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Chaotic turnover of rare and abundant species in a strongly
interacting model community
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The composition of ecological communities varies not only between different locations
but also in time. Understanding the fundamental processes that drive species toward
rarity or abundance is crucial to assessing ecosystem resilience and adaptation to
changing environmental conditions. In plankton communities in particular, large
temporal fluctuations in species abundances have been associated with chaotic
dynamics. On the other hand, microbial diversity is overwhelmingly sustained by a
“rare biosphere” of species with very low abundances. We consider here the possibility
that interactions within a species-rich community can relate both phenomena. We use
a Lotka–Volterra model with weak immigration and strong, disordered, and mostly
competitive interactions between hundreds of species to bridge single-species temporal
fluctuations and abundance distribution patterns. We highlight a generic chaotic regime
where a few species at a time achieve dominance but are continuously overturned by
the invasion of formerly rare species. We derive a focal-species model that captures the
intermittent boom-and-bust dynamics that every species undergoes. Although species
cannot be treated as effectively uncorrelated in their abundances, the community’s effect
on a focal species can nonetheless be described by a time-correlated noise characterized
by a few effective parameters that can be estimated from time series. The model predicts
a nonunitary exponent of the power-law abundance decay, which varies weakly with
ecological parameters, consistent with observation in marine protist communities.
The chaotic turnover regime is thus poised to capture relevant ecological features of
species-rich microbial communities.

ecological chaos | rare biosphere | plankton ecology | disordered Lotka–Volterra model

The dynamic nature of ecological communities of species has long been recognized
(1). Fluctuations in species’ abundances can have fundamentally different origins
depending on the spatial and temporal scales considered and the particular community of
interest (1, 2). For example, if environmental filtering shapes community composition,
abundance fluctuations may reflect changing external conditions. Another possibility
is that stochastic effects of demography, dispersal, and diversification dominate over
the ecological differences between species in driving turnover (3). As communities are
increasingly monitored in the wake of climate change and biodiversity decline, there
is growing opportunity and need to understand why abundances fluctuate and how
fluctuations relate to patterns of biodiversity and biogeography.

An alternative to environmental and stochastic effects as the main determinants of
abundance fluctuations is the hypothesis that they reflect intrinsically chaotic dynamics
arising from the complexity of ecological interactions. Mathematically, chaos is the
phenomenon whereby a deterministic, nonlinear dynamical system (e.g. describing the
populations of interacting species) generates bounded but aperiodic trajectories that
depend sensitively on initial conditions (4). While chaos can be readily identified in simple
mathematical models, its presence in empirical time series is challenging to ascertain, and
the relevance of chaos for natural communities has been controversial (5, 6). However,
recent methodological advances and systematic assessment of a large ecological time
series database using validated, nonparametric methods showed that ecological chaos is
generally not rare (7, 8) and is particularly prevalent in planktonic communities, where
it was found in ∼ 80% of time series.

The biodiversity of microbial communities such as plankton is overwhelmingly
sustained by the “rare biosphere” revealed by recent methods of high-throughput genomic
sequencing (9–11)—an extreme instance of a near-universal observation that ecological
communities harbor a few highly abundant, dominant species, and a much larger
number of low-abundance, rare species. In plankton protist communities sampled from
multiple distant locations in the world oceans, the number of rare species increases as a
power-law as lower abundances are considered, a pattern that is quantitatively uniform
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across samples despite their strong compositional differences
(12). In addition to spatial variations, strong temporal turnover
has been observed for plankton, where species abundances can
change dramatically on a short time scale, even when abiotic
conditions do not vary substantially (13–15). A role for intrinsic
ecological dynamics in driving such complex oscillations is
supported by mesocosm experiments, where sustained abundance
fluctuations have been observed even under stable external
conditions, both for plankton (16, 17) and other microbes
(18, 19).

The conditions enabling ecological chaos can be investigated
with mathematical models. Traditionally, models of population
dynamics have considered only a handful of taxa. There, chaos
tends to occur only within a narrow parameter range (20, 21).
In contrast, high-dimensional dynamical systems (involving
dozens or hundreds of interacting degrees of freedom) seem
to display chaos more generically (22). Robust fluctuating
states (variably identified as chaos) were found in models of
species-rich communities with competitive (23–25), predator–
prey (26, 27), or consumer–resource (28) interactions. Some
studies reported that chaotic regimes tended to sustain a
higher diversity than equilibria due to the availability of more
(spatio-)temporal niches (20, 24, 27, 29). Nonetheless, stabilizing
mechanisms are required to prevent large abundance fluctuations
from causing diversity-limiting extinctions. A metacommunity
structure (a network of patches connected through dispersal)
offers one plausible solution. Under conditions where patches’
abundance dynamics do not synchronize, local extinction can
be compensated by migration from another patch, and the
fluctuations persist on time scales much longer than the local
dynamics (24–26, 30).

Here, we are instead interested in characterizing the within-
patch chaotic dynamics in order to relate two complementary
perspectives: that of the fluctuating abundance time series of indi-
vidual species and that of local community-level statistics—such
as the instantaneous distribution of abundances across species
and the overall strength of interactions. We consider a general
model for large communities where strong ecological interactions
encompass, as in microbial ones, vigorous competition between
the composing species, but also facilitation. We simplify spatially
structured models by considering a local, well-mixed community
with a constant, small immigration. Like a “seed bank” (31) or the
effect of metacommunity dispersal, this prevents irreversible loss
of species. Following a well-established “disordered” approach to
complex communities (32–35), we consider pairwise interactions
drawn from a random distribution but focus on the little-
studied regime where only a handful of species can dominate
the community at any time, while most other species are rare,
consistent with the rare biosphere pattern.

We show that in this general setting, a broad range of
model parameters allows species to alternate chaotically between
rarity and abundance on a characteristic timescale such that the
community composition moves through a succession of low-
diversity states. The distribution of abundances attained by any
given species over a long time series largely overlaps with the
distribution of abundances found in the whole community at
any given time, which is a power-law across many orders of
magnitude in abundance values. This correspondence suggests an
equivalence among different species despite their clear ecological
differences and short-term competitive exclusion dynamics. We
derive a stochastic focal-species model that captures, in a statistical
sense, the dynamical features common to all species, and also
identify the origin of species-specific deviations in the propensity
to dominate the community.

1. Model
We describe a community of S species by their time-dependent
absolute abundances xi(t), with i = 1, 2, . . . , S the index
of a species. Microbial communities have been described by
deterministic equations where changes in abundance relate to
competition within species and pairwise species interactions
(19, 36, 37). According to the Lotka–Volterra equations (38),
the abundance of any species in isolation grows logistically: If
initially the species is rare, its abundance grows exponentially at a
maximum rate r, doubling every (ln 2)/r time units. Eventually,
it saturates to a carrying capacity K set by resources, predation,
and abiotic conditions, assumed constant and not modeled
explicitly. For simplicity, we set r andK to unity for all species but
discuss heterogeneity in these parameters in SI Appendix, Note S3.
The interaction coefficients �ij (real numbers) quantify the effect
of species j on the growth rate of species i, by convention,
detrimental when �ij > 0, and facilitative when �ij < 0. We
include a small rate of immigration �� 1 into the community,
constant and equal for each species, to set a lowest level of rarity
and prevent extinctions. Abundances thus change in time as:

ẋi(t) = xi(t)

1− xi(t)−
S∑

j=1( 6=i)

�ijxj(t)

+ �. [1]

In species-rich communities, the number of potential
interactions—S × S—is very large, and their values hard to
estimate in natural settings. A classic approach is therefore
to model the set of interaction coefficients as a realization
of a random interaction matrix A (32–35). When S is large,
patterns of ecological interest are expected to depend on the
summary statistics of A rather than its particular realization.
We consider for simplicity Gaussian statistics Aij ∼ N (�, �2)
(i 6= j). A correlation  between diagonally opposed elements
can be introduced, biasing interactions toward predator–prey
( = −1) or symmetric competition ( = 1); here, we focus on
independent interaction coefficients ( = 0) and discuss other
cases in SI Appendix, Fig. S5.

The interaction coefficients for distinct species i, j can be
represented in terms of the mean � and SD � of the interaction
matrix, as:

�ij = � + �zij, [2]
where the zij are realizations of random variables with zero
mean and unit variance. We note that, by convention, we
have separated the self-interaction term from the intra-specific
interaction terms in Eq. 1. The diagonal element �ii therefore
does not appear in the sum and is not defined.

Eq. 1 with randomly sampled interactions defines the dis-
ordered Lotka–Volterra (dLV) model. By tuning the ecological
parameters S,�, �, �, it exhibits a number of distinct dynam-
ical behaviors which have been thoroughly explored in weak-
interaction regime, where the interaction between any particular
pair of species is negligible, but a species’ net competition
term from all other species is comparable to its (unitary) self-
interaction. If species are near their carrying capacities, the net
competition is approximately:∑

j(6=i)

�ij = S� +
√
S� zi, [3]

where the net interaction bias:

zi :=
1
√
S

∑
j(6=i)

zij [4]
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is a realization of a random variable ∼ N (0, 1). A finite net
competition in the limit of a large species pool requires:

� =
�̃
S
, �2 =

�̃2

S
, [5]

where �̃, �̃ do not grow with S. Under this scaling, methods from
statistical physics [dynamical mean-field theory (34, 39–41),
random matrix theory (32, 42), and replica theory (43, 44)]
allow exact analytical results in the limit of S → ∞, although
in practice S ∼ 100 is sufficient for good agreement between
theory and simulations. Sharp boundaries were shown to separate
a region where species coexist at a unique equilibrium and
one with multiple attractors, including chaotic steady states
(34, 39–41).

Since we are here interested in the scenario of large differences
in species abundance (rare biosphere pattern) and rapid turnover
dynamics, we instead consider the strong-interaction regime
where the statistics of the interaction matrix do not scale with
species richness S according to Eq. 5. For S� � 1, the
overall competitive pressure makes it impossible for all species
to simultaneously attain abundances close to their carrying
capacities. Abundant species tend to exclude one another,
resulting in instability and complex community dynamics.
Arguably, strong interactions are more plausible than weak ones
for microbial communities, where metabolic cross-feeding, toxin
release, phagotrophy, and competition over limited nutrients
lead species to depend substantially on one another’s presence
(45, 46).

2. Results
In the strong-interaction regime, numerical simulations of the
disordered Lotka–Volterra model show that the community can
display several different classes of dynamics, from equilibrium
coexistence of a small subset of species, to different kinds of
oscillations, including chaos. In Sections 2.1–2.4, we focus on
the reference value of the interaction statistics (� = 0.5, � = 0.3)
representative of chaotic dynamics, and describe its salient
features. In Subsections 2.5–2.6, we describe how the dynamics
depends qualitatively on the statistical parameters� and�. Unless
otherwise stated, simulations use S = 500 and � = 10−8.
Further details on the numerical implementation are presented
in section 4.1.

2.1. A Chaotic Turnover of Rare and Abundant Species. For a
broad range of parameters in the strong-interaction regime, the
community undergoes a chaotic turnover of dominant species.
As illustrated by the time series of stacked abundances in Fig. 1A,
the overwhelming share of the total abundance at any given time
is due to just a few species. Which species are abundant and
which are rare changes on a characteristic timescale, �dom ≈ 30
time units, comparable to the time it would take an isolated
species to attain an abundance on the order of its carrying
capacity starting from the lowest abundance set by immigration.
While the total abundance fluctuates moderately around a well-
defined time average, individual species follow a “boom-bust”
dynamics. If this simulation represented a natural microbial
community, only the most abundant species—that we call the
dominant component of the community—would be detectable
by morphological inspection or shallow sequencing.

We wish to characterize the dominant component and
understand how it relates to the pool of rarer species. In order to

A

B

Fig. 1. Turnover of the dominant component. (A) The stacked abundances
of all species under steady-state conditions: There is a turnover of species
such that only the dominant component is visible at any given time (each
species has a distinct random color). (B) Bray–Curtis index of community
composition similarity between the dominant component of the community
at time t, and the composition if it were isolated from the rare species
and allowed to reach equilibrium: The community appears to approach the
composition of few-species equilibria before being destabilized by invasion
from the pool of rare species.

quantify the notion of dominance, we define the effective size of
the community as Simpson’s (reciprocal) diversity index (47),

Seff(t) :=
1∑

i p
2
i (t)

, [6]

where pi = xi/
∑

j xj denote relative abundances. Seff approaches
its lowest possible value of 1 when a single species is responsible
for most of the total abundance, and its maximum S when
all species have similar abundances. Its integer approximation
provides the richness, i.e. , number of distinct species, of the
dominant component.

The effective size Seff of the community in our reference
simulation fluctuates around an average of nine dominant
species, which make up 90% of the total abundance. The
relative abundance threshold for a species to be in the dominant
component fluctuates around 3%, which is comparable to
the arbitrary 1%-threshold used in empirical studies (48). In
SI Appendix, Fig. S4, we show that the number of dominant
species grows slowly (but super-logarithmically) with S, up to
about 15 for S = 104. Thus, strong interactions limit the size
of the dominant component, and the vast majority of species are
rare at any point in time.

The turnover of dominant species is not periodic; indeed,
even over a large time-window, where every species is found on
multiple occasions to be part of the dominant component, its
composition never closely repeats (SI Appendix, Fig. S3). This
aperiodicity suggests the presence of chaotic dynamics. We give
numerical evidence for sensitive dependence on initial condition
and positive maximal Lyapunov exponent in SI Appendix, Figs.
S1 and S2. The turnover dynamics has the character of moving,
chaotically, between different quasi-equilibria corresponding to
different compositions of the dominant community [cf. “chaotic
itinerancy” (49)]. To reveal this pattern, we measure a “closeness-
to-equilibrium,” defined as the similarity in composition between
the observed dominant component at a given time, and the
equilibrium that this dominant component would converge to
if it were isolated from the rare component and allowed to
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equilibrate. As a similarity metric, we use the classical Bray–
Curtis index (section 4.2), which has also been used to measure
variations in community composition in plankton time series
(13). In Fig. 1B, we see that the similarity at times slowly
approaches 100%, followed by faster drops, toward about 50%,
indicating the subversion of a coherent dominant community by
previously rare invaders.

The fact that the community composition is not observed to
closely repeat is arguably due to the vast number of possible quasi-
equilibria that the chaotic dynamics can explore. In the weak-
interaction regime, a number of unstable equilibria exponential in
S has been confirmed (50, 51). It is therefore conceivable that the
number of quasi-equilibria in our case is also exponentially large.
The LV equations for � = 0 admit up to one coexistence fixed
point (not necessarily stable) for every chosen subset of species
(38). Hence, we expect on the order of ∼ SSeff quasi-equilibria,
which for S = 500 and Seff ≈ 9 evaluates to 1024. If the
dynamics explores the astronomical diversity of such equilibria
on trajectories which depend sensitively on the initial conditions,
the dominant component may look as if having been assembled
“by chance” at different points in time.

The composition of the dominant community is not entirely
arbitrary, though. While the abundance time series of most pairs
of species have negligible correlations, every species tends to
have a few other species with a moderate degree of correlation.
In particular, if (�ij + �ij)/2 is significantly smaller than the
expectation �, and hence species i and j are close to a commensal
or mutualistic relationship, these species tend to “boom” one
after the other (SI Appendix, Fig. S6).

2.2. Species’ Abundance Fluctuations Follow a Power-Law. In a
common representation of empirical observations, where relative
abundances are ranked in descending order a rank–abundance
plot (52), microbial communities display an overwhelming ma-
jority of low-abundance species (10). Our simulated community
reproduces this feature; Fig. 2A. The exact shape of the plot
changes in time, as does the rank of any particular species, but the
overall statistical structure of the community is highly conserved.
An alternative way to display the same data is to bin abundances
and count the frequency of species occurring within each bin,
producing a species abundance distribution (SAD) (52). The
histogram in Fig. 2B illustrates the “snapshot” SAD for the rank-
abundance plot in Fig. 2A of abundances sampled at a single
time point. Whenever observations are available for multiple time
points, it is also possible to plot, for a given species, the histogram
of its abundance in time. As time gets large (practically, we
considered 100’000 time units after the transient), the histogram
converges to a smooth distribution, that we call the abundance
fluctuation distribution (AFD) (53). Its average shape across all
species is also displayed in Fig. 2B.

Several conclusions can be drawn by comparing SADs and
AFDs. First, a snapshot SAD appears to be a subsampling of
the average AFD. Therefore, SADs maintain the same statistical
structure despite the continuous displacement of single species
from one bin to another. Second, every species fluctuates in time
between extreme rarity (x ≈ � = 10−8) and high abundance
(x ≳ 10−1). This variation is comparable to that observed,
at any given time, between the most abundant and the rarest
species. Third, species are largely equivalent with respect to
the spectrum of fluctuations in time, as indicated by the small
variation in AFDs across species. We evaluate the regularities
and differences of single-species dynamics more thoroughly in
Subsection 2.4.

A

B

Fig. 2. Statistical features of abundance variations across species and in
time. (A) Snapshot rank-abundance plot for the relative abundances in
the reference simulation: Most species have orders of magnitude smaller
abundances than the top ranks. Different lines represent observations
at well-separated time points. (B) Species abundance distribution (SAD,
blue histogram) corresponding to the blue rank-abundance plot; overlaid,
abundance fluctuation distribution (AFD), averaged over all species (black
line) with± one SD across species shaded in gray: The snapshot SAD appears
to be a subsampling of the average AFD, indicating an equivalence, but
de-synchronization, of species in their abundance fluctuations. The one
bar missing from the SAD is the effect of finite species richness, as high-
abundance bins only ever contain a couple of species for S = 500. The vertical
dashed line indicates the immigration level which determines a lower limit to
abundances.

The most striking feature of these distributions, however, is the
power-law x−� traced for intermediate abundances. This range is
bounded at low abundances by the immigration rate and at high
abundances by the single-species carrying capacity. The power-
law exponent is � ≈ 1.18 for the reference simulation, but it
varies in general with the ecological parameters, as we discuss
further in the following sections.

The regularity of the abundance distributions across species
suggests that it may be possible to describe the dynamics of a “typ-
ical” species in a compact way—this is the goal of the next section.

2.3. A Stochastic Focal-Species Model Reproduces Boom-Bust
Dynamics. Fluctuating abundance time series are often fitted by
one-dimensional stochastic models (7); for example, stochastic
logistic growth has been found to capture the statistics of
fluctuations in a variety of datasets on microbial abundances
(53, 54). The noise term encapsulates variations in a species’
growth rate whose origin may not be known explicitly. In our
virtual Lotka–Volterra community, once the interaction matrix
and initial abundances have been fixed, there is no uncertainty;
nonetheless, the chaotic, high-dimensional dynamics results in
species’ growth rates fluctuating in a seemingly random fashion.
We are therefore led to formulate a model for a single, focal
species, for which explicit interactions are replaced by stochastic
noise. Because we have found species to be statistically similar, its
parameters do not depend on any particular species, but reflect
the effective dynamics of any species in the community.

Following dynamical mean-field-like arguments and approxi-
mations informed by our simulations (section 4.5), we derive the
focal-species model:

ẋ(t) = x(t) (g(t)− x(t)) + �, [7a]
g(t) = −k + u �(t), [7b]
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where g(t) is a stochastic growth rate with mean −k, and
fluctuations of magnitude u and correlation time �. The process
�(t) is a colored Gaussian noise with zero mean and an
autocorrelation that decays exponentially;

〈�〉 = 0, 〈�(t) �(t ′)〉 = e−|t−t
′
|/� , [8]

where brackets denote averages over noise realizations. The
connection between the ecological parameters S,�, �, � and the
resulting dynamics of the disordered Lotka–Volterra model in
the chaotic phase is then broken down into two steps: how the
effective parameters k, u, � relate to the ecological parameters
and how the behavior of the focal-species model depends on the
effective parameters.

For the first step, we find

k = �X − 1 and u = �
X√
Seff

, [9]

where X is the total community abundance of the original
dynamics Eq. 1, the effective community size Seff is as in Eq. 6,
and an overline denotes a long-time average. Eq. 9 relates the
focal species’ growth rate to the time-averaged net competition
(≈ �X ) from all other species. We find in simulations of Eq. 1
in the chaotic phase that competition is strong enough to make
k > 0. The second relation captures the variation in the net
competition that a species experiences because of turnover of the
dominant community component. Due to sampling statistics,
this variation is larger when the dominant component tends to
have fewer species; hence, the dependence on (Seff)−1/2. The
third effective parameter, the timescale �, controls how long the
focal species stays dominant, once a fluctuation has brought it
to high abundance. This timescale is essentially equal to the
turnover timescale �dom of the dominant component (defined
more precisely by autocorrelation functions in section 4.5). In
the weak-interaction regime, where any pair of species can be
treated as effectively independent at all times, self-consistency
relations such as S〈x〉 = X allow to implicitly express the
focal-species model in terms of the ecological parameters. For
strong interactions, however, the disproportionate effect of the
few dominant species on the whole community invalidates this
approach; we therefore relate the effective parameters to the
community-level observables X , Seff, �dom which are obtained
from simulation of Eq. 1 at given values of the ecological
parameters.

For the second step, we would like to solve Eq. 7 for general
values of the effective parameters. While this is intractable due
to the finite correlation time of the noise, the equations can be
simulated and treated by approximate analytical techniques. In
Fig. 3A, we compare the time series of an arbitrary species in the
dLV model with a simulation of the focal-species model. By eye,
the time series appear statistically similar. The typical abundance
of a species can be estimated by replacing the fluctuating growth
rate in Eq. 7 with its typical value (i.e. � = 0), yielding
the equilibrium �/k if k > 0, as indeed confirmed by the
simulation. Thus the typical abundance value is on the order of
the immigration threshold. Fig. 3B shows that the average AFD
of the dLV agrees remarkably well with the stationary distribution
of the focal-species model, in particular for the power-law section.
Using the unified colored noise approximation (55) (section 4.6),
one predicts that the stationary distribution, for � � x � 1,
takes the power-law form x−� , where the exponent

� = 1 +
k
u2�

[10]

A

B

Fig. 3. Comparison of the stochastic focal-species model and the chaotic
dLV model. (A) Time series of one arbitrary species in the disordered Lotka–
Volterra (dLV) model (blue), and one realization of the stochastic focal-species
model Eq. 7 with parameters as in Eq. 9: The time series are statistically
similar. (B) Comparison of the average abundance fluctuation distribution
(AFD) from Fig. 2 (black), and the AFD of the focal-species model (pink):
Excellent agreement is found for the power-law section. The “unified colored
noise approximation” solution for the focal-species model’s AFD (dashed,
pink line) predicts the correct overall shape of the distribution, but not a
quantitatively accurate value for the power-law exponent.

is strictly larger than one—the value predicted for weak inter-
actions (41) and for neutral models (56). Even if Eq. 10 is not
quantitatively precise (Fig. 3B), this formula suggests a scaling
with the effective parameters that we will discuss later on.

2.4. Species with Lower Net Competition Are More Often
Dominant. The similarity of all species’ abundance fluctuation
distributions in Fig. 2 is reflected in the focal-species model’s
dependence on collective properties like the total abundance.
However, the logarithmic scale downplays the variance between
species’ AFDs, particularly at higher abundances. Indeed, while
all abundances fluctuate over orders of magnitude, some species
are observed to be more often dominant (or rare). Such differ-
ences are reminiscent of the distinction between “frequent” and
“occasional” species observed in empirical time series (57, 58).

In order to assess the nature of species differences in simulations
of chaotic dLV, we rank species by the fraction of time spent as
part of the dominant component. Observing the community
dynamics on a very long timescale of tens of thousands of
generations (400 times longer than in Fig. 1), the first-ranked
species appears to boom much more often than the last (Fig. 4A).
The frequency of a species is chiefly determined by the number
of booms rather than their duration, which is comparable for
all species. The median dominance time decreases with the total
species richness (Fig. 4B): A doubling of S leads to each species
halving its dominance time fraction. As the community gets
crowded—while its effective size hardly increases, as remarked in
Subsection 2.1—all species become temporally more constrained
in their capacity to boom. Yet some significant fraction of species
is biased toward booming much more often or rarely than the
median, regardless of community richness. We quantify this trend
by plotting in Fig. 4C the dominance bias—the dominance
time fraction normalized by the median across all species—
against the relative rank (i.e., rank divided by S). For high
richness (S ∼ 103), the distribution of bias converges toward
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A

B C D

Fig. 4. Species differences in dominance. (A) Example of a long abundance time series for the three species who are ranked first, median, and last, with respect
to the “dominance bias” (fraction of time spent in the dominant component relative to the species median). Some species “boom” more often than others. (B)
The scaling of median fraction of time spent in the dominant component against reciprocal species pool size: Increasing S results in a proportional decrease
in median dominance time. (C) Distribution of dominance biases against relative dominance rank for a range of S: there appears to be convergence toward a
nonconstant limiting distribution, implying that net species differences are not due to small-S effects. Note that, by definition, the dominance bias is 1 for the
middle rank, indicated by the dashed line separating positively from negatively biased species. (D) Scatter of dominance bias against the net interaction bias, zi
Eq. 4: Lower net competition correlates with higher dominance bias. Species in the tails of the zi distribution are also less “typical,” with typicality quantified by
the index �i , Eq. 16, representing the similarity of a species AFD to the species-averaged AFD. Panel A and D are both for S = 500.

a characteristic, nonlinearly decreasing shape, where the most
frequent species occur more than four times as often as the
median, and the last-ranked species almost zero.

The persistence of inter-species differences with large S may
seem to contradict the central limit theorem, as species’ sets
of interaction coefficients converge toward statistics that are
identical for every species. In the chaotic regime, however, even
the smallest differences in growth rates get amplified during
a boom. As we show in section 4.4, if Eq. 1 is rewritten in
terms of the proportions pi, the relative advantage of species i is
quantified by a selection coefficient whose time average scales as
−S−1/2�zi. Correspondingly, the relative, time-averaged growth
rate is proportional to the net interaction bias zi defined in Eq. 4,
resulting in species with larger zi to have positive dominance
bias (Fig. 4D). Outliers of the scatter plot, i.e. species that have
particularly high or low dominance ranks, are also the species
whose AFD is furthest from the average AFD of the community,
as quantified by the typicality index �i ∈ [0, 1], defined in
section 4.2.

In conclusion, the relative species-to-species variation in the
total interaction strength drives the long-term differences in
the dynamics of single species in the community. While the
focal-species model emphasizes the similarity of species, species
differences can also be taken into account by employing species-
specific effective parameters. In particular, replacing k with a
distribution of ki’s would create a dominance bias, and is in fact
motivated upon closer examination of our focal-species model
derivation (Fig. 7D in section 4.5).

2.5. Interaction Statistics Control Different Dynamical Phases.
Hitherto, we have focused on reference values of the interaction
statistics � and � that produce chaotic turnover of species
abundances. We now broaden our investigation to determine the
extent of validity of our previous analysis when the interaction
statistics are varied. For every pair of (�, �) values, we run
30 independent simulations, each with a different sampling of

the interaction matrix and uniformly sampled abundance initial
condition. After a transient has elapsed, we classify the trajectory
as belonging to one of four different classes: equilibrium, cycle,
chaos, or divergence. Fig. 5 displays the probability of observing
chaos, demonstrating that it does not require fine tuning of
parameters, but rather occurs across a broad parameter range.

The parameter region where chaos is prevalent, the “chaotic
phase,” borders on regions of qualitatively different community
dynamics. For small variation in interaction strengths (below
the line connecting (0,

√
2/S) to (1, 0)), the community has

a unique, global equilibrium that is fully characterized for
weak interactions (cf. Fig. 2 of ref. 34). The transition from
equilibrium to chaos has been investigated with dynamical mean-
field theory (41). For low interaction variance, but with mean
exceeding the unitary strength of intra-specific competition, a
single species comes to dominate, as expected by the competitive
exclusion principle (59). Adiabatic simulations, implemented
by continuously rescaling a single realization of the interaction
matrix (details in SI Appendix, Fig. S8), reveal that lines radiating
from the point (�, �) = (1, 0) separate sectors where stable fixed
points have different numbers of coexisting species. Traversing
these sectors anti-clockwise, Seff increases by near-integer steps
from one (full exclusion) up to about 8. From thence, a sudden
transition to chaos occurs at the dashed line in Fig. 5. We
note, however, that the parameter region between chaos and
competitive exclusion contains attractors of different types: cycles
and chaos, coexisting with multiple fixed points, resulting in
hysteresis (SI Appendix, Fig. S8B). This “multiple attractor phase”
(34, 41) is a complicated and mostly uncharted territory whose
detailed exploration goes beyond the scope of this study. Finally,
for large variation in interactions, some abundances diverge due
to the positive feedback loop induced by strongly mutualistic
interactions, and the model is biologically unsound.

Across the phase diagram, community-level observables such as
the average total abundance X and effective community size Seff
vary considerably (SI Appendix, Fig. S9). The weak-interaction
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Fig. 5. Dynamical phases of the disordered Lotka–Volterra model as a
function of the interaction mean and SD. Color indicates the probability
of persistent chaos in long-time simulations: For each � and � (with 0.01
increment), 30 simulations were made, each with a different random initial
condition xi ∼ U(�,2/S) and realization of the interaction matrix. Parameters
yielding divergence every time are marked with gray. The boundary separat-
ing the chaotic phase from the rest of the multiple-attractor phase (in which
cycles and multi-stable fixed point are common in addition to chaos) is not
sharp, unless probed adiabatically in the way explained in SI Appendix, Fig.
S8. The unique fixed point phase has been studied analytically in the weak-
interaction regime (� ∼ 1/S). When inter-specific competition is in general
stronger than intra-specific competition, a single species (identity depending
on initial condition) dominates, in line with the classical competitive exclusion
principle (59).

regime (whether in the equilibrium or chaotic phase) allows for
high diversity, so X and Seff are of order S; strong interactions, on
the other hand, imply low diversity, with Seff andX of order unity.
An explicit expression for how these community-level observables
depend on the ecological parameters (S,�, �, �) is intractable
although implicit formulas exist in the weak-interaction regime
(34). Nonetheless, an approximate formula that we derive in
section 4.3 allows to relate community-level observables to one
another and to � and �:

X ≈
[
� +

1− �
Seff
− ��

]−1
, [11]

in which we introduce the collective correlation

� := −
∑
ij

zijpipj, [12]

involving the time-averaged product of relative abundances
weighted by their normalized interaction coefficient Eq. 4. By
construction, the collective correlation is close to zero when all
species abundances are uncorrelated over long times, as would
follow from weak interactions. On the contrary, it is positive
when pairs of species with interactions less competitive than the
average tend to co-occur, and/or those with more competitive
interactions tend to exclude one another.

Eq. 11 is particularly useful in understanding the role of
correlations in the chaotic phase. As we observed in Subsection
2.3, the effective parameter k = �X −1 is positive in the chaotic
phase, implying that the growth rate of a species is typically
negative, and abundances are therefore typically on the order of

the small immigration rate rather than near carrying capacity.
The existence of these two “poles” of abundance values is key
to boom-bust dynamics. By combining k > 0 with Eq. 11, we
estimate a minimum, critical value of the collective correlation
required for boom-bust dynamics:

�c =
1− �
�

1
Seff

. [13]

Numerical simulations demonstrate that � ≳ �c in the chaotic
phase, where the critical value is approached at the boundary
with the unique-equilibrium phase (SI Appendix, Fig. S11). With
this result in hand, Eqs. 11 and 13 establish that X ≳ 1/�
in the chaotic phase. For strong interactions, total abundances
are predicted to be of order one, and for weak interactions
X ≈ S/�̃ (recall Eq. 5), which recovers the observed scalings
of these observables. As one moves deeper into the chaotic phase,
the collective correlation increases continuously, as the effective
community size drops, suggesting a seamless transition from a
weak-interaction, chaotic regime amenable to exact treatment
(41, 60), to the strongly correlated regime that we have analyzed
by simulations and the approximate focal-species model.

2.6. Self-Organization between Community-Level Observables
Constrains Abundance Power-Law Variation. In Subsection 2.3,
we established a focal-species model depending on the effective
parameters k, u, and �, that were related to the ecological
parameters S,�, �, � indirectly via community-level observables
X , Seff, �dom. Furthermore, in the previous section, we studied
how the latter vary in the chaotic phase. Putting these results
together, we here examine the corresponding variation of the
effective parameters and of the focal-species model’s predictions.

Because the trio k, u, � ultimately derives from only two
independent variables, �, � (considering fixed S, �), they must be
dependent. Fig. 6A demonstrates that, across the chaotic phase,
an approximate linear relationship holds between k and u, as well
as between u and �. Because k and u are related to the mean
and the variance of abundances via Eq. 9, their proportionality is
reminiscent of the empirical Taylor’s law which posits a power-
law relation between abundance mean and variance as they vary
across samples (61). The slope of the relationship of u to k is close
to one (and varying little with S and �; SI Appendix, Fig. S10),
which implies with Eq. 9 that:

X ≈

[
� −

�√
Se

]−1

. [14]

Comparison to Eq. 11 then yields that � − �c ≈ Seff
−1/2.

This empirical relationship thus supports the aforementioned
convergence—in the limit where Seff is large, as for weak
interactions—of the collective correlation to its critical value.

We find in Fig. 6 that the slope �foc of the power-law trend
obtained from simulation of the focal-species model finds good
agreement with the value � from the full dLV model. There
is a narrow overall variation of the exponent, a consequence
of the interdependency of the effective parameters. As can be
intuited by the approximate expression Eq. 10 for the focal-
species model, the exponent is strictly larger than 1, a value it
approaches if the turnover time scale diverges, as indeed it does
on the boundary to the unique equilibrium phase. The exponent
increases as interactions become more competitive, up to about
1.4 at (�, �) = (1, 0). However, the exponent also depends on
S and �, showing a constant slope against log S or −1/ log �
(SI Appendix, Fig. S7).
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A B C

Fig. 6. Relations between effective parameters in the chaotic phase. (A) Color legend of the chaotic phase (boundaries from Fig. 5). Each pair of (�, �) has
been mapped to a distinct color. (B) Co-dependence of the effective parameters u, k, �: the amplitude u of growth-rate fluctuations approximately equals the
absolute value k of the negative growth rate (only weakly depending on � and S; SI Appendix, Fig. S10); u is roughly proportional to the inverse turnover time,
but the slope of the relationship depends on � and S. (C) The exponent � of the power-law section of the AFD for the chaotic dLV model plotted against the
analogue �foc obtained for the focal-species model: generally good agreement is found, with more outliers for parameters close to phase boundaries. A few
outliers lie beyond the plotted range. Exponents have been estimated by fitting a power-law in the interval [100�,0.01] of the abundance distribution.

3. Discussion
Following growing empirical evidence for the presence of
ecological chaos in natural and synthetic communities (7, 19),
and increasing interest in the role of the rare biosphere (10, 62),
we have sought a connection between the two through a minimal
model of community dynamics: The disordered Lotka–Volterra
(dLV) model with strong interactions and weak immigration.
Our analysis of this model by extensive simulations, and through
the derivation of an effective focal-species model, showed that
first, persistent chaos arises generically and can drive fast and
extensive turnover of rare and abundant species; second, a
statistical equivalence between species emerges such that a single
focal species’ fluctuation statistics predict the largely invariant
power-law abundance distributions; third, deviations from this
equivalence are associated with species differences in frequency
of occurrence. In the following, we discuss the generality of these
results and their interpretation in the context of plankton ecology.

The chaotic turnover of rare and abundant species occurs
because every subset of species that could stably coexist at high
abundances is invadable by some rare species. This phenomenon
should be robust to generalizations of the model as long as the
dominant component remains exposed to a sufficient diversity
of potential invaders and the niche space that underlies species
interactions contains enough trade-offs that no species can be a
superior competitor across many biotic contexts. Our simplifying
assumptions such as uniform growth rates and carrying capacities,
and uncorrelated interactions can be relaxed (see our limited
explorations in SI Appendix, Fig. S5). Additional sources of
modest noise should not cancel the deterministic contributions to
fluctuations; indeed, the dynamical phases we have indicated are
qualitatively similar to those arising in an individual-based version
of the dLV model accounting for demographic stochasticity (23).
On the other hand, if the connectivity of the interaction network
were reduced, lowering the exposure to competitors, one might
expect a loss of persistent chaos at some critical connectance value
(63). Highly structured and hierarchical interactions would also
undermine autonomous turnover on ecological timescales.

On a more technical note, the type of chaos we observe is likely
“chaotic itinerancy” (49, 64). Lotka–Volterra systems without
immigration admit heteroclinic networks (65–67), equilibria
with stable and unstable directions (i.e. saddle points) connected
by orbits. Without immigration, such saddles are found on
the system boundary, corresponding to some subset of species

being extinct—in our case, these are the low-diversity equilibria
reflected in the dominant component. The chaotic attractors
appear when the saddles are “pushed off” the boundary by the
immigration term. Consistent with chaotic itinerancy in the dLV,
characteristics of heteroclinic orbits—dynamical slowdown and
“aging”—appear in the limit of vanishing immigration (60, 68).

While the assumption of disordered interactions may appear
ad hoc, predictions for the onset of instability by the dLV
model qualitatively match experiments in synthetic bacterial
communities (19). In a plankton context, we take the dLV to be
a minimal yet relevant phenomenological representation of the
relationships between species (or “operational taxonomic units”
from sequencing) of marine protists of a similar size class: The
protistan interactome is largely uncharted (69), the ubiquity of
mixoplankton blurs consumer–resource distinctions (70), and
the effects of a diversity of zooplankton and viruses can manifest
as apparent competition between species.

For rare plankton protists, the empirical snapshot SADs show
a clear power-law trend, with an exponent around 1.6, varying
little between different locations in the world oceans, despite
large composition differences across samples (12). The unified
neutral theory of biodiversity, based on the interchangeability
of individuals regardless of species identity, predicts a power-
law tail of the SAD with exponent one (3, 56). To approach
the empirical value, previous studies augmented neutral theory
with nonlinear growth rates (12) or chaotic mixing (71) to find
an exponent dependent on the model parameters. However,
for large census sizes such as that of plankton communities,
neutral theories predict astronomically large turnover timescales
(72, 73), inconsistent with observation. As we have shown, the
dLV exhibits fast turnover when interactions are strong and
sufficiently varied. For this model, � → 1 as immigration
tends to zero (SI Appendix, Fig. S7, also shown in the weak-
interaction limit (28, 60)), but, if interactions are not weak,
� is substantially larger than one for small but finite values
of immigration. The approximate solution to the focal-species
model, Eq. 10, shows that the positive deviation from � = 1
depends on three inter-related effective parameters: the mean,
amplitude, and timescale of fluctuations in each species’ net
competition. As these fluctuations drive the turnover pattern,
boom-bust dynamics comes to be associated with a larger-than-
one exponent. The relatively weak variation of � across the
space of ecological parameters moreover suggests a reason for
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the limited geographical heterogeneity of the empirical value of
the exponent.

A role for chaos in the plankton has long been advo-
cated for (29, 74). Proposed mechanisms include coupling of
population dynamics to chaotically fluctuating environmental
variables (75, 76), nonlinearity of low-dimensional zooplankton–
phytoplankton dynamics (77), resource competition between
phytoplankton species (20), the effect of marine viruses on
populations of cyanobacteria strains (26). These possibilities
are not mutually exclusive, but relevant at different scales,
from coarser to finer levels of taxonomic resolution. Adding
a degree of structure to our species-level model to represent
multiple functional groups would offer a way to investigate the
connection between fluctuations at different scales. Empirical
findings to replicate are the weakening signal for chaos as taxa are
aggregated at higher orders (8) and more dynamical regularity
and predictability in succession patterns at the level of functional
groups (78). In fact, even our unstructured model captures the
feature that fluctuations are less severe at the aggregated level (e.g.
total biomass, the envelope in Fig. 1).

Besides explicit incorporation of structured interactions, an
extension of our model with particular biological relevance would
be to allow interactions to evolve, notably as they are reshaped
by the appearance of novel species—a different scenario than
our immigration term captures. Persistent turnover can then
manifest on long timescales even if the ecological dynamics is—
contrary to our case—at equilibrium. Such turnover has been
shown in numerical models of evolving food webs structured
by body size (79, 80) and when adaptive dynamics occurs in
high-dimensional trait spaces (81). An open question is what
evolutionary process may produce interactions that underpin
chaotic turnover on ecological timescales. The observation that
evolution sustains higher diversity under boom-bust ecology than
under equilibrium ecology (82), together with the propensity of
diversity to cause instability, suggests a possible role for eco-
evolutionary feedbacks.

Our approximate derivation of an explicit focal-species model
demonstrates how ecological chaos comes to resemble noise.
Parallel work to ours shows that an exact but implicitly defined
effective model can be derived in the combined limit of weak
interactions and infinitesimal immigration, where compositional
turnover is slow (60). In our model, the effective parameters
could be used in fitting observational time series. Formally,
Eq. 7 is similar to heuristic stochastic single-species logistic
growth models that predict empirical distributions of microbial
abundances (53, 54). A notable difference lies in the negative
mean growth rate we find, which together with noise-correlation
and immigration yields fluctuations over many orders of mag-
nitude, from rare to abundant. An insight from our model
is that a species may be rare for an exceedingly long time,
without rarity being a permanent character. On the other hand,
species differences in the propensity to become abundant could
reflect small differences in effective parameters that depend on
a multitude of factors, which—like interaction rates—might
not be individually measurable with precision. Together, these
findings suggest that the abundances of particular species may
not be easily explained by their traits, should fluctuations be
determined by community complexity rather than a more direct
coupling to environmental variables. In closing, a comparison
of time series data to focal-species models could provide a
complement to nonparametric methods (6, 7) in establishing
the plausibility of ecological chaos as a driver of abundance
fluctuations.

4. Materials and Methods
4.1. Numerical Implementation. For Lotka–Volterra simulations, we used
a fixed time-step Euler scheme with Δt = 0.01, applied to the logarithm
of abundances. This guarantees the positivity of all abundances at all times,
regardless of immigration rate. To automatically classify the long-time behavior
of trajectories as fixed-points, cycles, or chaos, we used a heuristic method of
counting abundance vector recurrences, validated against visual inspection
of trajectories and calculated maximal Lyapunov exponent for a subset of
trajectories. Further details are given in SI Appendix, Note S2.

4.2. Similarity Metrics. The Bray–Curtis similarity index (83) is defined as

BC(x, y) =
∑

i

wi
min(xi, yi)

mean(xi, yi)
, [15]

where wi is the relative abundance of species i with respect to the joined
abundances x + y. By definition, BC(x, y) = 1 iff x = y, and BC ≈ 0 when,
for each i, either xi � yi or yi � xi; this makes it suitable for communities
where abundances span orders of magnitude.

For the similarity graph Fig. 1B, we have plotted BC(xdom(t), y∗(t)), where
xdom(t) is the restriction ofx(t) in the reference simulation to only the dominant
species at time t, and y∗(t) is the fixed point reached from xdom(t) as initial
condition, with � = 0.

To compare the similarity the AFD of species i, Pi(x), to the species-averaged
AFD P =

∑
i Pi/S, we define the index

�i := 1− sup
x
|F(x)− Fi(x)|, [16]

where Fi and F are the cumulative distribution functions of Pi and P, respectively;
i.e., the index �i is based on the Kolmogorov–Smirnov distance (47) of the AFDs.

4.3. Derivation of Time-Averaged Total Abundance. Direct summation of
Eq. 1 over i (assuming ri = 1), and then division on both sides by X(t) =∑

i xi(t), yields

d
dt

ln X(t) = 1− X(t) [� + (1− �)/Seff − ��(t)] +
S�

X(t)
[17]

with Seff as in Eq. 6 and �(t) as Eq. 12 but without the time average. Taking the
long-time average of Eq. 17, the left-hand side becomes limT→∞(ln X(T) −
ln X(0))/T , which evaluates to zero on the assumption that no species diverges
in abundance. The right-hand side contains terms such as X/Seff and X�. If
the relative fluctuations in X, Seff, � are small (see SI Appendix, Fig. S9), or
these functions are at most weakly correlated to one another, then we obtain,
approximately,

0 = 1− �X − (1− �)X/Seff + ��+ O(S�). [18]

We neglect the small immigration term; solving for X then finds Eq. 11. The
relative error in X between Eq. 11 for simulated values of the community-level
observables in the right-hand side, and the simulated value of X, is typically less
than a few percent (SI Appendix, Fig. S14).

4.4. Selective Advantage. The dynamics of the relative abundance pi = xi/X
is found by summing and differentiating Eq. 1 as:

ṗi = Xpi

∑
j

p2
j − pi −

∑
j

pj

�ij −
∑

k

�jkpk


+
�S
X

(
1
S
− pi

)
. [19]

Using Eqs. 3, 6, and 12 in defining:

�(t) := 1/Seff(t)− ��(t), si(t) := −�
∑

j

zijpj, [20]
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we can write Eq. 19 as:

ṗi = Xpi
{
� + si − pi

}
+ O(�). [21]

The term si is responsible for the bias of species i against the reference proportion
�. As a heuristic means of calculating the time-averaged bias, we suppose the
pi ’s can be treated independently of the zij and be replaced by pi ≈ 1/S; then
we obtain si ≈ −�zi/

√
S. On this basis, we expect zi to be indicative of a

species’ dominance bias.

4.5. Derivation of the Stochastic Focal-Species Model from Dynamical
Mean-Field Arguments. We write Eq. 1 as:

ẋi = xi(gi − xi) + �, gi = 1−
∑

j( 6=i)

�ijxj. [22]

If we suppose that the abundances {xj(t)} (or, rather, their statistical properties)
are independent of the particular realization [�ij] of the interaction matrix, then,
for a given realization of {xj(t)},

gi(t) ∼ N

1− �
∑

j( 6=i)

xj(t), �2
∑

j(6=i)

x2
j (t)

 , [23]

based on the properties of sums of Gaussian variables. The time-varying mean
and variance of gi means that, averaged over time, gi does not necessarily follow
a Gaussian distribution. We introduce

a(t) := 1− �
∑

i

xi(t), b(t) := �
√∑

i

x2
i (t), [24]

which are found to exhibit significant relative fluctuations, with skewed
distributions (Fig. 7 A and B). However, once we shift and scale gi(t) into
the “effective noise”

�i(t) :=
gi(t)− a(t)

b(t)
, [25]

we recover (closely) aN (0, 1) distribution, for both the set {�i(t)}1,...,S at any
given time t, and for the stationary distribution of�i(t), at least for typical species
(Fig. 7 C and D). The empirical distribution of the gi across all species and times is
closely approximated by the stationary distributionN (a, b) (Fig. 7E). Therefore,
we suppose that, despite their fluctuations, we can replace a(t) and b(t) with
their time-averages and model gi as a stochastic process g(t) = a + b�(t),
where �(t) is a process with stationary distribution N (0, 1). The parameter

correspondence in Eq. 9 follows by k = −a, u = b ≈ X/

√
Seff, and � = �� ,

the correlation time of �.
Note that, up to neglecting a diagonal term of the sum, the effective noise

can be written:
�i(t) = −

∑
j(6=i)

zijqj(t), [26]

with zij ∼ N (0, 1), and q(t) = x(t)/||x(t)||2. Given the chaotic turnover
pattern, the latter is expected to perform something like a random walk on the
S-sphere, with a de-correlation time corresponding to the turnover of dominant
species. This timescale is inherited by the effective noise. More precisely, we
compare autocorrelation functions (ACF). The ACF of a function f is defined as:

�f (tlag) := meant[�f(t) · �f(t + tlag)]/var[f ], [27]

with �f = f − f . By definition�f (0) = 1. For each species’ effective noise we
compute numerically ��i(tlag), as shown in Fig. 7F. Due to the small number
of “booms” per species, even over a large simulation time, ACFs are slightly
irregular. In order to make estimations more accurate, we consider the averaged
ACF �� := S−1 ∑

i ��i The decay of correlation is well-approximated by the
exponential exp(−tlag/��), where the parameter �� (fitted by least squares)
represents the noise correlation timescale for a “typical” species.

A

C

E

F

D

B

Fig. 7. Statistical properties of the effective noise. (A and B) Time series
and distribution of arel = a/a − 1, etc. (C and D) Histograms of �i(t) across
all species and time (gray), over just species for one random time (green),
over all time for the first/mid/last-ranked species with respect to average
abundance (blue/pink/yellow), withN (0,1) (black, dashed) for reference. (E)
The empirical distribution of g in Eq. 22 over all species and times, compared
to the distribution N (a, b) assumed for g in the focal-species model. (F )
Autocorrelation functions: for every species (gray), first/mid/last-rank species
(blue/pink/yellow)), and the average over all species (black). The left inset
compares the ACFs of x (green), � (black), and the exponential fit to the latter
(red); the Right Inset shows the distribution of the � parameter in exponential
fits to each species ACF.

The approximately N (0, 1) distribution and exponential autocorrelation
function of the effective noise � suggest that it can be modeled as an Ornstein–
Uhlenbeck process, the only Markov process with these two properties;

�̇(t) = −
1
�
�(t) +

√
2
�
�(t), [28]

where �(t) is a Gaussian white noise; 〈�〉 = 0, 〈�(t)�(t′)〉 = �(t − t′). The
timescale referred to as �dom in the main text can be defined as �x , the decay
time of the exponential fit to the ACF of the abundance vector. For a vector-valued
function, Eq. 27 gives

�x =
1
S

∑
i

wi�xi , wi =
var[xi]

1
S
∑

j var[xj]
. [29]

�� and �x match very well (Inset of Fig. 7F) for the reference simulation;
as do the associated timescales �x and �� for all (�, �) in the chaotic phase

10 of 12 https://doi.org/10.1073/pnas.2312822121 pnas.org
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(SI Appendix, Fig. S13). This observation motivates identifying �� of the focal-
species model with the turnover timescale �dom. Thus, the focal species model
and its parameters have been fully specified.

We point out a critical difference between our approach and dynamical
mean-field theory applied in the weak-interaction regime (34, 41). Under strong
interactions, a(t)and b(t)are determined by a small number (Seff)of dominant
species that, during the time of co-dominance, have strong effects on each other.
Therefore, they can not be determined “self-consistently” from the focal-species
equations by assuming that every species can described simultaneously as an
independent realization of it. For example, the self-consistency relation for k
in Eq. 7b is k = �S〈x〉 − 1. In our reference simulation k = 0.26, whereas
�S〈x〉 − 1 = −0.31 even has the wrong sign. This discrepancy is due to
the neglected inter-species correlations needed for the collective correlation �,
Eq. 12, to exceed the critical value Eq. 13 associated with k > 0 and boom-bust
dynamics.

4.6. Steady-State Solution of the Focal-Species Model under the Unified
Colored Noise Approximation. The unified colored noise approximation (55)
assumes overdamped dynamics to replace a process ẋ = F(x) + G(x)�,
driven by Gaussian correlated noise � of correlation-time � , with a process
driven by white noise. The approximation is exact in the limits � → 0
or � → ∞. The stationary distribution of the corresponding white-noise
process is

P∗(x) ∝ exp
{∫ x

v(x′) dx′
}

, [30]

with

v = (�−1/2H�)
F

G2
+

(
ln

H�
G

)′
, [31]

and H� a function of F,G, and � . For Eq. 7

F(x) = −x(k + x) + �, G(x) = ux, [32]

H�(x) = �−1/2
− �1/2(x + �x−1). [33]

With these functions, the integral in Eq. 30 can be performed exactly, yielding

P∗(x) =
1

N
e−[q+(x)+q−(�/x)]x−�

(
�−1 + x +

�
x

)
, [34]

where � is given by Eq. 10, and

q±(y) :=

(
y + (�−1

± k)
)2

2u2
. [35]

Data, Materials, and Software Availability. Simulation code in python
deposited on Zenodo (https://doi.org/10.5281/zenodo.10646601) (84).
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