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Does our perception of an object change once we discover what function it serves? We showed human participants (n= 48,
31 females and 17 males) pictures of unfamiliar objects either together with keywords matching their function, leading to
semantically informed perception, or together with nonmatching keywords, resulting in uninformed perception. We measured
event-related potentials to investigate at which stages in the visual processing hierarchy these two types of object perception
differed from one another. We found that semantically informed compared with uninformed perception was associated with
larger amplitudes in the N170 component (150-200ms), reduced amplitudes in the N400 component (400-700ms), and a late
decrease in alpha/beta band power. When the same objects were presented once more without any information, the N400
and event-related power effects persisted, and we also observed enlarged amplitudes in the P1 component (100-150ms) in
response to objects for which semantically informed perception had taken place. Consistent with previous work, this suggests
that obtaining semantic information about previously unfamiliar objects alters aspects of their lower-level visual perception
(P1 component), higher-level visual perception (N170 component), and semantic processing (N400 component, event-related
power). Our study is the first to show that such effects occur instantly after semantic information has been provided for the
first time, without requiring extensive learning.
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Significance Statement

There has been a long-standing debate about whether or not higher-level cognitive capacities, such as semantic knowledge,
can influence lower-level perceptual processing in a top-down fashion. Here we could show, for the first time, that informa-
tion about the function of previously unfamiliar objects immediately influences cortical processing within less than 200ms.
Of note, this influence does not require training or experience with the objects and related semantic information. Therefore,
our study is the first to show effects of cognition on perception while ruling out the possibility that prior knowledge merely
acts by preactivating or altering stored visual representations. Instead, this knowledge seems to alter perception online, thus
providing a compelling case against the impenetrability of perception by cognition.

Introduction
Does our perception of an object change once we discover what
function it serves? This question speaks to the long-standing
debate about the cognitive (im-)penetrability of perception by

higher-level capacities, such as semantic knowledge or language.
According to one view, these cognitive capacities kick in only
after the retinal input has been processed by a specialized
module for visual perception (Fodor, 1983). This module is
supposed to be encapsulated from higher-level inputs and
processes visual information in a feedforward fashion, pro-
gressing from lower to higher areas representing increasingly
complex shapes and, eventually, whole objects (DiCarlo et al.,
2012). This cognitive impenetrability hypothesis is challenged
by another view, namely, predictive coding theories that posit
that higher-level areas influence ongoing perceptual process-
ing early on by sending predictions down to lower-level areas
(Churchland et al., 1994; Ahissar and Hochstein, 2004; Yuille
and Kersten, 2006; Friston and Kiebel, 2009; Clark, 2013;
Lupyan, 2015; Thierry, 2016; Teufel and Nanay, 2017; Lupyan
et al., 2020). This view is supported by differences in ratings,
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detection rates, or reaction times for visual stimuli depending on
their emotional (e.g., Phelps et al., 2006), linguistic (e.g., Slivac et al.,
2021), or semantic (e.g., Gauthier et al., 2003) content. However,
some of these studies received legitimate criticism, for example,
because comparisons between critical conditions included the con-
found of additionally comparing different visual stimuli, or
for not being able to distinguish between perceptual or
postperceptual loci of tentative top-down effects based on
behavioral measures (Firestone and Scholl, 2016).

Here we use event-related potentials (ERPs) measured from
the human EEG to mitigate most of these concerns: The tempo-
ral resolution of ERPs makes it possible to probe how early
influences of high-level (e.g., semantic) information can be
detected (Athanasopoulos and Casaponsa, 2020). When com-
paring objects after learning different amounts of semantic in-
formation about them, previous studies by our laboratory and
others revealed differences in late ERP components associated
with semantic processing (N400 component) and also in the
visual P1 component (Abdel Rahman and Sommer, 2008;
Samaha et al., 2018; Maier and Abdel Rahman, 2019; Weller et
al., 2019). The early peak of the P1 and its source in the occipi-
tal cortex (Abdel Rahman and Sommer, 2008) point to an early
effect of semantic knowledge on visual perception. It is less
clear, however, if this effect acts in an online fashion (i.e.,
directly modulating perceptual processing, in accordance with
predictive coding theories), or more indirectly, by altering
stored visual object representations over the course of learn-
ing, which would then get reactivated once the object is re-
encountered later on (i.e., reflecting offline differences in vis-
ual object representations or prototypes that have been built
up over the course of learning) (Palmeri and Tarr, 2008).

To answer this question, we measured ERPs in response to
unfamiliar objects directly while participants gained a semantic
understanding of their function. We presented half of the objects
with matching keywords, allowing participants to understand
what kind of object they were viewing, and the other half with
nonmatching keywords, preventing participants from under-
standing what kind of object they were viewing. We then pre-
sented the same objects again to test for downstream effects of
semantic information. We examined the influence of semantic
information on ERPs associated with lower-level visual percep-
tion (P1 component), higher-level visual perception (N170
component), and semantic processing (N400 component). We
hypothesized that semantic information would have instant
effects on visual perception, by which we mean (1) that these
effects can be observed on the same trial as the semantic infor-
mation is being presented for the first time, and (2) that these
effects are found not only in later, higher-level cognition-related
ERP components (N400), but also in earlier, perception-related
ERP components (P1 and/or N170), which would speak for pre-
dictive coding theories. We furthermore conducted an exploratory
time-frequency analysis to test for effects on event-related power
which, unlike ERP effects, do not need to be tightly phase-locked
to stimulus onset.

Materials and Methods
Participants. Participants were 48 German native speakers (31

females and 17 males) with a mean age of 23.5 years (range 18-32 years)
and no history of psychological disorder or treatment. No a priori power
analysis was conducted. All participants were right-handed according to
the Edinburgh Inventory (Oldfield, 1971) and reported normal or cor-
rected-to-normal vision. They provided written informed consent before

starting the experiment and received a monetary compensation of e8
per hour for participating.

Stimuli. Stimuli consisted of 240 grayscale photographs of real-world
objects. Of these, 120 stimuli were well-known everyday objects (e.g., a
bicycle, a toothbrush). These served as filler stimuli of no interest. The
other 120 stimuli were rare objects presumed to be unfamiliar to most par-
ticipants (e.g., a galvanometer, a udu drum; see Online Table 1 at https://
doi.org/10.17605/osf.io/uksbc). All stimuli were presented on a light blue
background with a size of 207� 207 pixels on a 19-inch LCD monitor
with a resolution of 1280� 1024 pixels and a refresh rate of 75Hz. At a
standardized viewing distance of 90 cm, the images subtended ;3.9
degrees of participants’ horizontal and vertical visual angle.

For each unfamiliar object, we created a pair of German keywords (a
noun and a verb), describing the typical function or use of the object in a
way that could be related to its visual features and their configuration (e.g.,
Stromstärke, messen [electric current, measuring]; Tonpott, trommeln [clay
pot, drumming]; see Online Table 1). As our central experimental
manipulation, half of the objects were presented together with key-
words that matched their respective function, whereas the other half
of the objects were presented together with nonmatching keywords
(which would have matched a different object). The matching key-
words were expected to induce semantically informed perception, that
is, participants suddenly understanding what kind of object they were
viewing. The nonmatching keywords were expected to prevent such an
understanding and keep the perception of the object semantically unin-
formed. All participants saw each unfamiliar object with only one type
of keywords (matching or nonmatching). This assignment of keywords
to objects was counterbalanced across participants so that each object
was presented with matching keywords (leading to semantically informed
perception) and nonmatching keywords (leading to uninformed perception)
to an equal number of participants. The experiment was programmed and
displayed using Presentation software (Neurobehavioral Systems; www.
neurobs.com).

As a manipulation check, we ran an online rating study where we
presented 10 German speakers (3 female, 7 male, mean age = 25.3 years,
range 20-35 years; none took part in the main study) with all 240 visual
objects in random order and asked them to generate their own keywords
that would describe the presumed function of the object. We used latent
semantic analysis (Günther et al., 2019) with a word2vec embedding
(deepset GmbH, Berlin, Germany; www.deepset.ai/german-word-
embeddings) pretrained on the German Wikipedia to estimate semantic
distances between these participant-generated keywords and the keywords
used in our main EEG experiment (see Online Figs. 1 and 2). In brief, it
was substantially easier for participants to come with correct descriptions
of familiar objects (mean cosine distance 6 SE=0.786 0.01) than for
unfamiliar objects (0.666 0.01, t(13) = 7.21, p, 0.001, linear mixed-effects
model). Indeed, this similarity between participant-generated keywords
for the unfamiliar objects and the object-matching keywords presented in
the main experiment was only slightly higher than the similarity between
participant-generated keywords and the object-nonmatching keywords
presented in the main experiment (0.646 0.01, t(24) = 5.09, p, 0.001, lin-
ear mixed-effects model), indicating that it was difficult for participants to
know or guess the correct function of the unfamiliar objects.

Experimental design. The main EEG experiment consisted of three
phases (see Fig. 1A). In the pre-insight phase, after written informed
consent had been obtained and the EEG had been prepared, all 240 fa-
miliar and unfamiliar objects were presented once in random order and
without any keywords. Each trial consisted of a fixation cross presented
in the middle of the screen for 0.5 s, followed by the presentation of the
object until participants made a response or until a timeout after 3 s. The
intertrial interval was 0.5 s, and participants took a self-timed break after
each block of 60 objects. The task, which was kept the same across all
three phases of the experiment, was to classify each object using one of
four response alternatives: (a) Ich weiß, was das ist, oder habe eine starke
Vermutung [I know what this is or have a strong assumption], (b) Ich
habe eher eine Vermutung, was das ist [I rather have an assumption what
this is], (c) Ich habe eher keine Vermutung, was das ist [I rather have no
assumption what this is], or (d) Ich weiß nicht, was das ist, und habe auch
keine Vermutung [I don’t know what this is and have no assumption].
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Participants were asked to respond as quickly and as accurately as pos-
sible by pressing one of four buttons with the index or middle finger of
their left or right hand, respectively. The mapping of the rating scale to
the four buttons (left to right or right to left) was counterbalanced
across participants.

In the insight phase, the 120 unfamiliar objects were presented for a
second time, now preceded either by matching keywords (leading to

semantically informed perception) or by nonmatching keywords (lead-
ing to uninformed perception). Each trial consisted of a fixation cross
presented for 0.5 s, followed by the presentation of the keywords for
2.5 s. Then, an asterisk was presented in the middle of the screen for
another 0.5 s, followed by the presentation of the object until a response
was made or until a timeout after 3 s. The objects were presented in
blocks of 30 trials so that within each block there were 15 objects from

Figure 1. Experimental design and ERP results contrasting semantically informed perception and uninformed perception. A, In the pre-insight phase, participants were presented with 120
unfamiliar objects and indicated whether they knew what kind of object they were viewing. In the insight phase, half of these objects were presented with matching keywords (in red for illus-
tration), leading to semantically informed perception, and the other half with nonmatching keywords (in blue for illustration), leading to uninformed perception. In the post-insight phase, the
same objects were presented again without keywords. B-D, ERP waveforms and scalp topographies for the P1 component (B), for the N170 component (C), and for the N400 component (D)
for objects with semantically informed perception versus uninformed perception within the three different phases. Semantically informed perception was associated with more negative ampli-
tudes in the N170 component during the insight phase, less negative amplitudes in the N400 component during the insight and post-insight phases, and more positive amplitudes in the P1
component during the post-insight phase. Waveform plots represent the ERP amplitudes averaged across channels in the ROIs (P1: PO3, PO4, POz, O1, O2, Oz; N170: P7, P8, PO7, PO8, PO9,
PO10; N400: C1, C2, Cz, CP1, CP2, CPz; see black dots in the scalp topographies). Colored ribbons around the ERP waveforms represent6 1 SEM across participants. Topographies represent the
difference in ERP amplitudes at all channels on the scalp, averaged across the time windows of interest (P1: 100-150 ms; N170: 150-200 ms; N400: 400-700 ms; see gray areas in the ERP wave-
forms). Ampl., Amplitude. *p, 0.05. ***p, 0.001.
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each of the two experimental conditions and so that objects were hetero-
geneous in terms of their shape, visual complexity, and functional cate-
gory (e.g., medical devices, musical instruments).

In the post-insight phase, the unfamiliar objects were presented for a
third time, with the same trial structure as in the pre-insight phase, that
is, without any keywords. The insight and post-insight phases were pre-
sented in an interleaved fashion so that, after the presentation of one
block of 30 objects in the insight phase (with keywords), participants
took a self-timed break and continued with the same block of 30 objects
in the post-insight phase (without keywords) before moving on to the
next block consisting of 30 different objects. They continued like this
until all four blocks were completed in both phases. In total, the experiment
consisted of 480 trials (120 familiar objects in the pre-insight phase and 120
unfamiliar objects in the pre-insight, insight, and post-insight phases).
Participants took approximately 35min to complete the experiment.

Behavioral data analysis.We used participants’ behavioral responses
to verify our experimental manipulation and to assign each object to a
semantic condition. First, we used participants’ responses from the pre-
insight phase (when objects were presented for the first time, without
keywords) to make sure that objects were indeed unfamiliar to them.
That is, we excluded any objects for which participants responded with
“I know what this is” in the pre-insight phase. Next, we used partici-
pants’ responses from the insight phase (when objects were presented
for the second time, preceded by keywords) to assign the remaining

objects to different semantic conditions: Semantically informed per-
ception, uninformed perception, and unsuccessfully informed per-
ception. The semantically informed condition consisted of objects
that were presented with matching keywords and for which the par-
ticipant responded with knowing what the object was or having an
assumption. The uninformed condition consisted of objects that were
presented with nonmatching keywords and for which the participant
responded with not knowing what the object was or having rather no
assumption. The unsuccessfully informed condition consisted of
objects that were presented with matching keywords but for which
the participant responded with not knowing what the object was or
having rather no assumption. This assignment of objects to semantic
conditions (informed, uninformed, or unsuccessfully informed) was
carried over from the insight phase to the other two phases (pre-insight
and post-insight). This allowed us to test, on the one hand, if the
objects differed in important aspects even before any keywords were
presented (pre-insight phase) and, on the other hand, if the semantic
information acquired in the insight phase had any downstream effects
on the subsequent perception of the objects (post-insight phase).

EEG recording and preprocessing. The continuous EEG was recorded
from 62 Ag/AgCl scalp electrodes placed according to the extended 10-
20 system (American Electroencephalographic Society, 1991) and refer-
enced online to an external electrode placed on the left mastoid (M1).
Two additional external electrodes were placed on the right mastoid

Figure 2. ERP results contrasting semantically informed perception and unsuccessfully informed perception. A, Assignment of objects to conditions based on participants’ response to unfami-
liar objects presented with matching keywords. B-D, ERP waveforms and scalp topographies for the P1 component (B), for the N170 component (C), and for the N400 component (D) for
objects with semantically informed perception versus unsuccessfully informed perception within the three different phases. Semantically informed perception was associated with more negative
amplitudes in the N170 component and less negative amplitudes in the N400 component during the insight phase. Waveform plots represent the ERP amplitudes averaged across channels in
the ROIs (P1: PO3, PO4, POz, O1, O2, Oz; N170: P7, P8, PO7, PO8, PO9, PO10; N400: C1, C2, Cz, CP1, CP2, CPz; see black dots in the scalp topographies). Colored ribbons around the ERP wave-
forms represent6 1 SEM across participants. Topographies represent the difference in ERP amplitudes at all channels on the scalp, averaged across the time windows of interest (P1: 100-
150 ms; N170: 150-200 ms; N400: 400-700 ms; see gray areas in the ERP waveforms). Ampl., Amplitude. ***p, 0.001.

Enge et al. · Semantic Information on Visual Perception J. Neurosci., June 28, 2023 • 43(26):4896–4906 • 4899



(M2) and below the left eye (IO1), respectively. Electrode impedances
were kept below 5 kV. An online bandpass filter with a high-pass
time-constant of 10 s (0.016Hz) and a low-pass cutoff frequency of
1000Hz was applied before digitizing the signal at a sampling rate of
500Hz.

The data were preprocessed offline using custom functions (available
at https://github.com/alexenge/hu-neuro-pipeline/tree/v0.6.4) based on
the MNE-Python software (version 1.3.0) (Gramfort et al., 2013) in
Python (version 3.8) (Van Rossum and Drake, 2009). First, the data
were downsampled to 125Hz and rereferenced to the common average
of all scalp channels. Next, artifacts resulting from blinks and eye move-
ments were removed via independent component analysis (ICA) on a
high-pass filtered copy of the data (cutoff = 1Hz). A variable number of
components per participant were extracted from an initial PCA so that
they explained at least 99% of the variance in the data (mean= 28.85
components, range 16-40). Then the ICA was fitted based on these com-
ponents using the FastICA algorithm (Hyvärinen, 1999). Any independ-
ent components showing significant correlations with either of two
virtual EOG channels (VEOG: IO1-Fp1; HEOG: F9-F10) were removed
automatically using MNE-Python’s find_bads_eog method. This was the
case for an average of 2.38 components per participant (range= 2-4
components).

For the analysis of ERP amplitudes, a zero-phase, noncausal FIR filter
with a lower pass-band edge at 0.1Hz (transition bandwidth: 0.1Hz)
and an upper pass-band edge at 30Hz (transition bandwidth: 7.5Hz)
was applied. Next, the continuous EEG was segmented into epochs rang-
ing from �500 to 1500ms relative to the onset of the presentation of
each unfamiliar object. These epochs were baseline-corrected by sub-
tracting the average voltage during the interval of �200 to 0ms relative
to stimulus onset. Epochs containing artifacts despite ICA, defined as
peak-to-peak amplitudes exceeding 150mV, were removed from further
analysis. This led to the exclusion of an average of 11 trials per partici-
pant (= 3.1%; range 0-109 trials). Single-trial ERPs were computed as the
mean amplitude across time windows and ROIs defined a priori, namely,
100-150ms at channels PO3, PO4, POz, O1, O2, and Oz and for the P1
component, 150-200ms at channels P7, P8, PO7, PO8, PO9, and PO10
for the N170 component, and 400-700ms at channels C1, C2, Cz, CP1,
CP2, and CPz for the N400 component. We chose a later time window
for the N400 component than what is typically used in experiments with
verbal materials (e.g., 300-500ms), in accordance with a previously pub-
lished dataset, which showed that the 400-700ms time window is most
robustly associated with the semantic processing of visual objects
(Kovalenko et al., 2012).

Statistical analysis. The resulting mean ERP amplitudes were ana-
lyzed on the single-trial level using linear mixed-effects regression mod-
els because these models allow to control for repeated measures of
participants and stimuli, while also being robust against an unbalanced
number of trials per condition (Bürki et al., 2018; Frömer et al., 2018;
Brown, 2021). We computed three models predicting P1, N170, and
N400 amplitudes, respectively. All models included the following fixed
effects of interest: (1) the phase of the experiment, coded as a repeated
contrast (i.e., subtracting the first phase from the second phase and the
second phase from the third phase, the intercept being the grand mean
across all three phases) (Schad et al., 2020); (2) the condition of the
object, coded as a custom contrast (i.e., subtracting the uninformed con-
dition from the informed condition and the unsuccessfully informed
condition from the informed condition, the intercept being the grand
mean across all three conditions); and (3) the two-way interaction of
phase and condition. We also added the results from the online pre-rat-
ing study (mean cosine distance between rating study-generated key-
words and keywords presented in the main experiment) as an additional
covariate of no interest (see Online Fig. 2). This was to control for the
possibility that participants might have been partly familiar with some of
the objects and/or able to guess their function from their visual appear-
ance alone. For the random effects, we determined the most parsimoni-
ous structure supported by the data using the automatic procedure
proposed by Matuschek et al. (2017). This involved starting with a maxi-
mal model that contained all random parameters (intercepts, slopes, and
correlations) and then iteratively removing terms as long as this did not

result in a significant drop in model fit (likelihood ratio test, p value
cutoff = 0.20; for the final model syntax and model outputs, see Online
Results 1). All models were fitted in R (version 4.2.1) (R Core Team,
2022) using the lme4 package (version 1.1.30) (Bates et al., 2015) with
the optimizer function bobyqa and a maximum of 106 iterations for
maximum likelihood estimation. The model selection algorithm via like-
lihood ratio tests was performed using the buildmer package (version
2.7) (Voeten, 2022).

To investigate whether semantically informed perception had an
influence on the ERPs within each phase of the experiment, we calcu-
lated pairwise comparisons contrasting the semantically informed condi-
tion against the uninformed condition within the pre-insight, insight,
and post-insight phases. In the same way, we computed pairwise com-
parisons contrasting the semantically informed condition against the
unsuccessfully informed condition. This was done using the emmeans
package (version 1.8.2) (Lenth, 2022) and with Bonferroni correction for
the three phases of the experiment. All p values were computed by
approximating the relevant denominator degrees of freedom using
Satterthwaite’s method as implemented in the lmerTest package (version
3.1.3) (Kuznetsova et al., 2017).

Time-frequency analysis. For our exploratory analysis of event-
related power, we first created new epochs from the ICA-corrected but
unfiltered raw data. Epochs that were marked as bad for the ERP analy-
sis (i.e., with peak-to-peak amplitudes exceeding 150 mV) were also
removed from the time-frequency analysis. The remaining epochs were
convolved with a family of Morlet wavelets, increasing linearly in their
frequency from 4 to 40Hz in steps of 1Hz and in their width from 2
cycles to 20 cycles in steps of 0.5 cycles. To adjust for the typical 1/f
shape of the EEG, the power values were transformed into percent sig-
nal change by first subtracting and then dividing by the average power
at each frequency over the entire epoch (Grandchamp and Delorme,
2011). We then performed baseline correction by subtracting the aver-
age power during the pre-stimulus interval from �450 to �50ms s rel-
ative to object onset.

For statistical analysis of event-related power, we conducted cluster-
based permutation tests (Maris and Oostenveld, 2007), separately for
each of the three phases of the experiment (pre-insight, insight, and
post-insight). First, we averaged trials belonging to the same condition
and then subtracted these average responses from one another to
compute the difference between the semantically informed condi-
tion and each of two control conditions (uninformed or unsuccessfully
informed) for each participant. We then conducted one-sample t tests
in a mass-univariate fashion and grouped significant results (cluster-
forming threshold, p, 0.05) into clusters if they occurred at neighbor-
ing time points, frequencies, or channels. Neighboring channels were
defined using the Delaunay triangulation based on 2D electrode loca-
tions as implemented in MNE-Python. To obtain family-wise error-
corrected p values at the cluster level, we compared the cluster mass
(i.e., the sum of the t values) of each observed cluster to an empirical
null distribution of cluster masses obtained from 5000 permutations
with random sign flips. Clusters were considered to be statistically sig-
nificant if their mass exceeded the 98.33rd percentile of this distribu-
tion (i.e., cluster-level threshold, p, 0.05, Bonferroni-corrected for the
three phases of the experiment).

Data and code accessibility. The EEG data are available on reasonable
request from the corresponding author because we had not asked partic-
ipants for their consent to make the data publicly available. The experi-
mental stimuli (object images and keywords) and the code for data
analysis are available at https://doi.org/10.17605/osf.io/uksbc.

In addition to the software mentioned above, our code relies on the
tidyverse set of R packages (version 1.3.2) (Wickham et al., 2019) for
data wrangling, the ggplot2 (version 3.3.6) (Wickham, 2016), cowplot
(version 1.1.1) (Wilke, 2020), and eegUtils (version 0.7.0) (Craddock,
2022) packages for visualization; the papaja package (version 0.1.1)
(Aust and Barth, 2022) for statistical reporting; and the LSAfun package
(version 0.6.3) (Günther et al., 2015) for the latent semantic analysis of
the online rating study data. We used the workflow developed by Peikert
and Brandmaier (2021) to ensure the long-term reproducibility of our
analysis pipeline.
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Results
Behavioral data
Based on the experimental manipulation (matching or non-
matching keywords) and each individual participant’s behavioral
response (positive or negative regarding knowing what the object
was), we assigned 26.676 10.51 (mean 6 SD) objects to the
semantically informed condition (i.e., matching keywords and
positive response), 48.986 7.71 objects to the uninformed condi-
tion (i.e., nonmatching keywords and negative response), and
26.776 10.48 objects to the unsuccessfully informed condition
(i.e., matching keywords but negative response). This assignment
of objects to conditions was based solely on the insight phase of
the experiment, when objects were presented with keywords for
the first time, and carried over to analyze the data from the pre-
insight and post-insight phases as well. The remaining objects
were excluded because of an implausible response pattern (i.e.,
nonmatching keywords but positive response; 5.296 5.78 objects),
because of being known to the participant in the pre-insight
phase (i.e., before any keywords had been presented; 7.106 5.00
objects), or because of technical errors (i.e., reaction times of 0ms
recorded by the presentation software, 5.196 5.84 objects).

Event-related potentials
Averaged across conditions, P1, N170, and N400 amplitudes
differed as a function of the phase of the experiment (pre-
insight, insight, or post-insight, all F values. 14.28, all p val-
ues , 0.001). In addition, N400 amplitudes differed as a func-
tion of the condition (semantically informed, uninformed, or
unsuccessfully informed), averaged across the three phases of
the experiment (F(2, 14,180) = 22.91, p, 0.001). Crucially, the
phase � condition interaction was significant for all three ERP
components (all F values. 2.54, all p values, 0.038). To an-
swer our main research question, we decomposed these interac-
tions into pairwise comparisons between semantic conditions
within each of the three phases of the experiment.

In the pre-insight phase, when objects were unfamiliar to
participants and presented without keywords, no differences
emerged between the semantically informed condition and the
uninformed condition in any of the ERP components (all |t|
values, 0.86, all p values . 0.999; see Fig. 1B–D). Likewise,
there were no differences between the semantically informed
condition and the unsuccessfully informed condition in any of
the ERP components (all |t| values , 0.55, all p values . 0.999;
see Fig. 2B–D). This was expected given that the keywords that
would provide additional semantic information had not yet
been presented and given that the assignment of objects to con-
ditions was counterbalanced across participants as to control
for low-level visual differences.

In the insight phase, half of the unfamiliar objects were
presented with matching keywords, leading to semantically
informed perception, and the other half were presented with
nonmatching keywords, keeping the perception of the objects
semantically uninformed. Semantically informed perception
in this phase was associated with enlarged (i.e., more negative)
amplitudes in the N170 component (b = �0.64 mV, t(14,194) =
�3.63, p = 0.001) and reduced (i.e., less negative) amplitudes
in the N400 component (b = 1.09 mV, t(14,156) = 7.17, p,
0.001). There was no reliable difference between conditions in
the P1 component (b = �0.27 mV, t(14,138) = �1.49, p = 0.406).
The same effects were found when comparing objects with
semantically informed perception to those objects that were
also presented with matching keywords but for which participants

still indicated not knowing what the object was (i.e., the unsuccess-
fully informed condition). Compared with these objects, semanti-
cally informed perception was associated with enlarged (i.e., more
negative) amplitudes in the N170 component (b = �0.90mV,
t(14,203) = �4.37, p, 0.001) and reduced (i.e., less negative)
amplitudes in the N400 component (b= 1.22mV, t(13,925) = 7.00,
p, 0.001), while there was no reliable difference in the P1 com-
ponent (b =�0.39mV, t(13,860) =�1.84, p= 0.196).

In the post-insight phase, the unfamiliar objects were pre-
sented for a third time and without any keywords, mirroring the
pre-insight phase. As in the insight phase, semantically informed
perception was associated with reduced (i.e., less negative) ampli-
tudes in the N400 component (b=0.80mV, t(14,031) = 5.23,
p, 0.001), while the effect in the N170 component did not recur
(b=0.26mV, t(13,742) = 1.46, p= 0.431). Instead, the P1 compo-
nent was significantly enlarged (i.e., more positive) in response
to objects for which semantically informed perception had taken
place (b= 0.46mV, t(13,047) = 2.52, p= 0.036). These effects did not
occur when comparing the semantically informed condition to
the unsuccessfully informed condition, with no reliable differen-
ces in the P1, N170, or N400 components (all |t| values, 2.17,
all p values. 0.090).

Event-related power
In an exploratory time-frequency analysis, we checked for differ-
ences in event-related power between semantically informed
perception and uninformed perception within each of the three
phases of the experiment. Cluster-based permutation tests
(Maris and Oostenveld, 2007) revealed no significant clusters in
the pre-insight phase (see Online Fig. 3, all p values. 0.789), but
one significant cluster in the insight phase (Fig. 3, pcluster =
0.002) and one significant cluster in the post-insight phase (Fig.
4, pcluster = 0.002). These two significant clusters in the insight
and post-insight phases were similar in their direction, latency,
frequency range, and topographic distribution. Both clusters
had a negative sign, started at approximately 600ms after object
onset (but see Sassenhagen and Draschkow, 2019) and contin-
ued all the way until the end of the analyzed period at
1400ms. They spanned a broad range of frequencies in the
alpha and lower beta range as well as a broad set of channels
but appeared to be most focal at approximately 15Hz and parietal
channels. Thus, semantically informed perception seems to alter
not only early, evoked activity (see Event-related potentials) but
also later, induced activity, in the form of a reduction of post-stim-
ulus power at parietal channels in the range of alpha and lower
beta frequencies.

We repeated this analysis to look for differences between seman-
tically informed perception and unsuccessfully informed perception
within each of the three phases of the experiment. There were no
significant clusters in the pre- or post-insight phases (see Online
Figs. 4 and 6; all p values. 0.216) but one significant cluster in the
insight phase (see Online Fig. 5; pcluster = 0.016). This cluster was
similar to the ones described above in terms of its latency, frequency
range, and topographic distribution.

Discussion
We found that providing participants once with semantic infor-
mation about previously unfamiliar objects instantly led to
enlarged (i.e., more negative) ERP amplitudes in the N170 com-
ponent and reduced (i.e., less negative) ERP amplitudes in the
N400 component. When the same objects were presented again,
the N400 component remained reduced and the P1 component

Enge et al. · Semantic Information on Visual Perception J. Neurosci., June 28, 2023 • 43(26):4896–4906 • 4901



was now enlarged (i.e., more positive) in response to objects that
had previously triggered semantically informed perception. An
exploratory time-frequency analysis revealed that semantically
informed perception was accompanied by a late reduction in
event-related power in the alpha and lower beta ranges.

The N400 effect indicates that acquiring an understanding of
the object lessened participants’ demand for semantic processing
(Kutas and Federmeier, 2011). It replicates previous work show-
ing larger N400 amplitudes for pictures when they are difficult to
understand in and of themselves (e.g., Supp et al., 2005; Abdel
Rahman and Sommer, 2008) or difficult to integrate into the pre-
ceding context (e.g., Barrett and Rugg, 1990; Ganis et al., 1996;
Hirschfeld et al., 2011). The latency of this effect suggests a post-
perceptual locus in the semantic system.

Our exploratory time-frequency analysis revealed a late
(.600ms) reduction in power in the alpha and lower beta
ranges (approximately 8-20Hz). Like the N400 effect, this occurred

as soon as participants had received the semantic information and
recurred once the objects were re-encountered without any seman-
tic information. Reductions in alpha/beta power have been shown
to correlate with clearer representations of stimulus-specific infor-
mation, as measured using representational similarity analysis
(Griffiths et al., 2019), and with successfully forming new semantic
memories (Hanslmayr et al., 2009). This may be because of a damp-
ening of alpha/beta oscillations, which creates favorable conditions
for high-level cortical information processing and encoding.

In contrast to the N400 and event-related power, the N170
was modulated only on those initial trials on which the relevant
semantic information was presented directly before the object. It
therefore constitutes an online marker of semantic insight, that
is, of participants suddenly understanding the visual objects in
the light of the information provided by the keywords. The N170
is associated with the holistic perception of faces (Sagiv and
Bentin, 2001; Eimer et al., 2011) and other stimuli of visual

Figure 3. Time-frequency results for the insight phase. Each topographic plot represents the difference in event-related power (in units of percent signal change) between the semantically
informed condition and the uninformed condition, grand-averaged across participants. Black dots represent EEG channels that were part of a cluster for which this difference was statistically
significant (pcluster = 0.002).
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expertise (Tanaka and Curran, 2001; Rossion et al., 2002); that is,
it is sensitive to factors that go beyond structural encoding and
categorical perception (Thierry et al., 2007a,b; Dering et al.,
2011). It being enlarged may reflect that the semantic informa-
tion made participants experience the configuration of the visual
features of the objects in a new and meaningful way. This is sup-
ported by previous findings of enlarged N170 amplitudes for
scrambled face stimuli after participants had been shown the
original version of the face (Bentin and Golland, 2002), as well as
for line drawings of meaningful objects compared with nonob-
jects (Beaucousin et al., 2011). Together, this suggests an online
impact of meaningfulness on the higher-level perception of vis-
ual objects, integrating across their visual features.

The P1, unlike the N400 and N170, was modulated by seman-
tic information only one trial after this information had been
obtained. This replicates previous studies showing modulations
of the P1 when participants had learned meaningful information

about previously unfamiliar objects (Abdel Rahman and Sommer,
2008; Maier and Abdel Rahman, 2018, 2019; Samaha et al., 2018;
Weller et al., 2019). The present study adds that the P1 effect does
not take an extensive learning history to develop; instead, it can be
observed as soon as one trial after semantic insight has happened.
Because the P1 is associated with lower-level sensory processing
(Johannes et al., 1995; Pratt, 2011; Luck, 2014), we take its suscep-
tibility to semantic information as an indicator that knowledge
about the function of an object can change how we perceive its
low-level features (Athanasopoulos and Casaponsa, 2020).

The P1 and N170 were modulated in different phases of our
study, suggesting that they reflect different aspects of top-down
processing with different time courses and neuroanatomical
implementations. The time course of the N170 is consistent with
a top-down influence of nonvisual areas in the prefrontal and
temporo-parietal cortices on visual areas, whereas modulations
of the P1 component may reflect recurrent processing within the

Figure 4. Time-frequency results for the post-insight phase. Each topographic plot represents the difference in event-related power (in units of percent signal change) between the semanti-
cally informed condition and the uninformed condition, grand-averaged across participants. Black dots represent EEG channels that were part of a cluster for which this difference was statisti-
cally significant (pcluster = 0.002).
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visual system (Wyatte et al., 2014). Here we could show that the
former pathway seems to be able to convey semantic information
instantaneously (i.e., within the same trial), whereas the latter
pathway seems to take at least one additional encounter with the
object to emerge. While the limited spatial resolution of the EEG
precludes localization, there is converging fMRI and psycho-
physical evidence that semantic information can feed back into
areas in the lateral occipital cortex as well as early retinotopic
cortex (areas V1, V2, and V3) (Hsieh et al., 2010; Clarke et al.,
2016; Teufel et al., 2018), consistent with the neural generators of
the N170 and P1 in the ERP.

The top-down modulation of visual ERPs by semantic in-
formation challenges a modular view of visual perception
(Fodor, 1983; Pylyshyn, 1999). Proponents of this view have
pointed out important shortcomings of previous studies that
had claimed to demonstrate top-down effects of cognition on
perception (Machery, 2015; Firestone and Scholl, 2016). We
addressed as many of these shortcomings as possible: We
ensured that there were no visual differences between condi-
tions (with counterbalancing and the pre-insight phase as a
negative control), we used ERPs as an objective and time-
resolved measure to disentangle perceptual and postpercep-
tual effects, and we reduced response and demand biases by
keeping the manipulation (i.e., matching or nonmatching
keywords) obscure to participants and by including well-
known objects as filler stimuli.

One could argue that the effects presented here might be re-
ducible to more basic mechanisms, such as semantic priming.
Indeed, the keywords that were presented before each object in
the semantically informed condition were chosen such that they
matched the function of the object and often had a direct rela-
tionship to certain visual features of the object. This might have
induced semantic priming, which is supported by the reduction
in N400 amplitudes (e.g., Bentin et al., 1985; Kellenbach et al.,
2000). However, there are at least three arguments why semantic
priming cannot account for our main findings, that is, the influ-
ence of semantic information on the P1 and N170. First, for both
components, ERP amplitudes were enlarged (i.e., more positive
for the P1 and more negative for the N170) during semantically
informed perception, whereas semantic priming typically leads
to reduced ERP amplitudes. Second, these effects were not just
observed when comparing semantically informed perception
(with matching keywords) and uninformed perception (with
nonmatching keywords), but also when comparing semantically
informed perception with unsuccessfully informed perception.
In the latter case, all objects were preceded by keywords that
matched the function of the object to a similar degree, making
semantic priming less likely. Third, the results from an online
rating study (see Materials and Methods; Online Fig. 1) indicated
that people by and large did not spontaneously associate the
unfamiliar objects with a particular function, and also allowed us
to statistically control for the closeness of peoples’ guesses and
the true function of each object.

A theoretical framework that would explicitly predict the
observed P1 and N170 effects in our study is lacking at present.
However, the effects are consistent with the reverse hierarchy
theory (Ahissar and Hochstein, 2004), which posits that objects
first enter visual consciousness at an abstract, conceptual level.
Once this initial “vision at a glance” has taken place, feedback
connections to earlier layers of the visual system are being
accessed to extract the relevant lower-level features (“vision with
scrutiny”). This reverse trajectory down the visual hierarchy may
explain (1) the semantically induced changes to the fMRI signal

in lateral occipital cortex and retinotopic cortex (e.g., Hsieh et al.,
2010) as well as (2) the modulations of early visual ERP compo-
nents observed in the present study and others (e.g., Abdel
Rahman and Sommer, 2008; Maier et al., 2014; Samaha et al.,
2018). An important role of top-down mechanisms for object
recognition is also posited by theories of predictive coding and
Bayesian inference (e.g., Yuille and Kersten, 2006; Xu and
Tenenbaum, 2007; Clark, 2013; Panichello et al., 2013; Lupyan,
2015). Despite the theoretical advances, detailed descriptions of
these top-down effects at the algorithmic and implementational
levels remain a challenge for future work.

In conclusion, the present study provides preliminary evi-
dence that, whenever we receive semantic information about a
previously unfamiliar object, this information has an immediate
influence on our visual processing of this object. The immediacy
of this influence is remarkable in at least two different ways:
First, it does not require an extensive learning history but can
instead be observed within the same trial in which the informa-
tion has been presented and/or a single trial later. Second, the
time course of this influence suggests that it manifests itself not
only at later, postperceptual stages (.400ms), typically associ-
ated with semantic processing, but also at much earlier stages
within the first 200ms, associated with visual perception itself.
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