University of California, Irvine

Jozef Bavolar, Pavol Jozef Šafárik University in Košice, Faculty of Arts, Department of Psychology

Secil Bayraktar, TBS Business School

Stephanie E. Beckman, Madison College

Aaron S. Benjamin, University of Illinois at Urbana-Champaign

Stephanie E. V. Brown, Texas A&M University

Jeffrey Buckley, Faculty of Engineering and Informatics, Athlone Institute of Technology & Department of Learning, KTH Royal Institute of Technology

Ricardo E. Buitrago R., Universidad del Rosario

Jefferson L. Bution, School of Economics, Business and Accountancy at the University of Sao Paulo

Nick Byrd, Stevens Institute of Technology

Clara Carrera, INSEAD

Eugene M. Caruso, UCLA Anderson School of Management

Minxia Chen, INSEAD

Lin Chen, INSEAD

Eyyub Ensari Cicerali, Nisantasi University, Istanbul

Eric D. Cohen, State University of Campinas

Marcus Crede, Iowa State University

Jamie Cummins, Ghent University

Linus Dahlander, ESMT Berlin

David P. Daniels, NUS Business School, National University of Singapore

Lea Liat Daskalo, Ben-Gurion University of the Negev

Ian G. J. Dawson, University of Southampton, UK

Martin V. Day, Memorial University of Newfoundland

Erik Dietl, Loughborough University

Artur Domurat, Kozminski University

Jacinta Dsilva, University of Balamand Dubai

Christilene du Plessis, Singapore Management University

Dmitrii I. Dubrov, The HSE University Basic Research Program, National Research University Higher School of Economics, Moscow, Russian Federation

Sarah Edris, Maastricht University, School of Business and Economics

Christian T. Elbaek, Aarhus University, Department of Management

Mahmoud M. Elsherif, Leicester University and University of Birmingham

Thomas R. Evans, School of Human Sciences, University of Greenwich

Martin R. Fellenz, Trinity Business School, Trinity College Dublin, Ireland

Susann Fiedler, Vienna University of Economics and Business

Mustafa Firat, University of Alberta

Raquel Freitag, Federal University of Sergipe

Rémy A. Furrer, University of Virginia

Richa Gautam, University of Delaware

Dhruba Kumar Gautam, Tribhuvan University, Faculty of Management, Kathmandu, Nepal

Brian Gearin, University of Oregon

Stephan Gerschewski, University of Kent, UK

Omid Ghasemi, School of Psychological Sciences, Macquarie University

Zohreh Ghasemi,

Anindya Ghosh, Tilburg University

Cinzia Giani, DiECO, Università degli Studi dell'Insubri

Matthew H. Goldberg, Yale University

Manisha Goswami, Institute of Business Management, GLA University, Mathura

Lorenz Graf-Vlachy, TU Dortmund University

Jennifer A. Griffith, Peter T. Paul College of Business & Economics, University of New Hampshire

Dmitry Grigoryev, National Research University Higher School of Economics

Jingyang Gu, The University of Hong Kong

Rajeshwari H, Karnataka State Open University

Allegre L. Hadida, University of Cambridge

Andrew C. Hafenbrack, Foster School of Business, University of Washington

Sebastian Hafenbrädl, IESE Business School

Jonathan J. Hammersley, Western Illinois University, Dept. of Psychology

Hyemin Han, University of Alabama

Jason L. Harman, Louisiana State University

Andree Hartanto, Singapore Management University

Alexander P. Henkel, Open University of the Netherlands

Yen-Chen Ho, National Chung Hsing University

Benjamin C. Holding, Department of Sociology, University of Copenhagen & Department of Clinical Neuroscience, Karolinska Institutet

Felix Holzmeister, University of Innsbruck, Department of Economics

Alexandra Horobet, Bucharest University of Economics Studies

Tina S.-T. Huang, University College London

Yiming Huang, Nanjing University

Jeffrey R. Huntsinger, Loyola University Chicago

Katarzyna Idzikowska, Kozminski University

Hirotaka Imada, University of Kent

Rabia Imran, Dhofar University

Michael J. Ingels,

Bastian Jaeger, Vrije Universiteit Amsterdam

Steve M. J. Janssen, University of Nottingham Malaysia

Fanli Jia, Seton Hall University

Alfredo Jiménez, Department of Management, KEDGE Business School

Jason Lu Jin, Advanced Institute of Business, Tongji University

Niklas Johannes, Oxford Internet Institute, University of Oxford

Daniel Jolles, University of Essex

Bibiana Jozefiakova, Olomouc University Social Health Institute, Palacky University Olomouc, Czechia

Pavol Kačmár, Department of psychology, Faculty of Arts, Pavol Jozef Šafárik University in Košice

Tamara Kalandadze, Ostfold University College

Kyriaki Kalimeri, ISI Foundation

Polly Kang, National University of Singapore

Jaroslaw Kantorowicz, Leiden University

Didar Karadağ, Lancaster University

Hamid Karimi-Rouzbahani, University of Cambridge

Daisy Mui Hung Kee, Universiti Sains Malaysia

Lucas Keller, Department of Psychology, University of Konstanz

Haider A. Khan, University of Denver

Mikael Knutsson, Linköping University

Olga Kombeiz, Loughborough University

Aleksey Korniychuk, Copenhagen Business School

Marta Kowal, University of Wroclaw, Poland

Johannes Leder, University of Bamberg

Liang Wenhao Liang, Xiamen University

Taegyeong (Tae) Liew, INSEAD

Fangwen Lin, National University of Singapore

Chengwei Liu, ESMT Berlin

Bin Liu, Xiamen University

Maria Cristina Longo, Department of Economics and Business, University of Catania

Andrey Lovakov, National Research University Higher School of Economics

Mei Peng Low, Universiti Tunku Abdul Rahman

Gerardus J. M. Lucas, Nottingham University Business School, University of Nottingham

Oliver Lukason, University of Tartu

Albert L. Ly, Loma Linda University

Zhuoran Ma,

Alexander Mafael, Center for Retailing, Stockholm School of Economics

Elizabeth A. Mahar, University of Florida

Soheil Mahmoudkalayeh, INSEAD

David Manheim, University of Haifa

Alfred Marcus, University of Minnesota Carlson School

Melvin S. Marsh, Georgia Southern University

Jolie M. Martin, Alpha Edison

Luis E. Martinez, Trinity University

Mario Martinoli, Sant'Anna School of Advanced Studies

Marcel Martončik, Institute of Psychology, Faculty of Arts, University of Prešov, Prešov, Slovakia

Theodore C. Masters-Waage, Singapore Management University

Rui Mata, University of Basel

Hamid Mazloomi, Rennen School of Business

Randy J. McCarthy, Northern Illinois University

Philip Millroth, Department of Psychology, Uppsala University

Mahima Mishra, Symbiosis Institute of Business Management, Pune, Symbiosis International University

Supriti Mishra, International Management Institute Bhubaneswar

Alexander Mohr, WU Vienna

David Moreau, School of Psychology, University of Auckland

Annalisa Myer, The Graduate Center, City University of New York (CUNY), Department of Psychology, NY

Amos Nadler, Fabriik

Sudhir Nair, Peter B. Gustavson School Business, University of Victoria

Gustav Nilsonne, Department of Clinical Neuroscience, Karolinska Institutet

Paweł Niszczota, Poznań University of Economics and Business

Aoife O'Mahony, School of Psychology, Cardiff University

Marc Oberhauser, Friedrich-Alexander University Erlangen-Nürnberg

Tomasz Obloj, HEC Paris

Mehmet A. Orhan, EM Normandie Business School, Metis Lab

Flora Oswald, Pennsylvania State University

Tobias Otterbring, University of Agder

Philipp E. Otto, European University Viadrina

Ivar Padrón-Hernández, Hitotsubashi University

Alan J. Pan, Beijing Normal University

Mariola Paruzel-Czachura, University of Silesia in Katowice

Gerit Pfuhl, UiT The Arctic University of Norway

Angelo Pirrone, Centre for Philosophy of Natural and Social Science, London School of Economics and Political Science, UK

Simon Porcher, IAE Paris Université Paris I Panthéon-Sorbonne

John Protzko, University of California, Santa Barbara

Constantin Prox, INSEAD

Shelly Qi, INSEAD

Rima-Maria Rahal, Max Planck Institute for Research on Collective Goods

Md. Shahinoor Rahman, Department of Psychology, University of Chittagong

Michelle L. Reina, University of Mary Hardin-Baylor

Satyanarayana Rentala, Bharathidasan Institute of Management, India

Zahid Riaz, Lahore School of Economics

Ivan Ropovik, Charles University, Faculty of Education, Institute for Research and Development of Education & University of Presov, Faculty of Education

Lukas Röseler, University of Bamberg

Robert M. Ross, Macquarie University

Amanda Rotella, Department of Psychology, Kingston University London

Leopold H. O. Roth, University of Vienna

Thomas J. Roulet, University of Cambridge

Matthew M. Rubin, INSEAD

Andre Sammartino, University of Melbourne

Johann Sanchez,

Adrian D. Saville, Gordon Institute of Business Science, University of Pretoria

Michael Schaerer, Lee Kong Chian School of Business, Singapore Management University

Joyce Elena Schleu, Radboud University

Leo Schmallenbach, University of Mannheim

Landon Schnabel, Cornell University

Frederik Schulze Spüntrup, Institute for Globally Distributed Open Research and Education

Birga M. Schumpe, University of Amsterdam

Tony Senanayake,

Raffaello Seri, COMAC, University of Southern Denmark & DiECO, Università degli Studi dell'Insubria

Feng Sheng, School of Management, Zhejiang University

- Roary E. Snider, University of Arkansas
- Di Song, School of Management, Zhejiang University
- Victoria Song, Fordham University
- Sylwia E. Starnawska, SUNY Empire State College
- Kai A. Stern, University of North Carolina at Chapel Hill
- Samantha M. Stevens, The Pennsylvania State University
- Eirik Strømland, Western Norway University of Applied Sciences
- Wunhong Su, Hangzhou Dianzi University
- Hao Sun, School of Management, Xiamen University
- Kevin P. Sweeney, Western Kentucky University
- Reina Takamatsu, Graduate School of Education, Kyoto University
- Maria Terskova, National Research University Higher School of Economics
- Kian Siong Tey, INSEAD
- Warren Tierney, INSEAD
- Mariya M. Todorova, INSEAD
- Daniel Tolstoy, Stockholm School of Economics
- Lasse Torkkeli, LAB University of Applied Sciences
- Joshua M. Tybur, Vrije Universiteit Amsterdam
- Francisco J. Valderrey, Tecnologico de Monterrey
- Ana Maria Vallina-Hernandez, Pontificia Universidad Catolica de Valparaiso
- Ranjith P. Vasudevan, Cms business school, JAIN (deemed to be university)
- Gudivada Venkat Rao, SRF-ICSSR, Department of HRM, Andhra University
- Antoine Vernet, University College London
- Tiia Vissak, University of Tartu

Generalizability Tests Supplement

Hinrich Voss, HEC Montreal

Thorsten Wahle, Alliance Manchester Business School

Jonathan Wai, University of Arkansas

Lauren E.T. Wakabayashi, Loma Linda University

Junnan Wang, INSEAD

Peng Wang, BNU-HKBU United International College

Yating Wang, National University of Singapore

Robert W. Warmenhoven, HAN University

Karl Wennberg, Stockholm School of Economics

Georg Wernicke, HEC Paris

Jan K. Woike, University of Plymouth, UK

Conny E. Wollbrant, University of Stirling

Greg Woodin, English Language and Linguistics, University of Birmingham

Joshua D. Wright, St. Joseph's College, NY

Qiong Xia, INSEAD

Zhenzhen Xie, Tsinghua University

Sangsuk Yoon, University of Dayton

Wenlong Yuan, University of Manitoba

Lin Yuan, University of Macau

Meltem Yucel, Duke University

Zhao Zheng, INSEAD

Haibo Zhou, University of Nottingham Ningbo China

Cristina Zogmaister, Università di Milano-Bicocca

Ro'i Zultan, Ben-Gurion University of the Negev

#	Authors	Publication Year	Journal	Impact Factor	UTD List	FT List	Citations	Focal effect
1	Arregle, Miller, Hitt, & Beamish	2016	Journal of International Business Studies	9.98	yes	yes	62	An inverted U-shape between a region's formal institutional diversity and the likelihood of MNEs to enter a country within this region.
2	Azemar & Delios	2008	Journal of the Japanese and International Economies	1.03	no	no	71	A negative relationship between the statutory tax rate of a country and the probability of locating a plant in that country.
3	Arregle, Beamish, & Hébert	2009	Journal of International Business Studies	9.98	yes	yes	176	An inverted U-shape curve between a firm's number of prior foreign subsidiaries and its number of subsequent foreign subsidiaries in a country.
4	Beamish & Jiang	2002	Long Range Planning	4.84	no	no	53	A positive relationship between the timing of a subsidiary entering a market and the profitability of the subsidiary.
5	Chan, Makino, & Isobe	2006	Journal of International Business Studies	9.98	yes	yes	163	An inverted U-shape between the number of the subsidiaries of other MNEs in a host country and the likelihood of setting a subsidiary by an MNE in the same host country.
6	Delios & Beamish	1999	Strategic Management Journal	7.84	yes	yes	916	A positive relationship between a foreign investing firm's assets specificity and that firm's ownership position in its foreign investment.
7	Delios & Beamish	2001	Academy of Management Journal	11.81	yes	yes	973	A positive relationship between a multinational firm's intangible assets and the survival chance of the firm's foreign subsidiaries.
8	Delios & Bjorkman	2000	International Journal of Human Resource Management	3.8	no	no	256	A positive relationship between percent equity ownership and the use of expatriates.
9	Henisz & Delios	2001	Administrative Science Quarterly	9.79	yes	yes	964	A negative relationship between a country's political hazards and the probability of locating a plant in that country.
10	Delios & Henisz	2003	Strategic Management Journal	7.84	yes	yes	781	A moderating effect (weakening) of a firm's experience in politically hazardous countries on the negative relationship between a country's political hazards and the rates of FDI

Supplement 1: Further details on articles included in the generalizability initiative

entry into that country.

11	Delios & Makino	2003	Journal of International Marketing	6.47	no	no	87
12	Dhanaraj & Beamish	2004	Strategic Management Journal	7.84	yes	yes	371
13	Dutta & Beamish	2013	Journal of International Management	3.98	no	no	36
14	Fang, Jiang, Makino, & Beamish	2010	Journal of Management Studies	7.49	no	yes	301
15	Gaur, Delios, & Singh	2007	Journal of Management	11.82	no	yes	473
16	Jiang, Beamish, & Makino	2014	Journal of World Business	6.77	no	no	83
17	Konopaske, Werner, & Neupert	2002	Journal of Business Research	5.48	no	no	90
18	Lu & Beamish	2001	Strategic Management Journal	7.84	yes	yes	2,910
19	Lu & Beamish	2006	Journal of International Entrepreneurship	2.93	no	no	451
20	Lu	2002	Journal of International Business Studies	9.98	yes	yes	660
21	Ma & Delios	2007	International Business Review	4.37	no	no	80

A positive relationship between the timing of foreign market entry and the chances of survival of the subsidiary.
A negative relationship between foreign equity ownership
and the mortality of the subsidiary.
An inverted-U relationship between expatriate deployment and IJV performance.
A moderating effect (strengthening) of the ratio of
expatriates in a foreign subsidiary on the positive
relationship between the level of the parent firm's
technological knowledge and the subsidiary's short-term
performance.

A positive relationship between the institutional distance between the home country and the host country of a subsidiary and the likelihood of the subsidiary general managers (GMS) being a parent country national (PCN).

- A negative relationship between the speed of subsequent subsidiary establishment and the performance of the subsidiary.
- A positive relationship between the use of ethnocentric staffing policies as compared to polycentric staffing policies and the performance of the firm's international ventures.
- A moderating effect (weakening) of exporting activities on the relationship between FDI and performance.
- A positive relationship between the level of exporting activities and an SME's growth.
- A positive relationship between the frequency of adoption of an entry mode in a firm's earlier entries in an environment and its likelihood of using the same entry mode in subsequent entries.
- A positive relationship between a subsidiary's location in Shanghai (economically-oriented city) relative to Beijing (politically oriented city) and its survival rate.

Generalizability Tests Supplement

22	Makino & Delios	1996	Journal of International Business Studies	9.98	yes	yes	669	A moderating effect (weakening) of a foreign parent's host country experience on the positive relationship between having a local joint venture partner and the subsidiary's performance.
23	Wilkinson, Peng, & Brouthers	2008	Journal of International Management	3.98	no	no	127	A moderating effect (weakening) of subsidiary age on the relationship between cultural distance and ownership control (or expatriate staffing ratios).
24	Yiu & Makino	2002	Organization Science	4.95	yes	yes	950	A positive relationship between the likelihood of joint ventures established by other Japanese firms and the likelihood of entering by joint ventures.
25	Beamish & Jung	2005	Management International	N.A.	no	no	50	A negative relationship between size asymmetry and the IJV's performance and survival.
26	Delios, Inkpen, & Ross	2004	Management International Review	3.2	no	no	43	A positive relationship between the difficulty of alliance performance measurement and the likelihood of escalation.
27	Jung , Beamish, & Goerzen	2010	Management International Review	3.2	no	no	16	A positive relationship between the proliferation of FDI opportunities and the use of IJV as compared to WOSs.
28	Lim, Celly, Morse, & Rowe	2013	Strategic Management Journal	7.84	yes	yes	83	A moderating effect (strengthening) of a firm's Ricardian rent creation focus on the negative relationship between asset retrenchment and post-retrenchment performance.
29	Tang & Rowe	2012	Journal of World Business	6.77	no	no	47	A moderating effect (strengthening) of ownership level on the relationship between business relatedness and subsidiary performance.

Notes: Impact factor is the five-year average between 2015 and 2019. The UTD list was created by the University of Texas at Dallas' Naveen Jindal School of Management to track publications in 24 leading business journals. The FT list contains 50 journals used in the Financial Times research rankings. Citations were captured from Google Scholar on June 7, 2021. IJV represents international joint venture. FDI represents foreign direct investment. WOS represents wholly owned subsidiary. MNE represents multinational enterprise. SME is small and medium enterprises.

Supplement 2: Process for conducting reproductions and generalizability tests

We assigned the data collection task of each paper to two research assistants (RAs). Thereafter, they were required to code variables and models in STATA 14.0, and finish a short report of their reproduction and generalizability analyses. In the reports, they presented their respective findings, compared them with those in the original paper, and made qualitative comments. During this process, the two RAs worked independently without any communication or discussion (Veldkamp & Wicherts, 2013). Finally, they submitted two do files for two sets of codes, and two excel files for their pair of reports. For each original article, the direct reproduction used the original sampling period, whereas generalizability tests sampled different time periods and/or geographies based on the available data.

For a subset of time expansion tests (14 of 42 in 12 papers: #3, #4, #7, #9, #10, #11, #13, #16, #18, #19, #21, and #26), the span of years included part of the time period from the original paper in order to have sufficient observations and statistical power for a fair test (see Supplement 5). One original finding was associated with a p value of .08 in the original report, and was dropped from the sample due to ambiguity in judging whether the effect was reproduced or generalized. Geographic expansion tests were only feasible for a minority (10) of the original findings.

Backgrounds of analysis team

The team of analysts consisted of ten PhD students (three of them authors of this study), five masters students, and five undergraduates. Seven PhD students and one masters student majored in strategic management with quantitative-study experience. The remaining three PhD students majored in Applied Economics. The remaining four masters students majored in statistics or data analysis. Among five undergraduates, three were from a department of economics, one from a department of statistics, and one from a department of institutional studies. All of them had experience with programming before being hired. At least two RAs, including at least one PhD student, were assigned to each analysis.

RA testing and training

Each RA received training on coding variables and the statistical models, which frequently appear in this set of papers. During the analyses, the first author was consulted regularly on questions raised by RAs about the definition of variables and models. When we encountered difficulty directly reproducing an original finding with the same analytic approach and observations, we reached out to the original authors for further details and advice. The revised specifications were then repeated in different time periods and geographies for the generalizability tests.

Quantifying reproducibility and generalizability

Since many papers tested multiple hypotheses, we quantify reproducibility or generalizability at the hypothesis level rather than at the paper level. First, we indicated whether we changed the sampling period (Yes=1; No=0). Second, we read the paper and identified whether a certain hypothesis is supported in the paper (Yes=1; No=0). Third, we read the corresponding report and identified whether the same hypothesis is supported in the new analyses by our team (Yes=1; No=0). Fourth, if the hypothesis is supported both in the paper and in the new analyses, we further identify whether the coefficients are of similar magnitude (Yes=1;

No=0). Finally, based on the dummies of each single hypothesis, we created multiple variables, by simple aggregation and further calculations, as proxies for the reproducibility or generalizability of each paper.

Reference for Supplement 2

Veldkamp, C. L. S. & Wicherts, J. M. (July, 26, 2013). *Towards reducing statistical reporting errors in psychology: co-piloting in scientific practice.* Paper presented at the 78th Annual Meeting of the Psychometric Society, Arnhem, The Netherlands.

Supplement 3: Forecasting survey materials

GENERALIZABILITY TESTS PROJECT PREDICTION SURVEY

We are scientists at the National University of Singapore, INSEAD, and the Stockholm School of Economics conducting an investigation of forecasting accuracy. We are interested in whether independent scientists (e.g., academics working at universities) can predict which published research results from the field of international strategic management will:

- 1. Directly reproduce when reanalyzed with the same data and the same statistical approach (same dataset and span of years, same analytic approach)
- 2. Generalize to other time periods (same analytic approach, different span of years).

We are recruiting scientists to participate in this study. All levels of expertise are welcome, from graduate students to senior professors. In addition to providing your forecasts, you will also complete a brief demographic questionnaire.

<u>Consortium authorship</u>. By completing the entire survey, you qualify to be listed as a coauthor on the manuscript reporting the results. This will take the form of a consortium credit "Generalizability Tests Forecasting Collaboration" in the first page/author string, with all forecasters listed by name and affiliation in an appendix. Notably, the investigators who carried out the project will be listed by name in the author string, whereas forecasters will be grouped together in a consortium credit, as per the preferences of previous journal editors.

<u>Monetary payments</u>. In addition, as described in greater detail later, you may receive monetary rewards for completing the survey. This reward, if you are randomly chosen, is based on the accuracy of your predictions.

All data collected in this study are for research purposes only. We may share the data we collect in this study with other researchers doing future studies – if we share your data, we will not link your responses with your name or any identifying information.

Your participation is voluntary. You may stop participating at any time by closing the browser window or the program to withdraw from the study. Partial data will not be analyzed. For additional questions about this research, you may contact Anna Dreber Almenberg at: anna.dreber@hhs.se.

Please indicate, in the box below, that you are at least 18 years old, have read and understand this consent form, and you agree to participate in this online research study.

I am at least 18 years old, have read and understand this consent form, and agree to participate in this online research study.

[Page break here]

Your Contact Information

Please provide your complete email so we can deliver any payment [Free response text box] Then click "next" to complete the survey.

[Page break here]

Forecasting Survey: Generalizability Tests Project

About the initiative

The direct reproducibility and generalizability investigation began in 2018. We identified 30 papers from a list of more than 100 that had a common data base as their source. All papers were published in management journals that had a peer review process, actively managed by an editor.

To undertake the direct reproducibility test, we assigned two independent analysts. When assigned a paper to reproduce, the two independent analysts were each tasked with the same objective: "Following the description reported in the methods section of the paper, reproduce the analyses reported in the paper". The analysts were provided with the same source data on Japanese foreign direct investment that formed the core data for the results reported in the paper. At times, external publicly available data sources had to be accessed to add variables that were in the original analysis, but not part of the core data provided to the analysts. Once each analyst had carried out a direct reproducibility test for a specific paper, they met with each other to jointly optimize the reproducibility test. The consequence is one attempted direct reproducibility test of the original results (same foreign investment dataset and span of years, following the statistical approach described in the original article). Where possible, the next step was to contact the original authors to resolve any uncertainties about the reproduced analyses, for example a lack of clarity in the original methods section about the approach used.

The generalizability tests followed the same procedure as the direct reproducibility tests and the generalizability test of a paper was carried out by the same two independent analysts who carried out the direct reproducibility test of that paper. However, instead of working with the same time period as identified in the original study, the generalizability test defined a different time period from the original, but one that was still within the time available in the larger overall data base on Japanese foreign direct investment. As such, the generalizability tests worked from the same source data and followed the same methods as in the original study, but focused on a different span of years.

Please note that in some cases the generalizability test includes a portion of the years covered in the original test, in order to deliver a sample with sufficient statistical power.

To formally define the two types of analyses conducted:

<u>Direct reproducibility test</u>: Same dataset and span of years, and same analytic approach as described in the original paper

<u>Generalizability test</u>: Same analytic approach as described in the original paper, but different or distinct span of years

Format of the predictions

For each of the 29 original findings we will ask you to make predictions about the probability that the original result will emerge again in the direct reproducibility test (same span of years, same analytic approach) and in the generalizability test (different span of years, same analytic approach), respectively. Before making your prediction, you will be provided with detailed information about the original study. Note that some of the original studies found a statistically significant result (p<0.05) and some of the original studies did not find a statistically significant result (p>0.05). For the original studies that found a statistically significant result (p>0.05). For the original study will also emerge in the direct reproducibility test and the generalizability test. For the original studies that did not find a statistically significant result we will ask you to make predictions about the probability that a statistically significant result we will ask you to make predictions about the probability that a statistically significant result in the same direction as the original study will also emerge in the direct reproducibility test and the generalizability test. For the original studies that did not find a statistically significant result (null result) will also emerge in the direct reproducibility test and the generalizability test.

Please note

- Your answers are saved in real time, so you can complete the survey in more than one session. To do this simply click on the survey link: the survey will automatically continue where you stopped at the end of your previous session.
- The "back button" on the bottom right allows you to go back and update the answers that you submitted previously.
- Please complete this survey on a sufficiently large screen.
- Please do not clear cookies or browsing history of your browser, especially if you are planning to complete the survey in multiple sittings.
- Please do not complete the survey in private/incognito mode on your browser, as your progress will not be saved.

Incentives for accuracy

As a reward for your time, you will be listed as a co-author on the final manuscript as described earlier. In addition, we will randomly select 2 participants and reward them with a bonus payout determined as a function of the accuracy of their forecasts: more accurate forecasts in terms of lower average squared prediction error lead to higher bonuses (the prediction error is the difference between the prediction and the realized outcome where the prediction is a predicted probability between 0 and 1 and the realized outcome is 1 if the original finding was confirmed in the direct reproducibility test/the generalizability test and 0 if the original finding was not confirmed). The bonus payment is determined according to the following scoring rule:

$$200 - (Sq. Error \times 800)$$

where $\underline{Sq. Error}$ is the average of the squared prediction errors for all the forecasts you are asked to submit. The bonus payment ranges between \$200 (if you get all the predictions equal

to the realized outcome) and \$0 (if the average Sq.Error computed on your forecasts exceeds 0.25, or if you are not selected for the bonus payout).

You will make predictions about the direct reproducibility and generalizability of the original findings, for a total of 58 predictions. You will also complete a brief demographic questionnaire. In all, you will complete 78 questions in this survey.

Please click the "forward" button to read about the original studies targeted for direct reproducibility and generalizability tests and provide your forecasts about the results.

[Page break here]

Original studies that found a statistically significant result (p<0.05).

In this section you will find 24 original studies that found a statistically significant result (p<0.05). You will be asked to make predictions about the probability that a statistically significant result in the same direction as the original study will also emerge in the direct reproducibility test and the generalizability test.

[Page break here]

Study Number: 1

Title: <u>How does regional institutional complexity affect MNE internationalization?</u> **Author**: J.L. Arregle, T. L. Miller, M. A. Hitt, and P. W. Beamish

Year of Publication: 2016

Journal: Journal of International Business Studies

Abstract:

International business research is only beginning to develop theory and evidence highlighting the importance of supranational regional institutions to explain firm internationalization. In this context, we offer new theory and evidence regarding the effect of a region's "institutional complexity" on foreign direct investment decisions by multinational enterprises (MNEs). We define a region's institutional complexity using two components, regional institutional diversity and number of countries. We explore the unique relationships of both components with MNEs' decisions to internationalize into countries within the region. Drawing on semi globalization and regionalization research and institutional theory, we posit an inverted U-shaped relationship between a region's institutional diversity and MNE internationalization: extremely low or high regional institutional diversity has negative effects on internationalization.

Larger numbers of countries within the region reduces MNE internationalization in a linear fashion. We find support for these predicted relationships in multilevel analyses of 698 Japanese MNEs operating in 49 countries within 9 regions. Regional institutional complexity is both a challenge and an opportunity for MNEs seeking advantages through the aggregation and arbitrage of individual country factors.

Focal Hypothesis 1a: An **inverted U**-shaped relationship exists between a region's formal institutional diversity and the propensity of MNEs to internationalize into a specific country within that region.

Paraphrase: the article predicts an inverted U-shape between a region's formal institutional diversity and the likelihood of MNEs to enter in a country within this region.

X: region's formal institutional diversity

Y: an MNE's degree of internationalization into a country

Expected sign: negative

Coefficient: Table 3, Model 3, (Region's formal institutional diversity)^2 **Time period of the sample:** 2001-2007 **Geographic scope of the sample:** Full (49 countries) **Result in the paper:** β =-0.3700, p<0.001

Time period of the generalizability test: 1996-2001

Time periods					
Original study, and direct reproducibility test	2001-2007				
Generalizability test	1996-2001				

YOUR FORECASTS:

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>direct reproducibility test</u> (the test of the effect in the <u>same time period as the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>generalizability test</u> (the test of the effect in a <u>different time period compared to the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

[Page break here]

Study Number: 2

Title: <u>Tax competition and FDI: The special case of developing countries</u> **Author:** C. Azémar and A. Delios **Year of Publication:** 2008 **Journal:** Journal of the Japanese and International Economies **Abstract:** According to the foreign direct investment (FDI) literature, the elasticities h

According to the foreign direct investment (FDI) literature, the elasticities between FDI and its determinants vary considerably with the level of host country development. This may be a major concern when dealing with the influence of corporate tax rates on FDI in developing countries, since most studies concentrate on developed countries. Using data on Japanese firm location choices between 1990 and 2000, we contrast differences in regional tax rates in

order to reveal an asymmetry between developed and developing countries. By looking at the interaction effects between Japan and host developing countries' tax systems, we also put forward the idea that special tax sparing provisions signed with Japan can alter the effect of host country taxes on Japanese firms' location choices. Finally, we find that even though tax competition can be strong in developing countries, this competition should not lead to an effective rate of zero taxation for these countries in their competition for FDI inflows.

Focal Hypothesis 1a: The probability of locating a plant in a given country will be smaller the higher the statutory tax rate of that country.

Paraphrase: the article predicts a **negative** relationship between the statutory tax rate of a country and the probability of locating a plant in that country.

X: the statutory tax rate of a country

Y: Foreign direct investment in a country

Expected sign: negative

Coefficient: Table 2, Model (1), STR

Time period of the sample: 1990-2000

Geographic scope of the sample: Full, i.e. all available countries in dataset considered **Result in the paper:** β =-2.542, p=0.001

Time period of the generalizability test: 2000-2010

Time periods					
Original study, and direct reproducibility test	1990-2000				
Generalizability test	2000-2010				

YOUR FORECASTS:

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>direct reproducibility test</u> (the test of the effect in the <u>same time period as the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>generalizability test</u> (the test of the effect in a <u>different time period compared to the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

[Page break here]

Study Number: 3

Title: <u>The regional dimension of MNEs' foreign subsidiary localization</u>

Author: J. L. Arregle, P.W. Beamish, and L. Hébert

Year of Publication: 2009

Journal: Journal of International Business Studies

Abstract:

This paper examines the regional effect of MNEs' foreign subsidiary localization. We hypothesize that the number of subsequent foreign subsidiaries in a country is in part determined by a firm's prior foreign subsidiary activity at the regional level. We test our hypotheses using data on 1076 Japanese MNEs that created 3466 foreign subsidiaries (1837 wholly owned FDIs and 1629 joint ventures) over the period 1996-2001. We use a multilevel negative binomial approach with three levels of analysis: localization decisions in a country (49 countries), in a region (six regions) and at the headquarters level. In this way, we test the regional effects controlling for country and corporate dimensions. We also run separate models to differentiate wholly owned and joint venture localization decisions. Our results strongly support the semi-globalization perspective in that the regional-level effects are significant and different from the country-level effects for all foreign subsidiaries, for wholly owned subsidiaries and for jointly owned subsidiaries. Japanese MNEs adopt a regional perspective that complements their decisions at the country and firm levels. They seek regional agglomeration benefits and make arbitrage decisions between countries in the same region.

Focal Hypothesis 1: The number of subsequent foreign subsidiaries developed in a country by a firm has an inverted U-shaped relationship with the number of prior foreign subsidiaries of this firm in this region.

Paraphrase: the article predicts an **inverted U-shape** curve between a firm's number of prior foreign subsidiaries and its number of subsequent foreign subsidiaries in a country. **X:** the square of a firm's number of prior foreign subsidiaries in the region

Y: the number of subsequent foreign subsidiaries in a country of this region **Expected sign:** negative

Coefficient: Table 4, Model 1a, (No. of prior-created subsidiaries in this region)² **Time period of the sample:** 1986-2001

Geographic scope of the sample: Full, i.e. all available countries in dataset considered **Result in the paper:** β =-0.0011, p<0.001

Time periods					
Original study, and direct reproducibility test	1986-2001				
Generalizability test	1995-2010				

Time period of the generalizability test: 1995-2010

YOUR FORECASTS:

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>direct reproducibility test</u> (the test of the effect in the <u>same time period as the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>generalizability test</u> (the test of the effect in a <u>different time period compared to the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

[Page break here]

Study Number: 4 Title: Investing profitably in China: is it getting harder? Author: P. W. Beamish and R. Jiang Year of Publication: 2002 Journal: Long Range Planning

Abstract:

Using information from the Toyo Keizai, this article studies the performance of 2,962 foreign subsidiaries across the period 1985–1999 to show a picture of declining profitability from foreign direct investment by MNE's in China. Despite the influence of macro-level factors, such as the historically fluctuating performance of the Chinese economy, we observed that of the many factors that may affect profitability, subsidiary- specific factors had the greater influence. The findings suggest that there are significant benefits for early entrants into the market, but caution against the use of high majority ownership control. Other evidence showed that larger subsidiaries tended to perform better. Managerial implications for MNEs and the future prospects of foreign direct investment in China are discussed.

Focal Hypothesis: The earlier a firm enters a market, the more profitable the subsidiary is. **Paraphrase:** the article predicts a **positive** relationship between the timing of a subsidiary entering a market and the profitability of the subsidiary.

X: the age of subsidiaries

Y: Subsidiary performance was coded into a binary variable with '1' indicating 'profitable', and '0' representing either 'break-even' or 'loss'.

Expected sign: positive

Coefficient: Table 5, Model 4, Timing of entry

Time period of the sample: 1985-1999

Geographic scope of the sample: China

Result in the paper: β =0.2020, p<0.001

Time period of the generalizability test: 1987-2001

Time periods					
Original study, and direct reproducibility test	1985-1999				
Generalizability test	1987-2001				

YOUR FORECASTS:

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>direct reproducibility test</u> (the test of the effect in the <u>same time period as the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>generalizability test</u> (the test of the effect in a <u>different time period compared to the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

[Page break here]

Study Number: 5

Title: Interdependent behavior in foreign direct investment: the multi-level effects of prior entry and prior exit on foreign market entry

Author: C. M. Chan, S. Makino, and T. Isobe

Year of Publication: 2006

Journal: Journal of International Business Studies

Abstract:

This paper examines the interdependent foreign market entry decisions of multinational corporations (MNCs). Based on the argument that legitimacy and competition are two important forces in foreign market entry decisions, we hypothesize that an MNC's market entry decisions are influenced by its own prior entry and prior exit decisions and those of other MNCs. We examine this general proposition at four levels of analysis: the host country, global industry (an industry that spans host countries), local industry (an industry that is separately defined within each host country), and parent firm level. Our analysis of a panel data of over 4000 market entry decisions that were made by Japanese MNCs shows that an MNC's market entry decision has a stronger inverted U-shaped relationship with the prior entry and exit decisions of other MNCs at the local industry level than the prior entry and exit decisions of other MNCs at the host country and global industry levels. We also find that

both the prior entry and prior exit decisions of an MNC have a marginal influence on its own subsequent market entry decisions at the parent firm level.

Focal Hypothesis 1a: The founding of a subsidiary of an MNC in a host country has an inverted U-shaped relationship with the number of prior entries of subsidiaries of other MNCs in the same host country.

Paraphrase: the article predicts **an inverted U**-shape between the number of the subsidiaries of other MNCs in a host country and the likelihood of setting subsidiary by an MNC in the same host country.

X: the square of the number of prior entries of subsidiaries of other MNCs in the same host country.

Y: the counts of Japanese foreign subsidiaries that were established by each parent firm in each industry in each host country for every year

Expected sign: negative

Coefficient: Table 3, Model 1, Entry(t-1)*Entry(t-1)

Time period of the sample: 1989-1998

Geographic scope of the sample: Full, i.e. all available countries in dataset considered **Result in the paper:** β =-0.019, p<0.001

Time period of the generalizability test: 2000-2009

Time periods					
Original study, and direct reproducibility test	1989-1998				
Generalizability test	2000-2009				

YOUR FORECASTS:

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>direct reproducibility test</u> (the test of the effect in the <u>same time period as the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>generalizability test</u> (the test of the effect in a <u>different time period compared to the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

[Page break here]

Study Number: 6

Title: <u>Ownership strategy of Japanese firms: Transactional, institutional, and experience</u> influences

Author: A. Delios and P. W. Beamish Year of Publication: 1999 Journal: Strategic Management Journal

Abstract:

We compare the effects of transactional, institutional, and experience influences on the ownership strategies of Japanese investors. Our theoretical development suggests that the equity position of a foreign investor should increase as the specificity of the assets transferred to the foreign affiliate increases, but a lower equity position should be assumed when the foreign investor requires complementary assets to establish a foreign entry. International experience and a strong institutional environment also should lead to increases in the equity position of the foreign investor. These relationships were tested with data on more than 1000 Japanese investments in nine countries of East and South-East Asia. The results demonstrate that experience and institutional factors were the most important influences on the ownership position taken in the foreign investment, while transactional factors had a much less important and a more ambiguous role.

Focal Hypothesis 1: The greater the degree of asset specificity in the foreign investing firm's assets, the higher the ownership position assumed in the foreign investment.

Paraphrase: the article predicts a **positive** relationship between a foreign investing firm's assets specificity and that firm's ownership position in its foreign investment

X: Advertising intensity and R&D intensity (firm and industry level). We focus on firm-level advertising strength

Y: the percentage ownership of the Japanese parent(s) in the foreign investment **Expected sign:** positive

Coefficient: Table 4, Column 5 (Firm-level normalized), Advertising Intensity (Firm-Level) **Time period of the sample:** 1994

Geographic scope of the sample: 9 Southeast Asian countries **Result in the paper:** β =-3.6400, p=0.013

Time period of the generalizability test: 1996

Time periods					
Original study, and direct reproducibility test	1994				
Generalizability test	1996				

YOUR FORECASTS:

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>direct reproducibility test</u> (the test of the effect in the <u>same time period as the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>generalizability test</u> (the test of the effect in a <u>different time period compared to the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

[Page break here]

Study Number: 7

Title: <u>Survival and profitability: The roles of experience and intangible assets in foreign</u> <u>subsidiary performance</u>

Author: A. Delios and P. W. Beamish

Year of Publication: 2001

Journal: Academy of Management Journal

Abstract:

This study integrates research on the financial performance of multinational firms with research on foreign subsidiary survival. We examined the influences a firm's intangible assets and its experience have on foreign subsidiary survival and profitability using a sample of 3,080 subsidiaries of 641 Japanese firms. The results show survival and profitability have different antecedents. Host country experience has a direct effect on survival but a contingent relationship with profitability. The entry mode moderated the nature of these relationships. **Focal Hypothesis 1a:** The greater a multinational firm's possession of intangible assets, the higher the likelihood of a foreign subsidiary's survival.

Paraphrase: the article predicts a **positive** relationship between a multinational firm's intangible assets and the survival chance of the firm's foreign subsidiaries.

X: R&D intensity

Y: the likelihood of a foreign subsidiary's survival. (Survival = 1)

Expected sign: positive

Coefficient: Table 2, Model 2, Technological

Time period of the sample: 1987-1996

Geographic scope of the sample: Full, i.e. all available countries in dataset considered **Result in the paper:** β =2.1200, p=0.036

Time period of the generalizability test: 1989-1998

Time periods					
Original study, and direct reproducibility test	1987-1996				

Generalizability test	1989-1998
-----------------------	-----------

YOUR FORECASTS:

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>direct reproducibility test</u> (the test of the effect in the <u>same time period as the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>generalizability test</u> (the test of the effect in a <u>different time period compared to the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

[Page break here]

Study Number: 8

Title: Expatriate staffing in foreign subsidiaries of Japanese multinational corporations in the <u>PRC and the United States</u>

Author: A. Delios and I. Bjorkman

Year of Publication: 2000

Journal: International Journal of Human Resource Management

Abstract:

This study examines expatriate staffing in foreign wholly-owned subsidiaries and joint ventures of Japanese firms located in the People's Republic of China and the United States. Expatriates are conceptualized as performing two primary functions. The first is a control function in which the expatriate works to align the operations of the subsidiary with that of the Japanese parent. The second function is a knowledge role. In this role, either the expatriate acts to transfer the Japanese parent's knowledge to the subsidiary or the expatriate is an agent for the acquisition of host-country knowledge. We tested for these two functions using subsidiary-level data on Japanese firms' operations in China and the US. Our results indicate that the control function was more prominent in joint ventures in China than in the US. The results also indicate that expatriates played a more significant knowledge-transfer function role in technology and marketing-intensive industries in China than in the US. A lack of MNC experience in China was found to be associated with limited use of expatriates. Finally, expatriate employment was negatively related to the number of subsidiaries of the parent company worldwide.

Focal Hypothesis: 1a: There will be a **positive** relationship between percent equity ownership and the use of expatriates.

Paraphrase: the article predicts a **positive** relationship between percent equity ownership and the use of expatriates.

X: the log of the percentage equity share of the main Japanese parent firm **Y:** the natural log of the number of expatriates **Expected sign:** positive **Coefficient:** Table 2, All subsidiaries, Ownership **Time period of the sample:** 1997 **Geographic scope of the sample:** U.S. and China **Result in the paper:** β =5.1710, p<0.001

Time period of the generalizability test: 1992

Time periods	
Original study, and direct reproducibility test	1997
Generalizability test	1992

YOUR FORECASTS:

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>direct reproducibility test</u> (the test of the effect in the <u>same time period as the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>generalizability test</u> (the test of the effect in a <u>different time period compared to the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

[Page break here]

Study Number: 9
Title: <u>Uncertainty, imitation, and plant location: Japanese multinational corporations, 1990-1996</u>
Author: W. J. Henisz and A. Delios
Year of Publication: 2001
Journal: Administrative Science Quarterly

Abstract:

In a study of a sample of 2,705 international plant location decisions by listed Japanese multinational corporations across a possible set of 155 countries in the 1990-1996 period, we use neoinstitutional theory and research on political institutions to explain organizational entry into new geographic markets. We extend neoinstitutional theory's proposition that prior decisions and actions by other organizations provide legitimization and information to a decision marked by uncertainty, showing that this effect holds when the uncertainty comes from a firm's lack of experience in a market but not when the uncertainty derives from the structure of a market's policymaking apparatus.

Focal Hypothesis 2: The probability of locating a plant in a given country will be greater the lower the level of political hazards of that country.

Paraphrase: the article predicts a **negative** relationship between a country's political hazards and the probability of locating a plant in that country.

X: political hazards for a given country in a given year

Y: The strategic decision by firm x regarding a plant location in a country (dummy variable, which equals 1 if firm x locates a manufacturing plant in country i at time t, and 0 otherwise) **Expected sign:** negative

Coefficient: Table 3, Model (2), Political hazards

Time period of the sample: 1990-1996

Geographic scope of the sample: Full, i.e. all available countries in dataset considered Result in the paper: β =-1.1500, p<0.001

Time period of the generalizability test: 1983-1989

Time periods	
Original study, and direct reproducibility test	1990-1996
Generalizability test	1983-1989

YOUR FORECASTS:

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>direct reproducibility test</u> (the test of the effect in the <u>same time period as the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>generalizability test</u> (the test of the effect in a <u>different time period compared to the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

[Page break here]

Study Number: 10

Title: <u>Political hazards, experience, and sequential entry strategies: The international</u> expansion of Japanese firms, 1980-1998

Author: A. Delios and W. J. Henisz

Year of Publication: 2003

Journal: Strategic Management Journal

Abstract:

We find support for the role of experiential learning in the international expansion process by extending the stages model of internationalization to incorporate a sophisticated consideration of temporal and cross-national variation in the credibility of the policy environment. Using a sample of 3857 international expansions of 665 Japanese manufacturing firms, we build on the concepts of uncertainty and experiential learning, to show that firms that had gathered relevant types of international experience were less sensitive to the deterring effect of uncertain policy environments on investment. One implication of our results is that research on international strategy should emphasize understanding the political institutions that constrain or enable political actors, just as entry mode research has done. A second implication is that research in the stages model of internationalization should give the same weight to the policy environment as a source of uncertainty to a firm, as it has given to cultural, social and market institutions.

Focal Hypothesis 1: A firm's stock of experience in politically hazardous countries moderates the negative effect of a country's level of political hazards on rates of FDI entry into that country.

Paraphrase: the article predicts a **moderating effect (weakening)** of a firm's experience in politically hazardous countries on the negative relationship between a country's political hazards and the rates of FDI entry into that country.

X: Interaction between high-hazard country experience and political hazards

Y: rates of FDI entry into that country (Exit, which took a value of 1 if firm x made an entry in country i at time t, otherwise it was zero)

Expected sign: negative

Coefficient: Table 1, Model 4, High-hazard country experience × Political hazards **Time period of the sample:** 1980-1999

Geographic scope of the sample: Full, i.e. all available countries in dataset considered **Result in the paper:** β =0.0180, p=0.046

Time periods	
Original study, and direct reproducibility test	1980-1999

Time period of the generalizability test: 1970-1989

Generalizability test	1970-1989
-----------------------	-----------

YOUR FORECASTS:

What do you think the probability is that a statistically significant effect (p<0.05) in the same direction as the original study will be observed in the direct reproducibility test (the test of the effect in the same time period as the original study)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

What do you think the probability is that a **statistically significant effect** (p < 0.05) in the same direction as the original study will be observed in the generalizability test (the test of the effect in a different time period compared to the original study)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

[Page break here]

Study Number: 11

Title: Timing of entry and the foreign subsidiary performance of Japanese firms

Author: A. Delios and S. Makino

Year of Publication: 2003

Journal: Journal of International Marketing

Abstract:

Delios and Makino adopt a contingency approach to analyze the relationship between timing of entry and a subsidiary's relative size and its survival. Using a sample of 6955 foreign entries of 703 Japanese firms, the authors develop and test hypotheses about asset-based competitive advantage moderators of timing of entry's influence on a subsidiary's relative size and survival. The results show that early entrants not only have a larger relative size but also have greater exit likelihood than do late entrants. The magnitude of these effects depends on the type of asset advantages a foreign investing firm possesses.

Focal Hypothesis 2: The later a subsidiary is established in a foreign market, the greater are its chances of survival.

Paraphrase: the article predicts a positive relationship between the timing of foreign market entry and the chances of survival of the subsidiary.

X: the count of a subsidiary's sequence of entry into a host country's three-digit SIC industry Y: exiting subsidiaries as those that were delisted from Japanese Overseas Investments Expected sign: positive

Coefficient: Table 2, model 3, Timing of entry

Time period of the sample: 1986-1997

Geographic scope of the sample: Asia, North America and Europe

Result in the paper: β =-0.0020, p<0.010

Time period of the generalizability test: 1981-1994

Time periods	
Original study, and direct reproducibility test	1986-1997
Generalizability test	1981-1994

YOUR FORECASTS:

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>direct reproducibility test</u> (the test of the effect in the <u>same time period as the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>generalizability test</u> (the test of the effect in a <u>different time period compared to the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

[Page break here]

Study Number: 12
Title: Effect of equity ownership on the survival of international joint ventures
Author: C. Dhanaraj and P. W. Beamish
Year of Publication: 2004
Journal: Strategic Management Journal
Abstract:
This note extends transaction cost analysis of international joint ventures (IJVs) to include explicitly the effect of equity. It challenges the common practice of treating all foreign investments with between 5 percent and 95 percent equity as IJVs. A fine-grained analysis of the role of foreign equity ownership on the survival of 12,984 overseas subsidiaries confirms a declining, nonlinear, and asymmetrical relationship between equity and mortality in overseas subsidiaries. While investments involving small ownership levels (<20 %) have

very high mortality rates, those with high ownership levels (>80%) have mortality rates

comparable to that of wholly owned subsidiaries. Implications for research, practice, and policy are discussed.

Focal Hypothesis: Foreign equity ownership in an overseas subsidiary will have a negative, nonlinear, and asymmetric effect on the mortality of the subsidiary.

Paraphrase: the article predicts a **negative** relationship between foreign equity ownership and the mortality of the subsidiary.

X: the percentage of foreign equity held in the subsidiary

Y: a cessation of operations in that subsidiary

Expected sign: negative

Coefficient: Table 2, Foreign equity (log)

Time period of the sample: 1986-1997

Geographic scope of the sample: Full, i.e. all available countries in dataset considered Result in the paper: β =-0.5590, P<0.001

Time period of the generalizability test: 1998-2009

Time periods	
Original study, and direct reproducibility test	1986-1997
Generalizability test	1998-2009

YOUR FORECASTS:

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>direct reproducibility test</u> (the test of the effect in the <u>same time period as the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>generalizability test</u> (the test of the effect in a <u>different time period compared to the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

[Page break here]

Study Number: 13

Title: Expatriate managers, product relatedness, and IJV performance: A resource and knowledge-based perspective

Author: D. K. Dutta and P. W. Beamish

Year of Publication: 2013

Journal: Journal of International Management

Abstract:

Drawing from the resource and knowledge-based perspectives, we examine the role expatriates play as a critical managerial resource within the multinational's international joint-venture (IJV). By using a large sample (3772 IJV annual performance years) of Japanese IJVs in the USA from 1991 to 2001, we find that expatriate deployment shows a curvilinear (inverted-U) relationship with IJV performance. Further, this relationship is positively moderated by product relatedness between the parent and the IJV.

Focal Hypothesis 1: Expatriate deployment and IJV performance have a curvilinear (**inverted-U**) relationship.

Paraphrase: the article predicts **an inverted-U** relationship between expatriate deployment and IJV performance.

X: the degree of managerial influence exercised by non-local managers within the subsidiary **Y:** performance is constructed from the IJV top manager's categorical assessment of the organization's financial performance for the year (1 = loss, 2 = break-even, 3 = profit)**Expected sign:** negative

Coefficient: Table 2, Model 2, Expatriate ratio²

Time period of the sample: 1991-2001

Geographic scope of the sample: U.S.

Result in the paper: β =-0.1340, p<0.050

 Time periods

 Original study, and direct reproducibility test
 1991-2001

Time period of the generalizability test: 2000-2010

YOUR FORECASTS:

Generalizability test

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>direct reproducibility test</u> (the test of the effect in the <u>same time period as the original study</u>)?

2000-2010

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>generalizability test</u> (the test of the effect in a <u>different time period compared to the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

[Page break here]

Study Number: 14

Title: <u>Multinational firm knowledge, use of expatriates, and foreign subsidiary performance</u> **Author**: Y. Fang, G. L. F. Jiang, S. Makino, and P. W. Beamish **Year of Publication:** 2010

Journal: Journal of Management Studies

Abstract:

The impact of knowledge transfer on foreign subsidiary performance has been a major focus of research on knowledge management in multinational enterprises (MNEs). By integrating the knowledge-based view and the expatriation literature, this study examines the relationship between a multinational firm's knowledge (i.e. marketing and technological knowledge), its use of expatriates, and the performance of its foreign subsidiaries. We conceptualize that expatriates play a contingent role in facilitating the transfer and redeployment of a parent firm's knowledge to its subsidiary, depending on the location specificity of the organizational knowledge being transferred and the time of transfer. Our analysis of 1660 foreign subsidiaries of Japanese firms over a 15-year period indicates that the number of expatriates relative to the total number of subsidiary employees (1) strengthened the effect of a parent firm's technological knowledge (with low location specificity) on subsidiary performance in the short term, but (2) weakened the impact of the parent firm's marketing knowledge (with high location specificity) on subsidiary performance in the long term. We also found that the expatriates' influence on knowledge transfer eventually disappeared. The implications for knowledge transfer research and the expatriate management literature are discussed. Focal Hypothesis 2: The ratio of expatriates in a foreign subsidiary moderates the relationship between the level of the parent firm's technological knowledge and the subsidiary's short-term performance, such that the positive association between parent technological knowledge and the subsidiary's short-term performance is stronger in subsidiaries with a high ratio of expatriates than in subsidiaries with a low ratio of expatriates.

Paraphrase: the article predicts a **moderating effect (strengthening**) of the ratio of expatriates in a foreign subsidiary on the positive relationship between the level of the parent firm's technological knowledge and the subsidiary's short-term performance.

X: Interaction between the ratio of expatriates in a foreign subsidiary and the level of the parent firm's technological knowledge

Y: subsidiary performance reported in Japanese Overseas Investments Expected sign: positive

Coefficient: Table IV, Model 2, Tech knowledge*expatriate ratio

Time period of the sample: 1989-1994

Geographic scope of the sample: Full, i.e. all available countries in dataset considered Result in the paper: β =0.2000, p=0.013

Time period of the generalizability test: 1994-1999

Time periods	
Original study, and direct reproducibility test	1989-1994
Generalizability test	1994-1999

YOUR FORECASTS:

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>direct reproducibility test</u> (the test of the effect in the <u>same time period as the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>generalizability test</u> (the test of the effect in a <u>different time period compared to the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

[Page break here]

Study Number: 15 Title: Institutional environments, staffing strategies, and subsidiary performance Author: A. S. Gaur, A. Delios, and K. Singh Year of Publication: 2007 Journal: Journal of Management Abstract:

The authors adopt and develop an institutional perspective to advance understanding of how host country environments influence subsidiary staffing strategies. They propose and find that (a) firms rely more on expatriates in institutionally distant environments for reasons related to the efficient transfer of management practices and firm-specific capabilities and (b) the positive influence of expatriate staffing levels on subsidiary performance is dependent on the institutional distance between the host and home country, and subsidiary experience. The authors' findings are based on their analysis of expatriate employment levels and performance in 12,997 foreign subsidiaries of 2,952 Japanese firms in 48 countries. **Focal Hypothesis 1a:** The greater the institutional distance between the home country of the parent and the host country of the subsidiary, the greater the likelihood of the subsidiary GM being a PCN.

Paraphrase: the article predicts a **positive** relationship between the institutional distance between the home and host country of a subsidiary and the likelihood of the subsidiary general managers (GMS) being a parent country national (PCN)

X: the institutional distance between the home country of the parent and the host country of the subsidiary

Y: GM Nationality (We coded GM nationality as 1 if a subsidiary had a Japanese GM and 0 otherwise)

Expected sign: positive

Coefficient: Table 3, Model 2, Regulative distance

Time period of the sample: 2003

Geographic scope of the sample: Full, i.e. all available countries in dataset considered Result in the paper: β =0.3150, p=0.000

Time period of the generalizability test: 1998

Time periods	
Original study, and direct reproducibility test	2003
Generalizability test	1998

YOUR FORECASTS:

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>direct reproducibility test</u> (the test of the effect in the <u>same time period as the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>generalizability test</u> (the test of the effect in a <u>different time period compared to the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

[Page break here]

Study Number: 16 Title: <u>Time compression diseconomies in foreign expansion</u> Author: R. J. Jiang, P. W. Beamish, and S. Makino Year of Publication: 2014

Journal: Journal of World Business

Abstract:

Time compression diseconomies (TCD) in resource development impact the durability of competitive advantage according to the resource-based view. The Uppsala Model emphasizes experiential learning, which is subject to TCD. TCD joins the two perspectives and can help explain the foreign expansion process. We found the existence of TCD in post-entry expansion by examining the speed of establishing subsequent subsidiaries and the performance outcomes. Speed was negatively associated with subsidiary survival. TCD was exacerbated with environmental uncertainty and lack of vicarious learning, so that early mover subsidiaries are less likely to make a profit when they are established with faster speed.

Focal Hypothesis 1: Faster speed of subsequent subsidiary establishment is associated with lower performance of the subsidiary.

Paraphrase: the article predicts a **negative** relationship between the speed of subsequent subsidiary establishment and the performance of the subsidiary.

X: whether the focal subsidiary is established early or late in the market

Y: Survival. A subsidiary was coded as having exited if it is no longer reported from the database in a particular period of time

Expected sign: negative

Coefficient: Table2, Model 2, (Slow)Speed

Time period of the sample: 1980-2001

Geographic scope of the sample: China

Result in the paper: β =-0.1650, p<0.010

Time period of the generalizability test: 1989-2010

Time periods	
Original study, and direct reproducibility test	1980-2001
Generalizability test	1989-2010

YOUR FORECASTS:

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>direct reproducibility test</u> (the test of the effect in the <u>same time period as the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>generalizability test</u> (the test of the effect in a <u>different time period compared to the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

[Page break here]

Study Number: 17

Title: Entry mode strategy and performance: the role of FDI staffing

Author: R. Konopaske, S. Werner, and K. E. Neupert

Year of Publication: 2002

Journal: Journal of Business Research

Abstract:

This study investigates the role of staffing approaches as a moderator of the relationship between entry mode strategy and performance of Japanese foreign direct investments (FDIs). Based on theories of a firm's resource profile, organizational structure, technology transfer, and ethnocentric and polycentric staffing, we hypothesize performance outcomes of Japanese overseas investments. For joint ventures, we find that ethnocentric staffing is negatively and significantly related to subsidiary performance. Conversely, for wholly owned ventures we find that ethnocentric staffing is positively and statistically significantly related to subsidiary performance. We discuss the implications for these findings from strategic and human resources perspectives.

Focal Hypothesis 1: For wholly owned entry mode strategies, Japanese firms utilizing ethnocentric staffing policies will experience higher levels of performance from their international ventures than those that employ polycentric staffing policies.

Paraphrase: the article predicts a **positive** relationship between the use of ethnocentric staffing policies as compared to polycentric staffing policies and the performance of their international ventures.

X: percent Japanese employees

Y: subsidiary performance (dummy: 1 break-even; 0 gain)

Expected sign: negative

Coefficient: Table 3, Model 1, Percent Japanese employees

Time period of the sample: 1994

Geographic scope of the sample: Full (31 countries)

Result in the paper: β =0.0060, p<0.010

Time period of the generalizability test: 1992

Time periods	
Original study, and direct reproducibility test	1994
Generalizability test	1992

YOUR FORECASTS:

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>direct reproducibility test</u> (the test of the effect in the <u>same time period as the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>generalizability test</u> (the test of the effect in a <u>different time period compared to the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

[Page break here]

Study Number: 18

Title: <u>The internationalization and performance of SMEs</u> Author: J. W. Lu and P. W. Beamish Year of Publication: 2001 Journal: Strategic Management Journal Abstract:

We discuss and explore the effects of internationalization, an entrepreneurial strategy employed by small and medium-sized enterprises (SMEs), on firm performance. Using concepts derived from the international business and entrepreneurship literatures, we develop four hypotheses that relate the extent of foreign direct investment (FDI) and exporting activity, and the relative use of alliances, to the corporate performance of internationalizing SMEs. Using a sample of 164 Japanese SMEs to test these hypotheses, we find that the positive impact of inter- nationalization on performance extends primarily from the extent of a firm's FDI activity. We also find evidence consistent with the perspective that firms face a liability of foreignness. When firms first begin FDI activity, profitability declines, but greater levels of FDI are associated with higher performance. Exporting moderates the relationship FDI has with performance, as pursuing a strategy of high exporting concurrent with high FDI is less profitable than one that involves lower levels of exports when FDI levels are high. Finally, we find that alliances with partners with local knowledge can be an effective strategy to overcome the deficiencies SMEs face in resources and capabilities, when they expand into international markets.

Focal Hypothesis 4: Exporting activities will exert a negative moderating effect on the relationship between FDI and performance.

Paraphrase: the article predicts a **moderating effect** (**weakening**) of exporting activities on the relationship between FDI and performance.

X: Export intensity*Foreign investment activities (the number of FDIs in which the parent firm had a 10 percent or greater equity share. & the number of countries in which the firm had FDIs)

Y: ROA Expected sign: negative Coefficient: Table 2, Model 9, Export intensity*Number of foreign investments Time period of the sample: 1986-1997 Geographic scope of the sample: Full, i.e. all available countries in dataset considered Result in the paper: β =-0.0060, p =0.0045

Time period of the generalizability test: 1989-2000	
	_

Time periods	
Original study, and direct reproducibility test	1986-1997
Generalizability test	1989-2000

YOUR FORECASTS:

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>direct reproducibility test</u> (the test of the effect in the <u>same time period as the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>generalizability test</u> (the test of the effect in a <u>different time period compared to the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

[Page break here]

Study Number: 19
Title: <u>SME internationalization and performance: Growth vs. profitability</u>
Author: J. W. Lu and P. W. Beamish
Year of Publication: 2006
Journal: Journal of International Entrepreneurship
Abstract:
Lu and Beamish (2001) examined the effect of two internationalization strategies, exporting and foreign direct investment (FDI), on SME performance (ROA). We extend this research by examining the differential effects of these strategies on two other dimensions of SME

performance: growth and ROS. We develop and test four sets of hypotheses using a sample

of 164 Japanese SMEs. We find that exporting activity has a positive impact on growth, but negative impact on profitability. FDI activity has a positive relationship with growth, but a U curve relationship with profitability. Exporting activity has a positive moderating effect on the relationship between an SME's FDI activity and firm growth, a negative moderating effect on the relationship between an SME's FDI activity and firm profitability. An SME's age when it starts to make FDIs has a negative moderating impact on the relationship between FDI and firm growth and profitability.

Focal Hypothesis 1a: An SME's growth is positively related to its level of exporting activities.

Paraphrase: the article predicts a **positive** relationship between the level of exporting activities and an SME's growth.

X: export intensity (the percent of parent firm sales that were derived from export revenues) **Y:** ROA

Expected sign: positive

Coefficient: Table 2, Model 2, export intensity

Time period of the sample: 1986-1997

Geographic scope of the sample: Full, i.e. all available countries in dataset considered Result in the paper: $\beta 1=0.1710$, p=0.021

Time period of the generalizability test: 1989-2000

Time periods	
Original study, and direct reproducibility test	1986-1997
Generalizability test	1989-2000

YOUR FORECASTS:

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>direct reproducibility test</u> (the test of the effect in the <u>same time period as the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>generalizability test</u> (the test of the effect in a <u>different time period compared to the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

[Page break here]

Study Number: 20

Title: <u>Intra- and inter-organizational Imitative behavior: Institutional influences on Japanese</u> <u>firms' entry mode choice</u>

Author: J. W. Lu Year of Publication: 2002 Journal: Journal of International Business Studies Abstract:

This paper compares the predictions of transaction cost and institutional theories in an empirical study of the entry mode choice for 1,194 Japanese foreign subsidiaries. The findings indicate the institutional model adds significant explanatory power over and above the predictions of the transaction cost model. Using the concepts of frequency-based, traitbased and out- come-based imitation, I find sup- port for institutional isomorphism, as later entrants tended to follow the entry mode patterns established by earlier entrants. Isomorphic behavior was also present within a firm, as firms exhibited consistency in entry mode choices

across time. Further, a firm's investment experience moderated institutional influences on entry mode choice.

Focal Hypothesis 3: The greater the frequency of adoption of an entry mode in a firm's earlier entries in an environment, the greater its propensity to use that same entry mode in subsequent entries.

Paraphrase: the article predicts a **positive** relationship between the frequency of adoption of an entry mode in a firm's earlier entries in an environment and its likelihood of using the same entry mode in subsequent entries.

X: own firm's entry mode by country / industry (by calculating the percent of its entries that were wholly-owned)

Y: entry mode (1: wholly-owned; 0: others)

Expected sign: positive

Coefficient: Table 1, Model 2, own firm's entry mode by country

Time period of the sample: as of 1999

Geographic scope of the sample: 12 developed countries

Result in the paper: β =0.4300, p=0.020

Time period of the generalizability test: 1999-2003

Time periods	
Original study, and direct reproducibility test	1999
Generalizability test	1999-2003

YOUR FORECASTS:

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>direct reproducibility test</u> (the test of the effect in the <u>same time period as the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>generalizability test</u> (the test of the effect in a <u>different time period compared to the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

[Page break here]

Study Number: 21

Title: A new tale of two cities: Japanese FDIs in Shanghai and Beijing, 1979–2003

Author: X. Ma and A. Delios

Year of Publication: 2007 Journal: International Business Review

Abstract:

Transitional economies can be characterized by considerable sub-national variation in economic and political characteristics. We investigate how this variance influences the timing of entry, entry mode, industrial traits, and survival rates for Japanese foreign direct investments (FDIs) made in China's two major metropolises—Shanghai, the economic center, and Beijing, the political capital. Using a sample of 1610 subsidiaries of Japanese firms established during the 1979–2003 period, our empirical results show that Japanese multinational enterprises (MNEs) tended to choose an economic-oriented rather than a political-oriented city as their investment location, with the consequence being higher survival likelihoods in Shanghai than in Beijing. This location choice helped Japanese firms avoid policy uncertainty and political hazards in China's transition economy. Our findings highlight the point that fundamental features of institutional environments at sub- national levels should be analyzed when looking at investment strategy and performance in transitional economies.

Focal Hypothesis: Subsidiaries are more likely to survive in Shanghai than in Beijing **X:** City (0 = Shanghai; 1 = Beijing)

Y: exiting (non-surviving) subsidiaries (1: Exits; 0: Surviving)

Expected sign: positive

Coefficient: Table 7, City (0 = Shanghai; 1 = Beijing)

Time period of the sample: 1979-2003

Geographic scope of the sample: China (Beijing and Shanghai) **Result in the paper**: β =0.2500, p=0.037

Time period of the generalizability test: 1986-2010

Time periods	
Original study, and direct reproducibility test	1979-2003
Generalizability test	1986-2010

YOUR FORECASTS:

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>direct reproducibility test</u> (the test of the effect in the <u>same time period as the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>generalizability test</u> (the test of the effect in a <u>different time period compared to the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

[Page break here]

Study Number: 22

Title: Local knowledge transfer and performance: implications for alliance formation in Asia Author: S. Makino and A. Delios Year of Publication: 1996

Journal: Journal of International Business Studies

Abstract:

Foreign firms in host country environments frequently face location-based disadvantages. This study proposes three means (channels) of overcoming local knowledge disadvantages. Based on a sample of 558 Japanese joint ventures (JVs) located in Southeast and East Asia, we find that partnering with local firms (the first channel) can be a primary strategy for accessing local knowledge and improving JV performance. JV experience in the host country (the second channel) also mitigates local knowledge disadvantages and leads to increased JV performance. The third channel, the foreign parent's host country experience, leads to increased performance in the absence of a local partner. However, when a JV is formed with a local partner, increased parent experience in the host country leads to decreased performance suggesting that the need for a local partner declines as parent experience in a host country increases.

Focal Hypothesis 3b: As the foreign parent's host country experience increases, the relative performance benefit of having a local joint venture partner decrease.

Paraphrase: the article predicts a moderating effect (weakening) of a foreign parent's host country experience on the positive relationship between having local joint venture partner and the subsidiary's performance.

X: the interaction between LOCAL (dummy variable indicating the existence of a local JV partner) and PARENT (the foreign parent's past local country experience measured in years) **Y:** subsidiary's performance (0: low performance (loss and breakeven); 1: gain)

Expected sign: negative

Coefficient: Table 4, Model 1, Local Partner-Parent Interaction

Time period of the sample: 1992

Geographic scope of the sample: Southeast Asia

Result in the paper: β=-0.0977, p<0.001

Time period of the generalizability test:

Time periods	
Original study, and direct reproducibility test	1992
Generalizability test	1994

YOUR FORECASTS:

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>direct reproducibility test</u> (the test of the effect in the <u>same time period as the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>generalizability test</u> (the test of the effect in a <u>different time period compared to the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

[Page break here]

Study Number: 23 **Title:** <u>The diminishing effect of cultural distance on subsidiary control</u> **Author:** T. J. Wilkinson, G. Z. Peng, L. E. Brouthers, and P. W. Beamish

Year of Publication: 2008

Journal: Journal of International Management

Abstract:

This paper explores the diminishing influence of national cultural distance on two subsidiary control issues, expatriate staffing and parent company ownership level of the foreign subsidiary. Previous studies have produced conflicting findings: one stream of research argues that when cultural distance is greater firms increase their level of control; while the other stream suggests that greater cultural distance is associated with a loosening of control. To reconcile these discrepant outcomes we hypothesize and find that subsidiary age moderates the effect of cultural distance on expatriate staffing and ownership. Cultural distance has a significantly greater impact on subsidiary control mechanisms for newer subsidiaries than for older subsidiaries. Implications for future research are discussed.

Focal Hypothesis 1: Cultural distance has a significantly greater impact on parent company subsidiary control mechanisms (such as home country ownership or expatriate staffing ratios) for newer subsidiaries than for older subsidiaries.

Paraphrase: this article predicts a moderating effect (weakening) of subsidiary age on the relationship between cultural distance and ownership control (or expatriate staffing ratios) **X:** multiply subsidiary age and cultural distance

Y: the percentage of Japanese expatriates

Expected sign: negative

Coefficient: Table 2, Model 1C, Cultural distance*subsidiary age

Time period of the sample: 2001

Geographic scope of the sample: Full, i.e. all available countries in dataset considered Result in the paper: β =-0.0300, p<0.050

Time periods	
Original study, and direct reproducibility test	2001
Generalizability test	2010

Time period of the generalizability test: 2010

YOUR FORECASTS:

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>direct reproducibility test</u> (the test of the effect in the <u>same time period as the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>generalizability test</u> (the test of the effect in a <u>different time period compared to the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

[Page break here]

Study Number: 24

Title: The choice between joint venture and wholly owned subsidiary: An institutional perspective

Author: D. Yiu and S. Makino **Year of Publication:** 2002 **Journal:** Organization Science

Abstract:

The study of foreign entry-mode choice has been based almost exclusively on transactioncost theory. This theory focuses mainly on the impacts of firm- and industry-specific factors on the choice of entry mode, taking the effects of country-specific contextual factors as constant or less important. In contrast, the institutional perspective emphasizes the importance of the in- fluence of both institutional forces embedded in national environments and decision makers' cognitive constraints on the founding conditions of new ventures. Still, this theoretical perspective has yet to provide insights into how institutional factors influence the choice of foreign entry mode. The primary goal of the present study is to provide a unifying theoretical frame- work to examine this relationship. We synthesize transaction- cost and institutional perspectives to analyze a sample of 364 Japanese overseas subsidiaries. Our results support the notion that institutional theory provides incremental explanatory power of foreign entry-mode choice in addition to transaction- cost theory. In particular, we found that multinational enter- prises tend to conform to the regulative settings of the host- country environment, the normative pressures imposed by the local people, and the cognitive mindsets as bounded by counterparts' and multinational enterprises' own entry patterns when making foreign entry-mode choices.

Focal Hypothesis 5: Multinational enterprises will use a follow-the-leader approach and follow the dominant entry-mode chosen by their home-country incumbents in the same host country.

Paraphrase: this article predicts a positive relationship between the rate of joint ventures over wholly owned subsidiaries established by other Japanese firms and the likelihood of entering by joint ventures.

X: rate of joint venture over wholly owned subsidiary established by the other Japanese competitors in the sample in the same host country at the time of the focal multinational enterprise's entry.

Y: foreign entry mode (0: wholly owned; 1: joint venture)

Expected sign: positive

Coefficient: Table 5, Model 3D, Mimetic entry

Time period of the sample: 1996

Geographic scope of the sample: Full, i.e. all available countries in dataset considered Result in the paper: β =4.2800, p<0.010

Time period of the generalizability test: 1992

Time periods			
Original study, and direct reproducibility test	1996		
Generalizability test	1992		

YOUR FORECASTS:

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>direct reproducibility test</u> (the test of the effect in the <u>same time period as the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

What do you think the probability is that a **statistically significant effect** (p<0.05) in the same direction as the original study will be observed in the <u>generalizability test</u> (the test of the effect in a <u>different time period compared to the original study</u>)?

Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

[Page break here]

Original studies that did not find a statistically significant result (p>0.05)

In this section you will find 5 original studies that did not find a statistically significant result (p>0.05). You will be asked to make predictions about the probability that a non-significant result (null result) will also emerge in the direct reproducibility test and the generalizability test.

[Page break here]

Study Number: 25

Title: The performance and survival of joint ventures with parents of asymmetric size Author: P. W. Beamish and J. C. Jung Year of Publication: 2005 Journal: Management International Abstract:

Researchers have argued that IJV performance and survival is affected significantly by its parent firms. In this regard, previous studies mostly focused on the relationship between an IJV and its individual parents, while leaving the relationship between parents firms

unexplored. This study considered whether size asymmetry between IJV parents is an additional factor influencing IJV performance and survival. From the perspective of transaction cost economics and resource-based view, we proposed two opposing hypotheses. To test the hypotheses, we used 261 firm-year observations of 145 Japanese IJVs in 1996, 1998 and 2000, with generalized estimating equations (GEEs) and Chi-square tests. No significant relationship was found between size asymmetry between parents and IJV performance and survival.

Focal Hypothesis 1a: Size asymmetry between parents is negatively related with an IJV's performance and survival

Paraphrase: the article predicts a **negative** relationship between size asymmetry and the IJV's performance and survival.

X: continuous measurement of parents' size asymmetry

Y: performance of IJVs (3: gain; 2: break-even; 1: loss)

Expected sign: negative

Coefficient: Table 3, Model 3, Parents' size ratio

Time period of the sample: 1996, 1998, 2000

Geographic scope of the sample: Full, i.e. all available countries in dataset considered Result in the paper: β =0.1700, p=0.584

Time period of the generalizability test: 2001, 2002, 2003

Time periods					
Original study, and direct reproducibility test	1996, 1998, 2000				
Generalizability test	2001, 2002, 2003				

YOUR FORECASTS:

What do you think the probability is that a **non-significant effect** (p>0.05) will be observed also in the <u>direct reproducibility test</u> (the test of the effect in the <u>same time period as the original study</u>)?

Please state a number between 0 (for 0% probability of a nonsignificant effect) and 100 (for 100% probability of a nonsignificant effect)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded]. What do you think the probability is that a **non-significant effect** (p>0.05) will be observed also in the generalizability test (the test of the effect in a different time period compared to the original study)?

Please state a number between 0 (for 0% probability of a nonsignificant effect) and 100 (for 100% probability of a nonsignificant effect)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded]. [Page break here]

Study Number: 26

Title: Escalation in international strategic alliances

Author: A. Delios, A. C. Inkpen, and J. Ross

Year of Publication: 2004

Journal: Management International Review

Abstract:

Casual observation provides numerous examples of alliances that continue for years despite failing to accomplish partner objectives. Why do firms often persist with alliance investments despite a steady stream of evidence that the alliance is producing little or no benefit? We investigate the factors that contribute to a firm's persistence with failing alliances, using an escalation framework for strategic alliances.

Focal Hypothesis 1: The greater the difficulty of alliance performance measurement, the greater the likelihood of escalation.

Paraphrase: the article predicts a **positive** relationship between the difficulty of alliance performance measurement and the likelihood of escalation.

X: the difficulty of alliance performance measurement (mean performance over time)

Y: the de-listing of a joint venture

Expected sign: positive

Coefficient: Table 1, Model 2, Mean profitability (1993-1997)

Time period of the sample: 1993-1999

Geographic scope of the sample: Canada and U.S.

Result in the paper: β =-0.4540, p=0.1890

Time period of the generalizability test: 1996-2002

Time periods				
Original study, and direct reproducibility test	1993-1999			
Generalizability test	1996-2002			

YOUR FORECASTS:

What do you think the probability is that a **non-significant effect** (p>0.05) will be observed also in the <u>direct reproducibility test</u> (the test of the effect in the <u>same time period as the original study</u>)?

Please state a number between 0 (for 0% probability of a nonsignificant effect) and 100 (for 100% probability of a nonsignificant effect)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded]. What do you think the probability is that a **non-significant effect** (p>0.05) will be observed also in the generalizability test (the test of the effect in a <u>different time period compared to</u> the original study)?

Please state a number between 0 (for 0% probability of a nonsignificant effect) and 100 (for 100% probability of a nonsignificant effect)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded]. [Page break here]

Study Number: 27

Title: Dynamics of experience, environment and MNE ownership strategy

Author: J. C. Jung, P. W. Beamish, and A. Goerzen

Year of Publication: 2010

Journal: Management International Review

Abstract: This study investigates the conditions under which environmental and firm-level factors affect MNE ownership strategy. We theorize that these effects are related to changes over time, which we subdivide into the aspects of absolute and relative magnitude. We develop and test four hypotheses using longitudinal data on Japanese foreign direct investment (FDI). At the environmental level, the proliferation of FDI opportunities significantly increases the use of international joint ventures (IJVs). At the firm level, increase in FDI experience has a significant positive effect on the use of IJVs.

Focal Hypothesis 1: The proliferation of FDI opportunities increases the use of IJVs as compared to WOSs.

Paraphrase: the article predicts a positive relationship between the proliferation of FDI opportunities and the use of IJV as compared to WOSs

X: Prior FDI opportunities. the number of Japanese FDIs worldwide by 2-digit SIC industry (in a logarithm format)

Y: Change in the use of IJVs (95%) (IJV ratio)

Expected sign: positive

Coefficient: Table 2, Model 1, Prior FDI opportunities

Time period of the sample: 1994-2002

Geographic scope of the sample: Full, i.e. all available countries in dataset considered **Result in the paper:** β =-1.1100, p=0.521

Time period of the generalizability test: 1985-1993

Time periods				
Original study, and direct reproducibility test	1994-2002			
Generalizability test	1985-1993			

YOUR FORECASTS:

What do you think the probability is that a **non-significant effect** (p>0.05) will be observed also in the <u>direct reproducibility test</u> (the test of the effect in the <u>same time period as the original study</u>)?

Please state a number between 0 (for 0% probability of a nonsignificant effect) and 100 (for 100% probability of a nonsignificant effect)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded]. What do you think the probability is that a **non-significant effect** (p>0.05) will be observed also in the generalizability test (the test of the effect in a <u>different time period compared to</u> the original study)?

Please state a number between 0 (for 0% probability of a nonsignificant effect) and 100 (for 100% probability of a nonsignificant effect)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

[Page break here]

Study Number: 28

Title: <u>Rethinking the effectiveness of asset and cost retrenchment: The contingency effects of</u> a firm's rent creation mechanism

Author: D. S. K. Lim, N. Celly, E. A. Morse, and W. G. Rowe

Year of Publication: 2013

Journal: Strategic Management Journal

Abstract:

This paper posits that the efficacy of different retrenchment strategies depends upon the firm's core rent creation mechanism. We focus on two distinct mechanisms of rent creation: Ricardian rent creation based on the exploitation of resources and Schumpeterian rent creation based on explorative capabilities. We argue that cost retrenchment may have detrimental effects on firms with a relatively high Schumpeterian rent focus. On the other hand, asset retrenchment may erode the basis for future rent creation for firms with a higher Ricardian rent focus. Our findings based on a sample of large nondiversified Japanese firms highlight the differing degrees of fragility and recoverability of the two rent creation mechanisms in the context of different retrenchment strategies.

Focal Hypothesis 1a: The extent to which a firm has a Ricardian rent creation focus will moderate the relationship between asset retrenchment and post-retrenchment performance, such that for firms with a higher Ricardian focus, the degree of asset retrenchment will have a stronger negative impact on post-retrenchment performance.

Paraphrase: the article predicts a **moderating effect (strengthening)** of a firm's Ricardian rent creation focus on the negative relationship between asset retrenchment and post-retrenchment performance.

X: Interaction between Asset retrenchment (percent reduction in total assets from one year to the next year) and Rf (Ricardian rent creation focus, measured by relative tangible asset intensity)

Y: performance three years after a retrenchment event to account for a potential recovery period

Expected sign: positive

Coefficient: Table 5a, Model 3, Asset retrenchment × Rf

Time period of the sample: 1992-1997

Geographic scope of the sample: Full, i.e. all available countries in dataset considered **Result in the paper:** β =0.0120, p>0.100

Time periodsOriginal study, and direct reproducibility
test1992-1997Generalizability test1986-1991

Time period of the generalizability test: 1986-1991

YOUR FORECASTS:

What do you think the probability is that a **non-significant effect** (p>0.05) will be observed also in the <u>direct reproducibility test</u> (the test of the effect in the <u>same time period as the original study</u>)?

Please state a number between 0 (for 0% probability of a nonsignificant effect) and 100 (for 100% probability of a nonsignificant effect)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded]. What do you think the probability is that a **non-significant effect** (p>0.05) will be observed also in the generalizability test (the test of the effect in a <u>different time period compared to</u> the original study)?

Please state a number between 0 (for 0% probability of a nonsignificant effect) and 100 (for 100% probability of a nonsignificant effect)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded].

[Page break here]

Study Number: 29

Title: <u>The liability of closeness: Business relatedness and foreign subsidiary performance</u> **Author:** J. Tang and W. G. Rowe

Year of Publication: 2012

Journal: Journal of World Business

Abstract:

It is widely accepted that business relatedness, defined as the extent to which a foreign subsidiary is related to its parent's core business, has a positive effect on subsidiary performance. With a sample of 165 Japanese subsidiaries located in China, however, we found that modestly related subsidiaries, on average, outperformed both unrelated and closely related subsidiaries, and that closely related subsidiaries performed poorly especially when the parent had a heavy majority ownership in the subsidiary and the subsidiary was at its early stage of operating in the host market. Our results indicate that being too closely related to the parent could be potentially detrimental, suggesting a liability of closeness.

Focal Hypothesis 2: Business relatedness and ownership level have an interactive effect on foreign subsidiary performance such that closely related subsidiaries perform poorly especially when ownership level is high.

Paraphrase: the article predicts a moderating effect (strengthening) of ownership level on the relationship between business relatedness and subsidiary performance.

X: Business relatedness (1: unrelated; 2: modestly related; 3: closely related); ownership (percentage of the primary foreign parent's share in the subsidiary)

Y: Subsidiary performance (1:loss; 2: breakeven; 3: gain)

Expected sign: negative

Coefficient: Table 2, Model 3, Closely_related*Ownership

Time period of the sample: 1996

Geographic scope of the sample: China

Result in the paper: β=0.3400, p=0.545

Time period of the generalizability test: 1994

Time periods				
Original study, and direct reproducibility test	1996			

Generalizability test	1994
-----------------------	------

YOUR FORECASTS:

What do you think the probability is that a **non-significant effect** (p>0.05) will be observed also in the <u>direct reproducibility test</u> (the test of the effect in the <u>same time period as the original study</u>)?

Please state a number between 0 (for 0% probability of a nonsignificant effect) and 100 (for 100% probability of a nonsignificant effect)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded]. What do you think the probability is that a **non-significant effect** (p>0.05) will be observed also in the generalizability test (the test of the effect in a <u>different time period compared to</u> the original study)?

Please state a number between 0 (for 0% probability of a nonsignificant effect) and 100 (for 100% probability of a nonsignificant effect)

[Free response bounded between 0 and 100 with a pop-up message if the bound is exceeded]. [Page break here]

Demographics

What is your age? [Free response]

What is your gender? Female (1) Male (2) Other: (3) [Free response text box] Prefer not to tell (4)

In which country/region were you born in? [Pulldown menu with numerous options, including Taiwan]

In which country/region do you currently reside? [Pulldown menu with numerous options, including Taiwan]

How many years of experience with English do you have? [Pulldown menu with numeric responses from "0" to "30 or more"]

If you are an academic, what department are you in at your institution (e.g., strategy, organizational behavior, psychology, statistics)? [Free response text box]

If relevant, what year did you receive, or do you expect to receive, your doctoral degree? [Pulldown menu with numeric responses from "1980 or earlier" to "2030 or later"]

If relevant, in what field did you receive your doctoral degree? [Free response text box]

If an academic, what is your job rank?

- \bigcirc Research assistant (1)
- \bigcirc Graduate student (2)
- \bigcirc Postdoctoral researcher (3)
- \bigcirc Assistant Professor (4)
- \bigcirc Associate Professor (5)
- \bigcirc Full Professor (6)
- \bigcirc Other academic position (please indicate) (7)

Do you have a practitioner-oriented business degree? If you have multiple degrees, please select your most advanced degree.

- \bigcirc Have an executive MBA degree (1)
- Currently pursuing an executive MBA degree (2)
- \bigcirc Have an MBA degree (3)
- \bigcirc Currently pursuing an MBA degree (4)
- O Have a Master in Management (MIM) degree (5)
- O Currently pursuing a Masters in Management (MIM) degree (6)
- \bigcirc Have an undergraduate degree in business (7)
- \bigcirc Currently pursuing an undergraduate degree in business (8)
- Other form of business degree (please specify): (9) [Free response text box]
- \bigcirc None of the above (10)

Do you have direct practitioner experience in the field of strategic management consulting?

- \bigcirc Yes, I am currently a strategic management consultant (1)
- \bigcirc Yes, I was previously a strategic management consultant (2)
- O No (3)

If a strategic management consultant, what is your job rank? [Free response text box]

Please specify whether you want to withdraw from the study. Recall that you will be anonymous to the researchers, and that when the data in this study will become "open data", we will NOT include your name or demographic questions in the public data uploaded.

 \bigcirc Yes, you may use my anonymized data in this research (1)

 \bigcirc No, please do NOT use my data in this research (2)

How should we deliver your payment in the event you are selected for the monetary bonus? (please select one)

 \bigcirc Paypal account (4)

 \bigcirc Amazon US voucher (1)

- \bigcirc Amazon UK voucher (2)
- \bigcirc Amazon DE voucher (3)

[Page break here]

Consortium Co-authorship

Completing the entire survey qualifies you to be listed as a consortium co-author on themanuscript reporting the results. Would you like to be listed as a co-author on the final project report?

 \bigcirc Yes, I would like to be listed as a co-author. (1)

 \bigcirc No, I would not like to be listed as a co-author. (2)

First name as you would like it to appear on the final project report: [Free response text box] Last name as you would like it to appear on the final project report: [Free response text box] Middle initial as you would like it to appear on the final project report: [Free response text box]

Institutional affiliation as you would like it to appear on the final project report: [Free response text box]

[Page break here]

Feedback

If you have any feedback on this forecasting survey, please provide it using the space below. Free response text box]

Supplement 4: Pre-registered analysis plan for the forecasting survey

Generalizability Test Project: Pre-Registration Document for Prediction Survey

Authors of analysis plan: Domenico Viganola, Andrew Delios, Elena Giulia Clemente, Anna Dreber, Magnus Johannesson, Thomas Pfeiffer, Michael Gordon, Eric Luis Uhlmann.

In this project, we will conduct direct reproducibility tests and generalizability tests of 30 original management findings based on a longitudinal archival dataset on international strategic management decisions (but only 29 of these 30 studies will be included in the prediction survey described in this pre-registration document; see below). First, we will re-estimate the original result by as closely as possible using the same data and methods as in the original study (direct reproducibility). Secondly, we will run the same analysis as in the direct reproducibility test but using data for a different time period (generalizability). For some studies generalizability tests will be conducted for multiple different time periods.

In the forecasting component of the study described in this pre-registration, we will examine whether independent scientists can predict which original empirical findings will yield comparable conclusions in the direct reproducibility test and in the generalizability test.

We aim to recruit as many forecasters as possible, setting the goal of achieving an N of at least 50 forecasters (if we fail to reach a sample size of at least N=50 we will still carry out the analyses outlined below, but all analyses will be interpreted as exploratory analyses). The first round of data collection, running in November-December 2020 will involve approximately 15 PhD students from different academic areas (e.g., strategy, finance, operations, organizational behavior) in a core doctoral course at INSEAD and approximately 4 PhD students in management at the National University of Singapore. We do this round first to ensure that there are no problems with the data collection. If we do not encounter any problems in this first wave of data collection that lead to changes to the survey, these observations will be included in the analyses described below. If we make any changes to the survey, these first observations will be excluded. For the main data collection, we plan to advertise the survey via social media (e.g., Twitter, Facebook), professional listservs, and by posting the link to our survey on websites for the exchange of research resources (e.g., http://osf.io/view/StudySwap/). We plan to keep the main data collection open for 8 weeks, and participants will have 30 days to finish the survey. Reminders will be sent out 15 and 7 days prior to the expiration of the survey. We will not analyze the data until all of it has been collected. There will be no "optional stopping" of the data collection in order to analyze the data partway through, which can lead to false positive results. We will only include in the analysis responses from participants who submit forecasts to all the forecasting questions.

For each of the original findings, the forecasters' task is to predict the probability that the original result will replicate in the direct reproducibility test and in the generalizability test. For original studies that reported a statistically significant finding with a p-value <0.05, the forecasters will be asked about the probability that a significant result (p<0.05) in the same direction as the original study is observed in the direct reproducibility test and in the generalizability test. For original studies that reported a statistically non-significant finding (p>0.05) the forecasters will be asked about the probability that a non-significant finding (p>0.05) the forecasters will be asked about the probability test and the generalizability test. Due to the ambiguity in interpreting the result, we will exclude one of the original studies from the forecasting survey as it reported a statistically significant effect at the 10% level (i.e., p

=0.08). This allows us to avoid using different significance thresholds in different studies in the information provided to forecasters. We will thus include 29 of the 30 management studies in the forecasting survey. If the original study reported an empirical result opposite to their theoretical expectations, we will conduct a generalizability test of the original empirical result, and likewise ask for forecasts about the empirical result not the (unsupported) original theoretical hypothesis.

In the primary analyses for the main article, more than one generalizability test is conducted for some of the original studies (i.e., those with different time periods of data available to conduct generalizability tests). For those studies we will randomly select one of these generalizability tests for the forecasting study among the generalizability tests using the same number of years of data as the original study. Forecasters predict the outcome for that specific test. We will include the time period used in the selected generalizability test in the information to forecasters. This is to simplify the task for the forecasters, so that they predict the outcome of one generalizability test for each original study.

Before making their predictions, the forecasters will be provided with detailed information about the original study (e.g., abstract of the research report, link to the full text article, sample size, p-value of the original finding), as well as a description of the methods used to assess the direct reproducibility and generalizability of the original finding. Each forecaster will be asked two forecasting questions for each study (Q1 and Q2), where the wording of the question will depend on if the original study reported a statistically significant finding (p<0.05) or a null result (p>0.05). These questions will be phrased in the following way:

Direct reproducibility tests:

Q1 (statistically significant original finding): What do you think the probability is that a statistically significant effect (p<0.05) in the same direction as the original study will be observed in the direct reproducibility test (the test of the effect in the same time period as the original study)? Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction) [Range 0% to 100%]

Q1 (original null result finding): What do you think the probability is that a non-significant effect (p>0.05) will be observed also in the direct reproducibility test (the test of the effect in the same time period as the original study)? Please state a number between 0 (for 0% probability of a nonsignificant effect) and 100 (for 100% probability of a nonsignificant effect) [range 0%-100%]

Generalizability tests:

Q2 (statistically significant original finding): What do you think the probability is that a statistically significant effect (p<0.05) in the same direction as the original study will be observed in the generalizability test (the test of the effect in a different time period compared to the original study)? Please state a number between 0 (for 0% probability of a statistically significant effect in the same direction) and 100 (for 100% probability of a statistically significant effect in the same direction) [Range 0% to 100%]

Q2 (original null result finding): What do you think the probability is that a non-significant effect (p>0.05) will be observed also in the generalizability test (the test of the effect in a

different time period compared to the original study)? Please state a number between 0 (for 0% probability of a nonsignificant effect) and 100 (for 100% probability of a nonsignificant effect) [range 0%-100%]

The monetary incentives for the forecasters are presented in the 'Incentive scheme' section of this pre-analysis plan.

In the hypotheses tests described below based on the data from the prediction survey, we use both the more conservative significance threshold of p < 0.005 proposed by Benjamin et al. (2018) and the traditional threshold for statistical significance of p < 0.05. Readers can make their own decision regarding which threshold they wish to apply. All the tests in this pre-analysis plan are two-sided tests.

1. Primary Hypothesis: Association Between Predicted and Observed Results

In our first primary hypothesis we test if there is a statistically significant association between the predicted and observed results. We carry out this test both separately for the predictions of direct reproducibility (Hypothesis 1a) and generalizability (Hypothesis 1b) and pooling all the predictions in one test (Hypothesis 1c).

Hypothesis 1a: There is a positive association between the predictions (beliefs) of forecasters and the observed results in the direct reproducibility tests.

Individual-level OLS regression to test whether forecasters' beliefs are significantly related to the realized results in the direct reproducibility tests after controlling for individual fixed effects:

(1)
$$RES_s = \beta_0 + \beta_1 PRES_{is}^D + FE_i + \varepsilon_{is}$$

where:

- RES_s is a binary variable indicating if the study replicated in the direct reproducibility test (1=replicated and 0=not-replicated); e.g. for original studies with a p<0.05 replication is defined as a significant effect (p<0.05) in the direct reproducibility test, and for original studies reporting null results (p>0.05) replication is defined as a non-significant result (p>0.05) in the direct reproducibility test.
- *PRES*^D_{is} is a continuous variable indicating the predicted probability of forecaster *i* that the original result of study *s* will replicate in the direct reproducibility test (*D*);
- FE_i is a set of individual fixed effects.

In equation (1) we will cluster standard errors at forecaster level (number of clusters determined by the number of forecasters) to take into account that each forecaster makes several predictions (and these predictions might be correlated).

Tests: *t*-test on coefficient β_1 in regression equation (1).

Hypothesis 1b: There is a positive association between the predictions (beliefs) of forecasters and the observed results in the generalizability tests.

Individual-level OLS regression to test whether forecasters' beliefs are significantly related to the realized results in the generalizability tests after controlling for individual fixed effects:

(2)
$$RES_s = \beta_0 + \beta_1 PRES_{is}^G + FE_i + \varepsilon_{is}$$

where the variables are defined as above, but with the difference that we include the observed results and the forecasts of the generalizability tests (G), instead of the direct reproducibility tests. As above, we will cluster standard errors at forecaster level (number of clusters determined by the number of forecasters).

Test: *t*-test on coefficient β_1 in regression equation (2).

Hypothesis 1c: There is a positive association between the predictions (beliefs) of forecasters and the observed results in the reproducibility tests and the generalizability tests.

Individual-level OLS regression to test whether forecasters' beliefs are significantly related to the realized effect sizes in the direct reproducibility tests and the generalizability tests after controlling for individual fixed effects:

(3)
$$RES_s = \beta_0 + \beta_1 PRES_{is} + FE_i + \varepsilon_{is}$$

Where the variables are defined as above, but with the difference that we include the observed results and the forecasts of both the direct reproducibility tests and the generalizability tests. Also in equation (3) we will cluster the standard errors at the forecaster level (number of clusters determined by the number of forecasters).

Test: *t*-test on coefficient β_1 in regression equation (3).

Robustness tests of Hypothesis 1a-1c: We will carry out a robustness test where we estimate the Pearson correlation between the mean predicted probability (*PRES_s*) of each direct reproducibility test and each generalizability test and the observed binary replication outcome in the direct reproducibility tests and generalizability tests. As above we will estimate this correlation for only the direct reproducibility tests (n=29), and only the generalizability tests (n=29), and for both the direct reproducibility tests and the generalizability tests (n=58).

We will also carry out an additional robustness test where we exclude the original studies reporting null results (p>0.05). This robustness test will be carried out both for regression equations 1-3 above and for the three correlation tests.

Hypothesis 2

For our second primary hypothesis we will test if the accuracy of the predictions differ between the predictions of direct reproducibility and the predictions of generalizability. For each survey-taker *i*, the *accuracy* achieved in study *s* is defined in terms of the squared prediction error (Brier score), according to the formula:

$$SPE_{is} = (PRES_{is} - RES_s)^2$$

where RES_s and $PRES_{is}$ should be interpreted as specified above.

Hypothesis 2: The accuracy of predictions differ for predictions of direct reproducibility and predictions of generalizability.

Test: In this test we first construct two individual level variables. The first of these variables is the mean squared prediction error of each forecaster for the direct reproducibility test predictions (i.e. for each forecaster we estimate the mean squared prediction error for the 29 predictions of direct reproducibility made by that forecaster). The second of these variables is the mean squared prediction error of each forecaster for the generalizability test predictions (i.e. for each forecaster we estimate the mean squared prediction error for the 29 predictions error of each forecaster for the generalizability test predictions (i.e. for each forecaster we estimate the mean squared prediction error for the 29 predictions of generalizability made by that forecaster). We then carry out a paired t-test (n=number of forecasters) of these two variables to test if the mean squared prediction error differs for the predictions of direct reproducibility and the predictions of generalizability. We have no directional hypothesis for this test.

Robustness tests of Hypothesis 2: we will carry out a robustness test relying on the absolute prediction error as a measure of prediction accuracy: $APE_{is} = |PRES_{is} - RES_s|$.

We will also carry out an additional robustness test where we exclude the original studies reporting null results (p>0.05). This robustness test will be carried out both for Brier score and the absolute prediction error.

Hypothesis 3

In our third hypothesis we will test if the predicted probability of replication differs between the predictions of direct reproducibility and the predictions of generalizability.

Hypothesis 3: The predicted replication rates differ for predictions of direct reproducibility and prediction of generalizability.

Test: In this test we first construct two individual level variables. The first of these variables is the mean predicted replication rate of each forecaster for the direct reproducibility test predictions (i.e. for each forecaster we estimate the mean predicted probability of replication for the 29 predictions of direct reproducibility made by that forecaster). The second of these variables is the mean predicted replication rate of each forecaster for the generalizability test predictions (i.e. for each forecaster we estimate the mean predicted probability of replication for the 29 predictions (i.e. for each forecaster we estimate the mean predicted probability of replication for the 29 predictions of generalizability made by that forecaster). We then carry out a paired t-test (n=number of forecasters) of these two variables to test if the mean predicted replication rate differs for the predictions of direct reproducibility and the predictions of generalizability. We have no directional hypothesis for this test.

Robustness tests of Hypothesis 3: We will carry out a robustness test where we exclude the original studies reporting null results (p>0.05).

2. Secondary hypothesis: Under/Overestimation of Replication Rates

We also plan to test whether the forecasters over or underestimate the observed replication rate of the direct reproducibility tests and generalizability tests.

Hypothesis 4a: Forecasters' beliefs under/over-estimate the replication rate of the direct reproducibility tests.

In the test of over/under-estimation of the direct reproducibility tests, we test if the predicted probability of replication in the direct reproducibility tests differ from the observed replication rate in the direct reproducibility tests.

Test: We first estimate the mean predicted replication rate of each forecaster for the direct reproducibility test predictions (i.e. for each forecaster we estimate the mean predicted probability of replication for the 29 predictions of direct reproducibility made by that forecaster). We then compare the mean of this individual level variable (N=number of forecasters in the data) to the mean observed replication rate in the direct reproducibility tests (N=number of direct reproducibility tests) in a z-test. We have no directional hypothesis for this test.

Hypothesis 4b: Forecasters' beliefs under/over-estimate the replication rate of the generalizability tests.

In the test of over/under-estimation of the generalizability tests, we test if the predicted probability of replication in the generalizability tests differ from the observed replication rate in the generalizability tests.

Test: We first estimate the mean predicted replication rate of each forecaster for the generalizability test predictions (i.e. for each forecaster we estimate the mean predicted probability of replication for the 29 predictions of generalizability made by that forecaster). We then compare the mean of this individual level variable (N=number of forecasters in the data) to the mean observed replication rate in the generalizability tests (N=number of generalizability tests) in a z-test. We have no directional hypothesis for this test.

Robustness tests of Hypothesis 4a and 4b: We will carry out a robustness test where we exclude the original studies reporting null results (p>0.05) from the analyses.

Incentives scheme

Participants who fully complete the survey will receive a consortium authorship credit ("Generalizability Tests Forecasting Collaboration") in the main author string, with full names and affiliations listed in an appendix to the manuscript. Additional monetary incentives for the forecasters are determined based on the accuracy of their forecasts. We will randomly select 2 of the participants who fully complete the survey and reward them with a bonus payout determined as a function of the accuracy of their forecasts. We compute the bonus payoffs according to the following scoring rule:

 $200 - (Sq. Error \times 800)$

where <u>Sq. Error</u> is the mean squared prediction error for all the 58 predictions made by that forecaster (29 predictions of the direct reproducibility tests and 29 predictions of the generalizability tests).

Generalizability Tests Supplement

Reference

Benjamin, D. J., Berger, J. O., Johannesson, M., Nosek, B. A., Wagenmakers, E.-J., Berk, R., . . .Johnson, V. E. (2018). Redefine statistical significance. *Nature Human Behaviour, 2*, 6–10. doi:10.1038/s41562-017-0189-z

Supplement 5: Reproduction and generalizability tests for each original effect

Paper 1	1
---------	---

Title: How does regional institutional complexity affect MNE internationalization? Authors: Jean-Luc Arregle, Toyah L. Miller, Michael A. Hitt, and Paul W. Beamish Year of Publication: 2016 Name of the Journal: Journal of International Business Studies **Focal Hypothesis:** Hypothesis 1a: An inverted U-shaped relationship exists between a region's formal institutional diversity and the propensity of MNEs to internationalize into a specific country within that region. **IV** (**x**): region's formal institutional diversity DV (y): an MNE's degree of internationalization into a country Expected sign: negative Coefficient: Table 3, Model 3, (Region's formal institutional diversity)^2 Years covered by original paper: 2002-2007 Geography covered by the original paper: All countries Time extensions: 1996-2001; 2008-2010 Geographic extension: N.A. Coefficient T-value 95% CI lower 95% CI upper p-value Sample size SE Item >-0.5904 Original -0.3700 <-3.29 < 0.001 33,858 < 0.1125 <-0.1496 Reproduction 0.0976 1.28 0.200 35,761 0.0761 -0.0516 0.2468 Time extension 1: -15.5618 -9.73 1.5998 -18.6974 -12.4262 0.000 31,097 2008-2010 Time extension 2: 0.0713 2.50 0.012 33,858 0.0285 0.0154 0.1271 1996-2001 Pooled generalizability 0.3951 22.52 0.000 66,858 0.0175 0.3608 0.4295 0.000 -0.3407 All data -0.3510 -66.62 100,716 0.0053 -0.3613

-0.9661

-2.76

Paper	2
-------	---

All data

Title: Tax competition and FDI: The special case of developing countries Authors: Céline Azémar and Andrew Delios Year of Publication: 2008 Name of the Journal: Journal of the Japanese and International Economies **Focal Hypothesis:** Hypothesis 1a: The probability of locating a plant in a given country will be smaller the higher the statutory tax rate of that country. **IV** (**x**): the statutory tax rate of a country **DV** (y): foreign direct investment in a country Expected sign: negative Coefficient: Table 2, Model (1), STR Years covered by the original paper: 1990-2000 Geography covered by the original paper: All countries Time extensions: 1979-1989; 2000-2010 Geographic extension: N.A. Sample 95% CI lower Item Coefficient Z-value p-value SE 95% CI upper size -2.5420 -3.28 0.001 0.7740 -4.0624 -1.0216 Original 541 Reproduction -0.2145 -0.37 0.713 545 0.5828 -1.3568 0.9278 Time extension 1: -1.3683 -2.57 0.010 423 0.5320 -0.3256 -2.4109 1979-1989 Time extension 2: -0.4407 -0.28 0.780 126 1.5800 -3.5375 2.6561 2000-2010 Pooled -1.1687 -2.46 0.014 549 0.4758 -2.1013 -0.2361 generalizability

0.006

1,052

0.3496

-1.6514

-0.2808

Paper 3

All data

-0.0008

-2.38

0.018

Title: The regional dimension of MNEs' foreign subsidiary localization Authors: Jean-Luc Arregle, Paul W. Beamish, and Louis Hébert Year of Publication: 2009 Name of the Journal: Journal of International Business Studies **Focused Hypothesis:** Hypothesis 1: The number of subsequent foreign subsidiaries developed in a country by a firm has an inverted U-shaped relationship with the number of prior foreign subsidiaries of this firm in this region. **IV** (**x**): the square of a firm's number of prior foreign subsidiaries in the region **DV** (y): the number of subsequent foreign subsidiaries in a country of this region Expected sign: negative Coefficient: Table 4, Model 1a, (No. of prior-created subsidiaries in this region)^2 Years covered by the original paper: 1986-2001 Geography covered by the original paper: All countries Time extension: 1995-2010 Geographic extension: N.A. Item Coefficient Z-value p-value Sample size SE 95% CI lower 95% CI upper 0.000 Original -0.0011 -5.50 0.0002 -0.0015 -0.0007 30.877 -0.0008 -2.44 0.014 0.0003 -0.0002 Reproduction 28,314 -0.0015 Time extension: -0.0104 -2.47 0.014 -0.0188 12,528 0.0042 -0.0021 1995-2010

40,842

0.0003

-0.0014

-0.0001

Paper 4										
Title: Investing profitably in China: is it getting harder?										
Authors: Paul W. Beamish and Ruihua Jiang										
Year of Publication: 20	Year of Publication: 2002									
Name of the Journal: I	Name of the Journal: Long Range Planning									
Focal Hypothesis:										
Hypothesis: The earlier a firm enter a market, the more profitable the subsidiary is.										
IV (x): the age of subsid	IV (x): the age of subsidiaries									
DV (y): Subsidiary perf	ormance was	s coded into a	binary var	iable with '1' i	ndicating	'profitable',	and '0'			
representing either 'brea	k-even' or '	loss'.	-		-	-				
Expected sign: positive										
Coefficient: Table 5, M	odel 4, Timi	ng of entry								
Years covered by the o	riginal pape	er: 1985-1999)							
Geography covered by the original paper: China										
Time extension: 1987-2	Time extension: 1987-2001									
Geographic extension:	India, South	Korea, South	neast Asia							
Item	Coefficient	7 value	p-value	Sample size	SE	95% CI	95% CI			
Item	Coefficient	Z-value	p-value	Sample size	51	lower	upper			
Original	0.2020	5.94	0.000	703	0.0340	0.1352	0.2688			
Reproduction	0.2100	6.31	0.000	738	0.0333	0.1445	0.2749			
Time extension:	Time extension:									
1987-2001	0.1580	5.00	0.000	913	0.0316	0.0962	0.2203			
Geographic extension:	0.1150	7.01	0.000	1,524	0.0164	0.0830	0.1474			
Pooled generalizability	0.1191	8.37	0.000	2,437	0.0142	0.0912	0.1470			
All data										

Paper 5

Title: Interdependent behavior in foreign direct investment: the multi-level effects of prior entry and prior exit on foreign market entry

Authors: Christine M. Chan, Shige Makino, and Takehiko Isobe

Year of Publication: 2006

Name of the Journal: Journal of International Business Studies

Focal Hypothesis:

Hypothesis 1a: The founding of a subsidiary of an MNC in a host country has an inverted U-shaped relationship with the number of prior entries of subsidiaries of other MNCs in the same host country. **IV** (**x**): the square of the number of prior entries of subsidiaries of other MNCs in the same host country. **DV** (**y**): the counts of Japanese foreign subsidiaries that were established by each parent firm in each industry

in each host country for every year

Expected sign: negative

Coefficient: Table 3, Model 1, Entry(t-1)*Entry(t-1)

Years covered by the original paper: 1989-1998

Geography covered by the original paper: All countries

Time extensions: 1978-1989, 2000-2009

Geographic extension: N.A.

Item	Coefficient	Z-value	p-value	Sample size	SE	95% CI lower	95% CI upper
Original	-0.0190	-6.33	0.000	156,451	0.0030	-0.0249	-0.0131
Reproduction	-0.0017	-1.40	0.162	120,672	0.0012	-0.0042	0.0007
Time extension 1: 1978-1989	-0.0095	-1.03	0.304	128,304	0.0092	-0.0276	0.0086
Time extension 2: 2000-2009	-0.0060	-0.78	0.436	117,738	0.0077	-0.0212	0.0091
Pooled generalizability	-0.0065	-1.57	0.117	246,042	0.0041	-0.0146	0.0016
All data	-0.0011	-1.06	0.287	366,714	0.0011	-0.0032	0.0010

Title: Ownership strategy of Japanese firms: Transactional, institutional, and experience influences **Authors:** Andrew Delios and Paul W. Beamish

Year of Publication: 1999

Name of the Journal: Strategic Management Journal

Focal Hypothesis:

Hypothesis 1: The greater the degree of asset specificity in the foreign investing firm's assets, the higher the ownership position assumed in the foreign investment.

IV (**x**): Advertising intensity and R&D intensity (firm and industry level). We focus on firm-level advertising strength

DV (y): the percentage ownership of the Japanese parent(s) in the foreign investment

Expected sign: positive

Coefficient: Table 4, Column 5 (Firm-level normalized), Advertising Intensity (Firm-Level)

Years covered by the original paper: 1994

Geography covered by the original paper: 9 countries in Southeast Asia and Southern Asia **Time extensions:** 1989,1992,1996,1999

Geographic extension: China, Taiwan, HK, South Korea

Item	Coefficient	T-value	p-value	Sample size	SE	95% CI lower	95% CI upper
Original	-3.6400	-2.50	0.013	708	1.4560	-6.4986	-0.7814
Reproduction	-2.7052	-2.04	0.041	953	1.3261	-5.3015	-0.1088
Time extension 1: 1989	-0.2602	-0.16	0.870	404	1.6265	-3.3756	2.8551
Time extension 2: 1992	-0.7500	-0.57	0.567	915	1.3158	-3.3158	1.8163
Time extension 3: 1996	0.7918	0.81	0.416	1,916	0.9775	-1.1161	2.6996
Time extension 4: 1999	-1.2537	-1.35	0.177	2,183	0.9287	-3.0752	0.5678
Geographic extension	-0.7665	-0.49	0.622	512	1.5642	-3.8162	2.2833
Pooled generalizability (only time)	-0.5775	-1.01	0.311	5,418	0.5700	-1.6949	0.5399
Pooled generalizability	-0.6466	-1.20	0.229	5,930	0.5370	-1.6994	0.4061
All data	-0.9259	-1.86	0.063	6,883	0.4980	-1.9021	0.0503

Notes: We refer to 1996 as the forward time extension and refer to 1992 as the backward time extension.

Title: Survival and profitability: The roles of experience and intangible assets in foreign subsidiary performance

Authors: Andrew Delios and Paul W. Beamish

Year of Publication: 2001

Name of the Journal: Academy of Management Journal

Focal Hypothesis:

Hypothesis la: The greater a multinational firm's possession of intangible assets, the higher the likelihood of a foreign subsidiary's survival.

IV (x): firm's intangible assets (R&D and advertising intensity)

DV (y): the likelihood of a foreign subsidiary's survival. (Survival = 1)

Expected sign: positive

Coefficient: Table 2, Model 1 & Model 2, Advertising & Technological

Years covered by the original paper: 1987-1996

Geography covered by the original paper: All countries

Time extensions: 1982-1991; 1989-1998

Geographic extension: N.A.

Geographic exten	SIUII. IN.A.		I		1		I	1
Item	Coefficient	Z-value	p-value	Sample size	SE	95% CI lower	95% CI upper	Notes
Original	5.8000	2.87	0.004	1,375	2.0200	1.8374	2.87	Model 1 (WOS) Advertising
Original	4.2300	4.65	0.000	1,375	0.9100	2.4449	4.65	Model 1 (WOS) Technological
Original	1.7100	0.82	0.413	1,705	2.0900	-2.3892	0.82	Model 2 (JV) Advertising
Original	2.1200	2.10	0.036	1,705	1.0100	0.1390	2.10	Model 2 (JV) Technological
Reproduction	-0.1900	-0.20	0.845	1,136	0.9600	-2.1112	1.7277	Model 1 (WOS) Advertising
Reproduction	-0.1800	-1.42	0.155	1,136	0.1200	-0.4182	0.0667	Model 1 (WOS) Technological
Reproduction	2.4600	2.34	0.019	1,810	1.0500	0.3975	4.5169	Model 2 (JV) Advertising
Reproduction	-0.1300	-2.52	0.012	1,810	0.0500	-0.2282	-0.0285	Model 2 (JV) Technological
Time extension 1: 1982-1991	2.5237	1.92	0.054	611	1.3112	-0.0462	5.0935	Model 1 (WOS) Advertising
Time extension 1: 1982-1991	0.0395	0.32	0.750	611	0.1239	-0.2034	0.2824	Model 1 (WOS) Technological
Time extension 1: 1982-1991	82.6601	1.37	0.171	814	60.390 9	-35.7039	201.0241	Model 2 (JV) Advertising
Time extension 1: 1982-1991	0.9305	1.08	0.280	814	0.8622	-0.7594	2.6204	Model 2 (JV) Technological
Time extension 2: 1989-1998	-0.5938	-0.55	0.583	895	1.0805	-2.7117	1.5240	Model 1 (WOS) Advertising
Time extension 2: 1989-1998	-0.0074	-0.04	0.964	895	0.1660	-0.3327	0.3178	Model 1 (WOS) Technological
Time extension 2: 1989-1998	1.7882	1.55	0.121	1,592	1.1519	-0.4696	4.0460	Model 2 (JV) Advertising
Time extension 2: 1989-1998	-0.2651	-4.01	0.000	1,592	0.0662	-0.3948	-0.1354	Model 2 (JV) Technological
Pooled generalizability	0.8936	1.04	0.301	1,506	0.8631	-0.7981	2.5853	Model 1 (WOS) Advertising
Pooled generalizability	0.0226	0.19	0.847	1,506	0.1167	-0.2062	0.2514	Model 1 (WOS) Technological
Pooled generalizability	2.4678	2.28	0.023	2,406	1.0845	0.3422	4.5933	Model 2 (JV) Advertising
Pooled generalizability	-0.1694	-2.99	0.003	2,406	0.0566	-0.2804	-0.0584	Model 2 (JV) Technological

Generalizability Tests Supplement

All data	0.4926	0.76	0.446	2,642	0.6463	-0.7741	1.7594	Model 1 (WOS) Advertising
All data	-0.0740	-0.88	0.376	2,642	0.0837	-0.2380	0.0900	Model 1 (WOS) Technological
All data	2.4616	3.27	0.001	4,216	0.7533	0.9852	3.9380	Model 2 (JV) Advertising
All data	-0.1471	-3.87	0.000	4,216	0.0380	-0.2215	-0.0726	Model 2 (JV) Technological

Notes: We refer to the Model 2 (JV, Technological) as the original effect.

Title: Expatriate staffing in foreign subsidiaries of Japanese multinational corporations in the PRC and the United States

Authors: Andrew Delios and Ingmar Bjorkman

Year of Publication: 2000

Name of the Journal: International Journal of Human Resource Management

Focal Hypothesis:

Hypothesis 1a: There will be a positive relationship between percent equity ownership and the use of expatriates.

 \mathbf{IV} (x): the log of the percentage equity share of the main Japanese parent firm

DV (y): the log of the number of expatriates

Expected sign: positive

Coefficient: Table 2, All subsidiaries, Ownership

Years covered by the original paper: 1997

Geography covered by the original paper: US & China

Time extensions: 1992,1995,1999

Geographic extension: HK Thailand; Singapore; Taiwan; Malaysia; Brazil; Australia; Europe

				,,	, ,	,	
Item	Coefficient	T-value	p-value	Sample size	SE	95% CI lower	95% CI upper
Original	5.1710	4.33	0.000	797	1.1951	2.8252	7.5168
Reproduction	0.6530	5.68	0.000	677	0.1151	0.4269	0.8785
Time extension 1: 1992	0.3667	2.50	0.013	265	0.1469	0.0775	0.6560
Time extension 2: 1995	0.4967	3.78	0.000	362	0.1313	0.2384	0.7549
Time extension 3: 1999	0.7597	6.80	0.000	765	0.1117	0.5404	0.9791
Geographic extension	0.4640	7.72	0.000	553	0.0601	0.3460	0.5821
Pooled generalizability (only time)	0.5582	7.73	0.000	1,392	0.0722	0.4166	0.6998
Pooled generalizability	0.5238	11.59	0.000	1,945	0.0452	0.4352	0.6123
All data	0.5391	12.88	0.000	2,459	0.0419	0.4570	0.6211

Notes: We refer to 1992 as the backward time extension.

Paper 9											
	itation and	nlant locati	on: Ionon	asa multinatio	nol corne	rationa 1000 10	06				
Title: Uncertainty, imitation, and plant location: Japanese multinational corporations, 1990-1996 Authors: Witold J. Henisz and Andrew Delios											
Year of Publication: 2001											
Year of Publication: 2001 Name of the Journal: Administrative Science Quarterly											
Focal Hypothesis:	• Aummsud		c Quarter	lly							
Hypothesis 2: The pro	obability of h	ocating a nl	ant in a o	viven country y	vill he or	eater the lower t	he level of				
political hazards of th	•	ocuting a pi	unt in a g	,iven country (wini be gi	cuter the lower t					
IV(x): political hazar		1 country in	a given	vear							
DV(y): The strategic					a countr	v (dummv variał	ole, which equals				
1 if firm x locates a m							1				
Expected sign: negat		1	5	,		,					
Coefficient: Table 3,		Political haz	ards								
Years covered by th	e original pa	per: 1990-	1996								
Geography covered				tries							
Time extensions: 198	83-1989, 198	8-1994, 19	92-1998								
Geographic extensio	n: N.A.										
Item	Coefficient	Z-value	p-value	Sample size	SE	95% CI lower	95% CI upper				
Original	-1.1500	-7.19	0.001	857,210	0.1600	-1.4636	-0.8364				
Reproduction	-0.6495	-1.63	0.101	753,676	0.3974	-1.4271	0.1274				
Time extension 1: 1983-1989	-0.2159	0.00	0.999	105,314	199.73 53	-391.6900	391.2582				
Time extension 2: 1988-1994	-0.9964	-2.33	0.020	657,110	0.4272	-1.8338	-0.1590				
Time extension 3: -0.1811 -0.46 0.647 669,998 0.3950 -0.9553 0.5932											
Pooled generalizability -0.6375 -2.39 0.017 1,327,108 0.2667 -1.1603 -0.1148											
All data	-0.6361	-2.90	0.004	2,080,784	0.2196	-1.0665	-0.2056				

Notes: We refer to 1988–1994 as the backward time extension.

Title: Political hazards, experience, and sequential entry strategies: The international expansion of Japanese firms, 1980-1998

Authors: Andrew Delios and Witold J. Henisz

Year of Publication: 2003

Name of the Journal: Strategic Management Journal

Focal Hypothesis:

Hypothesis 1: A firm's stock of experience in politically hazardous countries moderates the negative effect of a country's level of political hazards on rates of FDI entry into that country.

IV(**x**): Interaction between high-hazard country experience and political hazards

DV(**y**): rates of FDI entry into that country (Exit, which took a value of 1 if firm x made an entry in country i at time t, otherwise it was zero)

Expected sign: negative

Coefficient: Table 1, Model 4, High-hazard country experience × Political hazards

Years covered by the original paper: 1980-1999

Geography covered by the original paper: All countries

Time extensions: 1970-1989; 1962-1980; 1962-1989

Geographic extension: N.A.

ocographic extension.	Geographic extension. N.A.											
Item	Coefficient	Z-value	p-value	Sample size	SE	95% CI lower	95% CI upper					
Original	0.0180	2.00	0.046	816,908	0.0090	1.0004	1.0356					
Reproduction	-0.0083	-0.16	0.869	581,482	0.0506	-0.1075	0.0908					
Time extension 1: 1970-1989	0.1039	1.51	0.132	277,538	0.0689	-0.0312	0.2389					
Time extension 2: 1962-1980	0.0875	0.81	0.202	88,304	0.1075	-0.1232	0.2983					
Time extension 3: 1962-1989	0.0618	0.95	0.342	294,197	0.0651	-0.0658	0.1895					
Pooled generalizability	0.0799	1.96	0.050	660,039	0.0409	-0.0002	0.1600					
All data	0.0037	0.13	0.899	1,241,521	0.0290	-0.0532	0.0605					
					0		0 1 1					

Notes: We refer to 1970-1989 as the backward time extension. There is no forward time extension for this paper.

Paper 11											
Title: Timing of entry and the foreign subsidiary performance of Japanese firms											
Authors: Andrew D	Authors: Andrew Delios and Shige Makino										
Year of Publication											
Name of the Journa	al: Journal of Intern	ational Ma	arketing								
Focal Hypothesis:											
Hypothesis 2: The la							ırvival.				
IV(x): the count of a											
DV (y): exiting subsi		t were deli	sted from	Japanese Ove	erseas Inve	stments					
Expected sign: posi											
Coefficient: Table 2		•									
Years covered by the											
Geography covered	• • •	aper: All c	ountries								
Time extension:198											
Geographic extensi	on: N.A.	T	T		1						
Item	Coefficient	Z-values	p-value	Sample size	SE	95% CI lower	95% CI upper				
Original	-0.0020	<-2.58	< 0.010	6,955	< 0.0008	>-0.0035	<-0.0005				
Reproduction	0.0005	1.41	0.158	7,677	0.0004	-0.0002	0.0012				
Time extension: 1981-19940.00051.190.2367,4350.0004-0.00030.0012											
All data	0.0005	1.83	0.067	15,112	0.0003	0.0000	0.0010				

Paper 12	Paper 12											
Title: Effect of equity ownership on the survival of international joint ventures												
Authors: Charles D	Authors: Charles Dhanaraj, and Paul W. Beamish											
Year of Publication	: 2004											
Name of the Journa	al: Strategic M	lanagemen	t Journal									
Focal Hypothesis:												
asymmetric effect or IV(x): the percentage	Hypothesis: Foreign equity ownership in an overseas subsidiary will have a negative, nonlinear, and asymmetric effect on the mortality of the subsidiary. IV(x): the percentage of foreign equity held in the subsidiary DV(y): a cessation of operations in that subsidiary											
Expected sign: nega		i ulat subsi	ulai y									
Coefficient: Table 2		tv (log)										
Years covered by the			-1997									
Geography covered	l by the origin	al paper:	All count	tries								
Time extension: 19	98-2009											
Geographic extensi	on: N.A.					-	-					
Item	Coefficient	Z-values	p-value	Sample size	SE	95% CI lower	95% CI upper					
Original	-0.5590	-29.42	0.000	12,984	0.0190	-0.5962	-0.5218					
Reproduction	Reproduction -0.9790 -26.07 0.000 7,681 0.0376 -1.0527 -0.9054											
Time extension: -0.2013 -2.22 0.027 637 0.0907 -0.3791 -0.0234												
All data	-0.8526	-24.67	0.000	8,318	0.0346	-0.9203	-0.7848					

Title: Expatriate managers, product relatedness, and IJV performance: A resource and knowledge-based perspective

Authors: Dev K. Dutta and Paul W. Beamish

Year of Publication: 2013

Name of the Journal: Journal of International Management

Focal Hypothesis:

Hypothesis 1: Expatriate deployment and IJV performance have a curvilinear (inverted-U) relationship. $\mathbf{W}(\mathbf{x})$ the degree of menogeneric influence superiod by non-local menogeneric within the subsidiery.

IV(x): the degree of managerial influence exercised by non-local managers within the subsidiary

DV(y): performance is constructed from the IJV top manager's categorical assessment of the organization's financial performance for the year (1 = loss, 2 = break-even, 3 = profit)

Expected sign: negative

Coefficient: Table 2: Model 2, Expatriate ratio²

Years covered by the original paper: 1991-2001

Geography covered by the original paper: US

Time extension: 2000-2010

Geographic extension: China (including HK and MO)

Item	Coefficient	Z-values	p-value	Sample size	SE	95% CI lower	95% CI upper
Original	-0.1340	<-1.96	< 0.050	3,772	< 0.0684	>-0.2680	< 0.0000
Reproduction	-1.0005	-0.27	0.790	568	3.7478	-8.3461	6.3451
Time extension: 2000-2010	-12.4779	-0.42	0.675	145	29.7169	-70.7219	45.7661
Geographic extension	-2.5659	-0.12	0.904	1,631	21.1812	-44.0803	38.9485
Pooled generalizability	7.1462	0.51	0.612	1,776	14.0981	-20.4838	34.7799
All data	4.9816	1.72	0.085	2,344	2.8908	-0.6842	10.6474

Title: Multinational firm knowledge, use of expatriates, and foreign subsidiary performance **Authors**: Yulin Fang, Guo-Liang Frank Jiang, Shige Makino, and Paul W. Beamish

Year of Publication: 2010

Name of the Journal: Journal of Management Studies

Focal Hypothesis:

Hypothesis 2: The ratio of expatriates in a foreign subsidiary moderates the relationship between the level of the parent firm's technological knowledge and the subsidiary's short-term performance, such that the positive association between parent technological knowledge and the subsidiary's short-term performance is stronger in subsidiaries with a high ratio of expatriates than in subsidiaries with a low ratio of expatriates.

IV(x): Interaction between the ratio of expatriates in a foreign subsidiary and the level of the parent firm's technological knowledge

DV(y): subsidiary performance reported in Japanese Overseas Investments

Expected sign: positive

Coefficient: Table IV, Model 2, Tech knowledge * expatriate ratio

Years covered by the original paper: 1989-1994

Geography covered by the original paper: All countries

Time extension: 1994-1999

Geographic extension: N.A.

Item	Coefficient	Z-values	p-value	Sample size	SE	95% CI lower	95% CI upper
Original	0.2000	2.50	0.013	1,242	0.0800	0.0430	0.3570
Reproduction	0.0702	0.95	0.343	1,030	0.0739	-0.0749	0.2153
Time extension: 1994-1999	-0.0834	-1.45	0.146	1,032	0.0575	-0.1958	0.0290
All data	-0.0209	-0.50	0.618	2,062	0.0418	-0.1028	0.0611

Title: Institutional environments, staffing strategies, and subsidiary performance

Authors: Ajai S. Gaur, Andrew Delios, and Kulwant Singh

Year of Publication: 2007

Name of the Journal: Journal of Management

Focal Hypothesis:

Hypothesis 1a: The greater the institutional distance between the home country of the parent firm and the host country of the subsidiary, the greater the likelihood of the subsidiary GM being a PCN.

IV(x): the institutional distance between the home country of the parent firm and the host country of the subsidiary

DV(y): GM Nationality (we coded GM nationality as 1 if a subsidiary had a Japanese GM and 0 otherwise) **Expected sign:** positive

Coefficient: Table 3, Model 2, Regulative distance

Years covered by the original paper: 2003

Geography covered by the original paper: All countries

Time extensions: 2000; 1998

Geographic extension: N.A.

Item	Coefficient	Z-values	p-value	Sample size	SE	95% CI lower	95% CI upper
Original	0.3150	3.75	0.000	12,997	0.0840	0.1503	0.4797
Reproduction	0.1265	1.81	0.070	9,612	0.0698	-0.0103	0.2632
Time extension 1: 1998	0.5825	10.07	0.000	15,510	0.0578	0.4692	0.6959
Time extension 2: 2000	0.3419	5.50	0.000	14,434	0.0622	0.2199	0.4636
Pooled generalizability	0.4586	10.91	0.000	29,798	0.0420	0.3761	0.5410
All data	0.4214	11.87	0.000	39,388	0.0355	0.3519	0.4910

Notes: We refer to 1998 as the backward time extension. There is no forward time extension for this paper.

Paper 16	. 1.	· · c					
Title: Time compress							
Authors: Ruihua Joy		v. Beamis	n, and Shig	ge Makino			
Year of Publication:		V. 11D.	•				
Name of the Journal	: Journal of	world Bus	iness				
Focal Hypothesis: Hypothesis 1: Faster s	mand of subs	aquant auk	aidiam act	ablichmentie	acconicted	with low on port	menon of the
subsidiary.	-	-	·			with lower perio	of the
IV (x): whether the foo							
DV(y): Survival. A su		coded as l	having exit	ted if it is no lo	onger repor	ted from the dat	tabase in a
particular period of tin							
Expected sign: negati							
Coefficient: Table 2,							
Years covered by the							
Geography covered			China				
Time extensions: 198	,						
Geographic extension	n: India, Sou	th Korea,	Thailand, S	Singapore, Ma	laysia, Phil	ippines, Indone	sia
Item	Coefficient	Z-values	p-value	Sample size	SE	95% CI lower	95% CI upper
Original	-0.1650	<-2.57	< 0.01	881	< 0.0642	>-0.2910	<-0.0390
Reproduction	-0.1110	-1.25	0.210	709	0.0886	-0.2848	0.0627
Time extension 1: 2001-2010	-0.4323	-1.95	0.051	365	0.2218	-0.8670	0.0023
Time extension 2: 1989-2010	-0.0842	-1.71	0.087	851	0.0492	-0.1806	0.0123
Geographic extension	-0.0586	-1.23	0.217	1,174	0.0475	-0.1518	0.0345
Pooled							
generalizability (only	-0.0920	-1.93	0.054	1,216	0.0478	-0.1857	0.0017
time)							
Pooled generalizability	-0.0715	-2.23	0.026	2,390	0.0321	-0.1345	-0.0086
All data	-0.0842	-2.80	0.005	3,099	0.0301	-0.1432	-0.0253

Notes: We refer to 1989-2010 as the forward time extension.

Title: Entry mode strategy and performance: the role of FDI staffing

Authors: Robert Konopaske, Steve Werner, and Kent E. Neupert

Year of Publication: 2002

Name of the Journal: Journal of Business Research

Focal Hypothesis:

Hypothesis 1: For wholly owned entry mode strategies, Japanese firms utilizing ethnocentric staffing policies will experience higher levels of performance from their international ventures than those that employ polycentric staffing policies.

IV(x): percent Japanese employees

DV(y): subsidiary performance ((1) loss; (2) break-even; (3) gain)

Expected sign: positive

Coefficient: Table 3 Model 1: Percent Japanese employees (Multinomial logistic regression)

Years covered by the original paper: 1994

Geography covered by the original paper: All countries

Time extensions: 1990; 1992; 1996

Geographic extension: N.A.

Item	Coefficient	Z values	p-value	Sample size	SE	95% CI lower	95% CI upper	Notes
Original	-0.0020	>-1.65	>0.100	2,102	>0.0012	<-0.0044	>0.0004	Loss
Original	0.0060	>2.58	< 0.010	2,102	< 0.0023	>0.0014	< 0.0106	Break-even
Reproduction	0.1644	0.69	0.491	1,625	0.2385	-0.3031	0.6319	Loss
Reproduction	0.6866	3.18	0.001	1,625	0.2160	0.2634	1.1099	Break-even
Time extension 1: 1990	0.0580	0.22	0.825	1,273	0.2615	-0.4545	0.5704	Loss
Time extension 1: 1990	0.4485	2.25	0.025	1,273	0.1996	0.0573	0.8398	Break-even
Time extension 2: 1992	0.0678	0.32	0.746	1,549	0.2095	-0.3429	0.4784	Loss
Time extension 2: 1992	0.4315	2.41	0.016	1,549	0.1793	0.0801	0.7828	Break-even
Time extension 3: 1996	0.7983	3.34	0.001	1,929	0.2390	0.3299	1.2667	Loss
Time extension 3: 1996	1.0313	4.72	0.000	1,929	0.2186	0.6030	1.4597	Break-even
Pooled generalizability	0.2920	2.19	0.029	4,751	0.1336	0.0302	0.5538	Loss
Pooled generalizability	0.6237	5.42	0.000	4,751	0.1151	0.3981	0.8493	Break-even
All data	0.2602	2.23	0.026	6,376	0.1167	0.0315	0.4890	Loss
All data	0.6350	6.25	0.000	6,376	0.1016	0.4359	0.8341	Break-even

Notes: We refer to Break-even as the original effect and only refer to 1992 as the backward time extension.

Title: The internationalization and performance of SMEs

Authors: Jane W. Lu and Paul W. Beamish

Year of Publication: 2001

Name of the Journal: Strategic Management Journal

Focal Hypothesis:

Hypothesis 4: Exporting activities will exert a negative moderating effect on the relationship between FDI and performance.

 $\mathbf{IV}(\mathbf{x})$: export intensity * foreign investment activities (the number of FDIs in which the parent firm had a 10 percent or greater equity share & the number of countries in which the firm had FDIs)

DV(**y**): performance (ROA & ROS)

Expected sign: negative

Coefficient: Table 2: Model 9, Export intensity*Number of foreign investments; Model 10, Export intensity*Number of countries invested in

Years covered by the original paper: 1986-1997

Geography covered by the original paper: All countries

Time extension: 1989-2000

Geographic exter	Geographic extension: N.A.											
Item	Coefficient	Z-value	p-value	Sample size	SE	95% CI lower	95% CI upper	Notes				
Original	-0.0060	-2.02	0.045	164	0.0030	-0.0119	-0.0001	model 9				
Original	-0.0140	-3.01	0.003	164	0.0047	-0.0232	-0.0048	model 10				
Reproduction	0.0001	0.04	0.969	146	0.0027	-0.0051	0.0053	model 9				
Reproduction	-0.0043	-1.2	0.231	146	0.0036	-0.0114	0.0028	model 10				
Time extension: 1989-2000	0.0148	1.61	0.108	147	0.0092	-0.0033	0.0328	model 9				
Time extension: 1989-2000	0.0184	1.32	0.187	147	0.0139	-0.0089	0.0457	model 10				
All data	0.0102	1.24	0.214	148	0.0082	-0.0059	0.0263	model 9				
All data	0.0140	1.14	0.255	148	0.0123	-0.0101	0.0380	model 10				

Notes: We refer to Model 9 for the original effect.

Paper 19										
Title: SME inter	nationalization	and perfor	mance: G	rowth vs.	profitabilit	v				
Authors: Jane W. Lu and Paul W. Beamish										
Year of Publication: 2006										
Name of the Journal: Journal of International Entrepreneurship										
Focal Hypothesis:										
Hypothesis 1a: An SME's growth is positively related to its level of exporting activities.										
IV(x): export inte	ensity (the perc	ent of pare	nt firm sa	les that we	ere derived	from expo	ort revenues	5)		
DV(y): Firm grov	wth (sales & as	set)								
Expected sign: p										
Coefficient: Tab				nsity						
Years covered b										
Geography cove		ginal pape	r: All cou	intries						
Time extension:										
Geographic exte	ension: N.A.	1	1	1				1		
Item	Coefficient	Z-value	p-value	Sample	SE	95% CI	95% CI	Notes		
				size		lower	upper			
Original	0.1720	2.97	0.003	1,804	0.0580	0.0582	0.2858	model 2		
Original	0.0700	1.67	0.096	1,804	0.0420	-0.0124	0.1524	model 7		
Reproduction	0.0740	1.34	0.180	3,707	0.0550	-0.0340	0.1820	model 2		
Reproduction	0.0140	0.54	0.592	3,707	0.0270	-0.0380	0.0660	model 7		
Time extension: 1989-2000	0.0470	0.89	0.371	3,707	0.0530	-0.0560	0.1510	model 2		
Time extension: 1989-2000	0.0060	0.29	0.771	3,707	0.0220	-0.0360	0.0490	model 7		
All data	0.0449	1.01	0.311	4,718	0.0442	-0.0418	0.1316	model 2		
All data	0.0078	0.35	0.729	4,718	0.0226	-0.0364	0.0520	model 7		

Notes: We refer to Model 2 for the original effect.

Title: Intra- and inter-organizational imitative behavior: Institutional influences on Japanese firms' entry mode choice

Author: Jane W. Lu

Year of Publication: 2002

Name of the Journal: Journal of International Business Studies

Focal Hypothesis:

Hypothesis 3: The greater the frequency of adoption of an entry mode in a firm's earlier entries in an environment, the greater its propensity to use that same entry mode in subsequent entries.

IV(x): own firm's entry mode by country / industry (by calculating the percent of its entries that were wholly-owned)

DV(y): entry mode (1:wholly-owned; 0: others)

Expected sign: positive

Coefficient: Table 1: Model 2; parent firm's entry mode by country & Model 3: parent firm's entry mode by industry

Years covered by the original paper: 1986-1999

Geography covered by the original paper: 12 developed countries

Time extension: 1999-2003

Geographic extension: China, Thailand, Singapore, Malaysia, Indonesia, Korea, Philippines, Brazil, Mexico, Panama, Vietnam, India

Item	Coefficient	Z-value	p-value	Sample size	SE	95% CI lower	95% CI upper	Notes
Original	0.4300	2.33	0.020	1,194	0.1844	0.0683	0.7917	by country
Original	0.7900	2.58	0.010	1,194	0.3062	0.7670	0.8130	by industry
Reproduction	3.7313	11.23	0.000	1,767	0.3430	3.1783	4.5229	by country
Reproduction	3.3124	8.00	0.000	1,767	0.4141	2.5007	4.1241	by industry
Time extension: 1999-2003	7.4451	4.91	0.000	596	1.5176	4.4705	10.4196	by country
Time extension: 1999-2003	6.2390	7.07	0.000	596	0.8824	4.5094	7.9686	by industry
Geographic extension	3.7377	10.14	0.000	3,658	0.3686	3.0153	4.4602	by country
Geographic extension	5.3062	10.36	0.000	3,658	0.5123	4.3022	6.3103	by industry
Pooled generalizability	4.0913	11.10	0.000	4,254	0.3685	3.3690	4.8136	by country
Pooled generalizability	5.5353	12.59	0.000	4,254	0.4398	4.6733	6.3973	by industry
All data	3.6397	15.47	0.000	6,021	0.2353	3.1785	4.1010	by country
All data	4.5918	14.84	0.000	6,021	0.3093	3.9855	5.1981	by industry

Notes: We refer to "by country" for the original effect.

Paper 21										
Title: A new tale of two	cities: Japar	nese FDIs i	in Shangl	hai and Beijing	g, 1979–2	2003				
Authors: Xufei Ma and Andrew Delios										
Year of Publication: 2007										
Name of the Journal: International Business Review										
Focal Hypothesis:										
Hypothesis: Subsidiaries		•	vive in S	hanghai than i	n Beijing					
IV(x): City (0 = Shangh										
DV (y): exiting (non-sur	0,	idiaries (1:	Exits; 0:	Surviving)						
Expected sign: positive										
Coefficient: Table 7; Ci										
Years covered by the o										
Geography covered by	-	l paper: C	hina (Be	ijing and Shan	ghai)					
Time extension: 1986-2			~							
Geographic extension:			1		1					
Item	Coefficient	Z-value	p-value	Sample size	SE	95% CI lower	95% CI upper			
Original	0.2500	2.08	0.037	1,233	0.1200	0.0146	0.4854			
Reproduction	0.3900	3.21	0.001	1,008	0.1199	0.1505	0.6206			
Time extension: 1986-2010	0.5233	3.96	0.000	1,518	0.1322	0.2642	0.7825			
Geographic extension	0.5787	0.80	0.434	98	0.7209	-0.8343	1.9916			
Pooled generalizability	0.6050	4.81	0.000	1,616	0.1258	0.3585	0.8516			
All data	0.4405	5.13	0.000	2,624	0.0859	0.2721	0.6089			

Paper 2	22
---------	----

Title: Local knowledge transfer and performance: implications for alliance formation in Asia **Authors:** Shige Makino and Andrew Delios

Year of Publication: 1996

Name of the Journal: Journal of International Business Studies

Focal Hypothesis:

Hypothesis 3b: As the foreign parent's host country experience increases, the relative performance benefit of having a local joint venture partner decreases.

IV(x): the interaction between LOCAL (dummy variable indicating the existence of a local JV partner) and PARENT (the foreign parent firm's past local country experience measured in years)

DV(y): subsidiary's performance (0: low performance (loss and breakeven); 1: gain)

Expected sign: negative

Coefficient: Table 4: Model 1, Local Partner-Parent Interaction

Years covered by the original paper: 1992

Geography covered by the original paper: SE Asia

Time extensions: 1990;1994

Geographic extension: China, South Korea, India

Item	Coefficient	Z-value	p-value	Sample size	SE	95% CI lower	95% CI upper
Original	-0.0997	-8.76	< 0.001	556	0.0114	-0.1220	-0.0774
Reproduction	-0.0029	-0.34	0.730	682	0.0083	-0.0191	0.0134
Time extension 1: 1990	-0.0015	-0.15	0.877	638	0.0096	-0.0204	0.0174
Time extension 2: 1994	0.0017	0.37	0.712	690	0.0046	-0.0073	0.0107
Geographic extension	0.0679	0.88	0.380	153	0.0773	-0.0836	0.2194
Pooled generalizability (only time)	0.0012	0.3	0.762	1,328	0.0040	-0.0066	0.0090
Pooled generalizability	0.0014	0.35	0.727	1,481	0.0039	-0.0063	0.0090
All data	0.0006	0.18	0.860	2,163	0.0035	-0.0062	0.0074

Title: The diminishing effect of cultural distance on subsidiary control **Authors:** Timothy J. Wilkinson, George Z. Peng, Lance Eliot Brouthers, and Paul W. Beamish

Year of Publication: 2008

Name of the Journal: Journal of International Management

Focal Hypothesis:

Hypothesis 1: Cultural distance has a significantly greater impact on parent company subsidiary control mechanisms (such as home country ownership or expatriate staffing ratios) for newer subsidiaries than for older subsidiaries.

IV(**x**): multiply subsidiary age and cultural distance

DV(y): the percentage of Japanese expatriates

Expected sign: negative

Coefficient: Table 2, Model 1C, Cultural distance * subsidiary age

Years covered by the original paper: 2001

Geography covered by the original paper: All countries

Time extension: 2010

Geographic extension: N.A.

Item	Coefficient (std Beta)	Z-value	p-value	Sample size	SE	95% CI lower	95% CI upper
Original	(-0.0300)	<-1.96	< 0.050	5,296	Unknown	Unknown	Unknown
Reproduction	-0.0005 (-0.0934)	-2.53	0.011	3,761	0.0002	-0.0009	-0.0001
Time extension: 2010	-0.0009 (-0.1974)	-3.06	0.002	1,983	0.0003	-0.0014	-0.0003
All data	-0.0006 (-0.1247)	-3.84	0.000	5,744	0.0002	-0.0009	-0.0003

Title: The choice between joint venture and wholly owned subsidiary: An institutional perspective **Author:** Daphne Yiu and Shige Makino

Year of Publication: 2002

Name of the Journal: Organization Science

Focal Hypothesis:

Hypothesis 5: Multinational enterprises will use a follow-the-leader approach and follow the dominant entrymode chosen by their home-country incumbents in the same host country.

IV(x): rate of joint venture over wholly owned subsidiary established by the other Japanese competitors in the sample in the same host country at the time of the focal multinational enterprise's entry.

DV(y): foreign entry mode (0: wholly owned; 1: joint venture)

Expected sign: positive

Coefficient: Table 5, Model 3D, Mimetic entry

Years covered by the original paper: 1996

Geography covered by the original paper: All countries

Time extensions: 1992;1994;1998;2000

Geographic extension: N.A.

Item	Coefficient	Z-value	p-value	Sample size	SE	95% CI lower	95% CI upper
Original	4.2800	>2.59	< 0.010	305	<1.652 5	>1.0282	<7.5318
Reproduction	3.2900	9.66	0.000	582	0.3408	2.6229	3.9587
Time extension 1: 1992	2.4300	5.24	0.000	373	0.4632	1.5195	3.3351
Time extension 2: 1994	2.3700	6.10	0.000	457	0.3891	1.6105	3.1357
Time extension 3: 1998	3.2700	9.58	0.000	563	0.3411	2.5988	3.9359
Time extension 4: 2000	3.2500	9.52	0.000	583	0.3414	2.5809	3.9190
Pooled generalizability	2.9450	16.24	0.000	1,935	0.1814	2.5895	3.3006
All data	3.0240	18.94	0.000	2,504	0.1597	2.7110	3.3369

Notes: We refer to 1992 as the backward time extension and 1998 as the forward time extension.

Paper	25
-------	----

Title: The performance and survival of joint ventures with parents of asymmetric size Authors: Paul W. Beamish and Jae C. Jung Year of Publication: 2005 Name of the Journal: Management International **Focal Hypothesis:** Hypothesis 1a: Size asymmetry between parent firms is negatively related with an IJV's performance and survival IV (x): continuous measurement of parent firms' size asymmetry **DV** (y): performance of IJVs (3: gain; 2: break-even; 1: loss) Expected sign: negative **Coefficient:** Table 3, Model 3, Parent firms' size ratio Years covered by the original paper: 1996,1998,2000 Geography covered by the original paper: All countries Time extension: 2001, 2002, 2003 Geographic extension: N.A. Item Coefficient T-value p-value Sample size SE 95% CI lower 95% CI upper 0.3100 Original 0.1700 0.55 0.584 268 -0.4404 0.7804 298 -0.7892 Reproduction -0.1855 -0.6 0.547 0.3080 0.4182 Time extension: -0.2750 -1.27 0.204 237 0.2170 -0.6998 0.1494 2001, 2002, 2003 0.2445 -1.0354 All data -0.5563 -2.28 0.023 535 -0.0771

Title: Escalation in international strategic alliances

Authors: Andrew Delios, Andrew C. Inkpen, and Jerry Ross

Year of Publication: 2004

Name of the Journal: Management International Review

Focal Hypothesis:

Hypothesis 1: The greater the difficulty of alliance performance measurement, the greater the likelihood of escalation.

IV(**x**): the difficulty of alliance performance measurement (mean performance over time)

DV(**y**): the de-listing of a joint venture

Expected sign: positive

Coefficient: Table 1, Model 2, Mean profitability (1993-1997)

Years covered by the original paper: 1993-1999

Geography covered by the original paper: Canada and US

Time extensions: 1990-1996; 1996-2002

Geographic extension: Europe

Geographic extension	in Europe						
Item	Coefficient	Z-values	p-value	Sample size	SE	95% CI lower	95% CI upper
Original	-0.4540	-1.32	0.189	406	0.3447	-1.1316	0.2236
Reproduction	-0.3345	-1.90	0.058	314	0.1765	-0.6805	0.0114
Time extension 1: 1990-1996	-0.7561	-3.60	0.000	316	0.2098	-1.1673	-0.3450
Time extension 2: 1996-2002	-0.3681	-1.73	0.084	243	0.2133	-0.7862	0.0499
Geographic extension	-0.6465	-3.05	0.002	260	0.2120	-1.0620	-0.2309
Pooled generalizability (only time)	-0.5445	-3.76	0.000	559	0.1448	-0.8282	-0.2607
Pooled generalizability	-0.5898	-5.01	0.000	819	0.1177	-0.8204	-0.3592
All data	-0.4889	-5.06	0.000	1,133	0.0970	-0.6781	-0.2997

Title: Dynamics of experience, environment and MNE ownership strategy Authors: Jae C. Jung, Paul W. Beamish, and Anthony Goerzen Year of Publication: 2010 Name of the Journal: Management International Review Focal Hypothesis: Hypothesis 1: The proliferation of FDI opportunities increases the use of IJVs as compared to WOSs. IV(x): Prior FDI opportunities. the number of Japanese FDIs worldwide by 2-digit SIC industry (in a logarithm format) **DV(y):** Change in the use of IJVs (95%) (IJV ratio) Expected sign: positive Coefficient: Table 2, Model 1, Prior FDI opportunities Years covered by the original paper: 1994-2002 Geography covered by the original paper: All countries Time extension: 1985-1993 Geographic extension: N.A. Z-values p-value Sample size SE 95% CI lower 95% CI upper Item Coefficient -0.64 0.521 440 1.7300 2.2901 Original -1.1100 -4.5101 -2.14 Reproduction -0.0187 0.032 365 0.0088 -0.0359 -0.0016 Time extension: 0.0006 0.76 0.445 273 0.0008 0.0022 -0.0010 1985-1993 -0.0001 -0.05 0.957 638 0.0012 All data -0.0023 0.0022

Title: Rethinking the effectiveness of asset and cost retrenchment: The contingency effects of a firm's rent creation mechanism

Authors: Dominic S. K. Lim, Nikhil Celly, Eric A. Morse, & W. Glenn Rowe

Year of Publication: 2013

Name of the Journal: Strategic Management Journal

Focal Hypothesis:

Hypothesis 1a: The extent to which a firm has a Ricardian rent creation focus will moderate the relationship between asset retrenchment and post-retrenchment performance, such that for firms with a higher Ricardian focus, the degree of asset retrenchment will have a stronger negative impact on post-retrenchment performance.

IV(x): Interaction between asset retrenchment (percent reduction in total assets from one year to the next year) and Rf (Ricardian rent creation focus, measured by relative tangible asset intensity)

DV(y): performance three years after a retrenchment event to account for a potential recovery period **Expected sign:** positive

Coefficient: Table 5a: Model 3, Asset retrenchment × Rf

Years covered by the original paper: 1992-1997

Geography covered by the original paper: All countries

Time extensions: 1998-2001; 1986-1991

Geographic extension: N.A.

Item	Coefficient (std Beta)	Z values	p-value	Sample size	SE	95% CI lower	95% CI upper
Original	(0.0120)	<1.65	>0.100	383	Unknown	Unknown	Unknown
Reproduction	-0.0031 (-0.2776)	-2.26	0.024	420	0.0014	-0.0058	-0.0004
Time extension 1: 1986-1991	0.0023 (0.3163)	1.45	0.150	140	0.0016	-0.0009	0.0055
Time extension 2: 1998-2001	-0.0035 (-0.3304)	-1.10	0.275	105	0.0031	-0.0097	0.0028
Pooled generalizability	-0.0004 (-0.0476)	-0.29	0.770	245	0.0013	-0.0030	0.0022
All data	-0.0018 (-0.1830)	-1.95	0.052	665	0.0009	-0.0036	0.0000

Year of Publication: 2012

Focal Hypothesis:

Authors: Jianyun Tang and W. Glenn Rowe

Name of the Journal: Journal of World Business

Paper 29

performance such IV(x): Business re								
primary foreign pa	rent's share in	n the subsid	diary)			<i>(</i>), 0	(including (percentage of are
DV(y) : Subsidiary		(1: loss; 2:	break-eve	n; 3: gain)				
Expected sign: ne		· · · · ·			1 . 1 .			
Coefficient: Table				ip; Closely	_related *	Ownersh	ıp	
Years covered by Geography cover								
Time extensions:		gillal pape	I. China					
Geographic exten		outh Kore	a, Southeas	st Asia				
Item	Coefficient	Z-value	p-value	Sample size	SE	95% CI lower	95% CI upper	Notes
Original	1.2100	2.42	0.017	165	0.5000	0.2227	2.1973	Unrelated * Ownership
Original	0.3400	0.61	0.545	165	0.5600	-0.7657	1.4457	Closely_related * Ownership
Reproduction	0.3905	1.42	0.156	431	0.2751	-0.1487	0.9297	Unrelated * Ownership
Reproduction	0.1607	0.33	0.741	431	0.4870	-0.7939	1.1153	Closely_related * Ownership
Time extension 1: 1994	-0.2731	-0.62	0.538	295	0.4433	-1.1420	0.5957	Unrelated * Ownership
Time extension 1: 1994	-0.8870	-1.48	0.139	295	0.6001	-2.0631	0.2892	Closely_related * Ownership
Time extension 2: 1998	0.7536	2.10	0.035	463	0.2745	0.0394	1.1135	Unrelated * Ownership
Time extension 2: 1998	0.2327	0.72	0.469	463	0.4543	-0.5586	1.2128	Closely_related * Ownership
Geographic extension	0.3697	1.56	0.119	467	0.2368	-0.0946	0.8339	Unrelated * Ownership
Geographic extension	0.1858	0.34	0.737	467	0.5525	-0.8971	1.2687	Closely_related * Ownership
Pooled generalizability (only time)	0.5869	2.75	0.006	758	0.2138	0.1679	1.0058	Unrelated * Ownership
Pooled generalizability (only time)	-0.2590	-0.71	0.478	758	0.3653	-0.9750	0.4570	Closely_related * Ownership
Pooled generalizability	0.6060	3.89	0.000	1,225	0.1559	0.3005	0.9115	Unrelated * Ownership
Pooled generalizability	-0.0522	-0.18	0.859	1,225	0.2943	-0.6290	0.5246	Closely_related * Ownership
All data	0.6189	4.61	0.000	1,656	0.1341	0.3560	0.8818	Unrelated * Ownership
All data	0.0992	0.40	0.691	1,656	0.2491	-0.3892	0.5875	Closely_related * Ownership

Title: The liability of closeness: Business relatedness and foreign subsidiary performance

Hypothesis 2: Business relatedness and ownership level have an interactive effect on foreign subsidiary

Notes: We only refer to Closely_related*Ownership for the original effect.

Supplement 6: Detailed report of the forecasting analyses

Materials

We asked forecasting survey respondents for two types of predictions for 29 original strategic management findings: 29 predictions about the outcomes of direct reproducibility tests and 29 predictions about the outcomes of generalizability tests. Forecasters were provided with detailed information about the original study as well as a description of the methods used to assess the direct reproducibility and generalizability of the original finding. They were asked to predict the probability test. Forecasters thus made a total of 58 predictions. For original studies that reported a statistically significant finding with a *p*-value < 0.05, forecasters were asked about the probability that a significant result (p < 0.05) in the same direction as the original studies that reported a statistically non-significant finding (p > 0.05) forecasters were asked about the probability that a non-significant finding (p > 0.05) is observed also in the direct reproducibility test.

We also asked forecasters to answer a set of demographic questions (age, gender, nationality) and expertise related items such as PhD year, area of research expertise (e.g., strategy, psychology, economics), academic job rank (e.g., research assistant, graduate student, Assistant Professor, Associate Professor, Full Professor), whether they held a business degree (e.g., MBA or MIM degree), and whether they had any practitioner background in strategic management consulting. 26 out of 238 forecasters had or were currently pursuing a PhD in strategy.

Recruiting forecasters

We first had a round of data collection in December 2020 involving 14 PhD students from different academic areas (e.g., strategy, finance, operations, organizational behavior) in a doctoral course at INSEAD that also included 1 PhD student in management at the National University of Singapore. As per our pre-registered analysis plan, this round of data collection was included in order to make sure that there were no problems with the forecasting survey and data collection process. For the main wave of data collection we advertised the forecasting survey via social media (e.g., through colleagues active on Twitter), professional listservs (e.g., Psych Map, Psych Methods Discussion Group, Judgment and Decision Making list) and email lists of our previous collaborators in forecasting survey, such that they could start and continue with the survey at multiple points in time. The main data collection was open for 9 weeks, and respondents were given 30 days to finish the survey and received reminders 15 and 7 days prior to the expiration of the survey. We pre-registered that the final analysis would only include responses from those who submitted forecasts to all the forecasting questions.

Forecasters were incentivized to participate by being offered coauthorship on this study report via a consortium credit ("Generalizability Tests Forecasting Collaboration") as well as by a potential bonus payment. For the latter, two randomly selected forecasters were rewarded with a bonus payoff determined as a function of the accuracy of their forecasts using the following scoring rule:

 $200 - (Sq. Error \times 800)$

where <u>Sq. Error</u> is the mean squared prediction error for all the 58 predictions made by that forecaster (29 predictions of the direct reproducibility tests and 29 predictions of the generalizability tests).

256 individuals initially signed up for the forecasting survey through the links advertised on social media, and 327 collaborators in our previous forecasting studies received an email invitation to the forecasting survey. Of the 382 forecasters who started the survey, 238 completed it. 32.8% of forecasters were female, 66.8% male, and 0.004% chose 'other.' Only two of the forecasters (0.008%) reported not having completed or being currently enrolled in a PhD program. 59 forecasters (24.8%) reported having or currently pursuing a business degree such as MBA, executive MBA or Master in Management (MIM) degrees. 10.9% of forecasters had or were currently pursuing a PhD in strategy or strategic management, and 15.1% of them had experience in strategic management consulting. Of the 238 forecasters, 27.3% were Assistant Professors, 21.4% Associate Professors, 9.7% Full Professors, 23.1% graduate students, 9.2% postdoctoral researchers, and 2.5% research assistants. The remaining 6.7% of forecasters had other academic or non-academic positions.

Results

Hypothesis tests

The planned analyses are outlined in our pre-analysis plan posted at <u>https://osf.io/t987n/</u> and in Supplement 4. In the report below, we follow the pre-analysis plan unless otherwise specified. Notably, we added an addendum to the pre-analysis plan when during the data collection we realized that some forecasters reported probabilities as 0.XX instead of XX%. In this addendum we wrote that we would interpret 0.XX as XX%. We contacted the 7 forecasters for which this issue applied and our interpretation was correct. In addition, we add a robustness section where we exclude the forecasts for an original study where the p-value was misreported to forecasters.

The first of our key hypotheses for the forecasting survey was that there would be a statistically significant association between the predicted and observed results. This test was carried out separately for the predictions of direct reproducibility (Hypothesis 1a) and generalizability (Hypothesis 1b) and pooling all the predictions in one test (Hypothesis 1c). We include a set of individual fixed effects to control for differences in predictive abilities among forecasters. The individual-level regression and t-test show that there is a positive and statistically significant association between predicted and observed results for all sets of predictions, including direct reproducibility tests (Hypothesis 1a, $\beta = 0.059$, p = .010) generalizability tests (Hypothesis 1b, $\beta = 0.409$, p < .005) and the pooled sample of predictions (Hypothesis 1c, $\beta = 0.162$, p < .005). See Table S6-1 for the individual-level regression estimates.

	D	ependeni variabie.			
	Observed result				
	Direct reproducibility	Generalizability	Pooled predictions		
	(1)	(2)	(3)		
Predicted probability	0.059*	0.409**	0.162**		
	(0.023)	(0.033)	(0.022)		
Observations	6,902	6,902	13,804		
Individual FE	Yes	Yes	Yes		
\mathbb{R}^2	0.001	0.035	0.005		
Adjusted R ²	-0.035	0.001	-0.012		
F Statistic (df = 1; 237)	6.557*	155.837**	54.223**		

Table S6-1. Relationship between predicted and observed results.

Note: *p < 0.05; **p < 0.005. Standard errors clustered at forecaster level.

Dependent variable:

Our second key hypothesis for the forecasting study was that the accuracy of predictions would differ for direct reproducibility and generalizability. For this we compute the accuracy achieved in each forecast by each forecaster in terms of squared prediction error (Brier score) for the direct reproducibility test predictions and the generalizability test predictions separately. We then carry out a paired t-test of these two variables and find that there is a statistically significant difference in forecasters' accuracy when predicting direct reproducibility and generalizability results (*mean of the differences* = 0.092, p < .005).

Our third key hypothesis was that the perceived probability of a successful outcome differs between the predictions of direct reproducibility and the predictions of generalizability. We here compare the mean predicted replication rate of each forecaster for the direct reproducibility test predictions with the mean predicted replication rate of each forecaster for the generalizability test predictions in a paired t-test. We find that there is a statistically significant difference between the mean predicted success rates regarding direct reproducibility and generalizability tests (*mean of the differences* = 0.132, p < .005). Table S6-2 and figure S6-1 show mean forecaster predicted and realized success rates for direct reproducibility and generalizability tests.

	Direct reproducibility	Generalizability
Mean predicted success rate	0.706	0.574
Mean realized success rate	0.448	0.552

Fig. S6-1: Mean predicted and realized reproducibility and generalizability rates.

Note: 95% confidence intervals are plotted.

Additional analyses

As our two secondary hypotheses, we test whether forecasters over or underestimate the observed success rate of the direct reproducibility tests and the generalizability tests by comparing the mean predictions to the mean observed success rates in z-tests. We find evidence that forecasters overestimate the success rate in direct reproducibility tests (z = 2.729, p = .006), but no evidence that forecasters over or underestimate observed rates of generalizability (z = 0.236, p = .813).

Robustness tests

Table S6-3 shows the mean predicted and realized outcomes for the direct reproducibility and generalizability tests for each of the 29 studies.

For Hypothesis 1 we estimate the Pearson correlation between the mean predicted probability of each direct reproducibility test and each generalizability test and the observed binary successful outcome. As above we estimate this correlation for the direct reproducibility tests and the generalizability tests separately as well as combined. We find that there is no statistically significant association between the mean predicted probability and the observed result in direct reproducibility tests (Hypothesis 1a, r(27) = 0.060, p = .756), and in the pooled sample of direct reproducibility and generalizability predictions (Hypothesis 1c, r(56) = 0.154, p = .247), but a statistically significant association exists in the predictions for generalizability tests (Hypothesis 1b, r(27) = 0.450, p = .014).

We also carry out an additional robustness test for the three regressions for Hypothesis 1 as well as the three correlation tests excluding ten original studies reporting non-significant results (p > 0.05). The association is not significant in the case of predictions for direct

reproducibility (Hypothesis 1a, $\beta = -0.024$, p = .384), and positive and significant in the case of generalizability predictions (Hypothesis 1b, $\beta = 0.232$, p < .005) and the pooled set of predictions (Hypothesis 1c, $\beta = 0.067$, p < .005). See Table S6-4 for the individual-level regression estimates.

Estimating the Pearson correlation between the mean predicted and observed success rates shows no statistically significant relationship between mean predicted and observed results in direct reproducibility tests (r(22) = -0.022, p = .920), generalizability tests (r(22) = 0.259, p = .222) or the pooled sample of predictions (r(46) = 0.059, p = .689) after excluding original studies with non-significant findings.

Study no.	Original effect	Mean direct reproducibility forecast	Direct reproducibility outcome	Mean generalizability forecast	Generalizability outcome
1	Significant	0.78	Not reproduced	0.54	Not generalized
2	Significant	0.80	Not reproduced	0.64	Not generalized
3	Significant	0.67	Reproduced	0.49	Generalized
4	Significant	0.76	Reproduced	0.64	Generalized
5	Significant	0.69	Not reproduced	0.50	Not generalized
6	Significant	0.69	Reproduced	0.55	Not generalized
7	Significant	0.67	Not reproduced	0.55	Not generalized
8	Significant	0.75	Reproduced	0.63	Generalized
9	Significant	0.81	Not reproduced	0.68	Generalized
10	Significant	0.56	Not reproduced	0.43	Not generalized
11	Significant	0.65	Not reproduced	0.51	Not generalize
12	Significant	0.75	Reproduced	0.59	Generalized
13	Significant	0.56	Not reproduced	0.39	Not generalized
14	Significant	0.66	Not reproduced	0.51	Not generalize
15	Significant	0.79	Not reproduced	0.66	Generalized
16	Significant	0.67	Not reproduced	0.51	Not generalized
17	Significant	0.63	Reproduced	0.50	Generalized
18	Significant	0.66	Not reproduced	0.52	Not generalized
19	Significant	0.70	Not reproduced	0.58	Not generalized
20	Significant	0.70	Reproduced	0.57	Generalized
21	Significant	0.66	Reproduced	0.47	Generalized
22	Significant	0.72	Not reproduced	0.61	Not generalized
23	Significant	0.57	Reproduced	0.41	Generalized
24	Significant	0.73	Reproduced	0.60	Generalized
25	Not significant	0.78	Reproduced	0.73	Generalized
26	Not significant	0.77	Reproduced	0.70	Generalized
27	Not significant	0.77	Not reproduced	0.71	Generalized
28	Not significant	0.75	Not reproduced	0.70	Generalized
29	Not significant	0.79	Reproduced	0.73	Generalized

 Table S6-3: Predicted and realized outcomes by study.

	Dependent variable:						
	Observed result						
	Direct reproducibility	Generalizability	Pooled predictions				
	(1)	(2)	(3)				
Predicted probability	-0.024	0.232**	0.067**				
	(0.028)	(0.030)	(0.020)				
Observations	5,712	5,712	11,424				
Individual FE	Yes	Yes	Yes				
\mathbb{R}^2	0.0001	0.009	0.001				
Adjusted R ²	-0.043	-0.034	-0.020				
F Statistic (df = 1; 237)	0.758	58.239**	10.687**				

Table S6-4. Relationship between predicted and realized results excluding originally non-significant results (p > 0.05).

Note: *p < 0.05; **p < 0.005. Standard errors clustered at forecaster level.

For Hypothesis 2 we also carry out a robustness test on the absolute prediction error as a measure of prediction accuracy and find that there is again a statistically significant difference in accuracy when forecasting generalizability and direct reproducibility tests results (*mean of the differences* = 0.067, p < .005). As an additional robustness test we exclude the original studies reporting non-significant results (p > 0.05) for both the Brier score and absolute prediction error analyses and find that both support the results presented previously (Squared prediction error: *mean of the differences* = 0.050, p < .005).

For Hypothesis 3, we carry out a robustness test excluding the original studies reporting nonsignificant results (p > 0.05). We find that there still is a significant difference between the mean predicted success rates regarding direct reproducibility and generalizability tests (*mean* of the differences = 0.147, p < .005) after excluding non-significant findings. Table S6-5 shows mean forecaster predicted and realized success rates for direct reproducibility and generalizability tests excluding the ten studies reporting non-significant results (p > 0.05).

Table S6-5: Mean predicted and realized reproducibility and generalizability rates excluding originally non-significant results (p > 0.05).

	Direct reproducibility	Generalizability
Mean predicted success rate	0.693	0.545
Mean realized success rate	0.417	0.458

We also have a robustness test for the secondary hypotheses, excluding the original studies reporting non-significant results (p > 0.05). We find that forecasters again overestimate realized results for direct reproducibility (Hypothesis 4a, z = 2.667, p = 0.008), but neither over nor underestimate results for generalizability tests (Hypothesis 4b, z = 0.831, p = 0.406) when looking exclusively at originally significant results.

Additional non-prespecified robustness tests

There was an error in the forecasting survey with the p-value displayed to forecasters for one of the original results (the Lu & Beamish, 2001, SMJ). In the forecasting survey, the p-value reported under "result in the paper" was p = 0.0045. However, in the original paper the t-value of around 2 in Table 2, Model 9 indicates that p = 0.045, i.e. just below an alpha of 5%. Although the original finding was statistically significant in both cases, as a robustness test we exclude this study when testing our three key hypotheses. The results are similar, but the association between forecasted and observed results is not statistically significantly for direct reproducibility forecasts (Hypothesis 1a, $\beta_1 = 0.040$, p = 0.087). Table S6-6 shows the results for Hypothesis 1 after excluding this study.

	Dependent variable:						
	Observed result						
	Direct reproducibility	Generalizability	Pooled predictions				
	(1)	(2)	(3)				
Predicted probability	0.040	0.400**	0.149**				
	(0.024)	(0.032)	(0.021)				
Observations	6,664	6,664	13,328				
Individual FE	Yes	Yes	Yes				
\mathbb{R}^2	0.0002	0.034	0.005				
Adjusted R ²	-0.037	-0.002	-0.014				
F Statistic (df = 1; 237)	2.932	158.162**	48.346**				

Table S6-6. Relationship between predicted and realized results excluding Lu and Beamish (2001).

Note: *p < 0.05; **p < 0.005. Standard errors clustered at forecaster level.

As suggested by a reviewer and thus not pre-registered, we carried out a robustness analysis where we estimate a random effects model instead of a fixed effects model. The results in Table S6-7 suggest that the results are qualitatively similar to those in Table S6-1.

Dependent variable:					
	Observed result				
Direct reproducibilit	y Generalizability	Pooled predictions			
(1)	(2)	(3)			
v 0.034 [*]	0.284**	0.113**			
(0.013)	(0.024)	(0.016)			
0.424**	0.389**	0.428**			
(0.009)	(0.014)	(0.010)			
6.902	6.902	13,804			
,	,	0.004			
		0.004			
2.004	171.664**	51.430**			
	(1) (1) (0.034* (0.013) 0.424** (0.009) 6,902 0.0003 0.0001	Direct reproducibility Generalizability (1) (2)			

 Table S6-7. Relationship between predicted and observed results, random effects model.

Note: p < 0.05; p < 0.005. Standard errors clustered at forecaster level.

Supplement 7: Further analyses of reproducibility and generalizability

I. Calculating reproducibility and generalizability rates

Judging whether a study is reproduced and generalized can be an ambiguous task. First, each original paper can be subjected to multiple types of generalization tests: forward time extension, backward time extension, and geographic extension. A forward extension refers to a generalizability test in a later time period (e.g., re-testing an effect from the 1990s in the 2000s). A backward time extension refers to testing an effect in an earlier time period (e.g., re-testing an effect from the 2000s in the 1990s). A geographic extension refers to testing an original effect found in one geographic area (i.e., country or set of countries) in a different geographic area (i.e., another territory, nation, or set of nations).

Second, one hypothesis test may consist of multiple effects (i.e., multiple coefficients, something true for N=6 papers), for example, because one construct may have multiple measures. Third, one type of generalization test may consist of multiple subtests (e.g., two tests for backward time extension since multiple time periods of data were available, true for N=7 papers).

Given this ambiguity, we coded reproducibility and generalizability using several distinct approaches. First, each finding has one reproduction test and up to three types of generalizability tests (forward and backward time extension and geographic extension). We set the smallest unit of analysis at the level of tests, leading to 29 reproduction tests and 52 generalizability tests. Second, we refer to only one relevant coefficient for the judgement of reproducibility or generalizability in one test if the test consists of multiple sub-tests or of multiple coefficients. As examples, we only refer to the coefficient in Model 2 (JV, Technological) for reference in paper 7. We only refer to the coefficient in the case of break-even in paper 17. We only refer to the coefficient in Model 2 (ROS) in paper 19. We only refer to the coefficient in Model 2 in paper 20. We only refer to the coefficient of Closely_related*Ownership in paper 29.

We assess reproducibility and generalizability at both the paper level and at the test level. For overall generalizability of a paper, we first use a liberal criterion: as long as the reported result emerges in any of the three types of generalization tests, we code it as generalized. The liberal criterion for reproducibility is that at least one key test from the paper is reproducible using the original analyses and data. We also adapt a conservative criterion: a paper is only coded as reproduced and/or generalized if all the key tests in the paper can be reproduced and/or generalized. To have a more detailed picture, we divide the generalizability by sub-category (backward extension, forward extension, geographic). Finally, we adopt two benchmarks in terms of statistical significance (p < 0.1 and p < 0.05), with p < .05 serving as our primary cut-off for significance.

Table S7-1. Reproducibility and generalizability with benchmark of p < 0.1

		Generalized		
	No Yes Total			Total
Reproduced	No	10	6	16
	Yes	1	12	13
	Total	11	18	29

Panel A: At the paper level, liberal criterion (any key test works)

Panel B: At the paper level, conservative criterion (all key tests work)

		Generalized			
		No Yes Tota			
Reproduced	No	14	2	16	
	Yes	2	11	13	
	Total	16 13 29			

Panel C: At the test level: Time and geography extension (all key tests work)

		Generalized					
		Tiı	ne		Geography		
		No	Yes	N.A.	No	Yes	
Reproduced	No	13	3	12	4	0	
	Yes	1	12	7	2	4	

Notes: there is no column of N.A. for time extension tests, because there is at least one time extension test possible (backward extension and/or forward extension) for all papers.

Panel D: At the test level: Further breakdown of time extension results

		Generalized								
		Time backward			Time forward			Geography		
		N.A.	No	Yes	N.A.	No	Yes	N.A.	No	Yes
Reproduced	No	5	7	4	3	10	3	12	4	0
	Yes	7	1	5	1	1	11	7	2	4

Table S7-2. Reproducibility and generalizability with benchmark of p < 0.05

		Generalized					
		No	Yes	Total			
Reproduced	No	10	6	16			
	Yes	1	12	13			
	Total	11	18	29			

Panel A: At the paper level, liberal criterion (any key test works)

Panel B: At the paper level, conservative criterion (all key tests work)

		(Generaliz	ed
		No	Yes	Total
Reproduced	No	13	3	16
	Yes	3	10	13
	Total	16	13	29

Panel C: At the test level: Time and geography extension (all key tests work)

				Generalized	eneralized				
		Time ex	tension	Geography extension					
		No	Yes	N.A.	No	Yes			
Reproduced	No	13	3	13	3	0			
	Yes	2	11	6	3	4			

Notes: there is no column of N.A. for time extension tests, because there is at least one time extension test possible (backward extension and/or forward extension) for all papers.

I difer D. At the test level, Further breaknown for this extension results	Panel D: At the test level: Furthe	er breakdown for time extension results
--	------------------------------------	---

		Generalized								
		Time backward			Time forward			Geography		
		N.A.	No	Yes	N.A.	No	Yes	N.A.	No	Yes
Reproduced	No	5	6	5	4	10	2	13	3	0
	Yes	7	2	4	0	1	12	6	3	4

Note that for the paper-level counts, it is a coincidence that the p < .10 and p < .05 tables are exactly the same. This is because a stricter p criterion makes reproducibility more difficult to conclude in the case of originally supported hypotheses, but makes reproducibility easier to conclude in the case of originally unsupported (i.e., nonsignificant) hypothesis tests.

A paper may fall into the N.A. category of generalizability tests. There are two main reasons: a) irrelevant extension and b) data inaccessibility.

Irrelevant extension: In the case of geographic extensions, 19 papers examined their research questions in the global context including all countries or all main economic

entities who ever received Foreign Direct Investment (FDI) from Japan. Hence, it is not possible to extend the samples in these papers to further countries, either because there are no remaining countries or due to a lack of estimation power resulting from too few remaining countries.

Data inaccessibility. In the case of time extension tests, data inaccessibility can occur at the dataset level or at the variable level.

• Data inaccessibility in backward time extension tests (12 papers) For 11 papers, backward time extensions could not be carried out because the main datasets of Japanese overseas investments have time boundaries. The earliest observations of Japanese overseas investments can be dated back to 1986 in the datasets, although the entry time (i.e., the foundation year of a subsidiary) can be earlier. Backward time extension thus either leads to an inadequately sized sample or results in no observations at all. For the 12th paper (i.e., Paper 29), the additional data beyond the main datasets were not accessible when we reproduced the paper. Specifically, the data for the measure of host country risk before 2001 could not be accessed.

• Data inaccessibility in forward time extension tests (4 papers)

For 4 papers, time extensions could not be carried out because we only had partial access to some of the measures in the main datasets. For example, the measure of export intensity of parent firms in Paper 20 is only available before 2001. The data from 2001 forward were not available when we sought to generalize the results.

II. Predictors of reproducibility and generalizability

We calculate correlations and employ multivariable regressions examining the predictors of reproducibility and generalizability at both the paper level and the test level, with the important caveat that the total number of original articles is small. At the paper level, we judge a paper to be generalized either on the condition that any key test works (*Gen dummy any*) or on the condition that all key tests work (*Gen dummy any*) or on the condition that all key tests work (*Gen dummy all*). We consider factors at the journal and the paper level. Specifically, we consider the Impact Factor of the journal, whether the journal is listed on the University of Texas at Dallas (UTD) or Financial Times (FT) journal lists, the years passed since the paper was published, the count of citations on Google Scholar (as of June 15, 2021), and the number of authors. In addition, we also measure overall generalizability as a continuous variable (the ratio of the count of successfully generalizability only as dummies. We also include the type of generalization test as a control.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
(1) Generalized ratio ($p < 0.05$)	1.000													
(2) Gen dummy any $(p < 0.05)$	0.908*	1.000												
(3) Gen dummy all ($p < 0.05$)	0.934*	0.705*	1.000											
(4) Reproduced ($p < 0.05$)	0.603*	0.562*	0.582*	1.000										
(5) Generalized ratio ($p < 0.1$)	0.970*	0.843*	0.925*	0.543*	1.000									
(6) Gen dummy any $(p < 0.1)$	0.856*	0.854*	0.705*	0.419*	0.921*	1.000								
(7) Gen dummy all $(p < 0.1)$	0.934*	0.705*	1.000*	0.582*	0.925*	0.705*	1.000							
(8) Reproduced ($p < 0.1$)	0.705*	0.562*	0.721*	0.861*	0.696*	0.562*	0.721*	1.000						
(9) Impact factor	-0.134	-0.183	-0.089	-0.248	-0.105	-0.105	-0.089	-0.064	1.000					
(10) UTD (yes=1)	-0.133	-0.153	-0.115	-0.115	-0.145	-0.153	-0.115	-0.115	0.663*	1.000				
(11) FT (yes=1)	-0.141	-0.186	-0.100	-0.239	-0.155	-0.186	-0.100	-0.100	0.793*	0.871*	1.000			
(12) Years since publication	-0.102	-0.148	-0.035	0.248	-0.176	-0.293	-0.035	0.205	0.107	0.290	0.209	1.000		
(13) Google Scholar citations	-0.312	-0.352	-0.242	-0.186	-0.319	-0.347	-0.242	-0.134	0.317	0.524*	0.515*	0.493*	1.000	
(14) Count of authors	0.048	0.091	0.017	-0.271	0.058	0.091	0.017	-0.271	0.153	-0.079	0.122	-0.608*	-0.329	1.000
Mean	0.529	0.621	0.448	0.448	0.534	0.621	0.448	0.448	6.512	0.448	0.517	15.345	411.793	2.448
Std. Dev.	0.463	0.494	0.506	0.506	0.462	0.494	0.506	0.506	3.299	0.506	0.509	4.988	582.832	0.736
Min	0	0	0	0	0	0	0	0	0	0	0	5	16	1
Max	1	1	1	1	1	1	1	1	11.818	1	1	25	2910	4

 Table S7-3. Predictors of generalizability and reproducibility: Correlation matrix at the paper level (N = 29)

Notes: * *p* < 0.05.

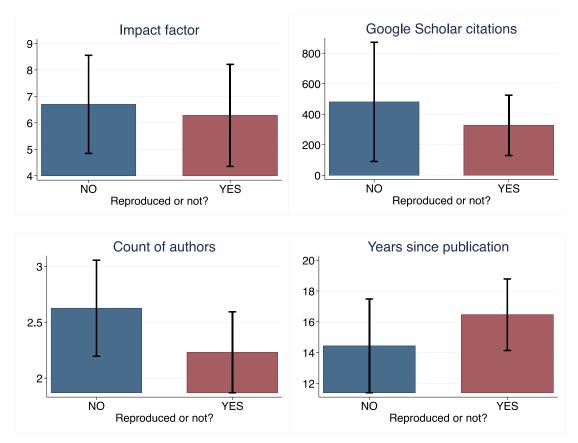


Fig. S7-1. Comparison of predictors of reproducibility (benchmark of p < 0.1)

Notes: 95% confidence intervals are plotted.

	Mean by rep	oroducibility	Difference			Cohen's d	
Predictors	NO (N=16)	YES (N=13)	NO-YES	<i>t</i> -value	<i>p</i> -value	NO-YES	Power
Impact factor	6.700	6.281	0.418	0.334	0.741	0.125	0.100
Google Scholar citations	480.813	326.846	153.966	0.701	0.489	0.262	0.292
Count of authors	2.625	2.230	0.394	1.463	0.155	0.546	0.923
Years since publication	14.438	16.462	-2.024	-1.091	0.285	-0.407	0.638

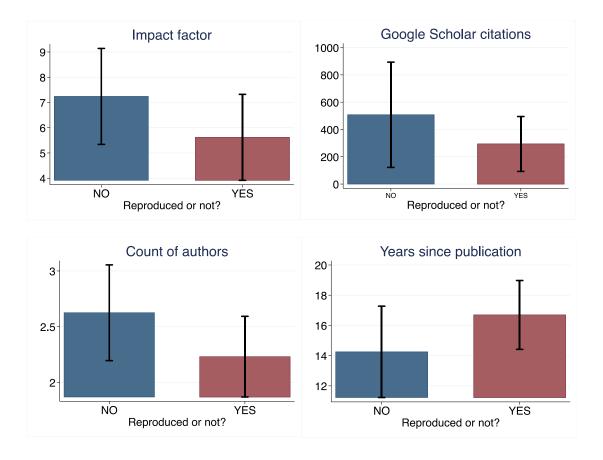
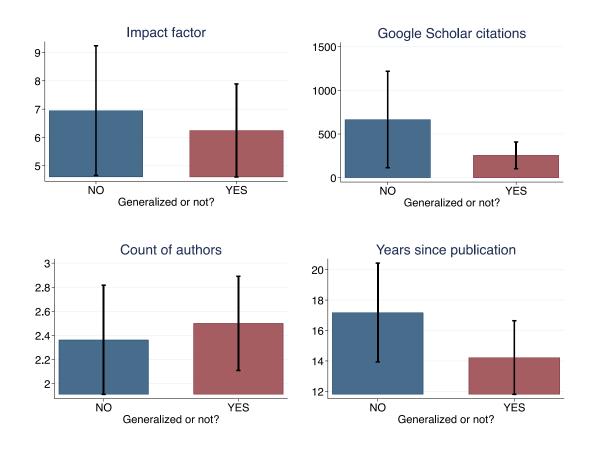



Fig. S7-2. Comparison of predictors of reproducibility (benchmark of p < 0.05)

Table S7-5. T-tests on predictors of reproducibility (benchmark of p < 0.05)

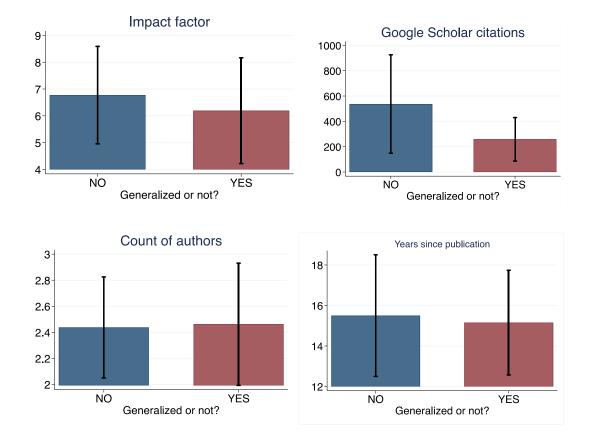

	Mean by reproducibility		Difference			Cohen's d	
Predictors	NO (N=16)	YES (N=13)	NO-YES	<i>t</i> -value	<i>p</i> -value	NO-YES	Power
Impact factor	7.238	5.618	1.620	1.333	0.194	0.498	0.846
Google Scholar citations	507.688	293.769	213.918	0.982	0.335	0.367	0.535
Count of authors	2.625	2.231	0.394	1.463	0.155	0.546	0.923
Years since publication	14.250	16.692	-2.442	-2.442	0.195	-0.496	0.843

Fig. S7-3. Comparison of predictors of generalizability (benchmark of any key test working at p < 0.1 level)

Table S7-6. T-tests on predictors of generalizability (benchmark of any key test working at the p < 0.1 level)

	Mean by ger	neralizability	Difference			Cohen's d	
Predictors	NO (N=11)	YES (N=18)	NO-YES	<i>t</i> -value	<i>p</i> -value	NO-YES	Power
Impact factor	6.948	6.246	0.703	0.549	0.587	0.210	0.200
Google Scholar citations	666.364	256.222	410.141	1.926	0.065	0.737	0.999
Count of authors	2.364	2.500	-0.136	-0.477	0.637	-0.183	0.162
Years since publication	17.182	14.222	2.960	1.592	0.123	0.609	0.978

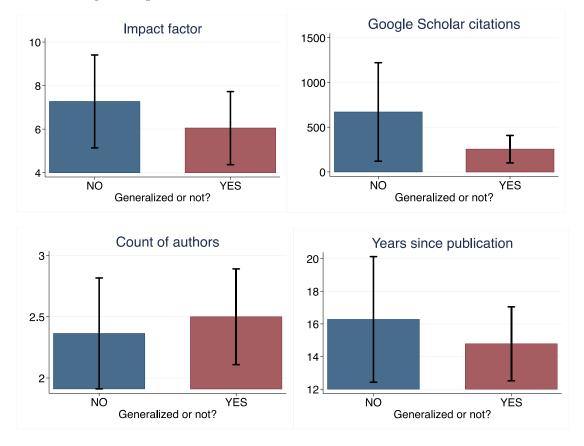


Fig. S7-4. Comparison of predictors of generalizability (benchmark of all key tests working at the p < 0.1 level)

Table S7-7. T-tests on predictors of generalizability (benchmark of all key tests working at the p < 0.1 level)

	Mean by ger	neralizability	Difference		Cohen's d			
Predictors	NO (N=16)	YES (N=13)	NO-YES	<i>t</i> -value	<i>p</i> -value	NO-YES	Power	
Impact factor	6.773	6.191	0.582	0.466	0.645	0.174	0.150	
Google Scholar citations	536.875	257.846	279.029	1.298	0.205	0.485	0.821	
Count of authors	2.438	2.462	-0.024	-0.086	0.932	-0.032	0.053	
Years since publication	15.500	15.154	0.346	0.183	0.857	0.068	0.064	

Fig. S7-5. Comparison of predictors of generalizability (benchmark of any key test working at the p < 0.05 level)

Table S7-8. T-tests on predictors of generalizability (benchmark of any key test working at the p < 0.05 level)

	Mean by ge	neralizability	Difference			Cohen's d	
Predictors	NO (N=11)	YES (N=18)	NO-YES	<i>t</i> -value	<i>p</i> -value	NO-YES	Power
Impact factor	7.273	6.047	1.226	0.970	0.341	0.371	0.546
Google Scholar citations	670.000	254.000	416.000	1.957	0.061	0.749	0.999
Count of authors	2.364	2.500	-1.136	-0.477	0.637	-0.183	0.162
Years since publication	16.272	14.777	1.495	0.778	0.444	0.298	0.368

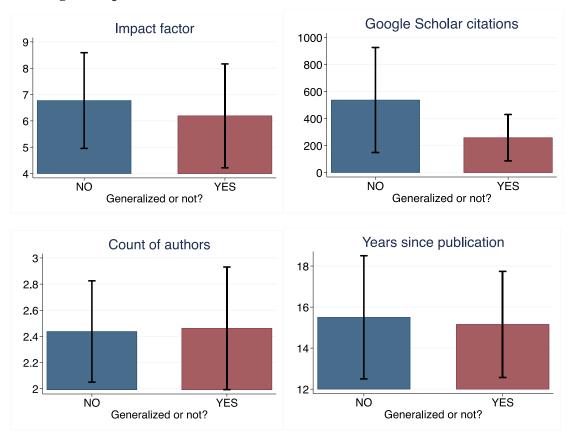


Fig. S7-6. Comparison of predictors of generalizability (benchmark of all key test working at the p < 0.05 level)

Table S7-9. T-tests on predictors of generalizability (benchmark of all key test working at the p < 0.05 level)

	Mean by ge	eneralizability	Difference			Cohen's d	
Predictors	NO (N=16)	YES (N=13)	NO-YES	<i>t</i> -value	<i>p</i> -value	NO-YES	Power
Impact factor	6.773	6.191	0.582	0.466	0.645	0.174	0.150
Google Scholar citations	536.875	257.846	279.029	1.298	0.205	0.484	0.819
Count of authors	2.438	2.462	-0.024	-0.086	0.932	-0.032	0.053
Years since publication	15.500	15.154	0.346	0.183	0.857	0.068	0.064

	Model 1A	Model 1B	Model 1C	Model 1D	Model 2A	Model 2B	Model 2C	Model 2D
		<i>p</i> <	0.1			<i>p</i> <	0.05	
DV	Repro	Gen Dum (Any)	Gen Dum (All)	Gen Ratio	Repro	Gen Dum (Any)	Gen Dum (All)	Gen Ratio
Model	Logit	Logit	Logit	OLS	Logit	Logit	Logit	OLS
Impact factor	-0.0145	0.0823	-0.3827	-0.0057	-0.1392	-0.0610	-0.0272	-0.0046
	(0.2121)	(0.3047)	(0.4545)	(0.0315)	(0.2340)	(0.2607)	(0.2758)	(0.0379)
UTD (yes=1)	-2.0575	2.6644	0.4734	0.2715	14.4096	-0.1982	-1.6367	-0.1439
	(1.9066)	(2.5643)	(2.1587)	(0.2753)	(2.0e+03)	(1.8403)	(1.8342)	(0.3267)
FT (yes=1)	2.9547	-3.1843	3.0146	-0.2203	-13.2531	1.3689	3.2809	0.2692
	(2.6901)	(3.5687)	(4.9262)	(0.3483)	(2.0e+03)	(3.1125)	(3.2231)	(0.4130)
Years since	0.1365	-0.2917	-0.0329	-0.0222	0.2061	-0.0883	-0.0641	-0.0187
publication	(0.1273)	(0.1915)	(0.2119)	(0.0175)	(0.1313)	(0.1700)	(0.1646)	(0.0216)
Google Scholar	-0.0033	-0.0001	-0.0051	-0.0000	-0.0036	-0.0022	-0.0028	-0.0001
citations	(0.0025)	(0.0019)	(0.0053)	(0.0002)	(0.0026)	(0.0032)	(0.0035)	(0.0002)
Count of authors	-1.4790	0.4295	0.5257	0.1045	-0.7339	0.0028	-0.3050	0.0122
	(0.9461)	(1.2214)	(1.2646)	(0.1258)	(0.9007)	(1.2103)	(1.0219)	(0.1459)
Reproduced		4.5431**	5.6162**	0.7203***		3.5085*	3.4688*	0.6196**
		(1.6230)	(2.1401)	(0.1360)		(1.4022)	(1.3505)	(0.1691)
Constant	1.9189	2.3180	-1.5890	0.3442	0.0180	1.1690	-0.0504	0.5096
	(3.2485)	(4.6415)	(5.3898)	(0.5081)	(3.2787)	(4.4831)	(4.0621)	(0.5967)
Observations	29	29	29	29	29	29	29	29
Log-likelihood	-16.515	-9.774	-8.973	_	-15.290	-11.905	-12.895	_
Prob>chi2/F	0.3337	0.008	0.003	0.002	0.1568	0.0403	0.0494	0.0470

Table S7-10. Predictors of reproducibility and generalizability: Multivariable regressions at the paper level (N = 29)

Notes: Standard errors are in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001.

Table S7-11. Predictors of generalizability: Analysis at the test level (N = 52)

Panel A: Correlation matrix

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
(1) Generalized ($p < 0.05$)	1.000												
(2) Generalized ($p < 0.1$)	0.923*	1.000											
(3) Reproduced ($p < 0.05$)	0.500*	0.423*	1.000										
(4) Reproduced ($p < 0.1$)	0.582*	0.582*	0.849*	1.000									
(5) Gen backward time	0.014	0.014	-0.205	-0.152	1.000								
(6) Gen forward time	0.079	0.079	0.038	0.036	-0.671*	1.000							
(7) Gen geography	-0.116	-0.116	0.195	0.136	-0.340*	-0.470*	1.000						
(8) Impact factor	-0.187	-0.142	-0.319*	-0.127	0.129	-0.066	-0.070	1.000					
(9) UTD (yes=1)	-0.190	-0.190	-0.231	-0.161	0.095	0.036	-0.158	0.719*	1.000				
(10) FT (yes=1)	-0.192	-0.192	-0.308*	-0.154	0.123	0.038	-0.195	0.793*	0.926*	1.000			
(11) Years since publication	-0.109	-0.181	0.254	0.215	0.048	-0.070	0.032	0.127	0.301*	0.254	1.000		
(12) Google scholar citations	-0.266	-0.263	-0.145	-0.058	0.007	0.073	-0.101	0.380*	0.581*	0.580*	0.525*	1.000	
(13) Count of authors	0.005	0.005	-0.296*	-0.362*	0.123	0.049	-0.208	0.095	-0.037	0.081	-0.560*	-0.363*	1.000
Mean	0.519	0.519	0.5	0.462	0.327	0.481	0.192	6.593	0.462	0.5	15.75	386	2.404
Std. Dev.	0.505	0.505	0.505	0.503	0.474	0.505	0.398	3.109	0.503	0.505	5.426	498.54	0.721
Min	0	0	0	0	0	0	0	0	0	0	5	16	1
Max	1	1	1	1	1	1	1	11.818	1	1	25	2910	4

Notes: * *p* < 0.05.

	Model 1A	Model 1B	Model 2A	Model 2B
DV: Generalized	<i>p</i> <	< 0.1	<i>p</i> <	0.05
Impact factor	-0.0854	0.0230	-0.0842	-0.0254
	(0.2253)	(0.2418)	(0.1989)	(0.2164)
UTD (yes=1)	1.0316	1.3656	-1.1615	-1.3147
	(1.9335)	(2.7077)	(1.6243)	(1.6454)
FT (yes=1)	-0.2973	-1.4558	3.0021	2.9116
	(2.7311)	(3.4744)	(2.5067)	(2.6746)
Years since publication	-0.1565	-0.2066	-0.0923	-0.1404
	(0.1152)	(0.1316)	(0.1034)	(0.1200)
Google Scholar citations	-0.0016	-0.0015	-0.0028	-0.0032
	(0.0025)	(0.0026)	(0.0024)	(0.0026)
Count of authors	0.2526	-0.1005	-0.5078	-0.9375
	(0.7704)	(0.8642)	(0.7290)	(0.8155)
Reproduced	4.0568***	4.7329***	2.9043**	3.6648***
	(1.1293)	(1.2935)	(0.9047)	(1.0995)
Gen forward time		-0.7286		-0.6931
		(0.9740)		(0.8684)
Gen geography		-2.6737		-2.4959*
		(1.3679)		(1.2308)
Constant	0.7984	2.7553	1.8377	3.9551
	(2.9297)	(3.4675)	(2.6615)	(3.1584)
Observations	52	52	52	52
Log-likelihood	-21.664	-19.345	-25.866	-23.429
Prob>chi2	0.000	0.000	0.0050	0.0028

Panel B: Multivariable regressions (Logit)

Notes: Standard errors are in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001. The tests of backward time extension become the reference automatically.

III. Time Extension Tests with No Overlapping Time Periods

For a subset of the time extension tests, the time periods used partially overlapped with the original span of years to allow for a sufficiently large sample of observations and thus adequate statistical power. This was true for 15 of 42 time extension tests in 12 papers: #3, #4, #7, #9, #10, #11, #13, #16, #18, #19, #21, and #26. Below we provide reproducibility and generalizability counts including only time extensions, whose time span did not overlap at all with the original paper. This leads to 12 papers that have no time extension test and 7 papers to have no time or geographic extension test, increasing the number of N.A. counts.

Table S7-12. Reproducibility and generalizability with a benchmark of p < 0.1

Panel A: At the paper level, liberal criteria (any key test works)										
	Generalized									
		N.A. No Yes Total								
	No	6	6	4	16					
Reproduced	Yes	1	2	10	13					
-	Total	7	8	15	29					

J A . A + +h 1 1.1 1. 44)

Panel B: At the paper level, conservative criteria (all key tests work)

		Generalized						
		N.A. No Yes Total						
	No	6	8	2	16			
Reproduced	Yes	1	2	10	13			
-	Total	7	10	12	29			

Panel C: At the test level: Time and geography extension (all key tests work)

			Generalized							
			Time Geography							
		N.A.	No	Yes	N.A.	No	Yes			
Doproduced	No	9	5	2	12	4	0			
Reproduced	Yes	3	1	9	7	2	4			

Panel D: At the test level: Further breakdown of time extension results

Generalized										
		Time backward			Time forward			Geography		
	N.A.	No	Yes	N.A.	No	Yes	N.A.	No	Yes	
Daproduced	No	10	3	3	10	4	2	12	4	0
Reproduced	Yes	7	1	5	4	1	8	7	2	4

Panel A: At the paper level, liberal criteria (any key test works)									
		Generalized							
		N.A.	No	Yes	Total				
	No	6	5	5	16				
Reproduced	Yes	1	3	9	13				
-	Total	7	8	14	29				

Table S7-13. Reproducibility and generalizability with a benchmark of p < 0.05

Panel B: At the paper level, conservative criteria (all key tests work)

		Generalized						
		N.A.	No	Yes	Total			
	No	6	7	3	16			
Reproduced	Yes	1	4	8	13			
-	Total	7	11	11	29			

Panel C: At the test level: Time and geography extension (all key tests work)

			Generalized							
			Time Geography							
		N.A.	No	Yes	N.A.	No	Yes			
Danraduaad	No	8	5	3	13	3	0			
Reproduced	Yes	4	2	7	6	3	4			

Panel D: At the test level: Further breakdown for time extension results

			Generalized							
		Time backward			Time forward			Geography		
		N.A.	No	Yes	N.A.	No	Yes	N.A.	No	Yes
Doproduced	No	9	3	4	10	4	2	13	3	0
Reproduced	Yes	8	2	3	4	1	8	6	3	4

IV. Further summary tables

The following tables capture the designs and variable operationalizations for each study, discrepancies between analysis co-pilots and how these were resolved, power and heterogeneity calculations, and a suite of additional research reliability criteria.

Table S7-14.	Designs and Variable	Operationalizations
--------------	----------------------	---------------------

#	Generalizability test	New span of years and/or geography	Designs	Variable Operationalizations			
1	Time extension	2008-2010	The study uses the context of Japanese firms' investments in other countries; the unit of analysis is at the firm-country level; quantitative analysis is with the Poisson	1) The DV is a firm's degree of internationalization into a country, measured by the product of the percentage of the count of employees in newly established subsidiaries to total count of employees in a country; this information is derived from JOID. 2)			
1	Time extension	1996-2001	model.	The IV is the squared formal institutional diversity in the region where the country is located; this information is derived from PRS, WDI, etc 3) The control variables are directly derived from World Bank and Hofstede Culture Index, NEEDS etc.			
2	Time extension	1979-1989	The study uses the context of Japanese firms' investment in other countries; the unit of analysis is at the country-year level; quantitative analysis is with the negative	1) The DV is the total number of Japanese investments in a country, measured by the count of subsidiaries established by Japanese firms; this information is derived from JOID. 2) The IV is the statutory tax rate in a country; this information is derived from the			
	Time extension	2000-2010	binomial model.	University of Michigan World Tax Database. 3) The control variables are directly derived from the World Bank.			
3	Time extension	1995-2000	The study uses the context of Japanese firms' investment in other countries; the unit of analysis is at the firm-country level; quantitative analysis is with the negative binomial model.	1) The DV is the number of foreign subsidiaries created by a firm in a country. 2) The IV is the squared number of foreign subsidiaries created previously by the firm in the region where the country is located. 3) The control variables are directly derived from the World Bank and Political Hazards Index, NEEDS etc. The DV and IV are both derived from JOID.			
4	Time extension Geographic extension	1987-2001 India, South Korea, Southeast Aisa	The study uses the context of Japanese firms' investment in other countries; the unit of analysis is at the subsidiary level; quantitative analysis is with the logistic model.	1) The DV is the performance of a subsidiaries with '1' indicating 'profitable', and '0' representing either 'break-even' or 'loss'. 2) The IV is the age of the subsidiary. 3) The DV, IV, and control variables are all derived from JOID.			
	Time extension	1978-1989	The study uses the context of Japanese firms' investment in other countries; the unit of analysis is at the firm-industry-country-year	1) The DV is the count of Japanese foreign subsidiaries that were established by each parent firm in each industry in each host country for every year. 2) The IV is the square of the count of prior			
5	Time extension	2000-2009	level; quantitative analysis is with the zero- inflated negative binomial model.	entries of subsidiaries of other Japanese firms in the same host country. 3) The control variables are derived from World Bank, Political Hazards Index, and NEEDS. The DV and IV are both derived from JOID.			

Generalizability Tests Supplement

	Time extension	1989	The study uses the context of Japanese firms'	1) The DV is the percentage ownership of the Japanese parent(s) in			
	Time extension	1992	investment in other countries; the unit of	the subsidiary. 2) The IV is the ratio of advertising expenses to sales			
6	Time extension	1996	analysis is at the subsidiary level; quantitative analysis is with the Tobit model.	of a Japanese firm. 3) The control variables are derived from Euromoney, WCR etc. The DV and IV are derived from JOID and			
0	Time extension	1999	undrysis is with the root model.	NEEDS.			
	Geographic extension	China, Taiwan, HK, South Korea					
	Time extension	1982-1991	The study uses the context of Japanese firms' investment in other countries; the unit of	1) The DV is the likelihood of a Japanese joint venture's survival. 2) The IV is the ratio of R&D expenses to sales of the joint venture's			
7	Time extension	1989-1998	analysis is at the subsidiary level; quantitative analysis is with the parametric survival model.	Japanese parent firm. 3) The DV, IV, and control variables are all derived from JOID and NEEDS.			
	Time extension	1992	The study uses the context of Japanese firms'	1) The DV is the log of the number of expatriates. 2) The IV is the			
	Time extension	1995	analysis is at the subsidiary level; quantitative	log of the percentage equity share of the major Japanese parent firm.			
	Time extension	1999		3) The DV, IV, and control variables are derived from JOID and NEEDS.			
8	Geographic extension	HK, Thailand, Singapore, Taiwan, Malaysia, Brazil, Australia, Europe	model.				
	Time extension	1983-1989	The study uses the context of Japanese firms' investment in other countries; the unit of	1) The DV is the indicator that a Japanese firm invested in a country in a given year; this information is derived from JOID. 2) The IV is			
9	Time extension	1988-1994	analysis is at the firm-country-year level; quantitative analysis is with the logistic	the political hazard level for the country invested in; this information is derived from the Political Hazards Index. 3) The			
	Time extension	1992-1998	model.	control variables are derived from the World Bank and NEEDS.			
	Time extension	1970-1989	The study uses the context of Japanese firms' investment in other countries; the unit of	1) The DV equals 1 if a Japanese firm made an entry in a country at time t and 0 otherwise; this information is derived from JOID. 2)			
10	Time extension	1962-1980	analysis is at the firm-country-year level; quantitative analysis is with the parametric	The IV is the interaction between the political hazard level of that country and the firm's experience in high-hazards countries; this			
	Time extension	1962-1989	survival model.	information is derived from the Political Hazards Index. 3) The control variables are derived from World Bank, NEEDS etc.			
11	Time extension	1981-1994	The study uses the context of Japanese firms' investment in other countries; the unit of analysis is at the subsidiary level; quantitative analysis is with the parametric survival model.	1) The DV captures whether the subsidiary exited from the market (exit=1). 2) The IV is the count of a subsidiary's sequence of entry into a host country's three-digit SIC industry. 3) The control variables are derived from the World Bank and NEEDS. Both the DV and IV are derived from JOID.			

12	Time extension	1998-2009	The study uses the context of Japanese firms' investment in other countries; the unit of analysis is at the subsidiary level; quantitative analysis is with the cox proportional hazards model.	1) The DV captures whether the subsidiary exited from the market (exit=1). 2) The IV is the percentage of foreign equity of the subsidiary. 3) The control variables are derived from JOID, NEEDS, the Hofstede Cultural Index, etc. Both the DV and IV are derived from JOID.		
	Time extension	2000-2010	The study uses the context of Japanese firms' investment in other countries; the unit of	1) The DV is the performance of the subsidiary $(1 = loss, 2 = break-even, 3 = profit)$. 2) The IV is the proportion of Japanese employees		
13	Geographic extension	China (including HK and Macau)	analysis is at the subsidiary level; quantitative analysis is with the ordinal logistic model.	versus locals. 3) The control variables are derived from JOID and NEEDS. Both the DV and IV are derived from JOID.		
14	Time extension	1994-1999	The study uses the context of Japanese firms' investment in other countries; the unit of analysis is at the subsidiary level; quantitative analysis is with the ordinal logistic model.	1) The DV is the performance of the subsidiary $(1 = loss, 2 = break-even, 3 = profit)$. 2) The IV is the interaction between the ratio of expatriates versus all employees in a foreign subsidiary and the level of the parent firm's technological knowledge. 3) The control variables, IV, and DV are derived from JOID and NEEDS.		
15	Time extension	1998	The study uses the context of Japanese firms' investment in other countries; the unit of analysis is at the subsidiary level; quantitative analysis is with the logistic model.	1) The DV is an indicator that a subsidiary had a Japanese general manager (Yes=1; No=0); this information is derived from JOID. 2) The IV is the institutional distance between the home country of the parent firm and the host country of the subsidiary; this information is derived from World Competitiveness Yearbook. 3) The control		
		2000		variables are derived from JOID, the Hofstede Cultural Index, the World Competitiveness Yearbook etc.		
	T . , .	2001-2010	The study uses the context of Japanese firms'	1) The DV is the survival of subsidiaries (exit=1). 2) The IV is		
	Time extension	1989-2010	investment in China; the unit of analysis is at	whether the focal subsidiary is established early or late in the		
16	Geographic extension	India, South Korea, Thailand, Singapore, Malaysia, Philippines, Indonesia	the subsidiary level; quantitative analysis is with the Cox proportional hazards model.	market. 3) The control variables are derived from NEEDS.		
		1990	The study uses the context of Japanese firms'	1) The DV is the performance of the subsidiary $(1 = loss, 2 = break-$		
17	Time outer size	1992	investment in other countries; the unit of	even, $3 = gain$). 2) The IV is the percentage of Japanese employees.		
17	Time extension	1996	analysis is at the subsidiary level; quantitative analysis is with the multinomial logistic model.	3) The control variables are derived from JOID and the Hofstede Cultural Index.		

18	Time extension	1989-2000	The study uses the context of Japanese listed small and medium-sized firms; the unit of analysis is at the parent firm level; quantitative analysis is with the OLS model.	 The DV is the performance of Japanese firms (ROS & ROA). 2) The IV is export intensity * foreign investment activities (the number of FDIs in which the parent firm had a 10 percent or greater equity share & the number of countries in which the firm had FDIs). The control variables are derived from NEEDS, the Japan Company Handbook, and the International Financial Statistics Yearbook.
19	Time extension	1989-2000	The study uses the context of Japanese listed small and medium-sized firms; the unit of analysis is at the parent firm level; quantitative analysis is with the GLS Random-Effects models.	1) The DV is firm growth (sales & assets). 2) The IV is export intensity (the percent of parent firm sales that were derived from export revenues). 3) The control variables are derived from NEEDS, and the Japan Company Handbook.
	Time extension	1999-2003	The study uses the context of Japanese firms'	1) The DV is subsidiaries' entry mode (1:wholly-owned; 0: others).
20	Geographic extension	China, Thailand, Singapore, Malaysia, Indonesia, Korea, Philippines, Brazil, Mexico, Panama, Vietnam, India	investment in developed countries; the unit of analysis is at the subsidiary level; quantitative analysis is with the logistic model.	2) The IV is the parent firm's entry mode strategy by country (by calculating the percent of its entries that were wholly-owned). 3) The control variables are derived from NEEDS, JOID, and the World Bank.
	Time extension	1986-2010	The study uses the context of Japanese firms'	1) The DV is subsidiaries exiting (Exits=1, Surviving=0). 2) The IV
21	Geographic extension	Vietnam (Hanoi vs. Ho Chi Minh City)	investment in China; the unit of analysis is subsidiary level; quantitative analysis is with Cox proportional hazards model.	is the city of a subsidiary (Beijing=1, Shanghai=0). 3) The control variables are derived from JOID.
	Time extension	1990	The study uses the context of Japanese firms' investment in eight countries of Southeast and East Asia: the unit of analysis is subhidiary	1) The DV is the performance of the subsidiary (0=low performance(loss, break-even), 1=gain). 2) The IV is the interaction between LOCAL (dummu veriable indicating the aviatence of a
22	THE EXCLISION	1994	East Asia; the unit of analysis is subsidiary level; quantitative analysis is with the logistic model.	between LOCAL (dummy variable indicating the existence of a local JV partner) and PARENT (the foreign parent firm's past local country experience measured in years). 3) The control variables are
	Geographic extension	China, South Korea, India		derived from JOID, the Japanese Company Handbook, and Benchmark Surveys. The DV and IV are derived from JOID.
23	Time extension	2010	The study uses the context of Japanese firms' investment in other countries; the unit of analysis is subsidiary level; quantitative analysis is with the OLS model.	1) The DV is the percentage of Japanese expatriates. 2) The IV is the interaction between subsidiary age and cultural distance. 3) The control variables are derived from JOID and Institutional Investor. The DV and IV are derived from JOID.

Generalizability Tests Supplement

		1992	The study uses the context of 10 Japanese	1) The DV is foreign entry mode (0=wholly owned; 1=joint			
		1992	companies' subsidiaries all over the world; the	venture). 2) The IV is the rate of joint venture over wholly owned			
24	Time extension	1998	unit of analysis is subsidiary level; quantitative analysis is with the logistic	subsidiary established by the other Japanese competitors in the sample in the same host country at the time of the focal			
		2000	model.	multinational enterprise's entry. 3) The control variables, DV, and IV are derived from JOID.			
25	 25 Time extension 26 Time extension 26 Geographic extension 27 Time extension 28 Time extension 28 Time extension 	2001, 2002, 2003	The study uses the context of Japanese firms' joint ventures in other countries; the unit of analysis is at the subsidiary level; quantitative analysis is with the generalized estimating equation model.	 The DV is performance of IJVs (3=gain; 2=break-even; 1=loss). The IV is the continuous measurement of parent firms' size asymmetry. The control variables are derived from JOID, NEEDS, the Hofstede Cultural Index, etc. The DV and IV are derived from JOID. 			
	Time extension	1990-1996	The study uses the context of Japanese joint	1) The DV is the de-listing of a joint venture. 2) The IV is the			
26	Time extension	1996-2002	ventures; the unit of analysis is at the subsidiary level; quantitative analysis is with	difficulty of alliance performance measurement (mean performance over time). 3) The control variables are derived from JOID and			
		Europe	the Cox proportional hazards model.	NEEDS.			
27	Time extension	1985-1993	The study uses the context of Japanese firms' investment in China; the unit of analysis is subsidiary level; quantitative analysis is with OLS model.	 The DV is the change in the use of IJVs, using 95% equity ownership as the cut-off point. 2) The IV is prior FDI opportunities (the number of Japanese FDIs worldwide by 2-digit SIC industry). The control variables are derived from NEEDS. 			
28	Time extension	1986-1991	The study uses the context of Japanese firms; the unit of analysis is at the parent firm level; quantitative analysis is with the two-stage Heckman model.	1) The DV is performance three years after a retrenchment event to account for a potential recovery period. 2) The IV is the interaction between asset retrenchment (percent reduction in total assets from one year to the next year) and Rf (Ricardian rent creation focus,			
		1998-2001		measured by relative tangible asset intensity). 3) The control variables are derived from NEEDS.			
	Time extension	1994	The study uses the context of Japanese firms'	1) The DV is the performance of the subsidiary (1=loss; 2=break-			
29	The extension	1998	investment in other countries; the unit of analysis is at the subsidiary level; quantitative	even; 3=gain). 2) The IV is the interaction between closely business relatedness and ownership (percentage of the primary foreign			
23	Geographic extension	India, South Korea, Southeast Asia	analysis is at the substalary rever, quantitative analysis is with the ordinal logistic model.	parent's share in the subsidiary). 3) The control variables are derived NEEDS and JOID.			

Notes. IJV represents international joint venture; FDI represents foreign direct investment; WOS represents wholly owned subsidiary; PRS: Political Risk Service; WDI: World Development Indicators; NEEDS: Nikkei Economic Electronic Database System; JOID: Japanese Overseas Investments Database

#	Sources of co-pilot discrepancies	Solutions after discussion
1	Specification: The dependent variable is not in integer, but the author used a Poisson model, which requires the dependent variable to be a count variable.	We rounded the dependent variable to make it an integer.
4	Measurement: In the text, there is no direct mention or paper citations regarding how the original authors measured two control variables, specifically international and industry experience.	We measure experience by calculating the total subsidiary-years of operation in a country or in an industry which is the most common approach in the literature.
12	Sample selection: The authors selected firms in 13 industry groups based on three-digit SIC codes without specifying the means of categorization.	To code the 13 industry groups, we mapped three-digit SIC codes to industry groups by industry names.
13	 Specification: In Table 2 of the original article, the authors include parent industry and IJV industry in the model. However, they include the two-digit SIC code as a continuous variable, which does not seem justified. A better approach is to control for industry- fixed effects by creating a dummy variable for each industry. Measurement: In the text, there is no mention about how they measured capital invested, yet this variable is seen in their tables. 	 To align with the method used in the original article, we include IJV industry code as a continuous variable as well. We tried different scales of capital invested and used the one which had the closest statistical features to the numbers in the original paper.
14	Specification: In Table IV of the original article, the authors controlled for region dummy. However, the authors mentioned in the notes under the table that they also controlled for host-country nation dummies. Controlling for both region and country fixed effects will lead to perfect multicollinearity because each country nests inside a region.	We decided that this was an error in the original paper and did not include host-country nation dummies in the model.
23	Data collection: Data for the control variable "market risk" are inaccessible for some years.	We used the data available in the years closest to the unavailable years of data as a substitute.
24	Model selection: The original authors used a random- effect GLS model to estimate the effect. In STATA, there were two sets of commands: xtreg with re option and xtgls.	By checking the STATA manual, we figured out the difference and selected xtreg with re option for the replication.
28	Sample selection: The authors selected non-diversified firms without clarifying how they judged a firm to be a non-diversified firm.	We coded the non-diversification by checking against the Japan Company Handbook (1998 version), where sales breakdown for each firm are available. This is the most common way to judge diversification for Japanese firms.

Table S7-15. Discrepancies between analysis co-pilots and resolutions.

 Table S7-16. Sample size & statistical power for each test

#	Track forme	Samala dina				Estima	tes		
#	Test type	Sample size	Coefficient	<i>t</i> /z value	p value	S.E.	95% CI lower	95% CI upper	Power
	Original	34,202	-0.3700	<-3.29	< 0.001	< 0.1125	>-0.5904	<-0.1496	n.a.
	Reproduction	33,858	0.0976	1.28	0.200	0.0761	-0.0516	0.2468	< 0.60
1	Time extension 1: 2008-2010	35,761	-15.5618	-9.73	0.000	1.5998	-18.6974	-12.4262	>0.90
1	Time extension 2: 1996-2001	31,097	0.0713	2.50	0.012	0.0285	0.0154	0.1271	>0.90
	Pooled generalizability (only time)	66,858	0.3951	22.52	0.000	0.0175	0.3608	0.4295	>0.90
	All data	100,716	-0.3510	-66.62	0.000	0.0053	-0.3613	-0.3407	>0.90
	Original	541	-2.5420	-3.28	0.001	0.7740	-4.0624	-1.0216	n.a.
	Reproduction	545	-0.2145	-0.37	0.713	0.5828	-1.3568	0.9278	< 0.60
2	Time extension 1: 1979-1989	423	-1.3683	-2.57	0.010	0.5320	-2.4109	-0.3256	< 0.60
2	Time extension 2: 2000-2010	126	-0.4407	-0.28	0.780	1.5800	-3.5375	2.6561	< 0.60
	Pooled generalizability (only time)	549	-1.1687	-2.46	0.014	0.4758	-2.1013	-0.2361	< 0.60
	All data	1,052	-0.9661	-2.76	0.006	0.3496	-1.6514	-0.2808	< 0.60
	Original	30,877	-0.0011	-5.50	0.000	0.0002	-0.0015	-0.0007	n.a.
3	Reproduction	28,314	-0.0008	-2.44	0.014	0.0003	-0.0015	-0.0002	>0.90
5	Time extension: 1995-2010	12,528	-0.0104	-2.47	0.014	0.0042	-0.0188	-0.0021	>0.90
	All data	40,842	-0.0008	-2.38	0.018	0.0003	-0.0014	-0.0001	>0.90
	Original	703	0.2020	5.94	0.000	0.0340	0.1352	0.2688	n.a.
	Reproduction	738	0.2097	6.31	0.000	0.0333	0.1445	0.2749	>0.90
4	Time extension: 1987-2001	913	0.1583	5.00	0.000	0.0316	0.0962	0.2203	>0.90
т	Geographic extension	1,524	0.1152	7.01	0.000	0.0164	0.0830	0.1474	>0.90
	Pooled generalizability	2,437	0.1191	8.37	0.000	0.0142	0.0912	0.1470	>0.90
	All data	2,467	0.1212	8.67	0.000	0.0140	0.0938	0.1486	>0.90
	Original	156,451	-0.0190	-6.33	0.000	0.0030	-0.0249	-0.0131	n.a.
	Reproduction	120,672	-0.0017	-1.40	0.162	0.0012	-0.0042	0.0007	>0.90
5	Time extension 1: 1978-1989	128,304	-0.0095	-1.03	0.304	0.0092	-0.0276	0.0086	>0.90
5	Time extension 2: 2000-2009	117,738	-0.0060	-0.78	0.436	0.0077	-0.0212	0.0091	>0.90
	Pooled generalizability (only time)	246,042	-0.0065	-1.57	0.117	0.0041	-0.0146	0.0016	>0.90
	All data	366,714	-0.0011	-1.06	0.287	0.0011	-0.0032	0.0010	>0.90

	Original	708	-3.6400	-2.50	0.013	1.4560	-6.4986	-0.7814	n.a.
	Reproduction	953	-2.7052	-2.04	0.041	1.3230	-5.3015	-0.1088	< 0.60
	Time extension 1: 1989	404	-0.2602	-0.16	0.870	1.5846	-3.3756	2.8551	< 0.60
	Time extension 2: 1992	915	-0.7500	-0.57	0.567	1.3075	-3.3158	1.8163	< 0.60
~	Time extension 3: 1996	1,916	0.7918	0.81	0.416	0.9728	-1.1161	2.6996	< 0.60
6	Time extension 4: 1999	2,183	-1.2537	-1.35	0.177	0.9288	-3.0752	0.5678	< 0.60
	Geographic extension	512	-0.7665	-0.49	0.622	1.5522	-3.8162	2.2833	< 0.60
	Pooled generalizability (only time)	5,418	-0.5775	-1.01	0.311	0.5700	-1.6949	0.5399	< 0.60
	Pooled generalizability	5,930	-0.6466	-1.20	0.229	0.5370	-1.6994	0.4061	< 0.60
	All data	6,883	-0.9259	-1.86	0.063	0.4980	-1.9021	0.0503	< 0.60
	Original	1,705	2.1200	2.10	0.036	1.0100	0.1390	2.1000	n.a.
	Reproduction	1,810	-0.1283	-2.52	0.012	0.0510	-0.2282	-0.0285	0.75-0.80
7	Time extension 1: 1982-1991	814	0.9305	1.08	0.280	0.8622	-0.7594	2.6204	>0.90
/	Time extension 2: 1989-1998	1,592	-0.2651	-4.01	0.000	0.0662	-0.3948	-0.1354	>0.90
	Pooled generalizability (only time)	2,406	-0.1694	-2.99	0.003	0.0566	-0.2804	-0.0584	>0.90
	All data	4,216	-0.1471	-3.87	0.000	0.0380	-0.2215	-0.0726	>0.90
	Original	797	5.1710	4.33	0.000	1.1951	2.8252	7.5168	n.a.
	Reproduction	677	0.6530	5.68	0.000	0.1151	0.4269	0.8785	>0.90
	Time extension 1: 1992	265	0.3667	2.50	0.013	0.1469	0.0775	0.6560	0.80-0.85
	Time extension 2: 1995	362	0.4967	3.78	0.000	0.1313	0.2384	0.7549	>0.90
8	Time extension 3: 1999	765	0.7597	6.80	0.000	0.1117	0.5404	0.9791	>0.90
	Geographic extension	553	0.4640	7.72	0.000	0.0601	0.3460	0.5821	>0.90
	Pooled generalizability (only time)	1,392	0.5582	7.73	0.000	0.0722	0.4166	0.6998	>0.90
	Pooled generalizability	1,945	0.5238	11.59	0.000	0.0452	0.4352	0.6123	>0.90
	All data	2,459	0.5391	12.88	0.000	0.0419	0.4570	0.6211	>0.90
	Original	857210	-1.1500	-7.19	0.001	0.1600	-1.4636	-0.8364	n.a.
	Reproduction	753,676	-0.6495	-1.63	0.101	0.3974	-1.4271	0.1274	< 0.60
	Time extension 1: 1983-1989	105,314	-0.2159	0.00	0.999	199.7353	-391.6900	391.2582	< 0.60
9	Time extension 2: 1988-1994	657,110	-0.9964	-2.33	0.020	0.4272	-1.8338	-0.1590	< 0.60
	Time extension 3: 1992-1998	669,998	-0.1811	-0.46	0.647	0.3950	-0.9553	0.5932	< 0.60
	Pooled generalizability (only time)	1,327,108	-0.6375	-2.39	0.017	0.2667	-1.1603	-0.1148	< 0.60
	All data	2,080,784	-0.6361	-2.90	0.004	0.2196	-1.0665	-0.2056	< 0.60

	Original	816,908	0.0180	2.00	0.046	0.0090	1.0004	1.0356	
	C C	,	-0.0083	-0.16	0.046 0.869	0.0090	-0.1075	0.0908	n.a. 0.85-0.90
	Reproduction	581,482							
10	Time extension 1: 1970-1989	277,538	0.1039	1.51	0.132	0.0689	-0.0312	0.2389	>0.90
10	Time extension 2: 1962-1980	88,304	0.0875	0.81	0.202	0.1075	-0.1232	0.2983	>0.90
	Time extension 3: 1962-1989	294,197	0.0618	0.95	0.342	0.0651	-0.0658	0.1895	>0.90
	Pooled generalizability (only time)	660,039	0.0799	1.96	0.050	0.0409	-0.0002	0.1600	>0.90
	All data	1,241,521	0.0037	0.13	0.899	0.0290	-0.0532	0.0605	< 0.60
	Original	6,955	-0.0020	<-2.58	< 0.010	< 0.0008	>-0.0035	<-0.0005	n.a.
11	Reproduction	7,677	0.0005	1.41	0.158	0.0004	-0.0002	0.0012	< 0.60
	Time extension: 1981-1994	7,435	0.0005	1.19	0.236	0.0004	-0.0003	0.0012	< 0.60
	All data	15,112	0.0005	1.83	0.067	0.0003	0.0000	0.0010	< 0.60
	Original	12,984	-0.5590	-29.42	0.000	0.0190	-0.5962	-0.5218	n.a.
12	Reproduction	7,681	-0.9790	-26.07	0.000	0.0376	-1.0527	-0.9054	>0.90
12	Time extension: 1998-2009	637	-0.2013	-2.22	0.027	0.0907	-0.3791	-0.0234	>0.90
	All data	8,318	-0.8526	-24.67	0.000	0.0346	-0.9203	-0.7848	>0.90
	Original	3,772	-0.1340	<-1.96	< 0.050	< 0.0684	>-0.2680	< 0.0000	n.a.
	Reproduction	568	-1.0005	-0.27	0.790	3.7478	-8.3461	6.3451	< 0.60
12	Time extension: 2000-2010	145	-12.4779	-0.42	0.675	29.7169	-70.7219	45.7661	< 0.60
13	Geographic extension	1631	-2.5659	-0.12	0.904	21.1812	-44.0803	38.9485	< 0.60
	Pooled generalizability	1776	7.1462	0.51	0.612	14.0981	-20.4838	34.7799	< 0.60
	All data	2344	4.9816	1.72	0.085	2.8908	-0.6842	10.6474	< 0.60
	Original	1,242	0.2000	2.50	0.013	0.0800	0.0430	0.3570	n.a.
1.4	Reproduction	1,030	0.0702	0.95	0.343	0.0740	-0.0749	0.2153	< 0.60
14	Time extension: 1994-1999	1,032	-0.0834	-1.45	0.146	0.0574	-0.1958	0.0290	< 0.60
	All data	2,062	-0.0209	-0.50	0.618	0.0418	-0.1028	0.0611	< 0.60
	Original	12,997	0.3150	3.75	0.000	0.0840	0.1503	0.4797	n.a.
	Reproduction	9,612	0.1265	1.81	0.070	0.0698	-0.0103	0.2632	0.60-0.65
	Time extension 1: 1998	15,510	0.5825	10.07	0.000	0.0578	0.4692	0.6959	>0.90
15	Time extension 2: 2000	14,434	0.3419	5.50	0.000	0.0622	0.2199	0.4636	>0.90
	Pooled generalizability (only time)	29,798	0.4586	10.91	0.000	0.0420	0.3761	0.5410	>0.90
	All data	39,388	0.4214	11.87	0.000	0.0355	0.3519	0.4910	>0.90

	Original	0.0.1	0.1650	. 2.57	-0.010	-0.0642	> 0.2010	. 0.0200	
	Original	881	-0.1650	<-2.57	< 0.010	< 0.0642	>-0.2910	<-0.0390	n.a.
	Reproduction	709	-0.1110	-1.25	0.210	0.0886	-0.2848	0.0627	>0.90
	Time extension 1: 2001-2010	365	-0.4323	-1.95	0.051	0.2218	-0.8670	0.0023	>0.90
16	Time extension 2: 1989-2010	851	-0.0842	-1.71	0.087	0.0492	-0.1806	0.0123	>0.90
10	Geographic extension	1,174	-0.0586	-1.23	0.217	0.0475	-0.1518	0.0345	>0.90
	Pooled generalizability (only time)	1,216	-0.0920	-1.93	0.054	0.0478	-0.1857	0.0017	>0.90
	Pooled generalizability	2,390	-0.0715	-2.23	0.026	0.0321	-0.1345	-0.0086	>0.90
	All data	3,099	-0.0842	-2.80	0.005	0.0301	-0.1432	-0.0253	>0.90
	Original	2,102	0.0060	>2.58	< 0.010	< 0.0023	>0.0014	< 0.0106	n.a.
	Reproduction	1,625	0.6866	3.18	0.001	0.2160	0.2634	1.1099	< 0.60
	Time extension 1: 1990	1,273	0.4485	2.25	0.025	0.1996	0.0573	0.8398	< 0.60
17	Time extension 2: 1992	1,549	0.4315	2.41	0.016	0.1793	0.0801	0.7828	< 0.60
	Time extension 3: 1996	1,929	1.0313	4.72	0.000	0.2186	0.6030	1.4597	< 0.60
	Pooled generalizability (only time)	4,751	0.6237	5.42	0.000	0.1151	0.3981	0.8493	< 0.60
	All data	6,376	0.6350	6.25	0.000	0.1016	0.4359	0.8341	< 0.60
	Original	164	-0.0060	-2.02	0.045	0.0030	-0.0119	-0.0001	n.a.
10	Reproduction	146	0.0001	0.04	0.969	0.0027	-0.0051	0.0053	< 0.60
18	Time extension: 1989-2000	147	0.0148	1.61	0.108	0.0092	-0.0033	0.0328	< 0.60
	All data	148	0.0102	1.24	0.214	0.0082	-0.0059	0.0263	< 0.60
	Original	1,804	0.1720	2.97	0.003	0.0580	0.0582	0.2858	n.a.
10	Reproduction	3,707	0.0740	1.34	0.180	0.0552	-0.0343	0.1822	< 0.60
19	Time extension: 1989-2000	3,707	0.0473	0.89	0.371	0.0528	-0.0563	0.1508	< 0.60
	All data	4,718	0.0449	1.01	0.311	0.0442	-0.0418	0.1316	< 0.60
	Original	1,194	0.4300	2.33	0.020	0.1844	0.0683	0.7917	n.a.
	Reproduction	1,767	3.7313	11.23	0.000	0.3430	3.1783	4.5229	>0.90
•••	Time extension: 1999-2003	596	7.4451	4.91	0.000	1.5176	4.4705	10.4196	0.70-0.75
20	Geographic extension	3,658	3.7377	10.14	0.000	0.3686	3.0153	4.4602	>0.90
	Pooled generalizability	4,254	4.0913	11.10	0.000	0.3685	3.3690	4.8136	>0.90
	All data	6,021	3.6397	15.47	0.000	0.2353	3.1785	4.1010	>0.90

	Original	1,233	0.2500	2.08	0.037	0.1200	0.0146	0.4854	n.a.
	Reproduction	1,008	0.3855	3.21	0.001	0.1199	0.1505	0.6206	>0.90
	Time extension: 1986-2010	1,518	0.5233	3.96	0.000	0.1322	0.2642	0.7825	>0.90
21	Geographic extension	98	0.5787	0.80	0.422	0.7209	-0.8343	1.9916	0.65-0.70
	Pooled generalizability	1,616	0.6050	4.81	0.000	0.1258	0.3585	0.8516	>0.90
	All data	2,624	0.4405	5.13	0.000	0.0859	0.2721	0.6089	>0.90
	Original	556	-0.0997	-8.76	< 0.001	0.0114	-0.1220	-0.0774	n.a.
	Reproduction	682	-0.0029	-0.34	0.730	0.0083	-0.0191	0.0134	< 0.60
	Time extension 1: 1990	638	-0.0015	-0.15	0.877	0.0096	-0.0204	0.0174	< 0.60
~~	Time extension 2: 1994	690	0.0017	0.37	0.654	0.0046	-0.0073	0.0107	< 0.60
22	Geographic extension	153	0.0679	0.88	0.380	0.0773	-0.0836	0.2194	< 0.60
	Pooled generalizability (only time)	1,328	0.0012	0.3	0.762	0.0040	-0.0066	0.0090	< 0.60
	Pooled generalizability	1,481	0.0014	0.35	0.727	0.0039	-0.0063	0.0090	< 0.60
	All data	2,163	0.0006	0.18	0.860	0.0035	-0.0062	0.0074	< 0.60
	Original	5,296	(-0.0300)	<-1.96	< 0.050	Unknown	Unknown	Unknown	n.a
23	Reproduction	3,761	(-0.0934)	-2.53	0.011	0.0002	-0.0009	-0.0001	0.70-0.75
23	Time extension: 2010	1,983	(-0.1974)	-3.06	0.002	0.0003	-0.0014	-0.0003	0.85-0.90
	All data	5,744	(-0.1247)	-3.84	0.000	0.0002	-0.0009	-0.0003	>0.90
	Original	305	4.2800	>2.59	< 0.010	<1.6525	>1.0282	<7.5318	n.a
	Reproduction	582	3.2908	9.66	0.000	0.3408	2.6229	3.9587	>0.90
	Time extension 1: 1992	373	2.4273	5.24	0.000	0.4632	1.5195	3.3351	>0.90
24	Time extension 2: 1994	457	2.3731	6.10	0.000	0.3891	1.6105	3.1357	>0.90
24	Time extension 3: 1998	563	3.2674	9.58	0.000	0.3411	2.5988	3.9359	>0.90
	Time extension 4: 2000	583	3.2500	9.52	0.000	0.3414	2.5809	3.9190	>0.90
	Pooled generalizability (only time)	1,935	2.9450	16.24	0.000	0.1814	2.5895	3.3006	>0.90
	All data	2,504	3.0240	18.94	0.000	0.1597	2.7110	3.3369	>0.90
	Original	268	0.1700	0.55	0.584	0.3100	-0.4404	0.7804	n.a
25	Reproduction	298	-0.1855	-0.6	0.547	0.3080	-0.7892	0.4182	< 0.60
23	Time extension: 2001, 2002, 2003	237	-0.2752	-1.27	0.204	0.2166	-0.6998	0.1494	0.85-0.90
	All data	535	-0.5563	-2.28	0.023	0.2445	-1.0354	-0.0771	>0.90

	Original	406	-0.4540	-1.32	0.189	0.3447	-1.1316	0.2236	n.a.
	Reproduction	314	-0.3345	-1.90	0.058	0.1765	-0.6805	0.0114	>0.90
	Time extension 1: 1990-1996	316	-0.7561	-3.60	0.000	0.2098	-1.1673	-0.3450	>0.90
26	Time extension 2: 1996-2002	243	-0.3681	-1.73	0.084	0.2133	-0.7862	0.0499	>0.90
26	Geographic extension	260	-0.6465	-3.05	0.002	0.2120	-1.0620	-0.2309	>0.90
	Pooled generalizability (only time)	559	-0.5445	-3.76	0.000	0.1448	-0.8282	-0.2607	>0.90
	Pooled generalizability	819	-0.5898	-5.01	0.000	0.1177	-0.8204	-0.3592	>0.90
	All data	1,133	-0.4889	-5.06	0.000	0.0970	-0.6781	-0.2997	>0.90
	Original	440	-1.1100	-0.64	0.521	1.7300	-4.5101	2.2901	n.a.
27	Reproduction	365	-0.0187	-2.14	0.032	0.0088	-0.0359	-0.0016	< 0.60
21	Time extension: 1985-1993	273	0.0006	0.76	0.445	0.0008	-0.0010	0.0022	< 0.60
	All data	638	-0.0001	-0.05	0.957	0.0012	-0.0023	0.0022	< 0.60
	Original	383	(0.0120)	<1.65	>0.100	Unknown	Unknown	Unknown	n.a.
	Reproduction	420	(-0.2776)	-2.26	0.024	0.0014	-0.0058	-0.0004	0.60-0.65
28	Time extension 1: 1986-1991	140	(0.3163)	1.45	0.150	0.0016	-0.0009	0.0055	< 0.60
28	Time extension 2: 1998-2001	105	(-0.3304)	-1.10	0.275	0.0031	-0.0097	0.0028	< 0.60
	Pooled generalizability (only time)	245	(-0.0476)	-0.29	0.770	0.0013	-0.0030	0.0022	< 0.60
	All data	665	(-0.1830)	-1.95	0.052	0.0009	-0.0036	0.0000	< 0.60
	Original	165	0.3400	0.61	0.545	0.5600	-0.7657	1.4457	n.a.
	Reproduction	431	0.1607	0.33	0.741	0.4870	-0.7939	1.1153	< 0.60
	Time extension 1: 1994	295	-0.8870	-1.48	0.139	0.6001	-2.0631	0.2892	< 0.60
29	Time extension 2: 1998	463	0.2327	0.72	0.469	0.4543	-0.5586	1.2128	< 0.60
29	Geographic extension	467	0.1858	0.34	0.737	0.5525	-0.8971	1.2687	< 0.60
	Pooled generalizability (only time)	758	-0.2590	-0.71	0.478	0.3653	-0.9750	0.4570	< 0.60
	Pooled generalizability	1,225	-0.0522	-0.18	0.859	0.2943	-0.6290	0.5246	< 0.60
	All data	1,656	0.0992	0.40	0.691	0.2491	-0.3892	0.5875	< 0.60

Notes. Numbers in parentheses are standardized beta. We report power using ranges because power calculators provide ranges rather than exact values for some of our studies, depending on the estimation model. We use the mean of each range to calculate the average power. For example, we use 0.875 for "0.85-0.90". Numbers in bold and italic refers to *t*-values. "Pooled generalizability (only time)" refers to the test with the pooled sample of time extension tests. "Pooled generalizability" refers to the test with the pooled sample of both time and geographic extension tests. "All data" refers to pooling the data in both the reproduction and generalizability tests. Power is n/a for original findings because of insufficiently detailed reporting of statistical information in the original articles.

Suite of Research Reliability Criteria

щ	Denne		Tin	ne extension			Geographic	Pooled	A 11 Jaka
#	Repro -	1	2	3	4	Pooled	extension	generalizability	All data
1	Different	Same	Different	n.a.	n.a.	Different	n.a.	Different	Same
2	Same	Same	Same	n.a.	n.a.	Same	n.a.	Same	Same
3	Same	Same	n.a.	n.a.	n.a.	Same	n.a.	Same	Same
4	Same	Same	n.a.	n.a.	n.a.	Same	Same	Same	Same
5	Same	Same	Same	n.a.	n.a.	Same	n.a.	Same	Same
6	Same	Same	Same	Different	Same	Same	Same	Same	Same
7	Different	Same	Different	n.a.	n.a.	Different	n.a.	Different	Different
8	Same	Same	Same	Same	n.a.	Same	Same	Same	Same
9	Same	Same	Same	Same	n.a.	Same	n.a.	Same	Same
10	Different	Same	Same	Same	n.a.	Same	n.a.	Same	Same
11	Different	Different	n.a.	n.a.	n.a.	Different	n.a.	Different	Different
12	Same	Same	n.a.	n.a.	n.a.	Same	n.a.	Same	Same
13	Same	Same	n.a.	n.a.	n.a.	Same	Same	Different	Different
14	Same	Different	n.a.	n.a.	n.a.	Different	n.a.	Different	Different
15	Same	Same	Same	n.a.	n.a.	Same	n.a.	Same	Same
16	Same	Same	Same	n.a.	n.a.	Same	Same	Same	Same
17	Same	Same	Same	Same	n.a.	Same	n.a.	Same	Same
18	Different	Different	n.a.	n.a.	n.a.	Different	n.a.	Different	Different
19	Same	Same	n.a.	n.a.	n.a.	Same	n.a.	Same	Same
20	Same	Same	n.a.	n.a.	n.a.	Same	Same	Same	Same
21	Same	Same	n.a.	n.a.	n.a.	Same	Same	Same	Same
22	Same	Same	Different	n.a.	n.a.	Different	Different	Different	Different
23	Same	Same	n.a.	n.a.	n.a.	Same	n.a.	Same	Same
24	Same	Same	Same	Same	Same	Same	n.a.	Same	Same
25	Different	Different	n.a.	n.a.	n.a.	Different	n.a.	Different	Different
26	Same	Same	Same	n.a.	n.a.	Same	Same	Same	Same
27	Same	Different	n.a.	n.a.	n.a.	Different	n.a.	Different	Same
28	Different	Same	Different	n.a.	n.a.	Different	n.a.	Different	Different
29	Same	Different	Same	n.a.	n.a.	Different	Same	Different	Same

Table S7-17. Research reliability criterion: Matching in direction

Notes: "Repro" refers to reproduction analysis. "Pooled" means pooling time extension data. "Pooled generalizability" means pooling the time and geographic extension data. "All data" refers to pooling the reproduction and all generalizability test data. If there is only a single time extension test, "pooled" is equivalent to the single test. If there is no geographic extension, "pooled generalizability" is equivalent to "pooled". "Same" means matching in sign (+/-) with the original effect.

"Different" means mismatched sign (+/-) with the original effect.

щ	Original	Danie Indian		Tiı	ne extens	ion		Geographic	Pooled	A 11 J
#	effect	Reproduction -	1	2	3	4	Pooled	extension	generalizability	All data
1	Yes	No	Yes	Yes	n.a.	n.a.	Yes	n.a.	Yes	Yes
2	Yes	No	Yes	No	n.a.	n.a.	Yes	n.a.	Yes	Yes
3	Yes	Yes	Yes	n.a.	n.a.	n.a.	Yes	n.a.	Yes	Yes
4	Yes	Yes	Yes	n.a.	n.a.	n.a.	Yes	Yes	Yes	Yes
5	Yes	No	No	No	n.a.	n.a.	No	n.a.	No	No
6	Yes	Yes	No	No	No	No	No	No	No	No
7	Yes	Yes	No	Yes	n.a.	n.a.	Yes	n.a.	Yes	Yes
8	Yes	Yes	Yes	Yes	Yes	n.a.	Yes	Yes	Yes	Yes
9	Yes	No	No	Yes	No	n.a.	Yes	n.a.	Yes	Yes
10	Yes	No	No	No	No	n.a.	Yes	n.a.	Yes	No
11	Yes	No	No	n.a.	n.a.	n.a.	No	n.a.	No	No
12	Yes	Yes	Yes	n.a.	n.a.	n.a.	Yes	n.a.	Yes	Yes
13	Yes	No	No	n.a.	n.a.	n.a.	No	No	No	No
14	Yes	No	No	n.a.	n.a.	n.a.	No	n.a.	No	No
15	Yes	No	Yes	Yes	n.a.	n.a.	Yes	n.a.	Yes	Yes
16	Yes	No	No	No	n.a.	n.a.	No	No	Yes	Yes
17	Yes	Yes	Yes	Yes	Yes	n.a.	Yes	n.a.	Yes	Yes
18	Yes	No	No	n.a.	n.a.	n.a.	No	n.a.	No	No
19	Yes	No	No	n.a.	n.a.	n.a.	No	n.a.	No	No
20	Yes	Yes	Yes	n.a.	n.a.	n.a.	Yes	Yes	Yes	Yes
21	Yes	Yes	Yes	n.a.	n.a.	n.a.	Yes	No	Yes	Yes
22	Yes	No	No	No	n.a.	n.a.	No	No	No	No
23	Yes	Yes	Yes	n.a.	n.a.	n.a.	Yes	n.a.	Yes	Yes
24	Yes	Yes	Yes	Yes	Yes	Yes	Yes	n.a.	Yes	Yes
25	No	No	No	n.a.	n.a.	n.a.	No	n.a.	No	Yes
26	No	No	Yes	No	n.a.	n.a.	Yes	Yes	Yes	Yes
27	No	Yes	No	n.a.	n.a.	n.a.	No	n.a.	No	No
28	No	Yes	No	No	n.a.	n.a.	No	n.a.	No	No
29	No	No	No	No	n.a.	n.a.	No	No	No	No

Table S7-18. Research reliability criterion: Statistical significance

Notes: "Pooled" means pooling time extension data. "Pooled generalizability" means pooling the time and geographic extension data. "All data" refers to pooling the reproduction and all generalizability test data. If there is only a single time extension test, "pooled" is equivalent to the single test. If there is no geographic extension, "pooled generalizability" is equivalent to "pooled". "Yes" means the effect is statistically significant at p < 0.05.

"No" means the effect is not statistically significant at p < 0.05.

Table S7-19. Bayesian analyses of project results: Cut offs of 0.33 and 3

			Reproductio	on			Poo	oled generalization	bility				All data		
#	Outc	ome of 100	runs	DE maan	Conclusion	Outco	ome of 100 i	runs	BF_mean	Conclusion	Outo	come of 100	runs	BF_mean	Conclusion
	Support H0	Unclear	Support H1	BF_mean	Conclusion	Support H0	Unclear	Support H1	Br_mean	Conclusion	Support H0	Unclear	Support H1	Dr_mean	Conclusion
1	15	70	15	0.89	Unclear	15	68	17	1.10	Unclear	26	47	27	1.00	Unclear
2	41	3	56	5.73	Confirmed	40	14	46	0.97	Unclear	46	4	50	6.36	Confirmed
3	57	4	39	0.15	Disconfirmed	48	2	50	>100	Confirmed	39	1	60	>100	Confirmed
4	12	7	81	63.40	Confirmed	8	5	87	>100	Confirmed	3	7	90	>100	Confirmed
5	14	7	79	>100	Confirmed	1	2	97	>100	Confirmed	0	1	99	>100	Confirmed
6	35	22	43	1.94	Unclear	41	22	37	0.79	Unclear	35	19	46	2.65	Unclear
7	3	10	87	36.41	Confirmed	2	17	81	37.60	Confirmed	4	18	83	37.22	Confirmed
8	100	0	0	< 0.01	Disconfirmed	100	0	0	< 0.01	Disconfirmed	100	0	0	< 0.01	Disconfirmed
9	31	26	43	1.24	Unclear	25	22	53	3.52	Confirmed	25	23	52	3.75	Confirmed
10	51	0	49	>100	Confirmed	19	16	65	15.42	Confirmed	17	69	24	1.28	Unclear
11	31	12	57	5.62	Confirmed	25	13	62	12.97	Confirmed	32	14	54	7.43	Confirmed
12	1	95	4	1.64	Unclear	0	100	0	1.00	Unclear	0	99	1	1.05	Unclear
13	43	18	39	0.70	Unclear	39	26	35	0.74	Unclear	14	16	70	29.70	Confirmed
14	8	49	43	2.07	Unclear	3	76	21	2.04	Unclear	4	69	27	2.09	Unclear
15	35	7	58	17.68	Confirmed	37	6	57	22.12	Confirmed	30	5	65	>100	Confirmed
16	43	1	56	>100	Confirmed	46	0	54	>100	Confirmed	53	1	46	0.18	Disconfirmed
17	0	100	0	1.00	Unclear	0	100	0	1.00	Unclear	0	100	0	1.00	Unclear
18	17	10	73	>100	Confirmed	19	6	75	>100	Confirmed	100	0	0	< 0.01	Disconfirmed
19	46	21	33	0.59	Unclear	36	11	53	1.66	Unclear	39	14	47	1.72	Unclear
20	37	3	60	>100	Confirmed	44	0	56	>100	Confirmed	53	2	45	0.49	Unclear
21	3	26	71	7.13	Confirmed	1	22	77	7.95	Confirmed	1	16	83	9.68	Confirmed
22	16	7	77	>100	Confirmed	1	0	99	>100	Confirmed	11	9	80	>100	Confirmed
23	18	5	77	>100	Confirmed	12	8	80	>100	Confirmed	22	11	67	>100	Confirmed
24	5	2	93	>100	Confirmed	10	5	85	>100	Confirmed	7	5	88	>100	Confirmed
25	93	7	0	< 0.01	Disconfirmed	100	0	0	< 0.01	Disconfirmed	100	0	0	< 0.01	Disconfirmed
26	29	14	57	52.54	Confirmed	40	8	52	13.78	Confirmed	34	3	63	30.88	Confirmed
27	32	29	39	1.36	Unclear	37	27	36	0.96	Unclear	48	19	33	0.53	Unclear
28	20	3	77	>100	Confirmed	95	1	4	< 0.01	Disconfirmed	100	0	0	< 0.01	Disconfirmed
29	22	35	43	1.85	Unclear	19	30	51	2.25	Unclear	29	22	49	2.23	Unclear

Notes: We run Bayesian estimation 100 times for each study. "Pooled generalizability" means pooling the time and geographic extension data. "All data" refers to pooling the reproduction and generalizability test data. * BF (Bayes factor) means the ratio of the likelihood of H1 being true to the likelihood of H0 being true.

* "Support H1" means the estimate of an effect in the frequentist analysis is Confirmed in the Bayesian analysis (BF > 3).

* "Support H0" means the estimate of an effect in the frequentist analysis is Disconfirmed by the Bayesian analysis (BF < 0.33).

* "Unclear" means the estimate of an effect in the frequentist analysis is neither Confirmed nor Disconfirmed by the Bayesian analysis ($0.33 \le BF \le 3$).

* BF_mean is calculated from the average marginal likelihood in the 100 runs of the Bayesian analysis for each finding. BF_mean = e^(mean(marginal-likelihood)).

* Conclusion is drawn from BF_mean: Confirmed (BF_mean > 3); Unclear ($0.33 \le BF_mean \le 3$); Disconfirmed (BF_mean < 0.33).

Generalizability Tests Supplement

Table S7-20. Bayesian analyses of project results: Cut offs of 0.1 and 10

			Reproduction	n			P	ooled generaliza	ability				All data		
#	Outc	come of 100	runs	BF mean	Conclusion	Outc	come of 100	runs	- BF mean	Conclusion	Outc	ome of 100	runs	BF mean	Conclusion
	Support H0	Unclear	Support H1	DF_Inean	Conclusion	Support H0	Unclear	Support H1	- Dr_mean	Conclusion	Support H0	Unclear	Support H1	Dr_mean	Conclusion
1	7	91	2	0.89	Unclear	3	94	3	1.10	Unclear	5	88	7	1.00	Unclear
2	39	7	54	5.73	Unclear	29	36	35	0.97	Unclear	44	7	49	6.36	Unclear
3	54	8	38	0.15	Unclear	46	5	49	>100	Confirmed	39	1	60	>100	Confirmed
4	8	15	77	63.40	Confirmed	5	14	81	>100	Confirmed	3	15	82	>100	Confirmed
5	10	17	73	>100	Confirmed	0	4	96	>100	Confirmed	0	2	98	>100	Confirmed
6	23	46	31	1.94	Unclear	28	46	26	0.79	Unclear	26	34	40	2.65	Unclear
7	1	32	67	36.41	Confirmed	0	28	72	37.60	Confirmed	1	32	67	37.22	Confirmed
8	100	0	0	< 0.01	Disconfirmed	100	0	0	< 0.01	Disconfirmed	100	0	0	< 0.01	Disconfirmed
9	27	44	29	1.24	Unclear	17	46	37	3.52	Unclear	19	43	38	3.75	Unclear
10	51	0	49	>100	Confirmed	13	35	52	15.42	Confirmed	6	84	10	1.28	Unclear
11	27	25	48	5.62	Unclear	22	26	52	12.97	Confirmed	24	29	47	7.43	Unclear
12	1	95	4	1.64	Unclear	0	100	0	1.00	Unclear	0	99	1	1.05	Unclear
13	37	38	25	0.70	Unclear	30	49	21	0.74	Unclear	7	41	52	29.70	Confirmed
14	1	90	9	2.07	Unclear	1	95	4	2.04	Unclear	0	96	4	2.09	Unclear
15	35	12	53	17.68	Confirmed	35	12	53	22.12	Confirmed	27	12	61	>100	Confirmed
16	43	2	55	>100	Confirmed	45	2	53	>100	Confirmed	52	2	46	0.18	Unclear
17	0	100	0	1.00	Unclear	0	100	0	1.00	Unclear	0	100	0	1.00	Unclear
18	14	17	69	>100	Confirmed	16	15	69	>100	Confirmed	100	0	0	< 0.01	Disconfirmed
19	36	38	26	0.59	Unclear	32	29	39	1.66	Unclear	31	31	38	1.72	Unclear
20	37	4	59	>100	Confirmed	44	1	55	>100	Confirmed	49	7	44	0.49	Unclear
21	1	56	43	7.13	Unclear	0	61	39	7.95	Unclear	0	52	48	9.68	Unclear
22	10	18	72	>100	Confirmed	0	6	94	>100	Confirmed	10	13	77	>100	Confirmed
23	15	13	72	>100	Confirmed	11	13	76	>100	Confirmed	19	16	65	>100	Confirmed
24	1	10	89	>100	Confirmed	6	11	83	>100	Confirmed	3	14	83	>100	Confirmed
25	80	20	0	< 0.01	Disconfirmed	100	0	0	< 0.01	Disconfirmed	100	0	0	< 0.01	Disconfirmed
26	24	22	54	52.54	Confirmed	35	16	49	13.78	Confirmed	32	10	58	30.88	Confirmed
27	21	55	24	1.36	Unclear	22	55	23	0.96	Unclear	36	37	27	0.53	Unclear
28	17	11	72	>100	Confirmed	95	1	4	< 0.01	Disconfirmed	100	0	0	< 0.01	Disconfirmed
29	14	65	21	1.85	Unclear	9	67	24	2.25	Unclear	10	64	26	2.23	Unclear

Notes: We run Bayesian estimation 100 times for each study. "Pooled generalizability" means pooling the time and geographic extension data. "All data" refers to pooling the reproduction and generalizability test data. * BF (Bayes factor) means the ratio of the likelihood of H1 being true to the likelihood of H0 being true.

* "Support H1" means the estimate of an effect in the frequentist analysis is Confirmed in the Bayesian analysis (BF > 10).

* "Support H0" means the estimate of an effect in the frequentist analysis is Disconfirmed by the Bayesian analysis (BF < 0.1).

* "Unclear" means the estimate of an effect in the frequentist analysis is neither Confirmed nor Disconfirmed by the Bayesian analysis (0.1 <= BF <= 10).

* BF_mean is calculated from the average marginal likelihood in the 100 runs of the Bayesian analysis for each finding. BF_mean = $e^{(mean(marginal-likelihood))}$.

* Conclusion is drawn from BF_mean: Confirmed (BF_mean > 10); Unclear ($0.1 \le BF_mean \le 10$); Disconfirmed (BF_mean < 0.1).

Table S7-21. A detailed summary of research reliability criteria

			Frequentist	perspective				Bayesian perspective	e	Subjective Assessment
#	Same dir	ection as the original	effect?	Statistica	lly significant at <i>p</i> <	< 0.05?		ed, unclear, or discon threshold of (0.33, 3)		Does our team believe the effect is generalized
	Reproduction	Pooled generalizability	All data	Reproduction	Pooled generalizability	All data	Reproduction	Pooled generalizability	All data	overall?
1	No	No	Yes	No	Yes	Yes	Unclear	Unclear	Unclear	No
2	Yes	Yes	Yes	No	Yes	Yes	Confirmed	Unclear	Confirmed	Yes
3	Yes	Yes	Yes	Yes	Yes	Yes	Disconfirmed	Confirmed	Confirmed	Yes
4	Yes	Yes	Yes	Yes	Yes	Yes	Confirmed	Confirmed	Confirmed	Yes
5	Yes	Yes	Yes	No	No	No	Confirmed	Confirmed	Confirmed	Yes
6	Yes	Yes	Yes	Yes	No	No	Unclear	Unclear	Unclear	No
7	No	No	No	Yes	Yes	Yes	Confirmed	Confirmed	Confirmed	No
8	Yes	Yes	Yes	Yes	Yes	Yes	Disconfirmed	Disconfirmed	Disconfirmed	No
9	Yes	Yes	Yes	No	Yes	Yes	Unclear	Confirmed	Confirmed	No
10	No	Yes	Yes	No	Yes	No	Confirmed	Confirmed	Unclear	No
11	No	No	No	No	No	No	Confirmed	Confirmed	Confirmed	No
12	Yes	Yes	Yes	Yes	Yes	Yes	Unclear	Unclear	Unclear	Yes
13	Yes	No	No	No	No	No	Unclear	Unclear	Confirmed	No
14	Yes	No	No	No	No	No	Unclear	Unclear	Unclear	No
15	Yes	Yes	Yes	No	Yes	Yes	Confirmed	Confirmed	Confirmed	Yes
16	Yes	Yes	Yes	No	Yes	Yes	Confirmed	Confirmed	Disconfirmed	No
17	Yes	Yes	Yes	Yes	Yes	Yes	Unclear	Unclear	Unclear	Yes
18	No	No	No	No	No	No	Confirmed	Confirmed	Disconfirmed	No
19	Yes	Yes	Yes	No	No	No	Unclear	Unclear	Unclear	No
20	Yes	Yes	Yes	Yes	Yes	Yes	Confirmed	Confirmed	Unclear	Yes
21	Yes	Yes	Yes	Yes	Yes	Yes	Confirmed	Confirmed	Confirmed	Yes
22	Yes	No	No	No	No	No	Confirmed	Confirmed	Confirmed	No
23	Yes	Yes	Yes	Yes	Yes	Yes	Confirmed	Confirmed	Confirmed	Yes
24	Yes	Yes	Yes	Yes	Yes	Yes	Confirmed	Confirmed	Confirmed	Yes
25	No	No	No	No	No	Yes	Disconfirmed	Disconfirmed	Disconfirmed	Yes
26	Yes	Yes	Yes	No	Yes	Yes	Confirmed	Confirmed	Confirmed	Yes
27	Yes	No	Yes	Yes	No	No	Unclear	Unclear	Unclear	No
28	No	No	No	Yes	No	No	Confirmed	Disconfirmed	Disconfirmed	Yes
29	Yes	No	Yes	No	No	No	Unclear	Unclear	Unclear	No

Notes: "Pooled generalizability" means pooling all time and geographic extension data. "All data" refers to pooling all data used in reproduction and generalizability tests. For comparisons of effect direction, "Yes" means the new result and the original effect are in the same direction. For tests of statistical significance, "Yes" means the effect is statistically significant at p < 0.05. Five tests (Papers 25, 26, 27, 28, and 29) were nonsignificant in the original report. "Confirmed" means the effect is supported from a Bayesian perspective at Bayes factor >3. "Disconfirmed" means the effect is contradicted from a Bayesian perspective at Bayes factor < 0.33.

#	Count of	С	ochran	ı's Q		I-square		Tou course
#	gen tests	Value	df	p-value	Value	Lower 95%CI	Upper 95%CI	- Tau-square
1	2	95.46	1	0.000	99.00%	0.00%	99.80%	120.917
2	2	0.31	1	0.578	0.00%	0.00%	35.70%	0.000
4	2	1.46	1	0.227	31.50%	0.00%	86.40%	0.000
5	2	0.08	1	0.771	0.00%	0.00%	0.00%	0.000
6	5	2.48	4	0.649	0.00%	0.00%	43.30%	0.000
7	2	1.91	1	0.167	47.70%	0.00%	89.60%	0.341
8	4	6.51	3	0.089	53.90%	0.00%	85.60%	0.013
9	3	1.96	2	0.375	0.00%	0.00%	72.40%	0.000
10	3	0.2	2	0.905	0.00%	0.00%	0.00%	0.000
13	2	0.07	1	0.786	0.00%	0.00%	0.00%	0.000
15	2	8.03	1	0.005	87.50%	0.00%	97.50%	0.025
16	3	2.73	2	0.255	26.80%	0.00%	80.60%	0.002
17	3	5.35	2	0.069	62.60%	0.00%	89.90%	0.066
20	2	5.64	1	0.018	82.30%	0.00%	96.50%	5.653
21	2	0.01	1	0.940	0.00%	0.00%	0.00%	0.000
22	3	0.83	2	0.659	0.00%	0.00%	59.40%	0.000
24	4	5.08	3	0.166	40.90%	0.00%	81.10%	0.099
26	3	1.78	2	0.411	0.00%	0.00%	69.50%	0.000
28	2	2.62	1	0.105	61.80%	0.00%	92.40%	0.000
29	3	2.52	2	0.284	20.50%	0.00%	78.50%	0.073

Table S7-22. Variability of generalizability test results for original findings with multiple generalizability tests

Notes. "Count of gen tests" refers to the number of generalizability tests conducted for a given finding. These analyses are conducted for the subset of 20 of 29 studies which have at least two generalizability tests. Three indicators of heterogeneity are calculated based the coefficient size, the 95% confidence interval, and the sample size. Cochran's Q is calculated as the weighted sum of squared differences between individual study effects and the pooled effect across studies, with the weights being those used in the pooling method. The significance of Cochran's Q means there is a difference between effects in the generalizability tests. The I-square statistic describes the percentage of variation across tests that is due to heterogeneity rather than chance. I-square values of 25-50%, 50-75%, and 75-100% indicate low, moderate, and high levels of unexplained heterogeneity. Tau-square is the variance of the effect size parameters across all generalizability tests and it reflects the variance of the true effect sizes.

#	Type of generalizability test	Effect size from reproduction test	Type of effect size	Power to capture the effect size of reproduction test
3	Time extension: 1995-2010 All data	0.0008	Eta-squared	0.85-0.90 >0.90
	Time extension: 1987-2001			>0.90
	Geographic extension			>0.90
4	Pooled generalizability	1.8210	Odds ratio	>0.90
	All data			>0.90
	Time extension 1: 1989			<0.60
	Time extension 2: 1992			<0.60
	Time extension 3: 1996			<0.60
6	Time extension 4: 1999	0.000		< 0.60
6	Geographic extension	0.0006	Eta-squared	<0.60
	Pooled generalizability (only time)			< 0.60
	Pooled generalizability			< 0.60
	All data			< 0.60
	Time extension 1: 1992			>0.90
	Time extension 2: 1995			>0.90
	Time extension 3: 1999			>0.90
8	Geographic extension	0.6530	Coefficient	>0.90
	Pooled generalizability (only time)			>0.90
	Pooled generalizability	ne)	>0.90	
	All data			>0.90
10	Time extension: 1998-2009	0.0700	Coofficient	>0.90
12	All data	-0.9790	Coefficient	>0.90
	Time extension 1: 1990			< 0.60
	Time extension 2: 1992			< 0.60
17	Time extension 3: 1996	0.9767	Odds ratio	< 0.60
	Pooled generalizability (only time)			< 0.60
	All data			<0.60
	Time extension: 1999-2003			>0.90
20	Geographic extension	3.6903	Odds ratio	>0.90
20	Pooled generalizability	5.0705	Odds Tatlo	>0.90
	All data			>0.90
	Time extension: 1986-2010			>0.90
21	Geographic extension	0.3855	Coefficient	< 0.60
	Pooled generalizability			>0.90
	All data			>0.90
23	Time extension: 2010	0.0017	Eta-squared	<0.60
	All data			0.85-0.90
	Time extension 1: 1992			>0.90
	Time extension 2: 1994			>0.90
24	Time extension 3: 1998	3.1825	Odds ratio	>0.90
	Time extension 4: 2000			>0.90
	Pooled generalizability (only time)			>0.90
	All data			>0.90

Table S7-23. Power of generalizability tests to capture the effect sizes from reproducible original studies

25	Time extension: 2001, 2002, 2003	0.0022	Et	< 0.60
25	All data	0.0033	Eta-squared	< 0.60
	Time extension 1: 1990-1996			>0.90
	Time extension 2: 1996-2002			>0.90
26	Geographic extension	0 2245	Coefficient	>0.90
26	Pooled generalizability (only time)	-0.3345	Coefficient	>0.90
	Pooled generalizability			>0.90
	All data			>0.90
	Time extension 1: 1994			<0.60
	Time extension 2: 1998			< 0.60
29	Geographic extension	0.9597	Odds ratio	< 0.60
29	Pooled generalizability (only time)	0.9597	Odds ratio	< 0.60
	Pooled generalizability			< 0.60
	All data			< 0.60

Notes. We report all power using ranges because power calculators provide ranges rather than exact values for some of our studies. We use the mean of each range to calculate the average power. For example, we use 0.875 for "0.85-0.90".

#	Effect size of pooled generalizability test	Type of effect size	Power to capture the effect size of pooled generalizability test
1	0.0019	Eta-squared	> 0.90
2	0.0018	Eta-squared	< 0.60
3	0.0008	Eta-squared	> 0.90
4	1.4461	Odds ratio	> 0.90
5	0.0250	Eta-squared	> 0.90
6	< 0.0001	Eta-squared	< 0.60
7	-0.1694	log hazard-ratio	> 0.90
8	0.5238	log hazard-ratio	> 0.90
9	0.8812	Odds ratio	< 0.60
10	0.0799	log hazard-ratio	> 0.90
11	0.0005	log hazard-ratio	< 0.60
12	-0.2013	Coefficient	> 0.90
13	0.9540	Odds ratio	< 0.60
14	1.1108	Odds ratio	< 0.60
15	1.4075	Odds ratio	> 0.90
16	-0.0715	Coefficient	> 0.90
17	1.0229	Odds ratio	< 0.60
18	0.0016	Eta-squared	< 0.60
19	0.0002	Eta-squared	< 0.60
20	2.2857	Odds ratio	> 0.90
21	0.6085	Coefficient	> 0.90
22	1.0618	Odds ratio	< 0.60
23	0.0049	Eta-squared	> 0.90
24	2.6992	Odds ratio	> 0.90
25	0.0414	Eta-squared	> 0.90
26	-0.5898	Coefficient	> 0.90
27	0.0021	Eta-squared	< 0.60
28	0.0004	Eta-squared	< 0.60
29	1.0144	Odds ratio	< 0.60

Table S7-24. Power of original studies to capture the effect sizes from pooled generalizability results

Notes. We report all power using ranges because power calculators provide ranges rather than exact values for some of our studies. The power is calculated by using the sample size in the original study and the effect size of the pooled generalizability test.

Table S7-25. Sensitivity power analysis

#	Test type	Effect size (Power=0.8)	Type of effect size
	Reproduction	0.0002	Eta-squared
	Time extension 1: 2008-2010	0.0002	Eta-squared
1	Time extension 2: 1996-2001	0.0003	Eta-squared
	Pooled generalizability (only time)	0.0001	Eta-squared
	All data	0.0001	Eta-squared
	Reproduction	0.0145	Eta-squared
	Time extension 1: 1979-1989	0.0186	Eta-squared
2	Time extension 2: 2000-2010	0.0633	Eta-squared
	Pooled generalizability (only time)	0.0143	Eta-squared
	All data	0.0075	Eta-squared
	Reproduction	0.0003	Eta-squared
3	Time extension: 1995-2010	0.0006	Eta-squared
	All data	0.0002	Eta-squared
	Reproduction	0.0001	Eta-squared
	Time extension 1: 1978-1989	0.0001	Eta-squared
5	Time extension 2: 2000-2009	0.0001	Eta-squared
	Pooled generalizability (only time)	< 0.0001	Eta-squared
	All data	< 0.0001	Eta-squared
	Reproduction	0.0083	Eta-squared
	Time extension 1: 1989	0.0195	Eta-squared
	Time extension 2: 1992	0.0086	Eta-squared
	Time extension 3: 1996	0.0041	Eta-squared
6	Time extension 4: 1999	0.0036	Eta-squared
	Geographic extension	0.0423	Eta-squared
	Pooled generalizability (only time)	0.0014	Eta-squared
	Pooled generalizability	0.0013	Eta-squared
	All data	0.0011	Eta-squared
	Reproduction	-0.0695	Coefficient
12	Time extension: 1998-2009	-0.1584	Coefficient
	All data	-0.0669	Coefficient
	Reproduction	-0.0683	Coefficient
	Time extension 1: 2001-2010	-0.1792	Coefficient
	Time extension 2: 1989-2010	-0.0544	Coefficient
16	Geographic extension	-0.0457	Coefficient
	Pooled generalizability (only time)	-0.0510	Coefficient
	Pooled generalizability	-0.0338	Coefficient
	All data	-0.0292	Coefficient
	Reproduction	0.0049	Eta-squared
18	Time extension: 1989-2000	0.0049	Eta-squared
	All data	0.0041	Eta-squared
	Reproduction	0.0021	Eta-squared
19	Time extension: 1989-2000	0.0021	Eta-squared
	All data	0.0017	Eta-squared
	Reproduction	-0.1973	Coefficient
	Time extension: 1986-2010	-0.1911	Coefficient
21	Geographic extension	-0.6478	Coefficient
	Pooled generalizability	-0.1787	Coefficient
	All data	-0.1311	Coefficient
	Reproduction	0.0021	Eta-squared
23	Time extension: 2010	0.0040	Eta-squared
-	All data	0.0014	Eta-squared
		0.0011	

		0.0065	F (1
	Reproduction	0.0265	Eta-squared
25	Time extension: 2001, 2002, 2003	0.0334	Eta-squared
	All data	0.0147	Eta-squared
	Reproduction	-0.2158	Coefficient
	Time extension 1: 1990-1996	-0.1956	Coefficient
	Time extension 2: 1996-2002	-0.2675	Coefficient
26	Geographic extension	-0.2481	Coefficient
	Pooled generalizability (only time)	-0.1561	Coefficient
	Pooled generalizability	-0.1311	Coefficient
	All data	-0.1114	Coefficient
	Reproduction	0.0211	Eta-squared
27	Time extension: 1985-1993	0.0286	Eta-squared
	All data	0.0123	Eta-squared
	Reproduction	0.0188	Eta-squared
	Time extension 1: 1986-1991	0.0570	Eta-squared
28	Time extension 2: 1998-2001	0.0764	Eta-squared
	Pooled generalizability (only time)	0.0323	Eta-squared
_	All data	0.0118	Eta-squared

Notes. The effect sizes detectable with 80% power given the sample size and the relationship between the focal variable and covariates of each test. Sensitivity analyses could not be conducted for 14 of 29 effects due to the complexity of the designs.