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Abstract. We present a novel method to compute permissive winning
strategies in two-player games over finite graphs with ω-regular winning
conditions. Given a game graph G and a parity winning condition Φ,
we compute a winning strategy template Ψ that collects an infinite num-
ber of winning strategies for objective Φ in a concise data structure. We
use this new representation of sets of winning strategies to tackle two
problems arising from applications of two-player games in the context
of cyber-physical system design – (i) incremental synthesis, i.e., adapt-
ing strategies to newly arriving, additional ω-regular objectives Φ′, and
(ii) fault-tolerant control, i.e., adapting strategies to the occasional or
persistent unavailability of actuators. The main features of our strat-
egy templates – which we utilize for solving these challenges – are their
easy computability, adaptability, and compositionality. For incremental
synthesis, we empirically show on a large set of benchmarks that our
technique vastly outperforms existing approaches if the number of added
specifications increases. While our method is not complete, our prototype
implementation returns the full winning region in all 1400 benchmark in-
stances, i.e. handling a large problem class efficiently in practice.

1 Introduction

Two-player ω-regular games on finite graphs are an established modeling and
solution formalism for many challenging problems in the context of correct-by-
construction cyber-physical system (CPS) design [38,2,6]. Here, control software
actuating a technical system “plays” against the physical environment. The win-
ning strategy of the system player in this two-player game results in software
which ensures that the controlled technical system fulfills a given temporal speci-
fication for any (possible) event or input sequence generated by the environment.
Examples include warehouse robot coordination [35], reconfigurable manufac-
turing systems [25], and adaptive cruise control [32]. In these applications, the
technical system under control, as well as its requirements, are developing and
changing during the design process. It is therefore desirable to allow for maintain-
able and adaptable control software. This, in turn, requires solution algorithms
for two-player ω-regular games which allow for this adaptability.

This paper addresses this challenge by providing a new algorithm to efficiently
compute permissive winning strategy templates in parity games which enable
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Fig. 1. Experimental results over 1400 generalized parity games comparing the per-
formance of our tool PeSTel against the state-of-the-art generalized parity solver
GenZiel [15]. Data points give the average execution time (in ms) over all instances
with the same number of parity objectives. Left: all objectives are given upfront. Right:
objectives are added one-by-one. See section 6 for more details on those experiments.

rich strategy adaptations. Given a game graph G = (V,E) and an objective Φ
a winning strategy template Ψ characterizes the winning region W ⊆ V along
with three types of local edge conditions – a safety, a co-live, and a live-group
template. The conjunction of these basic templates allows us to capture infinitely
many winning strategies over G w.r.t. Φ in a simple data structure that is both
(i) easy to obtain during synthesis, and (ii) easy to adapt and compose.

We showcase the usefulness of permissive winning strategy templates in the
context of CPS design by two application scenarios: (i) incremental synthesis,
where strategies need to be adapted to newly arriving additional ω-regular ob-
jectives Φ′, and (ii) fault-tolerant control, where strategies need to be adapted to
the occasional or persistent unavailability of actuators, i.e., system player edges.

We have implemented our algorithms in a prototype tool PeSTel and run it
on more than 1400 benchmarks adapted from the SYNTCOMP benchmark suite
[20]. These experiments show that our class of templates effectively avoids re-
computations for the required strategy adaptations. For incremental synthesis,
our experimental results are previewed in fig. 1, where we compare PeSTel
against the state-of-the-art solver GenZiel [15] for generalized parity objectives,
i.e., finite conjunction of parity objectives. We see that PeSTel is as efficient as
GenZiel whenever all conjuncts of the objective are given up-front (fig. 1 (left))
- even outperforming it in more than 90% of the instances. Whenever conjuncts of
the objective arrive one at a time, PeSTel outperforms the existing approaches
significantly if the number of objectives increases (fig. 1 (right)). This shows the
potential of PeSTel towards more adaptable and maintainable control software
for CPS.

Illustrative Example. To appreciate the simplicity and easy adaptability of
our strategy templates, consider the game graph in fig. 2 (left). The first winning
condition Φ1 requires vertex f to never be seen along a play. This can be enforced
by Player 0 from vertices W0 = {a, b, c, d} called the winning region. The safety
template Ψ1 ensures that the game always stays in W0 by forcing the edge ede to



Synthesizing Permissive Winning Strategy Templates for Parity Games 3

a b

c d e

f
Φ1 = □¬{f}
Φ2 = □♢{c, d}
Φ3 = ♢□¬{b}

⇒ Ψ1 = Ψunsafe(ede)
⇒ Ψ2 = Ψlive({eac, ead})
⇒ Ψ3 = Ψcolive(eab, edb, ede)

Fig. 2. A two-player game graph with Player 1 (squares) and Player 0 (circles) vertices,
different winning conditions Φi, and corresponding winning strategy templates Ψi.

never be taken. It is easy to see that every Player 0 strategy that follows this rule
results in plays which are winning if they start in W0. Now consider the second
winning condition Φ2 which requires vertex c or d to be seen infinitely often.
This induces the live-group template Ψ2 which requires that whenever vertex a
is seen infinitely often, either edge eac or edge ead needs to be taken infinitely
often. It is easy to see that any strategy that complies with this edge-condition
is winning for Player 0 from every vertex and there are infinitely many such
compliant winning strategies. Finally, we consider condition Φ3 requiring vertex
b to be seen only finitely often. This induces the strategy template Ψ3 which
is a co-liveness template requiring that all edges from Player 0 vertices which
unavoidably lead to b (i.e., eab, ebd, and ede) are taken only finitely often. We can
now combine all templates into a new template Ψ ′ = Ψ1 ∧ Ψ2 ∧ Ψ3 and observe
that all strategies compliant with Ψ ′ are winning for Φ′ = Φ1 ∧ Φ2 ∧ Φ3.

In addition to their compositionality, strategy templates also allow for local
strategy adaptations in case of edge unavailability faults. Consider again the
game in fig. 2 with the objective Φ2. Suppose that Player 0 follows the strategy
π: a 7→ d and d 7→ a, which is compliant with Ψ2. If the edge ead becomes
unavailable, we would need to re-solve the game for the modified game graph
G′ = (V,E \ {ead}). However, given the strategy template Ψ2 we see that the
strategy π′: a 7→ c and d 7→ a is actually compliant with Ψ2 over G′. This allows
us to obtain a new strategy without re-solving the game.

While these examples demonstrate the potential of templates for strategy
adaptation, there exist scenarios where conflicts between templates or graph
modifications arise, which require re-computations. Our empirical results, how-
ever, show that such conflicts rarely appear in practical benchmarks. This sug-
gests that our technique can handle a large problem class efficiently in practice.

Related work. The class of templates we use was introduced in [4] and utilized
to represent environment assumptions that enable a system to fulfill its specifi-
cations in a cooperative setting. Contrary to [4], this paper uses the same class
of templates to represent the system’s winning strategies in a zero-sum setting.

While the computation of permissive strategies for the control of CPS is
an established concept in the field of supervisory control 1 [13,41], it has also
been addressed in reactive synthesis where the considered specification class is
typically more expressive, e.g., Bernet et al. [7] introduce permissive strategies
that encompass all the behaviors of positional strategies and Neider et al. [30]
introduce permissiveness to subsume strategies that visit losing loops at most

1 See [17,36,27] for connections between supervisory control and reactive synthesis.



4 A. Anand, S. P. Nayak, and A. Schmuck

twice. Finally, Bouyer et al. [10] take a quantitative approach to measure the
permissiveness of strategies, by minimizing the penalty of not being permissive.
However, all these approaches are not optimized towards strategy adaptation and
thereby typically fail to preserve enough behaviors to be able to effectively satisfy
subsequent objectives. A notable exception is a work by Baier et al. [22]. While
their strategy templates are more complicated and more costly to compute than
ours, they are maximally permissive (i.e., capture all winning strategies in the
game). However, when composing multiple objectives, they restrict templates
substantially which eliminates many compositional solutions that our method
retains. This results in higher computation times and lower result quality for
incremental synthesis compared to our approach. As no implementation of their
method is available, we could not compare both approaches empirically.

Even without the incremental aspect, synthesizing winning strategies for con-
junctions of ω-regular objectives is known to be a hard problem – Chatterjee et
al. [15] prove that the conjunction of even two parity objectives makes the prob-
lem NP-complete. They provide a generalization of Zielonka’s algorithm, called
GenZiel for generalized parity objectives (i.e., finite conjunction of parity ob-
jectives) which is compared to our tool PeSTel in fig. 1. While PeSTel is (in
contrast to GenZiel) not complete — i.e., there exist realizable synthesis prob-
lems for which PeSTel returns no solution — our prototype implementation
returns the full winning region in all 1400 benchmark instances.

Fault-tolerant control is a well-established topic in control engineering [8],
with recent emphasis on the logical control layer [29,18]. While most of this work
is conducted in the context of supervisory control, there are also some approaches
in reactive synthesis. While [31,28] considers the addition of “disturbance edges”
and synthesizes a strategy that tolerates as many of them as possible, we look
at the complementary problem, where edges, in particular system-player edges,
disappear. To the best of our knowledge, the only algorithm that is able to tackle
this problem without re-computation considers Büchi games [14]. In contrast, our
method is applicable to the more expressive class of Parity games.

2 Preliminaries

Notation. We use N to denote the set of natural numbers including zero.
Given two natural numbers a, b ∈ N with a < b, we use [a; b] to denote the
set {n ∈ N | a ≤ n ≤ b}. For any given set [a; b], we write i ∈even [a; b] and
i ∈odd [a; b] as shorthand for i ∈ [a; b] ∩ {0, 2, 4, . . .} and i ∈ [a; b] ∩ {1, 3, 5, . . .}
respectively. Given two sets A and B, a relation R ⊆ A × B, and an element
a ∈ A, we write R(a) to denote the set {b ∈ B | (a, b) ∈ R}.
Languages. Let Σ be a finite alphabet. The notation Σ∗ and Σω respectively
denote the set of finite and infinite words over Σ, and Σ∞ is equal to Σ∗ ∪Σω.
For any word w ∈ Σ∞, wi denotes the i-th symbol in w. Given two words u ∈ Σ∗

and v ∈ Σ∞, the concatenation of u and v is written as the word uv.
Game Graphs. A game graph is a tuple G =

(
V = V 0 ·∪ V 1, E

)
where (V,E)

is a finite directed graph with vertices V and edges E, and V 0, V 1 ⊆ V form a
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partition of V . Without loss of generality, we assume that for every v ∈ V there
exists v′ ∈ V s.t. (v, v′) ∈ E. A play originating at a vertex v0 is a finite or
infinite sequence of vertices ρ = v0v1 . . . ∈ V ∞.

Winning Conditions/Objectives. Given a game graph G, we consider win-
ning conditions/objectives specified using a formula Φ in linear temporal logic
(LTL) over the vertex set V , that is, we consider LTL formulas whose atomic
propositions are sets of vertices V . In this case the set of desired infinite plays
is given by the semantics of Φ which is an ω-regular language L(Φ) ⊆ V ω. Ev-
ery game graph with an arbitrary ω-regular set of desired infinite plays can be
reduced to a game graph (possibly with a different set of vertices) with an LTL
winning condition, as above. The standard definitions of ω-regular languages
and LTL are omitted for brevity and can be found in standard textbooks [5]. To
simplify notation we use e = (u, v) in LTL formulas as syntactic sugar for u∧⃝v,
with ⃝ as the LTL next operator. We further use a set of edges E′ = {ei}i∈[0;k]

as atomic proposition to denote
∨

i∈[0;k] ei.

Games and Strategies. A two-player (turn-based) game is a pair G = (G,Φ)
where G is a game graph and Φ is a winning condition over G. A strategy of
Player i, i ∈ {0, 1}, is a function πi : V ∗V i → V such that for every ρv ∈ V ∗V i

holds that πi(ρv) ∈ E(v). Given a strategy πi, we say that the play ρ = v0v1 . . .
is compliant with πi if vk−1 ∈ V i implies vk = πi(v0 . . . vk−1) for all k. We refer
to a play compliant with πi and a play compliant with both π0 and π1 as a
πi-play and a π0π1-play, respectively. We collect all plays originating in a set S
and compliant with πi, (and compliant with both π0 and π1) in the sets L(S, πi)
(and L(S, π0π1), respectively). When S = V , we drop the mention of the set
in the previous notation, and when S is singleton {v}, we simply write L(v, πi)
(and L(v, π0π1), respectively).

Winning. Given a game G = (G,Φ), a play ρ in G is winning for Player 0, if
ρ ∈ L(Φ), and it is winning for Player 1, otherwise. A strategy πi for Player i is
winning from a vertex v ∈ V if all plays compliant with πi and originating from
v are winning for Player i. We say that a vertex v ∈ V is winning for Player i,
if there exists a winning strategy πi from v. We collect all winning vertices of
Player i in the Player i winning region Wi ⊆ V . We always interpret winning
w.r.t. Player 0 if not stated otherwise.

Strategy Templates. Let π0 be a Player 0 strategy and Φ be an LTL formula.
Then we say π0 follows Φ, denoted π0 ⊩ Φ, if for all π0-plays ρ, ρ belongs to
L(Φ), i.e. L(π0) ⊆ L(Φ). We refer to a set Ψ = {Ψ1, . . . , Ψk} of LTL formulas as
strategy templates representing the set of strategies that follows Ψ1 ∧ . . . ∧ Ψk.
We say a strategy template Ψ is winning from a vertex v for a game (G,Φ) if
every Player 0 strategy following the template Ψ is winning from v. Moreover,
we say a strategy template Ψ is winning if it is winning from every vertex in W0.
In addition, we call Ψ maximally permissive for G, if every Player 0 strategy π
which is winning in G also follows Ψ . With slight abuse of notation, we use Ψ for
the set of formulas {Ψ1, . . . , Ψk}, and the formula Ψ1 ∧ . . .∧ Ψk, interchangeably.
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Set Transformers. Let G = (V = V 0 ·∪ V 1, E) be a game graph, U ⊆ V be a
subset of vertices, and a ∈ {0, 1} be the player index. Then

upreG(U) ={v ∈ V | ∀(v, u) ∈ E. u ∈ U} (1)

cpreaG(U) ={v ∈ V a | ∃(v, u) ∈ E. u ∈ U} ∪ {v ∈ V 1−a | u ∈ upreG(U)} (2)

The universal predecessor operator upreG(U) computes the set of vertices with
all the successors in U and the controllable predecessor operator cpreaG(U) the
vertices from which Player a can force visiting U in exactly one step. In the
following, we introduce two types of attractor operators: attraG(U) that computes
the set of vertices from which Player a can force at least a single visit to U in
finitely many steps, and the universal attractor uattrG(U) that computes the set
of vertices from which both players are forced to visit U . For the following, let
pre ∈ {upre, cprea}

pre1G(U) = preG(U) ∪ U preiG(U) = preG(pre
i−1
G (U)) ∪ prei−1

G (U) (3)

attraG(U) = ∪i≥1 cprea,iG (U) uattrG(U) = ∪i≥1 upre
i
G(U) (4)

3 Computation of Winning Strategy Templates

Given a 2-player game G with an objective Φ, the goal of this section is to com-
pute a strategy template that characterizes a large class of winning strategies of
Player 0 from a set of vertices U ⊆ V in a local, permissive, and computationally
efficient way. These templates are then utilized in section 5.1 for computational
synthesis. In particular, this section introduces three distinct template classes
— safety templates (section 3.1), live-group-templates (section 3.2), and co-live-
templates (section 3.3) along with algorithms for their computation via safety,
Büchi, and co-Büchi games, respectively. We then turn to general parity ob-
jectives which can be thought of as a sophisticated combination of Büchi and
co-Büchi games. We show in section 3.4 how the three introduced templates
can be derived for a general parity objective by a suitable combination of the
previously introduced algorithms for single templates. All presented algorithms
have the same worst-case computation time as the standard algorithms solving
the respective game. This shows that extracting strategy templates instead of
’normal’ strategies does not incur an additional computational cost. We prove
the soundness of the algorithms and discuss the complexities in appendix A.

3.1 Safety Templates

We start the construction of strategy templates by restricting ourselves to games
with a safety objective — i.e., G = (G,Φ) with Φ := □U for some U ⊆ V . A
winning play in a safety game never leaves U ⊆ V . It is well known that such
games allow capturing all winning strategies by a simple local template which
essentially only allows Player 0 moves from winning vertices to other winning
vertices. This is formalized in our notation as a safety template as follows.,
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Theorem 1 ([7, Fact 7]). Let G = (G,□U) be a safety game with winning
region W0 and S = {(u, v) ∈ E |

(
u ∈ V 0 ∩W0

)
∧ (v /∈ W0)}. Then

Ψunsafe(S) := □
∧

e∈S ¬e, (5)

is a winning strategy template for the game G which is also maximally permissive.

It is easy to see that the computation of the safety template Ψunsafe(S)
reduces to computing the winning region W0 in the safety game (G,□U) and
extracting S. We refer to the edges in S as unsafe edges and we call this algorithm
computing the set S as SafetyTemplate(G,U). Note that it runs in O(m)
time, where m = |E|, as safety games are solvable in O(m) time.

3.2 Live-Group Templates

As the next step, we now move to simple liveness objectives which require a
particular vertex set I ⊆ V to be seen infinitely often. Here, winning strategies
need to stay in the winning region (as before) but in addition always eventually
need to make progress towards the vertex set I. We capture this required progress
by live-group templates — given a group of edges H ⊆ E, we require that
whenever a source vertex v of an edge in H is seen infinitely often, an edge
e ∈ H (not necessarily starting at v) also needs to be taken infinitely often.
This template ensures that compliant strategies always eventually make progress
towards I, as illustrated by the following example.

Example 1. Consider the game graph in fig. 2 where we require visiting {c, d}
infinitely often. To satisfy this objective from vertex a, Player 0 needs to not
get stuck at a, and should not visit b always (since Player 1 can force visiting
a again, and stop Player 0 from satisfying the objective). Hence, Player 0 has
to always eventually leave a and go to {c, d}. This can be captured by the live-
group {eac, ead}. Now if the play comes to a infinitely often, Player 0 will go to
either c or d infinitely often, hence satisfying the objective.

Formally, such games are called Büchi games, denoted by G = (G = (V,E), Φ)
with Φ := □♢I, for some I ⊆ V . In addition, a live-group H = {ej}j≥0 is a set
of edges ej = (sj , tj) with source vertices src(H) := {sj}j≥0. Given a set of
live-groups H = {Hi}i≥0 we define a live-group template as

Ψlive(H) :=
∧
i≥0

□♢src(Hi) =⇒ □♢Hi. (6)

The live-group template says that if some vertex from the source of a live-group is
visited infinitely often, then some edge from this group should be taken infinitely
often by the following strategy.

Intuitively, winning strategy templates for Büchi games consist of a safety
template conjuncted with a live-group template. While the former enforces all
strategies to stay within the winning region W, the latter enforces progress
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Algorithm 1 BüchiTemplate(G, I)

Input: A game graph G, and a subset of vertices I
Output: A set of unsafe edges S and a set of live-groups H
1: W0 ← Büchi(G, I); S ← SafetyTemplate(G,W0);
2: G← G|W0 ; I ← I ∩W0;
3: H ← ReachTemplate(G, I);
4: return (S,H)
5: procedure ReachTemplate(G, I ⊆ V )
6: H ← ∅;
7: while I ̸= V do
8: A← uattrG(I); B ← cpre0G(A); H ← H∪ {Edges(B,A)}; I ← A ∪B;
9: return H

w.r.t. the goal set I within W. Therefore, the computation of a winning strategy
template for Büchi games reduces to the computation of the unsafe set S to
define Ψunsafe(S) in (5) and the live-group H to define Ψlive(H) in (6). We
denote by BüchiTemplate(G, I) the algorithm computing the above as detailed
in algorithm 1. The algorithm uses some new notations that we define here.
Here, the function Büchi solves a Büchi game and returns the winning region
(e.g., using the standard algorithm from [16]), Edges(X,Y ) = {(u, v) ∈ E |
u ∈ X, v ∈ Y }, is the set of edges between two subsets of vertices X and Y .
G|U :=

(
U = U0 ·∪ U1, E′) s.t. U0 := V 0∩U , U1 := V 1∩U , and E′ := E∩(U×U)

denotes the restriction of a game graph G :=
(
V = V 0 ·∪ V 1, E

)
to a subset of

its vertices U ⊆ V . We have the following formal result.

Theorem 2. Given a Büchi game G = (G,□♢I) for some I ⊆ V , if (S,H) =
BüchiTemplate(G, I) then Ψ = {Ψunsafe(S), Ψlive(H)} is a winning strategy
template for the game G, computable in time O(nm), where n = |V | and m = |E|.

While live-group templates capture infinitely many winning strategies in
Büchi games, they are not maximally permissive, as exemplified next.

Example 2. Consider the game graph in fig. 2 restricted to the vertex set {a, b, d}
with the Büchi objective □♢d. Our algorithm outputs the live-group template
Ψ = Ψlive({ead}). Now consider the winning strategy with memory that takes
edge eda from d, and takes eab for play suffix bda and ead for play suffix aba.
This strategy does not follow the template — the play (abd)ω is in L(π0) but
not in L(Ψ).

3.3 Co-Live Templates

We now turn to yet another objective which is the dual of the one discussed
before. The objective requires that eventually, only a particular subset of vertices
I is seen. A winning strategy for this objective would try to restrict staying or
going away from I after a finite amount of time. It is easy to notice that live-
group templates can not ensure this, but it can be captured by co-live templates:
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Algorithm 2 coBüchiTemplate(G, I)

Input: A game graph G, and a subset of vertices I
Output: A set of unsafe edges S and a set of co-live edges D
1: S ← ∅; D ← ∅
2: W0 ← CoBüchi(G, I); S ← SafetyTemplate(G,W0)
3: G← G|W0 ; I ← I ∩W0;
4: while V ̸= ∅ do
5: A← Safety(G, I); D ← D ∪Edges(A, V \A);
6: while cpre0G(A) ̸= A do ▷ Outputs attr0G(A)
7: B ← cpre0G(A);
8: D ← D ∪Edges(B, V \(A ∪B)) ∪Edges(B,B);
9: A← A ∪B;

10: G← G|V \A; I ← I ∩ V \A;
11: return (S,D)

given a set of edges, eventually these edges are not taken anymore. Intuitively,
these are the edges that take or keep a play away from I.

Example 3. Consider the game graph in fig. 2 where we require eventually stop
visiting b, i.e. staying in I = {a, c, d}. To satisfy this objective from vertex a,
Player 0 needs to stop getting out of I eventually. Hence, Player 0 has to stop
taking the edges {eab, edb, ede}, which can be ensured by marking both edges
co-live. Now since no edges are leading to b, the play eventually stays in I,
satisfying the objective. We note that this can not be captured by live-groups
{eaa, eac, ead} and {eda}, since now the strategy that visits c and b alternatively
from Player 0’s vertices, does not satisfy the objective, but follows the live-group.

Formally, a co-Büchi game is a game G = (G,Φ) with co-Büchi winning
condition Φ := ♢□I, for some goal vertices I ⊆ V . A play is winning for Player 0
in such a co-Büchi game if it eventually stays in I forever. The co-live template
is defined by a set of co-live edges D as follows,

Ψcolive(D) :=
∧
e∈D

♢□¬e.

The intuition behind the winning template is that it forces staying in the
winning region using the safety template, and ensures that the play does not go
away from the vertex set I infinitely often using the co-live template. We provide
the procedure in algorithm 2 and its correctness in the following theorem. Here,
CoBüchi(G, I) is a standard algorithm solving the co-Büchi game with the goal
vertices I, and outputs the winning regions for both players [16]. We also use the
standard algorithm Safety(G, I) that solves the safety game with the objective
to stay in A forever.

Theorem 3. Given a co-Büchi game G = (G,♢□I) for some I ⊆ V , if (S,D) =
coBüchiTemplate(G, I) then Ψ = {Ψunsafe(S), Ψcolive(D)} is a winning strat-
egy template for Player 0, computable in time O(nm) with n = |V | and m = |E|.
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Algorithm 3 ParityTemplate(G,P)
Input: A game graph G, and a priority function P : V → {0, . . . , d}
Output: Winning regions (W0,W1), live-groups H, and co-live edges D
1: if d is odd then
2: A = attr1G(Pd)
3: if A = V then return (∅, V ), ∅, ∅
4: else
5: (W0,W1),H, D ← ParityTemplate(G|V \A,P)
6: if W0 = ∅ then return (∅, V ), ∅, ∅
7: else
8: B = attr0G(W0)
9: D ← D ∪Edges(W0, V \W0)

10: H ← H∪ReachTemplate(G,W0)
11: (W ′

0,W ′
1),H′, D′ ← ParityTemplate(G|V \B ,P)

12: return (W ′
0 ∪B,W ′

1),H ∪H′, D ∪D′

13: else ▷ If d is even
14: A = attr0G(Pd)
15: if A=V then return (V, ∅),ReachTemplate(G,Pd), ∅
16: else
17: (W0,W1),H, D ← ParityTemplate(G|V \A,P)
18: if W1 = ∅ then return (V, ∅),H ∪ReachTemplate(G|A, Pd), D
19: else
20: B = attr1G(W1)
21: (W ′

0,W ′
1),H′, D′ ← ParityTemplate(G|V \B ,P)

22: return (W ′
0,W ′

1 ∪B),H′, D′

3.4 Parity Games

We now consider a more complex but canonical class of ω-regular objectives.
Parity objectives are of central importance in the study of synthesis problems
as they are general enough to model a huge class of qualitative requirements of
cyber-physical systems, while enjoying the properties like positional determinacy.

A parity game is a game G = (G,Φ) with parity winning condition Φ =
Parity(P), where

Parity(P) :=
∧

i∈odd[0;k]

(
□♢Pi =⇒

∨
j∈even[i+1;k] □♢Pj

)
, (7)

with Pi = {q ∈ Q | P(q) = i} for some priority function P : V → [0; d] that
assigns each vertex a priority. A play is winning for Player 0 in such a game if
the maximum of priorities seen infinitely often is even.

Although parity objectives subsume previously described objectives, we can
construct strategy templates for parity games using the combinations of previ-
ously defined templates. To this end, we give the following algorithm.

Theorem 4. Given a parity game G = (G,Parity(P)) with priority function
P : V → [0; d], if ((W0,W1),H, D) = ParityTemplate(G,P), then Ψ =
{Ψunsafe(S), Ψlive(H), Ψcolive(D)} is a winning strategy template for the game
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G, where S = Edges(W0,W1). Moreover, the algorithm terminates in time
O(nd+O(1)), which is same as that of Zielonka’s algorithm.

We again postpone the proof to the Appendix in appendix A.3, but provide
the intuition behind the algorithm and the computation of the algorithm on the
parity game in fig. 3. The algorithm follows the divide-and-conquer approach
of Zeilonka’s algorithm. Since the highest priority occurring is 6 which is even,
we first find the vertices A = {d, h} from which Player 0 can force visiting
{d} (vertices with priority 6) in line 14. Then since A ̸= V , we find the winning
strategy template in the rest of the graph G1 = G|V \A. Then the highest priority
5 is odd, hence we compute the region {c} from which Player 1 can ensure visiting
5. We again restrict our graph to G2 = G|{a,b,e,f,g}. Again, the highest priority
is even. We further compute the region A2 = {a, b} from which Player 0 can
ensure visiting the priority 4, giving us G3 = G|{e,f,g}. In G3, Player 0 can ensure
visiting the highest priority 2, hence satisfying the condition in line 15. Then
since in this small graph, Player 0 needs to keep visiting priority 2 infinitely
often, which gives us the live-groups {egf} and {eff} in line 15. Coming one
recursive step back to G2, since G3 doesn’t have a winning vertex for Player 1,
the if condition in the line 18 is satisfied. Hence, for the vertices in A2, it suffices
to keep visiting priority 4 to win, which is ensured by the live-group {eab} added
in the line 18. Now, again going one recursive step back to G1, we have W0 =
{a, b, e, f, g}. If Player 0 can ensure reaching and staying in W0 from the rest of
the graph G1, it can satisfy the parity condition. Since from the vertex c, W0

will anyway be reached, we get a co-live edge ebc in line 9 to eventually keep the
play in W0. Coming back to the initial recursive call, since now again G1 was
winning for Player 0, they only need to be able to visit the priority 6 from every
vertex in A, giving another live-group {ehd}.

4 Extracting Strategies from Strategy Templates

This section discusses how a strategy that follows a computed winning strategy
template can be extracted from the template. As our templates are just par-
ticular LTL formulas, one can of course use automata-theoretic techniques for
this. However, as the types of templates we presented put some local restrictions
on strategies, we can extract a strategy much more efficiently. For instance, the
game in fig. 2 with strategy template Ψ = Ψlive({eac, ead}) allows the strategy
that simply uses the edges eac and ead alternatively from vertex a.

However, strategy extraction is not as straightforward for every template,
even if it only conjuncts the three template types we introduced in section 3.

a

p1

b

p4

c

p5

d

p6

e

p2

f

p2

g

p1

h

p3

Fig. 3. A parity game, where a vertex with priority i has label pi. The dotted edge in
red is a co-live edge, while the dashed edges in blue are singleton live-groups.
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For instance, consider again the game graph from fig. 2 with a strategy template
Ψ = {Ψunsafe(eac, ead), Ψcolive(eaa, eab)}. Here, non of the four choices of Player 0
(i.e., outgoing edges) from vertex a can be taken infinitely often, and, hence, the
only way a play satisfies Ψ is to not visit vertex a infinitely often. On the other
hand, given strategy template Ψ ′ = {Ψcolive(eab, edb), Ψlive({eab, eac, edb})}, edge
edb is both live and co-live, which raises a conflict for vertex d. Hence, the only
way a strategy can follow Ψ ′ is again to ensure that d is not visited infinitely
often. We call such situations conflicts. Interestingly, the methods we presented
in section 3 never create such conflicts and the computed templates are therefore
conflict-free, as formalized next and proven in appendix A.4.

Definition 1. A strategy template Ψ = {Ψunsafe(S), Ψcolive(D), Ψlive(H)} in a
game graph G = (V,E) is conflict-free if the following are true:

(i) or every vertex v, there is an outgoing edge that is neither co-live nor
unsafe, i.e., v × E(v) ̸⊆ D ∪ S, and

(ii) for every source vertex v in a live-group H ∈ H, there exists an outgoing
edge in H which is neither co-live nor unsafe, i.e., v ×H(v) ̸⊆ D ∪ S.

Proposition 1. Algorithms 1, 2, and 3 always return conflict-free templates.

Due to the given conflict-freeness, winning strategies are indeed easy to ex-
tract from winning strategy templates, as formalized next.

Proposition 2. Given a game graph G = (V,E) with conflict-free winning
strategy template Ψ = {Ψunsafe(S), Ψcolive(D), Ψlive(H)}, a winning strategy π0

that follows Ψ can be extracted in time O(m), where m is the number of edges.

The proof is straightforward by constructing the winning strategy as follows.
We first remove all unsafe and co-live edges from G and then construct a strategy
π0 that alternates between all remaining edges from every vertex in W0. This
strategy is well defined as condition (i) in definition 1 ensures that after removing
all the unsafe and co-live edges a choice from every vertex remains. Moreover, if
the vertex is a source of a live-group edge, condition (ii) in definition 1 ensures
that there are outgoing edges satisfying every live-group. It is easy to see that
the constructed strategy indeed follows Ψ and is hence winning from vertices in
W0, as Ψ was a winning strategy template. We call this procedure of strategy
extraction ExtractStrategy(G,Ψ).

5 Applications of Strategy Templates

This section considers two concrete applications of strategy templates which
utilize their structural simplicity and easy adaptability.

In the context of CPS control design problems, it is well known that the
game graph of the resulting parity game used for strategy synthesis typically
has a physical interpretation and results from behavioral constraints on the ex-
isting technical system that is subject to control. In particular, following the
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well-established paradigm of abstraction-based control design (ABCD) [38,2,6],
an underlying (stochastic) disturbed non-linear dynamical system can be auto-
matically abstracted into a two-player game graph using standard abstraction
tools, e.g. SCOTS [34], ARCS [12], MASCOT [19], P-FACES [21], or ROCS [26].

In contrast to classical problems in reactive synthesis, it is very natural in
this context to think about the game graph and the specification as two different
objects. Here, specifications are naturally expressed via propositions that are
defined over sets of states of this underlying game graph, without changing its
structure. This separation is for example also present in the known LTL fragment
GR(1) [9]. Arguably, this feature has contributed to the success of GR(1)-based
synthesis for CPS applications, e.g. [40,39,3,1,23,24,37].

Given this insight, it is natural to define the incremental synthesis problem
such that the game graph stays unchanged, while newly arriving specifications
are modeled as new parity conditions over the same game graph. Formally, this
results in a generalized parity game where the different objectives arrive one at a
time. We show an incremental algorithm for synthesizing winning strategies for
such games in section 5.1. Similarly, fault-tolerant control requires the controller
to adapt to unavailable actuators within the technical system under control. This
naturally translates to the removal of Player 0 edges within the game graph given
its physical interpretation. We show how strategy templates can be used to adapt
winning strategies to these game graph modifications in section 5.2.

5.1 Incremental Synthesis via Strategy Templates

In this section we consider a 2-player game G with a conjunction Φ =
∧k

i=1 Φi of
multiple parity objectives Φi, also called a generalized parity objective. However,
in comparison to existing work [11,15], we consider the case that different ob-
jectives Φi might not arrive all at the same time. The intuition of our algorithm
is to solve each parity game (G,Φi) separately and then combine the resulting
strategy templates Ψi to a global template Ψ =

∧k
i=1 Ψi. This allows to easily

incorporate newly arriving objectives Φk+1. We only need to solve the parity
game (G,Φk+1) and then combine the resulting template Ψk+1 with Ψ .

While proposition 1 ensures that every individual template Ψi is conflict-
free, this does unfortunately not imply that their conjunction is also conflict-
free. Intuitively, combinations of strategy templates can cause the condition (i)
and (ii) in definition 1 to not hold anymore, resulting in a conflict. As already
discussed in section 4, this requires source vertices U ⊆ V with such conflicts to
eventually not be visited anymore. We therefore resolve such conflicts by adding
the specification ♢□¬U to every objective and recomputing the templates.

To efficiently formalize this objective change, we note that a parity objective
Parity(P) with an additional specification ♢□¬U for some U ⊆ V is equivalent to
another parity objective Parity(P′), where priority function P′ can be obtained
from P : V → [0; 2d+1] just by modifying the priorities of vertices in U to 2d+1.
Let us denote such a priority function by P[U → 2d+ 1]. In particular, we have
the following result:
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Algorithm 4 ComposeTemplate(G, (W ′
0,H′, D′, (Φi)i<ℓ), (Φi)ℓ≤i≤k) where

Φi = Parity(Pi)

Input: A generalized parity game G = (V,E) and objectives (Φi)i≤k with Φi =
Parity(Pi) such that Pi : V → [0; 2di +1] along with a partial winning region, live-
groups, and co-live edges (W0,H, D) for the generalized parity game (G,

∧
i<ℓ Φi).

Output: A partial winning region W0, live-groups H, co-live edges D, and modified
parity objectives (Φ′

i)i≤k.
1: (Wi, V \Wi),Hi, Di ← ParityTemplate(G|W0 , Φi) for each ℓ ≤ i ≤ k
2: H = H′ ∪

⋃
ℓ≤i≤kHi; D = D′ ∪

⋃
ℓ≤i≤k Di; W0 =W ′

0 ∩
⋂

ℓ≤i≤k Wi

3: C1 = {u ∈ W0 | u× (E(u) ∩W0) ⊆ D}
4: C2 = {u ∈ W0 | u× (H(u) ∩W0) ⊆ D, H ∈ H, H(u) ̸= ∅}
5: if C1 ∪ C2 = ∅ then
6: return (W0,H, D, (Φi)i≤k)
7: else
8: P′

i(u)← P[C1 ∪ C2 → 2d′i + 1] for each i ≤ k
9: return ComposeTemplate(G, (W0, ∅, ∅, ∅), (Φ′

i)i≤k) with Φ′
i = Parity(P′

i))

Lemma 1. Given a game graph G and two parity objectives Φ = Parity(P),
Φ′ = Parity(P′) such that P : V → [0; 2d+ 1] and P′ = P[U → 2d+ 1] for some
vertex set U ⊆ V , it holds that L(Φ′) = L(Φ ∧ ♢□¬U). Moreover, if a strategy
template is winning from some vertex u in the game G′ = (G,Φ′), then it is also
winning from u in the game G = (G,Φ).

Using the above ideas, we present algorithm 4 to solve generalized parity
games (possibly incrementally). If no partial solution to the synthesis problem
exists so far we have ℓ = 0, otherwise the game (G,

∧
i<ℓ Φi) was already solved

and the respective winning region and templates are known. In both cases, the
algorithm starts with computing a winning strategy template for each game
(G,Φi) for i ∈ {ℓ + 1, k} (line 1) and conjuncts them with the already com-
puted ones (line 2). Then the algorithm checks for conflicts (line 3-4). If there is
some conflict the algorithm modifies the objectives to ensure that the conflicted
vertices are eventually not visited anymore (line 8), and then re-computes the
templates in the game graph restricted to the intersection of winning regions
for all objectives (line 9). If there is no conflict, then the algorithm returns the
conjunction of the templates which is conflict-free, and hence, is winning from
the intersection of winning regions for every objective (line 6). The latter is
formalized in the following theorem. The proof can be found in appendix B.2.

Theorem 5. Given a generalized parity game G = (G,
∧

i≤k Φi) with Φi =
Parity(Pi) and priority functions Pi : V → [0; 2di + 1], if (W0,H, D, (Φ′

i)i≤k) =
ComposeTemplate(G, ∅, (V, ∅, ∅), (Φi)i≤k), then Ψ = {Ψunsafe(S), Ψlive(H),
Ψcolive(D)} is an conflict-free strategy template that is winning from W0 in
the game G, where S = Edges(W0, V \ W0). Further, Ψ is computable in time
O(kn2d+3) time, where n = |V | and d = maxi≤k di.

Due to the conflict checks carried out within algorithm 4 the returned modi-
fied objectives Φ′

i ensure that the conjunction Ψ :=
∧k

i=1 Ψ
′
i of winning strategy
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templates Ψ ′
i for the games (G,Φ′

i) is indeed conflict-free. In particular, the con-
juncted template Ψ is actually returned by the algorithm. Hence, incrementally
running algorithm 4 is actually sound. This is an immediate consequence of
theorem 5 and stated as a corollary next.

Corollary 1. Given a generalized parity game G = (G,
∧

i≤k Φi) with Φi =
Parity(Pi) and priority functions Pi : V → [0; 2di + 1], s.t.

(W ′
0,H′, D′, (Φ′

i)i<ℓ) := ComposeTemplate(G, (V, ∅, ∅, ∅), (Φi)i<ℓ), and
(W0,H, D, (Φ′′

i )i≤k) := ComposeTemplate(G, (W ′
0,H′, D′, (Φ′

i)i<ℓ), (Φi)ℓ≤i≤k)

then Ψ = {Ψunsafe(S), Ψlive(H), Ψcolive(D)} is an conflict-free strategy template
that is winning from W0 in the game G, where S = Edges(W0, V \W0). Further,
Ψ is computable in time O(kn2d+3), where n = |V | and d = maxi≤k di.

We note that the generalized Zielonka algorithm [15] for solving generalized
parity games has time complexity O(mn

∑
2di)

( ∑
di

d1,d2,...,dk

)
for a game with n ver-

tices, m edges and k priority functions: Pi with 2di priorities for each i. Clearly,
algorithm 4 has a much better time complexity. However, it is not complete, i.e,
it does not always return the complete winning region. This is due to templates
being not maximally permissive and hence potentially raising conflicts which re-
sult in additional specifications that are not actually required. The next example
shows such an incomplete instance for illustration. We however note that algo-
rithm 4 returned the full winning region on all benchmarks considered during
evaluation, suggesting that such instances rarely occur in practice.

Example 4. Consider the game in fig. 2 with objectives Φ3 ∧ Φ4 with Φ4 =
Parity(P), where P maps vertices a, b, c, d, e, f to 0, 2, 1, 1, 1, 1, respectively. The
winning strategy templates computed by ParityTemplate for objectives Φ3

and Φ4 are Ψ3 = Ψcolive(eab, edb, ede) and Ψ4 = Ψlive({eab, edb, ede}), respectively.
The conjunction of both templates marks all outgoing edges of vertex a and d in
the live-group co-live. Hence, the algorithm would ensure that these conflicted
vertices a and d are eventually not visited anymore. However, the only way to
satisfy Φ3∧Φ4 is by eventually looping on vertex a. But this solution was skipped
by the strategy template Ψ4 by putting edge eab in a live-group. Therefore, the
algorithm resturns the empty set as the winning region, whereas the actual
winning region is the whole vertex set.

5.2 Fault-Tolerant Strategy Adaptation

In this section we consider a 2-player parity game G = (G,Parity(P)) and a set of
faulty Player 0 edges F ⊆ E ∩ (V 0×V ) which might become unavailable during
runtime. Given a strategy template Ψ for G, we can use Ψ ′ = {Ψ, Ψunsafe(F )} for
the (linear-time) extraction of a new strategy for the game, if Ψ ′ is conflict-free for
G. In this case, no re-computation is needed. If Ψ ′ is not conflict-free for G, then
we can remove the edges in F and compute a new winning strategy template
using algorithm 3. This is formalized in algorithm 5, where we slightly abuse
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notation and assume that ParityTemplate only outputs strategy templates.
The correctness of algorithm 5 follows directly from theorem 4.

Corollary 2. Given a 2-player parity game G = (G,Parity(P)) with a strategy
template Ψ = ParityTemplate(G,P) and faulty edge set F ⊆ E ∩ (V 0 × V ) it
holds that Ψ ′ obtained from algorithm 5 is a winning strategy template for G|E\F .

Faulty edges introduce an additional safety specification for which our templates
are maximally permissive. This implies that algorithm 5 is sound and complete
– if there exists a winning strategy for (G|E\F ,Parity(P)) algorithm 5 finds one.

Let us now assume that F collects all edges controlling vulnerable actuators
that might become unavailable. In this scenario, algorithm 5 returns a conserva-
tive strategy that never uses vulnerable actuators. It might however be desirable
to use actuators as long as they are available to obtain better performance. For-
mally, this application scenario can be defined via a time-dependent graph who’s
edges change over time, i.e., Et with E0 = E are the edges available at time
t ∈ N and F := {e ∈ E | e ̸∈ Ei, for some i}. Given the original parity game
G = (G,Parity(P)) with a winning strategy template Ψ we can easily modify
ExtractStrategy(G, Ψ) to obtain a time-dependent strategy πg which reacts
to the unavailability of edges, i.e., at time t, πg takes an edge e ∈ Et\(S ∪D) for
all vertices without any live-group, and for the ones with live-groups, it alter-
nates between the edges satisfying the live-groups whenever they are available,
and an edge e ∈ Et\(S ∪D) when no live-group edge is available.

The online strategy πg can be implemented even without knowing when edges
are available2, i.e., without knowing the time dependent edge sequence {Et}t∈N
up front. In this case πg is obviously winning in G = (G,Parity(P)) if Ψ is
conflict-free for G|E\F . If this is not the case, one needs to ensure that edges
that cause conflicts are always eventually available again, as formalized next.

Definition 2. Given a parity game G = (G,Parity(P)) we call the dynamic
edge set {Ei}i≥0 a guaranteed availability fault (GAF) if ∀ plays ρ = v0v1 . . .,
∀v ∈ V , if v ∈ inf(ρ), then ∀e = (v, w) ∈ F , ∃ infinitely many times t0, t1 . . .
such that vtj = v and e ∈ Etj , ∀j ≥ 0.

2 We note that it is reasonable to assume that current actuator faults are visible to
the controller at runtime, see e.g. [33] for a real water gate control example.

Algorithm 5 FaultCorrection(G,Ψ, F )

Input: A parity game G = (G,Parity(P)), a strategy template Ψ , and a set of faulty
edges F

Output: A new strategy template Ψ ′

1: Ψ ′ ← {Ψ, Ψunsafe(F )}
2: if CheckTemplate(G,Ψ ′) then return Ψ ′

3: else
4: return ParityTemplate(G|E\F ,P|E\F )
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Intuitively, guaranteed availability faults (GAF) ensure that a faulty edge is
always eventually available when a play is in its source vertex. Under this fault,
the following fault-correction result holds, which is proven in appendix B.3.

Proposition 3. Given a game graph G with a parity objective Φ, a strategy
template Ψ = {Ψunsafe(S), Ψlive(H), Ψcolive(D)} computed by algorithm 3 and a
set F = {e ∈ E | e ̸∈ Ei, for some i} of faulty edges, the game with the objective
is realizable under GAF if for every vertex v ∈ V 0, there is an outgoing edge
which is not in S ∪D ∪ F .

This proposition allows a simple linear-time algorithm to check if the tem-
plates computed by algorithm 3 are GAF-tolerant: check if every vertex in the
winning region has an outgoing edge which is not in S ∪D∪F . If this is not the
case, the recomputation is non-trivial and is out of scope of this paper. We can
however collect the vertices which do not satisfy the above property and alert the
system engineer that these vulnerable actuators require additional maintenance
or protective hardware. Our experimental results in section 6 show that conflicts
arising from actuator faults are rare and very local. Our strategy templates allow
to easily localize them, which supports their use for CPS applications.

6 Empirical Evaluation

We have developed a C++-based prototype tool PeSTel3 (computing Permissive
Strategy Templates) that implements algorithms 1 – 5. We have used PeS-
Tel to show its superior performance on the two applications considered in
section 5, suggesting its practical relevance. All our experiments were performed
on a computer equipped with Apple M1 Pro 8-core CPU and 16GB RAM.

Incremental Synthesis. We used PeSTel to solve generalized parity games
both in one shot and incremental. We compare our algorithm with existing algo-
rithms, i.e., GenZiel from [15] and three partial solvers4 from [11], by executing
them on a large set of benchmarks. We have generated two types of benchmarks
from the games used for the Reactive Synthesis Competition (SYNTCOMP) [20].
Benchmark A was generated by converting parity games into Streett games using
standard methods, and as each Streett pair can be represented by a {0, 1, 2}-
priority parity game, we represented the complete Streett objective as a con-
junction of multiple {0, 1, 2}-priority parity objectives, resulting in a generalized
parity game. Benchmark B was generated by adding randomly5 generated parity
objectives to given parity games. We considered 200 examples in Benchmark A
and more than 1400 examples in Benchmark B.

3 Repository URL: https://github.com/satya2009rta/pestel
4 While GenZiel is sound and complete [15], we found different randomly generated

games where the algorithms from [11] either return a superset or a subset of the
winning region, hence compromising soundness and completeness. Since [11] lacks

https://github.com/satya2009rta/pestel
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PeSTel GenZiel [15] GenZiel &
GenBüchi [11]

GenZiel &
GenGoodEp[11]

GenZiel &
GenLay[11]

Benchmark A
(one shot)

mean time 343 64 68 553 1224
incomplete 0 - 3 3 2
faster than - 74% 75% 96% 85%
timeouts 0 0 0 2 20

Benchmark B
(one shot)

mean time 60 47 58 112 171
incomplete 0 - 28 27 2
faster than - 93% 93% 97% 95%
timeouts 1 0 2 4 18

Overall faster than - 90% 90% 97% 94%

Benchmark B
(incremental)

mean time 91 208 215 338 394
incomplete 0 - 24 23 2
faster than - 97% 97% 98% 99%
timeouts 2 0 0 8 23

Table 1. Aggregated experimental results on generalize parity game benchmarks with
objectives given up-front (top) and one-by-one (bottom). Subrows: 1st row (mean time)
– average computation time (in ms); 2nd row (incomplete) – number of examples where
the corresponding tool failed to compute the complete winning region; 3rd row (faster
than) – number of examples where PeSTel is faster than the respective tool; 4th row
(timeouts) – number of examples where the respective tool timed out (10000 ms).

We summarize the complete set of results of the experiments in6 table 1 and
fig. 1. We performed two kinds of experiments. First, we solved every generalized
parity game in Benchmark A and B in one shot using the different methods.
The results are shown in table 1 (top) and fig. 1 (left). Although the average
time taken by PeSTel is higher than GenZiel and one partial solver, it is
fastest in more than 90% of the games in both benchmarks. Thus, it shows that
PeSTel is as efficient as the other methods in most cases. Moreover, for every
game in both benchmarks, PeSTel succeeded to compute the complete winning
region, whereas the partial solvers failed to do so in some cases7.. We note that
the instances which are hard for PeSTel are those where the winning region
becomes empty, which is quickly detected by GenZiel but only seen by PeSTel
after most objectives are (separately) considered.

Second, we solved the examples in Benchmark B by adding the objectives
one-by-one, i.e., we solved the game with one objective, then we added one
more objective and solved it again, and so on. The results are shown in table 1

rigorous proof, it is not clear whether this is an implementation bug or a theoretical
mishap, leaving soundness and completeness guarantees of these algorithms open.

5 The random generator takes three parameters: game graph “G”, number of objectives
"k”, and maximum priority “m”; and then it generates “k” random parity objectives
with maximum priority “m” as follows: 50% of the vertices in “G” are selected ran-
domly, and those vertices are assigned priorities ranging from 0 to “m” (including 0
and m) such that 1/m-th (of those 50%) vertices are assigned priority 0 and 1/m-
th are assigned priority 1 and so on. The rest 50% are assigned random priorities
ranging from 0 to “m”. Hence, for every priority, there are at least 1/(2m)-th vertices
(i.e., 1/m-th of 50% vertices) with that priority.

6 See appendix C for a version of fig. 1 including all solvers considered in table 1.
7 Additionally, we outperform all algorithms on the benchmarks considered by Bruyère

et al. [11]. We have however chosen to not include them in our analysis as many of
their generalized parity games have only one objective and are therefore trivial.
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Fig. 4. Experimental results for parity games with faulty edges. Left: percentage of
instances with conflicts given a certain percentage of faulty edges. Right: average per-
centage of vertices that created conflicts given a certain percentage of faulty edges.

(bottom) and fig. 1 (right). As PeSTel can use the pre-computed strategy
templates if we add a new objective to a game, it outperforms all the other
solvers significantly as they need to re-solve the game from scratch every time.
Fault-tolerant Control. As discussed in section 5.2, strategy templates can
be used to implement a fault tolerant time-dependent strategy, if the set of
faulty edges F does not cause conflicts with the strategy template. We have
used PeSTel on over 200 examples of parity games from SYNTCOMP [20] to
evaluate the relevance of such conflicts in practice. For this, we randomly selected
different percentages of edges to be faulty and checked for conflicts with the given
template. The results are summarized in fig. 4. The left plot shows the number of
instances for which a conflict occurs if a certain percentage of randomly selected
edges is faulty. We see that the majority of the instances never faces a conflict
even when 30% of the edges are faulty. Looking more closely into the instances
with conflicts, fig. 4 (right) shows the average number of conflicting vertices in
these benchmarks. Here we see that conflicts occur very locally at a very small
number of vertices. Our strategy templates allow for a linear-time algorithm to
localize them, allowing to mitigate them in practice by additional hardware.

Remark 1. We remark again that our results are directly applicable to CPS
with continuous dynamics via the paradigm of abstraction-based control de-
sign (ABCD). In particular, standard abstraction tools such as SCOTS [34],
ARCS [12], MASCOT [19], P-FACES [19], or ROCS [26] automatically compute
a game graph from the (stochastic) continuous dynamics that can directly be
used as an input to PeSTel. The winning strategy computed by PeSTel can
further be refined into a correct-by-construction continuous feedback controller
for the original dynamical system using standard methods from ABCD. We leave
these tool integrations to future work.
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A Winning Strategy Templates

A.1 Strategy Templates for Büchi Games

Here, we restate theorem 2, and formally prove the same.

Theorem 2. Given a Büchi game G = (G,□♢I) for some I ⊆ V , if (S,H) =
BüchiTemplate(G, I) then Ψ = {Ψunsafe(S), Ψlive(H)} is a winning strategy
template for the game G, computable in time O(nm), where n = |V | and m = |E|.

Proof. Before proceeding with the proof of theorem 2 we show that algorithm 1
terminates.

Lemma 2. The algorithm 1 terminates in time O(nm), where n and m are as
above.

Proof. Let k ∈ N be such that I = I0 ⊆ I1 ⊆ · · · Ik = Ik+1, where Ij is
the value of I in the j-th iteration of the while loop in the ReachTem-
plate procedure. It suffices to show that Ik = V , for the graphs where
V = Büchi(G, I), since we have already restricted our initial graph to such
a graph in line 2.

Suppose there exists a vertex v ∈ V \Ik. Then v ̸∈ I. If v ∈ V0, then there
is no edge from v into Ik, else v would be in B in the k+1-th iteration, and
Ik ̸= Ik+1. If v ∈ V1, then there exists an edge from v to V \Ik, else v would
be in A in the k + 1-th iteration again.

Then there is no strategy for Player 0 to visit Ik, and I in particular,
from v, implying v ̸∈ Büchi(G, I), which would be a contradiction to the
fact that every vertex is Büchi winning for Player 0.

Then Ik = Ik+1 = V . Hence the while loop will be exited, and the
procedure, and hence the algorithm, terminates.

Complexity analysis: The procedure Büchitakes time O(nm). Then the
while loop in the ReachTemplate procedure has at most n many iterations
since at least one vertex is added to I in each iteration. Each iteration take
O(m) time, resulting in the total complexity of O(nm) for the procedure
ReachTemplate, and hence, for the algorithm. ◁

With this, we are ready to prove soundness of the constructed template. Let
π0 be a strategy following Ψ , and let ρ = v0 . . . vi . . . be a play compliant with
π0 originating at v0 ∈ W0.

We first note that the play never leaves the winning region due to the safety
part of the template. Now let k ∈ N be such that in the proof of the lemma
above, and Ai and Bi be the values of A and B in the i-th iteration of the while
loop in the algorithm above, i.e. Ii = Ai ∪Bi for 1 ≤ i ≤ k.

We show that ρ visits I = I0 infinitely often. To this end, let γ = c0 . . . ci . . . ∈
[0; k]ω, such that ci = min{j ∈ [0, k] | vi ∈ Ij}, i.e. ci is the iteration of while
loop in the ReachTemplate procedure when vi was added in I. We show that
0 occurs infinitely often in γ. Suppose not, i.e. the minimum number m occurring
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infinitely often in γ is not 0. Then vertices from Im\Im−1 occur infinitely often
in ρ. Then if vertices from Am\Im−1 are visited infinitely often, then since both
players are forced to visit Im−1 every time Am\Im−1 is visited, by the defini-
tion of uattr, we get a contradiction. If vertices from Bm are visited infinitely
often, then since π0 follows Ψlive(H), infinitely often edges leading towards Am

are taken, again giving rise to a contradiction. Hence, m = 0, proving that ρ is
winning for Player 0, and Ψ is a winning strategy template for vertices in W0. ■

A.2 Strategy Templates for co-Büchi Games

Here, we restate theorem 3, and formally prove the same.

Theorem 3. Given a co-Büchi game G = (G,♢□I) for some I ⊆ V , if (S,D) =
coBüchiTemplate(G, I) then Ψ = {Ψunsafe(S), Ψcolive(D)} is a winning strat-
egy template for Player 0, computable in time O(nm) with n = |V | and m = |E|.

Proof. Before proceeding with the proof of theorem 3 we show that algorithm 2
indeed terminates.

Lemma 3. The algorithm 2 terminates in time O(nm), where n and m are as
usual.

Proof. We first note that the inner while loop (line 6-9) terminates. This
is simple to observe since A only grows and since there are finitely many
vertices the termination condition will be satisfied eventually.

We need to show that every vertex v ∈ V gets added to A in some
iteration of the outer while loop.

We prove by induction that after every iteration of the outer loop, every
vertex in the remaining graph is still co-Büchi winning in the remaining
graph. The base case is trivial, because we recall that every vertex of G is
co-Büchi winning, due to line 3.

We denote the graph after the i-th iteration by Gi = (Vi, Ei). Let the
statement above holds true after i-th iteration, i.e. Vi = CoBüchi(Gi, Ii).
Let u ∈ Vi+1. For the i + 1-th iteration Ai+1 = Safety(Gi, Ii). Now if
Player 0 had a strategy of reaching Ai+1 in Gi, then it would be included in
Ai+1 after the inner while loop is executed. But since this is not the case,
and u is still winning in Gi, then the winning strategy is such that the plays
do not necessarily stay in Ai+1. Hence, even if Ai+1 is removed from the
graph, u is still winning in Gi+1 with the same winning strategy.

Now for a vertex u to be co-Büchi winning, there exists a strategy such
that every play starting at u eventually ends up in a subset J of I. But I gets
strictly smaller in every iteration of the outer while loop, and it can happen
only finitely often. Hence if V never reduces to ∅, there is a winning vertex
v ∈ V but there is no J ⊆ I, where the play starting at v can eventually
end up in, producing a contradiction.
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Complexity analysis: The CoBüchi procedure takes O(nm) time. Then the
outer loop needs at most n iterations, and the inner loop needs at most O(m)
time, since it is just the attr computation, resulting in total complexity of
O(nm) for the algorithm. ◁

Now let π0 be a strategy following Ψ , and let ρ = v0 . . . vi . . . be a play
compliant with π0 originating at v0 ∈ W0.

Let Vi = Ai ∪ Vi−1 and V1 = A1. Intuitively, Vi is the set of vertices which
have been removed from the initial graph after i-th iteration of the outer while
loop. We denote by G′

i the restricted graph G|Vi
.

We first show that if a play eventually stays in G′
i then it is winning for

Player 0. For the base case, when i = 1, this is easy to see: because the play
can go further away from Ai, only finitely often due to the co-live edges added
in line 8, and eventually the play stays in A1 ⊆ I. Hence the play would be
co-Büchi winning.

Now let the statement holds true for G′
i−1 for some i−1 ∈ N. Now if the play

stays in G′
i. Then if the play stays in Ai then it is winning by the arguments

similar to the base case. Else it will eventually end up in Vi−1, since it can not
go to Ai infinitely often from Vi−1 due to the co-live edges added in line 8 in the
last iteration of inner while loop and line 5. Then by the induction hypothesis,
it is again winning.

Hence, by induction the statement holds true for every i, and in particular
for k, where k is the total number of iterations of the outer while loop. Since due
to the safety part of the template, the play ρ stays in Gk, and hence is co-Büchi
winning. Hence, Ψ is a Player 0 winning template for vertices in W0. ■

A.3 Strategy Templates for Parity Games

We formally show that the strategy template constructed using algorithm 3 is
winning for Player 0. We restate theorem 4 for convenience.

Theorem 4. Given a parity game G = (G,Parity(P)) with priority function
P : V → [0; d], if ((W0,W1),H, D) = ParityTemplate(G,P), then Ψ =
{Ψunsafe(S), Ψlive(H), Ψcolive(D)} is a winning strategy template for the game
G, where S = Edges(W0,W1). Moreover, the algorithm terminates in time
O(nd+O(1)), which is same as that of Zielonka’s algorithm.

Proof. Before we prove that algorithm 3 gives a winning strategy template, we
show that it terminates.

Lemma 4. The algorithm 3 terminates in time O(nd+O(1)).

Proof. This is fairly easy to see since this is a simple modification of the
usual Zeilonka’s algorithm for parity games, and the call to the ReachTem-
plate procedure terminates as shown in previous section. The complexity
can be obtained by the usual analysis for Zeilonka’s algorithm. ◁
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We now prove that theorem 4 gives a winning strategy template.
Let π0 be a strategy following Ψ , and let ρ = v0 . . . vi . . . be a play compliant

with π0 originating at v0 ∈ W0.
We prove by induction on the number of vertices n in G that π0 is winning.

When n = 1, this is trivially true. Now suppose that the statement holds for
graphs of size k. Now let n = k + 1, and d be the highest priority occurring in
G. First, we notice that π0 does not allow ρ to visit W1 by the correctness of
safety templates.

Now, if d is odd. Note that if ρ visits W0 infinitely often, it will eventually
stay in W0 due to co-live edges added in line 9, then by induction hypothesis, ρ
satisfies the parity winning condition. Else ρ eventually stays in W ′

0, since if it
goes to B\W ′

0 infinitely often, then it will again visit W0 infinitely often due to
live-groups added in line 10 and we can argue as above. Again ρ will be winning
by induction hypothesis, if it stays in W ′

0.
Otherwise, if d is even. If the play visits A infinitely often, then Pd is vis-

ited infinitely often due to the live-groups added in the line 18. Otherwise, by
induction hypothesis, if ρ stays in W ′

0, it is winning again.
Hence, by induction, π0 is a winning strategy for Player 0, implying that Ψ

is a winning strategy template. ■

A.4 Extracting Strategies from Strategy Templates

We show that proposition 1 holds, i.e., that Algorithms 1, 2 and 3 always return
conflict-free templates.

Proposition 1. Algorithms 1, 2, and 3 always return conflict-free templates.

Proof. The claim directly follows from the definition of the algorithms in the
following way. First note that in every of the three algorithms, we only have un-
safe edges going out of the winning region and all other restrictions are on the
edges inside the winning region. Hence, there cannot be any conflict involving
unsafe edges. Moreover, since the template returned by BüchiTemplate does
not contain any co-live edge, it is easy to see that for such templates (i) and (ii) in
definition 1 can never occur. Furthermore, the algorithm for coBüchiTemplate
only adds a co-live edge when there is some other choice from the source vertex,
showing that (i) in definition 1 cannot occur. Moreover, there are no live-groups
in the templates returned by coBüchiTemplate, hence (ii) in definition 1 can-
not occur. Similarly, in the algorithm for ParityTemplate, i.e., algorithm 3,
we only add co-live edges in line 9, which are going out of W0, where W0 is
the winning region in a restricted game graph. Hence, there is always another
choice from source vertices of such edges. Moreover, the live-groups it computes
in line 10 contain edges which are inside W0; and the live-groups computed in
line 18 can never contain a co-live edge (as in that part of the algorithm we do
not add any co-live edge). Therefore, the template returned by algorithm 3 is
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also conflict-free as cases (i) and (ii) of definition 1 cannot occur. ■

B Applications of Strategy Templates

B.1 Proof of lemma 1

Lemma 1. Given a game graph G and two parity objectives Φ = Parity(P),
Φ′ = Parity(P′) such that P : V → [0; 2d+ 1] and P′ = P[U → 2d+ 1] for some
vertex set U ⊆ V , it holds that L(Φ′) = L(Φ ∧ ♢□¬U). Moreover, if a strategy
template is winning from some vertex u in the game G′ = (G,Φ′), then it is also
winning from u in the game G = (G,Φ).

Proof. First of all, note that P ′
i = Pi\U for every i ≤ 2d and P ′

2d+1 = P2d+1∪U
by construction. Now, let us start by showing that L(Φ′) ⊆ L(Φ ∧ ♢□¬U).
Suppose ρ ∈ L(Φ′). Then for some priority 2j, the play ρ visits P ′

2j ⊆ P2j

infinitely often and inf(ρ) ⊆
⋃

i≤2j P
′
j , which implies inf(ρ) ⊆

⋃
i≤2j Pj . Hence,

ρ ∈ L(Φ). Furthermore, as inf(ρ)∩ P ′
2d+1 = ∅ (since ρ satisfies parity condition)

and U ⊆ P ′
2d+1, it holds that inf(ρ) ∩ U = ∅. Hence, ρ ∈ L(♢□¬U). Therefore,

ρ ∈ L(Φ ∧ ♢□¬U). The other direction follows similarly. Hence, L(Φ′) = L(Φ ∧
♢□¬U).

Note that by the above result, it holds that L(Φ′) ⊆ L(Φ). Now, if a Player 0’s
strategy π is winning from a vertex u in game G′. Then it holds that L(u, π) ⊆
L(Φ′), which implies L(u, π) ⊆ L(Φ). Hence, π is also a winning strategy from u
in G. Now, suppose a strategy template Ψ is winning from u in G′. Then every
strategy satisfying the template Ψ is winning from u in G′, and hence, is winning
from u in G. Therefore, the template Ψ is also winning from u in G. ■

B.2 Correctness of ComposeTemplate

We recall theorem 5, and prove the correctness and conflict-freeness of the strat-
egy templates obtained by ComposeTemplate here.

Theorem 5. Given a generalized parity game G = (G,
∧

i≤k Φi) with Φi =
Parity(Pi) and priority functions Pi : V → [0; 2di + 1], if (W0,H, D, (Φ′

i)i≤k) =
ComposeTemplate(G, ∅, (V, ∅, ∅), (Φi)i≤k), then Ψ = {Ψunsafe(S), Ψlive(H),
Ψcolive(D)} is an conflict-free strategy template that is winning from W0 in
the game G, where S = Edges(W0, V \ W0). Further, Ψ is computable in time
O(kn2d+3) time, where n = |V | and d = maxi≤k di.

Proof. Let us denote P1,2d+1 to be the set of vertices v such that P1(v) = 2d1+1.
We show every claim using induction on the pair (|W ′

0| , |W ′
0 \ P1,2d+1|) (ordered

lexicographically), where W ′
0 is the vertex set taken as input in the algorithm.

As in the theorem statement, initially we have W ′
0 = V .
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For base case, if |W ′
0| = 0, then |V | = 0 and hence, it returns W0 = ∅; and if

|W ′
0| − |P1,2d+1| = 0, then it is easy to see that W0 = ∅. Hence, if C1 ∪ C2 = ∅,

then it returns W0 = ∅. Otherwise, G|W0 is an empty game graph; hence, in
the next iteration, we have W ′

0 = ∅. So, each Wi and each strategy template is
empty. Hence, C1 ∪ C2 = ∅ holds (in the next iteration), and it returns W0 = ∅.
So, in any case, it returns an empty set as W0, and an conflict-free strategy
template that is trivially winning from W0.

Now for the induction case, suppose |W ′
0| and |W ′

0 \ P1,2d+1| are positive. It
is easy to verify that C1 and C2 corresponds to the set of conflicted vertices due
to the condition (i) and (ii), respectively of definition 1. Hence, if C1 ∪ C2 = ∅,
then there is no conflict in the conjunction of the strategy templates. Hence,
conjuncting winning strategy templates for all games (G,Φi) actually gives us
an conflict-free and winning strategy template for the game

∧
i≤k Φi as any

strategy satisfying the strategy templates of every game is winning in every
game. Therefore, the complete winning region for the game (G,

∧
i≤k Φi) is the

intersection of the winning regions Wi. Hence, the algorithm returns the correct
winning region and a winning strategy template for the game (G,

∧
i≤k Φi).

Now, if C1 ∪ C2 ̸= ∅, then some vertices are added to P1,2d+1 (line 8) for the
next iteration. Note that W0 ⊆ W ′

0 and C1 ∪ C2 ⊆ W ′
0 as the parity games are

solved in line 1 are solved for the game graph restricted to W ′
0. So, in every

iteration, W ′
0 stays unchanged or gets smaller. Let W ′′

0 and P ′
1,2d+1 are the W ′

0

and P1,2d+1 in the next iteration. If W ′
0 gets smaller in the next iteration, then

|W ′′
0 | < |W ′

0|. Else, we have |W ′′
0 | = |W ′

0| and
∣∣∣W ′

0 ∩ P ′
1,2d+1

∣∣∣ > |W ′
0 ∩ P1,2d+1|,

which implies
∣∣∣W ′′

0 \ P ′
1,2d+1

∣∣∣ < |W ′
0 \ P1,2d+1|. Hence, in any case,

(|W ′′
0 | ,

∣∣W ′′
0 \ P ′

1,2d+1

∣∣) <lex (|W ′
0| , |W ′

0 \ P1,2d+1|).

Then, by the induction hypothesis, the strategy template Ψ returned by the algo-
rithm is conflict-free and winning from every vertex u ∈ W0 in game (G,

∧
i≤k Φ

′
i).

It is enough to show that the strategy template Ψ is also winning from every
vertex u ∈ W0 in game (G,

∧
i≤k Φi).

As Wi is the winning region for the game (G,Φi) for each i, the winning
region for the objective

∧
i≤k Φi is a subset of

⋂
i≤k Wi. It is easy to see that a

winning strategy is still winning if we restrict the game graph to the winning
region. Furthermore, by lemma 1, it holds that the strategy template Ψ is indeed
winning from every vertex u ∈ W0 in game (G,

∧
i≤k Φi).

For the complexity analysis, as the pair (|W ′
0| , |W ′

0 \ P1,2d+1|) can decrease
at most n2 times, the maximum number of iterations is n2. In each itera-
tion, the algorithm call ParityTemplate for each game (G,Φi) which runs
in O(n2di+1) time, and some additional operations which take polynomial time
in number of edges. Hence, in total, the algorithm runs in time O(kn2d+3), where
d = maxi≤k di. ■
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Fig. 5. Experimental results over 1400 benchmark instances showing the sensitivity
of different tools on the number of objectives. Data points give the average execution
time (in ms) over all instances with the same number of objectives. Left: all objectives
are given upfront. Right: objectives are added one by one.

B.3 Proof of proposition 3

Proposition 3. Given a game graph G with a parity objective Φ, a strategy
template Ψ = {Ψunsafe(S), Ψlive(H), Ψcolive(D)} computed by algorithm 3 and a
set F = {e ∈ E | e ̸∈ Ei, for some i} of faulty edges, the game with the objective
is realizable under GAF if for every vertex v ∈ V 0, there is an outgoing edge
which is not in S ∪D ∪ F .

Proof. Suppose that for every vertex v ∈ V 0, there is an outgoing edge which is
not in S ∪D ∪ F . Then consider the strategy πg that, at time t, takes the edge
e ∈ Et\(S∪D) for all vertices without any live-group, and for the ones with live-
groups, it alternates between the edges satisfying the live-groups whenever they
are available, and the edge e ∈ Et\(S ∪D) when no live-group edge is available.
We show that πg is winning for Player 0, by showing that it is compliant with Ψ ,
and invoking theorem 4. It is easy to observe that πg is compliant with the safely
and co-liveness part of Ψ . Now, to be compliant with the live-group template, we
observe that the group-live edges will be available infinitely often when the play
visits the source vertex, so πg will indeed choose the edges alternately. Hence it
will be compliant with the strategy template Ψ . ■

C Experimental Results

For completeness, we show a version of fig. 1 including all solvers considered in
table 1 in fig. 5.
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