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S1 Supplementary Figures

As in the main text, unless otherwise stated, reference parameters in simulations are 𝑆 = 500, 𝜇 = 0.5, 𝜎 = 0.3, 𝜆 =
10−8.
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Figure S1: Sensitive dependence onmodel parameters. Achaotic system exhibits sensitive dependence on initial conditions, and hence
also on any model parameters or numerical implementation details that affect the dynamic variables. A Reference simulation, showing
stacked abundances, similar to Main Text Figure 1A. B A change of integration scheme, with respect to the reference; C a perturbation of
the interaction coefficients by𝑂(10−6);D a perturbation of the initial abundances by𝑂(10−8). EEach type of perturbation leads to completely
different community composition compared to the reference (measured as Bray-Curtis similarity) after a few hundred time units.

Figure S2: Convergence to positive maximum Lyapunov exponent (MLE). A The dominant finite-time Lyapunov exponent (FTLE)
over a few integration time steps (𝑛 = 2) fluctuates along a trajectory, indicating the alternation of periods of phase-space expansion (boom)
and contraction (bust). BThe cumulative average of the FTLE converges towards a limit that is themaximal Lyapunov exponent. Its positive
value (0.02) indicates that the trajectory is chaotic.
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Figure S3: Decay of community similarity with time.. A The temporal similarity matrix 𝒯 has elements given by the Bray-Curtis
similarity between the abundance vectors at two time points, 𝒯(𝑡, 𝑡′) = BC(𝒙(𝑡),𝒙(𝑡′)). Because only the diagonal elements are far from
zero, and the similarity index is mostly determined by the overlap of dominant species, we conclude that the dominant component is not
closely repeated (unless, perhaps, after an exceedingly long time). The aberration around 𝑡 ≈ 𝑡′ ≈ 8000 reflects a time when some dominant
component persisted for an unusually long time. B For a few well-separated time points 𝑡 (one graph each), we show how 𝒯(𝑡, 𝑡′) decays
over time 𝑡′ on a timescale of 200 time units (top panel), and how it fluctuates around a small value over a longer time scale of 5000 time
units. Thus, community composition decorrelates quickly in time, with some residual low peaks in similarity reflecting that one or a few
species will eventually reappear in a dominant community that is otherwise differently composed.

Figure S4: Scaling of effective community size with richness. The time-average of the effective community size, 𝑆eff (Main Text
Eq. (6)), increases slowly (but super-logarithmically) with the overall richness 𝑆. That is, even if we add thousands of new species to the
community, the dominant component at given time would just have a species or two more than before.
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Figure S5: Robustness of turnover dynamics under model variations. We here illustrate that chaotic dynamics is observed even
when we relax the simplifying assumptions we made on model parameters in the Main Text; however, we leave a systematic investigation
of these generalized scenarios for future work. A Non-uniform growth rates: we sample 𝑟𝑖 ∼ 𝑈(0, 1). B Non-uniform carrying capacities:
𝐾𝑖 ∼ LogNorm(0, 0.1). C Sparse interactions: each interaction has a 0.1 chance to be non-zero. D Symmetric bias: 𝛾 = 0.2 correlation
between diagonally opposed interaction coefficients. E Predator-prey bias: 𝛾 = −0.3 correlation between diagonally opposed interaction
coefficients.
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Figure S6: Pairwise correlations in species abundances. While most of the 𝑆(𝑆 − 1) pairs of species do not have meaningful levels
of correlation over long times (here 100’000 time units), every species has some other species with which its correlation is substantial and
non-spurious. The vertical axis has the correlation coefficient with lag time 𝑡lag 𝜙𝑖𝑗(𝑡lag), and the horizontal axis has the rescaled interaction
coefficient 𝑧𝑖𝑗 = (𝛼𝑖𝑖−𝜇)∕𝜎. The inset show thatmost zero-lag correlation coefficients are close to zero; all zero-lag correlations are scattered
in grey in the main plot. Blue (darker) points shows the values of maximum correlations max𝑗 𝜙𝑖𝑗(0) for every species 𝑖; in order to see if
correlations are stringer if we optimize over the delay time, we show in light bluemax𝑗,𝑡lag<200 𝜙𝑖𝑗(𝑡lag). It is seen that themaximal correlations
are around 0.25 in size, and clearly associatedwith 𝑧𝑖𝑗 < 0, i.e. a less-than-averagely negative (even positive) effect of species 𝑗 on 𝑖. Similarly,
the extremal anti-correlations (pink for zero time lag, and light pink optimizing over time lag) are associated with 𝑧𝑖𝑗 > 0, i.e. a particularly
negative effect of 𝑗 on 𝑖.

Figure S7: Scaling of AFD power-law exponent with 𝑆 and 𝜆. From simulations, we have extracted the slope of the power-law section
of the abundance fluctuation distribution (AFD) A For varying 𝑆, we find empirically that the exponent depends linearly on the logarithm
of species richness, with coefficients that depend on the system’s other parameters: 𝜈 = 𝜈0 + 𝑐 log 𝑆, where 𝜈0 = 𝜈0(𝜇, 𝜎, 𝜆), 𝑐 = 𝑐(𝜇, 𝜎, 𝜆). B
For varying 𝜆, the exponent appears to follow 𝜈 = 1 − 𝑑∕ log 𝜆, where 𝑑 = 𝑑(𝜇, 𝜎, 𝑆). The values of 𝜆 are 10 to the power of negative 8, 12,
16, 20, 24, 28, 32, and 128 in order to extrapolate towards zero immigration. The dashed line connects 𝜈 = 1 with the value at 𝜆 = 10−8.
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Figure S8: Phase diagram form adiabatic simulations. Adiabatic simulations allow to track, in a numerically efficient fashion, the
attractors of the dynamics as model parameters are changed slowly and continuously. To make the interaction statistics 𝜇 and 𝜎 continuous
parameters of themodel, we use as interactionmatrix 𝛼𝑖𝑗(𝜇, 𝜎) = 𝜇+𝜎𝜁𝑖𝑗 where 𝜁 is a single, fixed realization of a standard Gaussian random
matrix. A For each value of 𝜎, we initialized separate simulation runs starting at 𝜇 = 1.4, and let their abundances evolve until an attractor
was found. For each run, we then changed𝜇 by small increments 𝛿𝜇 = −0.1, allowing enough time between each change for the abundances
to relax from their previous state. This relaxation would either result in a small perturbation of the previous attractor, or instigate a jump
to a different attractor. If a state diverged, the initial abundances for the next value of 𝜇 were set as the most recent non-divergent attractor.
Thus, each simulation traced a sequence of attractors from 𝜇 = 1.4 → −0.1, corresponding to a horizontal line in the phase diagram. The
colour quality reflects the class of the attractor, and the colour gradation indicates the effective community size, revealing the following
features: First, we find mostly fixed points in the multiple attractor region. This is because, once a fixed point is converged to, it is “hold on
to” until it vanishes or changes stability. If, instead, every simulation at given 𝜇, 𝜎 would start from newly sampled initial abundances and
interactionmatrix, we would find different attractors every time, and the diagram becomes more heterogeneous (compareMain Text Figure
5). Second, clear lines radiate from (𝜇, 𝜎) = (1, 0) and delineate sectors characterized by the number of high-abundance species coexisting
at a fixed-point. In section S4 we show that an invasion analysis predicts such sectors, but not the right scaling of the lines’ slope with 𝑆eff.
Third, the jump from fixed-point to chaotic attractors occurs along a sharply defined line. B Stacked abundances of the attractor found in
an adiabatic sequence 𝜇 = 1.4 → 0.6 (top panel, right to left) and the reverse 0.6 → 1.4 (bottom panel, left to right) at 𝜎 = 0.3. One can
see sudden jumps to new equilibria involving more (or less) species. In the upper panel, reading right to left, a three-species equilibrium is
found at 𝜇 = 1.15, which jumps to a 6-species equilibrium by the invasion of three more species at 𝜇 = 1.11; another two species displace
one of the previous at 𝜇 = 0.9; and at 𝜇 = 0.72 a sudden jump onto a chaotic attractor occurs. Reversing the adiabatic protocol, the transition
from chaos to fixed point occurs only at 𝜇 = 0.81, and the sequence of equilibria is not identical to the forward direction (hysteresis). A
systematic investigation of the multiple attractor phase and the transition to the chaotic phase is left for future work.
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Figure S9: Variation of community-level observables across the phase diagram. For the community-level observables in Main Text
Eq. (11) we show: A–C their time-averaged values; D–F their relative relative fluctuations. The data comes from the adiabatic simulation
detailed in the caption to Figure S8. An arrow on the end of the colour bar implies the range has been capped for clarity.

Figure S10: Dependence of the effective parameters 𝑢, 𝑘 on 𝑆, 𝜆. The empirical, approximate relationship 𝑢 ∝ 𝑘, found across the
range of 𝜇, 𝜎 in the chaotic phase, has a proportionality constant that depends relatively weakly on 𝑆 and 𝜆.
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Figure S11: Collective correlation. Within the bounds to the chaotic phase indicated in Figure S8A, we have run a long simulation for
each parameter point with random initial condition and interaction matrix realization. Statistics were recorded for persistently chaotic
trajectories; non-chaotic trajectories were discarded, and the parameter point rerun to obtain a long chaotic trajectory, up to five times,
else the point was omitted (chaos probability was shown in Main Text Figure 5). A The collective correlation. B The critical value of the
collective correlation as defined by Main Text Eq. (13). C The ratio 𝜌∕𝜌𝑐 tends towards 1 at the boundary to the equilibrium phase. Note
that 𝜌 changes continuously across this boundary (Figure S9C). The arrow at the upper end of the colour bar implies the range has been
capped for clarity.

Figure S12: Power-law exponent 𝜈 in the chaotic phase. A Variation of the AFD power-law exponent across the chaotic phase. Apart
from outliers, we find an exponent larger than one. B To test the accuracy of the focal-species model in predicting the exponent, wemeasure
the relative error in 𝛿𝜈 − 1 (since we expect 𝜈 > 1) with respect to the value obtained from simulations of the disordered Lotka-Volterra
model. Data from the simulations described in Figure S11. The arrow at the upper end of the colour bar implies the range has been capped
for clarity.

Figure S13: Comparison of autocorrelation times. Wecompare the autocorrelation time 𝜏𝒙 of the abundance vector𝒙 and the autocorre-
lation time 𝜏𝜂 of the effective noise 𝜂. These two parameters are obtained by the exponential fit 𝑒−𝑡∕𝜏 applied to the respective autocorrelation
functions. Across the chaotic phase, these to timescale are quantitatively close, for reasons explained in Main TextAppendix E.
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Figure S14: Error in approximate formula for 𝑋. Here is shown that the approximate Main Text Eq. (11) generally gives an accurate
prediction (small relative error) of 𝑋 compared to its simulated value (adiabatic data; Figure S8), if given the values of 𝑆eff and 𝜌 from the
same simulation. Except for close the the divergent phase, the error is within ±2%. Since the approximations involved in deriving the
formula amount to neglecting fluctuations, it is expected to most accurate when fluctuations are small (compare Figure S9); in particular,
at fixed-points of the dynamics it becomes exact up to an amount proportional to the negligibly small immigration rate. An arrow on the
end of the colour bar implies the range has been capped for clarity.

S2 Numerical implementation of model simulations

All numerical procedures of this workwere carried out in python using the numpy and scipy packages. To simulate
the disordered Lotka-Volterra model, we have opted for a fixed time integration with a small time step of ∆𝑡 =
0.01. By default, we have used the logarithmic integration scheme defined below, whose implementation we have
validated against a ‘logistic’ scheme (Figure S1) and the standard ODE solver of scipy using RK45. For simulations
of the stochastic differential equation of the focal-species model we have simulated the coloured noise (Ornstein-
Uhlenbeck process) under a Euler-Mayurama scheme with ∆𝑡 = 0.01, and the abundance dynamics under the
logistic scheme with the same time step.

In phase diagram simulations, we have used an expedient numerical heuristic to classify the long-term dynam-
ics of trajectories, which we have validated against visual inspection, and measurement of the maximal Lyapunov
exponent for a sample set of trajectories. First, if trajectories diverged, they tended to do so early in the simulation.
Otherwise, after a transient interval [𝑡0, 𝑡1] of fixed duration, we hypothesised that the following time interval [𝑡1, 𝑡2]
would contain stationary dynamics, assuming 𝑡2−𝑡1 to be longer than any periodicity of the dynamics, if present. We
then counted howmany times 𝑛within this interval the abundance vector𝒙(𝑡) crossed a threshold of 1−𝜀 similarity
to the final vector 𝒙(𝑡2), where 𝜀 is a small tolerance, and the similarity metric is 𝑑(𝒙,𝒚) = 1 − ||𝒙− 𝒚||∕(𝑥2 + 𝑦2).
If 𝑛 = 0, then abundances were constant in the interval and we assume a stable fixed point has been reached; if
𝑛 = 1, then the final composition was one not seen before in the interval, which we classified as chaos; if 𝑛 > 1
then periodicity or quasi-periodic. For trajectories classified as chaotic, a subsequent long time interval [𝑡2, 𝑡3]was
simulated and used to gather relevant statistics; finally, the 𝑛-classification was applied to a final interval [𝑡3, 𝑡4] to
ascertain that chaotic dynamics were not lost during the previous interval of measurements.

Definition of integration schemes

We consider the numerical integration of

�̇�𝑖(𝑡) = 𝑟𝑖𝑥𝑖(𝑡)(𝑔𝑖(𝑡) − 𝑥𝑖(𝑡)), 𝑔𝑖(𝑡) = 1 −
∑

𝑗(≠𝑖)
𝛼𝑖𝑗𝑥𝑗(𝑡). (S1)

9
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Because abundances may become exponentially small, yet eventually recover, it is potentially problematic if nu-
merical error can cause zero or negative abundances. To avoid this issue, we can consider the exact identity

𝑥𝑖(𝑡 + ∆𝑡) = 𝑥𝑖(𝑡) exp (∫
𝑡+∆𝑡

𝑡
(𝑔𝑖(𝑡′) − 𝑥𝑖(𝑡′))𝑑𝑡′) . (S2)

Since the exponential is always positive, any numerical integration scheme 𝑥𝑖(𝑛∆𝑡)→ 𝑥𝑖[𝑛] based on approximat-
ing the integral will preserve positivity of abundances. For a ∆𝑡 much smaller than the turnover timescale of the
dominant community, the integrand can be treated as approximately constant, yielding the scheme

𝑥𝑖[𝑛 + 1] = 𝑥𝑖[𝑛] exp
⎛
⎜
⎝
𝑟𝑖 −

∑

𝑗
�̃�𝑖𝑗𝑥𝑗[𝑛]

⎞
⎟
⎠
, (S3)

where, for compactness, we have defined 𝑟𝑖 = 𝑟𝑖∆𝑡, and �̃�𝑖𝑗 = 𝑟𝑖𝛼𝑖𝑗 (𝑖 ≠ 𝑗), �̃�𝑖𝑖 = 𝑟𝑖. This ‘logarithmic’ scheme is
equivalent to applying a standard Euler scheme to the evolution of log-abundances, 𝑦𝑖(𝑡) = ln𝑥𝑖(𝑡). Indeed, any
integration scheme applied to log-abundances will preserve positivity.

Another approach is based on the formal solution

𝑥𝑖(𝑡 + ∆𝑡) = 𝑥𝑖(𝑡) ⋅
𝐺𝑖(𝑡 + ∆𝑡|𝑡)

1 + 𝑟𝑖𝑥𝑖(𝑡) ∫
𝑡+∆𝑡
𝑡 𝐺𝑖(𝑡′|𝑡)𝑑𝑡′

, 𝐺𝑖(𝑡′|𝑡) = 𝑒𝑟𝑖 ∫
𝑡′
𝑡 𝑔𝑖(𝑠)𝑑𝑠 (S4)

The difference to Eq. (S2) is that the right-hand-side does not explicitly depend on 𝑥𝑖. Any approximation of the
integral in 𝐺𝑖 will preserve positivity of abundances. Choosing 𝐺𝑖(𝑡′|𝑡) ≈ exp(𝑟𝑖𝑔𝑖(𝑡)(𝑡′ − 𝑡)) for 𝑡′ − 𝑡 small, then
performing the integral in the denominator of Eq. (S4), we obtain

𝑥𝑖(𝑡 + ∆𝑡) ≈ 𝑔𝑖(𝑡)𝑥𝑖(𝑡)
𝑔𝑖(𝑡)𝑒−𝑟𝑖𝑔𝑖(𝑡)∆𝑡 + 𝑥𝑖(𝑡)(1 − 𝑒−𝑟𝑖𝑔𝑖(𝑡)∆𝑡)

, (S5)

The resulting ‘logistic’ integration scheme is thus (after some rearrangements)

𝑥𝑖[𝑛 + 1] = 𝑔𝑖[𝑛] ×
𝑥𝑖[𝑛]

𝑥𝑖[𝑛] + (𝑔𝑖[𝑛] − 𝑥𝑖[𝑛])𝑒−𝑟𝑖𝑔𝑖[𝑛]∆𝑡
, 𝑔𝑖[𝑛] = 1 −

∑

𝑗(≠𝑖)
𝛼𝑖𝑗𝑥𝑗[𝑛]. (S6)

This scheme was proposed by Jules Fraboul [1].
To either integration scheme we can add a term +𝜆∆𝑡 for the immigration.

S3 Simplification of the disordered Lotka-Volterra model with mixing

We consider a well-mixed volume 𝑉 containing 𝑆 species with instantaneous absolute abundance 𝑁𝑖(𝑡), and con-
stant nominal carrying capacities𝐾𝑖 and growth rates 𝑅𝑖. The growth dynamics follows the standard Lotka-Volterra
form. We add the effect of mixing with an external environment containing the same set of species but at abun-
dances 𝑁ext

𝑖 (𝑡): a fraction Λ per unit time of the volume 𝑉 is exchanged with an equal volume from the external
environment that gets instantaneously mixed in with the volume 𝑉. In total, the dynamics of the abundances is

�̇�𝑖(𝑡) = 𝑅𝑖𝑁𝑖(𝑡) (1 −
𝑁𝑖(𝑡) +

∑
𝑗(≠𝑖) 𝛽𝑖𝑗𝑁𝑗(𝑡)
𝐾𝑖

) + Λ(𝑁ext
𝑖 (𝑡) −𝑁𝑖(𝑡)). (S7)

Note that if we let Λ ≫ max𝑖 𝑅𝑖, we will force 𝑁𝑖(𝑡) ≈ 𝑁ext
𝑖 (𝑡). Instead, we consider the slow-mixing scenario

Λ ≪ min𝑅𝑖, since our purpose in adding mixing is mainly to prevent extinction of rare species. We introduce

10
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rescaled parameters

𝑟𝑖 = 𝑅𝑖 − Λ ≈ 𝑅𝑖, (S8)

𝐾′
𝑖 = 𝐾𝑖 (1 −

Λ
𝑟𝑖
) ≈ 𝐾𝑖, (S9)

𝛼𝑖𝑗 =
𝛽𝑖𝑗𝐾′

𝑗

𝐾′
𝑖
, (S10)

𝜆𝑖(𝑡) = Λ
𝑁ext
𝑖 (𝑡)
𝐾′
𝑖

, (S11)

𝑥𝑖(𝑡) =
𝑁𝑖(𝑡)
𝐾′
𝑖
, (S12)

so that

�̇�𝑖(𝑡) = 𝑟𝑖𝑥𝑖(𝑡)
⎛
⎜
⎝
1 − 𝑥𝑖(𝑡) +

∑

𝑗(≠𝑖)
𝛼𝑖𝑗𝑥𝑗(𝑡)

⎞
⎟
⎠
+ 𝜆𝑖(𝑡). (S13)

Since the mixing occurs slowly, we suppose that it is justified to replace 𝑁ext
𝑖 with its time-average 𝑁

ext
𝑖 . A parsi-

monious distribution for these abundances is that they result from effectively independent species (in particular in
the chaotic phase; see main text) constrained by a roughly constant total community biomass 𝑁∗ independent of
the number of species:

𝑁
ext
𝑖 = 𝑁∗ 𝐾𝑖∑

𝑗 𝐾𝑗
. (S14)

Introducing �̃� = Λ𝑁∗∕𝐾∗ with 𝐾∗ = 𝑆−1∑𝑗 𝐾𝑗 we have

𝜆𝑖(𝑡) ≡ 𝜆 = �̃�
𝑆 . (S15)

Upon the simplifying assumptions 𝑟𝑖 ≡ 1 and Gaussian distribution of 𝛼𝑖𝑗 (resulting from a combination of some
distribution of 𝐾𝑖 and 𝛽𝑖𝑗; see [2]), we obtain the model of the main article.

S4 Invasion analysis of few-species equilibria

Let ℛ(𝑡),𝒟(𝑡) be the sets of rare and dominant species. The dynamics of a rare species 𝑖 ∈ ℛ(𝑡) that successfully
invades is

�̇�𝑖 ≈ 𝑥𝑖
⎛
⎜
⎝
1 −

∑

𝑗∈𝒟
𝛼𝑖𝑗𝑥𝑗

⎞
⎟
⎠
∶= 𝛾𝑖𝑥𝑖, (S16)

while while 𝜆 ≪ 𝑥𝑖 ≪ 1. The growth rate 𝛾𝑖 must be (mostly) positive in the time interval where invasion occurs.
Thus, no rare species is expected to be able to invade the dominant component while

𝛾max ∶= max
𝑖∈ℛ

𝛾𝑖 < 0. (S17)

Suppose then that the |𝒟| ≈ 𝑆eff dominant species are in a few-species equilibrium that would be stable but for
a potential invasion. We approximate the abundances of dominant species as equal (we expect them at least to be
of the same order) and recall that they make up the overwhelming share of the total abundance. Thus, 𝑥𝑗 ≈ 𝑋∕𝑆eff

11
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for 𝑗 ∈ 𝒟. We suppose further that {𝛼𝑖𝑗}𝑗∈𝒟 for a random 𝑖 ∈ ℛ can be treated as independent. Then the sum
∑

𝑗∈𝒟 𝛼𝑖𝑗 ∼𝒩(𝑆eff𝜇, 𝑆eff𝜎2). It follows that, for random 𝑖 ∈ ℛ,

𝛾𝑖 ∼𝒩
⎛
⎜
⎝
1 − 𝜇𝑋, 𝜎

2𝑋
2

𝑆eff

⎞
⎟
⎠
. (S18)

Using extreme value theory [3], and the fact that |ℛ| ≈ 𝑆,

𝛾max ≈ 1 − 𝑋
⎛
⎜
⎜
⎝

𝜇 − 𝜎
√
𝑆eff

ℎ(𝑆)
⎞
⎟
⎟
⎠

, (S19)

where ℎ(𝑆) is a random variable1 that scales approximately as
√
ln 𝑆. In particular, ℎ(500) ≈ 3.04 ± 0.45 and

ℎ(10′000) ≈ 3.85 ± 0.35. Using Main Text Eq. (11),

𝛾max ≈
1 − 𝜇 − (𝑆eff𝜌 +

√
𝑆effℎ(𝑆))𝜎

1 + (𝑆eff − 1)𝜇 − 𝑆eff𝜎𝜌
. (S20)

Condition Eq. (S17) for non-invadability then amounts to

𝜎 < 𝜇 − 1

𝑆eff𝜌 +
√
𝑆effℎ(𝑆)

. (S21)

This predict lines radiating from (𝜇, 𝜎) = (1, 0). However, with 𝜌 ∼ (𝑆eff)−1∕2, the slope of the lines are less steep
for sectors with more species in the equilibrium, contrary to observation.

S5 Solution of intermittency model under unified coloured noise approximation

The unified coloured noise approximation was put forth by Jung & Hänggi [4] (see also Fox [5, 6]) to solve SDEs of
the form

�̇�(𝑡) = 𝐹(𝑥(𝑡)) + 𝐺(𝑥(𝑡))𝜂(𝑡), (S22)

with 𝜂(𝑡) a colouredGaussian noise: ⟨𝜂⟩ = 0, ⟨𝜂(𝑡)𝜂(𝑡′)⟩ = exp(−|𝑡−𝑡′|∕𝜏). By differentiating Eq. (S22), rearranging
terms, and rescaling time into 𝑡 = 𝜏−1∕2𝑡 (with �̂�(𝑡) = 𝑥(𝜏1∕2𝑡)) one obtains the exact equation

d2�̂�
d𝑡2

+ 𝐺′

𝐺 (d�̂�
d𝑡
)
2
+𝐻𝜏

d�̂�
d𝑡

= 𝐹 +
√
2𝜏1∕4𝐺�̂�, (S23)

where �̂� is a standard Gaussian white noise and

𝐻𝜏(𝑥) = 𝜏−1∕2 − 𝜏1∕2 (𝐹′(𝑥) − 𝐺′(𝑥)
𝐺(𝑥)

𝐹(𝑥)) . (S24)

As either 𝜏 →∞ or 𝜏 → 0, one finds𝐻𝜏 →∞, and then Eq. (S23) can be replaced by the overdamped limit

d�̂�
d𝑡

= 𝐹
𝐻𝜏

+
√
2𝜏1∕4 𝐺𝐻𝜏

�̂�. (S25)

1The maximum 𝑀 of 𝑁 i.i.d. standard Gaussian RVs tends, as 𝑁 → ∞, to 𝑀 = 𝑎𝑁 + 𝜉∕𝑎𝑁 , where 𝑎𝑁 =
√
2 ln𝑁 − ln(4𝜋 ln𝑁) and 𝜉

follows a standard Gumbel distribution, whose mean is the Euler-Mascheroni constant (≈ 0.577) and variance is 𝜋2∕6.

12
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It is hoped that this approximation is accurate for intermediate 𝜏 as well.
The overdamped equation Eq. (S25) can be solved for its steady state 𝑃∗(𝑥) by conventional techniques [7], e.g.

under Stratonovich interpretation of the noise: the associated stationary probability current is then

𝐽∗ = 𝐹
𝐻𝜏

𝑃∗ − 𝜏1∕2 𝐺𝐻𝜏

d
d𝑥

𝐺
𝐻𝜏

𝑃∗. (S26)

In one dimension, 𝐽∗(𝑥) must be constant. Since 𝑥 is a non-negative abundance in our case, we must impose a
boundary at 𝑥 = 0 through which probability cannot flow. Therefore 𝐽∗ ≡ 0. The solution for 𝑃∗ is then

𝑃∗(𝑥) ∝ exp {∫
𝑥
𝑣(𝑥′) d𝑥′} , (S27)

with

𝑣 = (𝜏−1∕2𝐻𝜏)
𝐹
𝐺2 + (ln 𝐻𝜏

𝐺 )
′
. (S28)

In the stochastic intermittency model, we have

𝐹(𝑥) = −𝑥(𝑘 + 𝑥) + 𝜆, (S29)
𝐺(𝑥) = 𝑢𝑥, (S30)

𝐻𝜏(𝑥) = 𝜏−1∕2 + 𝜏1∕2(𝑥 + 𝜆𝑥−1). (S31)

With these functions, the integral in Eq. (S27) can be performed exactly, yielding the result of the main article:

𝑃∗(𝑥) = 1
𝒩 𝑒−[𝑞+(𝑥)+𝑞−(𝜆∕𝑥)]𝑥−𝜈 (𝜏−1 + 𝑥 + 𝜆

𝑥) , (S32)

𝑞±(𝑦) =
1
2𝑢2

[
𝑦 + (𝜏−1 ± 𝑘)

]2 , (S33)

𝜈 = 1 + 𝑘
𝜏𝑢2 . (S34)

The normalization constant𝒩, however, we do not have in closed form; instead we calculate it numerically, after
the change-of-variables 𝑦 = ln𝑥, as

𝒩 = ∫
∞

−∞
d𝑦 𝑒𝑦(1−𝜈)−𝑞+(𝑒𝑦)−𝑞−(𝜆𝑒−𝑦)

(
𝜏−1 + 𝑒𝑦 + 𝜆𝑒−𝑦

)
. (S35)
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