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a b s t r a c t 

Learning new rules rapidly and effectively via instructions is ubiquitous in our daily lives, yet the underlying 

cognitive and neural mechanisms are complex. Using functional magnetic resonance imaging we examined the 

effects of different instructional load conditions (4 vs. 10 stimulus-response rules) on functional couplings dur- 

ing rule implementation (always 4 rules). Focusing on connections of lateral prefrontal cortex (LPFC) regions, 

the results emphasized an opposing trend of load-related changes in LPFC-seeded couplings. On the one hand, 

during the low-load condition LPFC regions were more strongly coupled with cortical areas mostly assigned to 

networks such as the fronto-parietal network and the dorsal attention network. On the other hand, during the 

high-load condition, the same LPFC areas were more strongly coupled with default mode network areas. These re- 

sults suggest differences in automated processing evoked by features of the instruction and an enduring response 

conflict mediated by lingering episodic long-term memory traces when instructional load exceeds working mem- 

ory capacity limits. The ventrolateral prefrontal cortex (VLPFC) exhibited hemispherical differences regarding 

whole-brain coupling and practice-related dynamics. Left VLPFC connections showed a persistent load-related 

effect independent of practice and were associated with ‘objective’ learning success in overt behavioral perfor- 

mance, consistent with a role in mediating the enduring influence of the initially instructed task rules. Right 

VLPFC’s connections, in turn, were more susceptible to practice-related effects, suggesting a more flexible role 

possibly related to ongoing rule updating processes throughout rule implementation. 
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. Introduction 

Learning through symbolic instructions is one of the most remark-

ble abilities within the human cognitive flexibility skillset ( Cole et al.,

017 ; Liefooghe et al., 2018 ; Meiran et al., 2017 ). Especially the rapid

imescale at which newly instructed rules can be encoded and exe-

uted accurately even at the very first attempt is impressive ( Cole et al.,

013a ). While in our daily lives we usually take this ability for granted,

he underlying cognitive and neuronal processes have received increas-

ng attention in the cognitive neuroscience domain over the past decade

 Greve et al., 2017 ; Hartstra et al., 2011 ; Lee et al., 2015 ; Muhle-

arbe et al., 2017 ; Ruge and Wolfensteller, 2010 ). 

A central requirement for such successful instruction-based learn-

ng (IBL; Ruge and Wolfensteller, 2010 ) or ‘rapid instructed task learn-

ng’ (RITL; Cole et al., 2013a ) is the transformation of abstract, sym-

olic rule representations into pragmatic ones. This so-called ‘symbolic-

ragmatic transfer’ ( Ruge and Wolfensteller, 2010 ) or ‘procedurali-

ation’ ( Brass et al., 2017 ) is not a trivial process as is illustrated

y the phenomenon of goal-neglect ( Bhandari and Duncan, 2014 ;
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uncan et al., 2008 ) in which an instruction can be accurately per-

eived, encoded and even verbally repeated (i.e., memorized) – yet it

annot be implemented. Thus, a declarative rule representation that

erely reflects the instructed stimulus-response (S-R) association with-

ut incorporation of a precise action plan seems to be insufficient for IBL

o happen. This claim is supported by a variety of imaging studies that

ocused on the configuration and temporal evolution of rule represen-

ations following novel task instruction ( González-García et al., 2020 ;

uhle-Karbe et al., 2017 ; Ruge et al., 2019 ; Sobrado et al., 2021 ). 

Using multivariate pattern analysis (MVPA) techniques that are sen-

itive to subtle changes in activity patterns it has been suggested that in

he lateral prefrontal cortex (LPFC) rule representations essential to the

xecution of newly instructed S-R associations can be decoded ( Muhle-

arbe et al., 2017 ; Palenciano et al., 2019 ; Woolgar et al., 2015 ). This

eems to be the case already at the first implementation trial and on

he level of individual S-R bindings with a particular emphasis on the

entrolateral part (VLPFC) of the prefrontal cortex ( Ruge et al., 2019 ).

nterestingly however, these identity-specific activity patterns were not

ffected by differences in instruction load despite marked differences in
e 2023 
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ehavioral performance accuracy ( Ruge et al., 2019 ). This finding con-

rasted with the original hypothesis – partly derived from earlier insights

n rule integrity in error trials ( Cole et al., 2016 ; Rigotti et al., 2013 ) –

uggesting that higher instruction load would result in a weaker or in-

omplete prefrontal rule representation (and thus in a reduced identity-

pecific MVPA effect). This raises the question of whether the detected

refrontal rule representations actually contribute to the implementa-

ion of newly instructed S-R associations and if so in which manner. 

Specifically, the degree to which instructed S-R associations are suc-

essfully implemented might depend not (only) on the integrity of pre-

rontal rule representations but also on how mnemonic processes related

o information maintenance over time and retrieval interact with these

epresentations. In turn, instructional load might affect the way pre-

rontal rule representations are accessed during instruction implemen-

ation rather than representational integrity itself (cf. Bartsch and Ober-

uer, 2022 ). From this perspective, a more adequate analytical approach

s to ask how prefrontal rule representations might be differentially inte-

rated with other brain networks that are related to storage and retrieval

rocesses depending on instructional load. To address this question, the

resent paper specifically focused on differential functional connectivity

atterns of IBL-critical prefrontal regions as a function of instructional

oad. 

Connectivity-based approaches in the context of IBL and RITL have

hus far focused mainly on global brain connectivity and large-scale net-

orks ( Cole et al., 2013b ; Mohr et al., 2016 , 2018 ). They have em-

hasized the importance of so-called control networks like the fronto-

arietal network (FPN) and the dorsal attention network (DAN). FPN-

egions are supposed to provide the basis of the flexible behavior es-

ential to IBL by their tendency to act as ‘flexible hubs’ ( Cole et al.,

013b , 2017 ). Depending on the current task demands they flexibly re-

onfigure their global functional connectivity (FC) patterns and seem to

ave a coordinating function ( Cocuzza et al., 2020 ). It looks like such an

nvolvement of the FPN is especially important during the very first im-

lementation trials after novel instructions as evidenced by an increas-

ng disengagement of the FPN – regarding activation as well as connec-

ivity measures ( Hampshire et al., 2019 ; Mohr et al., 2016 ). Further-

ore, the rapidly evolving familiarity with newly instructed S-R rules

as been linked to an increase in FC between prefrontal and striatal

reas ( Ruge and Wolfensteller, 2013 , 2015 ). 

While such studies have focused mostly on the temporal dynamics in

BL little is known about how interactions between brain regions are af-

ected by changes of instructional load. So far, effects of load manipula-

ion on FC have been studied extensively using standard working mem-

ry paradigms (e.g., Finc et al., 2017 ; Nour et al., 2019 ; Vatansever et al.,

017a ). The concept of working memory (i.e., short-term maintenance

nd manipulation of currently relevant information e.g., D’Esposito and

ostle, 2015 ) is relevant to rapid forms of IBL, both from a theoretical

e.g., due to the temporal proximity between instruction and imple-

entation – and from an empirical perspective ( Formica et al., 2020 ;

ereg et al., 2019 ; Pereg and Meiran, 2019 ). Yet, the exact mecha-

isms at work are still unclear ( Monsell and Graham, 2021 ). Therefore,

 connectivity-based approach examining load effects specifically in the

ontext of newly instructed S-R rules (in contrast to ‘pure’ working mem-

ry tasks relying on continuous updating and/or manipulating of infor-

ation) might further clarify the contribution of working memory to

BL. 

Besides a potential involvement of working memory, other

nemonic processes reaching beyond the temporal and conceptual

cope of WM have been discussed regarding their contribution to suc-

essful IBL. Monsell and Graham (2021) demonstrated that effective rep-

esentations of S-R associations can persist for a considerable amount of

ime after only very few implementation trials following a novel instruc-

ion, and concluded that such representations might be stored in long-

erm memory (LTM). Another line of research focusing on ‘automatic

ffects of instructions’ has linked those exact effects to episodic mem-

ry retrieval ( Meiran et al., 2017 ). From a neuroimaging perspective,
2 
 set of brain regions within a so-called ‘core recollection network’ has

een implicated in such episodic memory retrieval processes ( Rugg and

ilberg, 2013 ) and overlaps (at least partially) with another, well in-

estigated large-scale network, the default mode network (DMN; e.g.,

ndrews-Hanna et al., 2014 ; Buckner and DiNicola, 2019 ). 

The DMN, or more precisely, the way it interacts with other networks

uring task performance, has also been related to automatic processing

e.g., Vatansever et al., 2017b ). In this regard, greater DMN-decoupling

rom other large-scale brain networks and increasing within-DMN cou-

ling have been observed once task rules were fully established and

ould be applied in a relative ‘automatic’ fashion ( Mohr et al., 2016 ,

018 ; Vatansever et al., 2017b ). Although involving little practice, and

hus seemingly at odds with traditional views that emphasize the role

f extensive practice ( Logan, 1988 ; Schneider and Shiffrin, 1977 ), au-

omaticity is a cornerstone in theories of IBL/RITL as well. Two as-

ects are frequently mentioned in this context: First, instructions are

upposed to trigger ‘automatic’ (i.e., unintended) responses that are ev-

dent already directly after getting instructed (e.g., Liefooghe et al.,

012 ; Meiran et al., 2015 ) and seem to be quite resistant to cancelling

 Abrahamse et al., 2022 ). Second, rules conveyed via explicit instruc-

ions seem to need only very little time to be established – as evidenced

y rapid changes in network configuration ( Mohr et al., 2016 , 2018 ) as

ell as by plateauing behavioral effects after few implementation trials

e.g., Monsell and Graham, 2021 ; Ruge and Wolfensteller, 2010 ) – indi-

ating rapidly evolving automaticity. Both aspects – the former referred

o as ‘intention-based reflexivity’ ( Meiran et al., 2012 ) and the latter

s ‘short-term automatization’ ( Chein and Schneider, 2005 ; Mohr et al.,

016 ) – seemingly result in similar (i.e., automatic) behavior, yet their

ifferences are also emphasized (cf. Cole et al., 2017 ). 

Working memory and long-term (episodic) memory are hypothe-

ized to contribute to IBL, yet it remains relatively unclear how these

ystems are engaged and balanced in the service of successful learning.

he rationale behind the work presented in this paper was to concep-

ualize instructional load as a variable that strains the capacity limits

f one (here: working memory) of the involved systems which in turn

ight boost the engagement of the other (here: episodic memory) sys-

em ( Bartsch and Oberauer, 2022 ). As argued further above, such load-

ependent re-balancing might be reflected by altered functional inte-

ration of the lateral PFC into different functional networks support-

ng these two different memory systems. In addition, instructional load

ight also affect automaticity-related effects linked to IBL and should

otentially be reflected in typical functional connectivity patterns. To

his end, we revisited the data from experiment 1 originally reported

n Ruge et al. (2019) and applied a seed-based connectivity approach.

ur goal was to reconcile insights from pervious works focusing on pre-

rontal rule representation in IBL with knowledge about load-induced

unctional connectivity changes. Specifically, we focused on the func-

ional coupling of 4 prefrontal seed regions which had been shown to

lay a distinctive role in cortical coding of newly instructed task rules. 

. Methods 

.1. Experiment and design 

.1.1. Sample 

The original sample consisted of 68 participants of which 3 had to

e excluded due to incomplete data collection. This resulted in a final

ample of 65 participants (mean age: 24.2 years, age range: 19–33 years;

2 females, 33 males). 

All participants were right-handed, neurologically healthy and had

ormal or corrected-to-normal vision. The experimental protocol was

pproved by the Ethics Committee of the Technische Universität Dres-

en and conformed to the World Medical Association’s Declaration of

elsinki. The participants gave written consent before taking part in the

xperiment and were paid 10 Euro or compensated with course credit,

espectively, for their participation. 
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a  
.1.2. Task and experimental procedure 

Over the course of the experiment the participants had to complete

ultiple blocks of a rapid instruction-based learning paradigm. In each

lock there were two main phases: an instruction phase followed by

n implementation phase. During the instruction phase of each block

articipants were presented with a set of novel stimulus-response (S-R)

inks (either 4 or 10). These mappings consisted of disyllabic German

ouns (the stimuli) and the correct response button was instructed by

patially congruent cues. Since the pairing of each word with response

uttons was unique (i.e., the same word was not paired with another

utton press over the course of the experiment) these pairings are re-

erred to as ‘rule identities’. To minimize potential reliance on ‘short-

ut strategies’ the number of response options was varied between the

locks with either 2 or 3 responses being possible. Hence, the chance

o infer a correct response from another mapping (e.g., ‘if response A is

ot required here the other response has to be correct’) was minimized –

he memorization of the rule identity itself (e.g., ‘this stimulus requires

esponse B’) was encouraged (cf. Liefooghe and Houwer, 2018 ). To pre-

ent unintended interactions with the different experimental conditions

he blocks requiring either 2 or 3 responses were equally distributed

cross the conditions. Furthermore, in blocks involving 2 different re-

ponses, an equal number of 2 stimuli (low load) or 5 stimuli (high

oad) was assigned to each response during the instruction phase. For

locks involving 3 responses, either 2 (low load) or 4 (high load) stim-

li were assigned to one response and either 1 (low load) or 3 (high

oad) stimuli were assigned to each of the remaining two responses dur-

ng the instruction phase. For the subsequent implementation phase the

cheme of to-be-implemented rules in the high-load condition was iden-

ical to that determined by the low-load condition. Specifically, either

wo responses were each required twice (in blocks with 2 instructed re-

ponses) or one response was required twice and the other two responses

ere each required once (in blocks with 3 instructed responses). The be-

avioral implications of this assignment focusing on ambiguities at the

esponse-selection level are reported in supplementary analyses 1 . Each

f the 3 response options (right, middle and left) was randomly selected

o be assigned to 2 stimuli in the implementation phase in one third

f the 18 blocks that involved 3 different responses. Per subject, words

ere randomly drawn from a wordlist and assigned to the different con-

itions. 

Each instruction phase started after a variable delay of 2–4 s counting

rom the beginning of each measurement run or the end of a preceding

mplementation phase. At the start of each instruction phase the Ger-

an word for ‘memorize’ (‘Einprägen’) was displayed in red color for

 s on the screen. After this announcement novel nouns were shown on

he screen in rapid succession (2000 ms per noun). These nouns were

ramed by two vertical bars which indicated the instructed response:

f a noun was equally close to the two vertical bars a middle finger

esponse was indicated, if it was closer to the right bar a ring finger

esponse was indicated and if it was closer to the left bar an index fin-

er response was indicated. Each noun was presented only once during

he instruction phase and no responses were supposed to be executed

ithin that time span. Instructed S-R rules were presented sequentially

uch that all S-R rules requiring a left (index finger) response were pre-

ented before all stimuli requiring a middle (finger) response which, in

urn, were presented before all stimuli requiring a right (ring finger re-

ponse). This chunked sequential presentation was chosen to keep the

irection (left-to-right), number, and variability of response switches

uring the instruction phase relatively constant across both load condi-

ions. Specifically, we thereby ensured that the frequency of response

witches was kept within a small range between 1 and 2 equally for

oth load conditions. This compares to a range between either 1 and 3

low-load) or 1 and 9 (high-load) for randomly presented S-R rules. 

The implementation phase followed immediately after the instruc-

ion phase, announced by the German expression for ‘implement’ (‘Aus-

ühren’) that was displayed on screen in green color for 2 s. The stimuli

rom the preceding instruction phase were presented in pseudo-random
3 
rder without vertical bars framing them. Each stimulus was presented

 times. In contrast to the instruction phase in which no responses were

equired, the participants were supposed to react to the stimuli by press-

ng the button that corresponded to the instructed response. The subjects

ere asked to use right hand fingers for responding and to avoid inter-

erence with handedness only right-handed subjects were recruited. No

erformance feedback was provided after single trials (to rule out inter-

erence with reinforcement learning), only at the end of each block the

ean performance accuracy across all trials from that block was shown

n screen. The stimulus onset asynchrony (SOA) interval varied between

 and 4 s in steps of 0.5 s. It was placed before the start of a new trial.

he performance feedback for each block was presented for 2 s after a

ariable delay of 2–4 s counting from the end of the block’s last trial

hich indicated the end of the implementation phase. 

The central experimental manipulation concerned instruction load

nd involved a ‘low-load’ condition and a ‘high-load’ condition: The

ow-load condition comprised 4 instructed task-rules and the high-load

ondition comprised 10 instructed task-rules. Importantly, the two con-

itions did not differ regarding the number of to be executed task-rules

n the implementation phase which was always 4. While the implemen-

ation phase for the two conditions was identical, the instruction phase

iffered regarding number of stimuli and encoding time: In the low-load

ondition 4 nouns, each displayed for 2 s, were instructed, whereas 10

ouns, each displayed for 1 second, were instructed in the high-load

ondition (for an overview, see Fig. 1 ). By reducing the encoding time

n the high-load condition the total instruction phase duration was ap-

roximately the same across the two conditions. Over the course of the

xperiment, 18 blocks of each load condition were completed, adding

p to a total of 36 blocks. In each of the 3 consecutive scanning runs

 blocks of each load condition were performed and each SOA level

ccurred equally often in the two load conditions. 

Three consecutive scanning runs each lasting approximately 13 min

ere carried out adding up to a total duration of about 40 min. Before

canning, participants were familiarized with the task by completing a

hort practice session that included two task blocks (one for each experi-

ental condition) outside the scanner. The task blocks from the practice

ession were not part of the final experimental task set. 

.1.3. Additional behavioral measures 

After scanning was finished, participants were asked to perform a

omputerized simple digit span task to obtain a measure of individual

hort-term memory span ( Wechsler, 1997 ): Random sequences of dig-

ts were displayed on a screen with each individual digit being shown

or one second and appearing only once in a sequence. The presenta-

ion of a sequence was followed by the display of as many question

arks as there were digits in the preceding sequence and subjects were

rompted to reproduce the sequence either in forward or backward or-

er. If a subject reproduced a sequence correctly it advanced to the next,

onger sequence. The first sequence consisted of 3 digits and the number

f digits was increased by one with each sequence displayed (up to 10).

f a subject made an error a new sequence of the same length was dis-

layed, and if this new sequence was reproduced incorrectly again the

est stopped. The length of the last successfully reproduced sequence

i.e., maximal number of correctly remembered digits) constituted the

nal score. At last, participants performed a short computerized version

f the standard progressive matrices intelligence test ( Raven, 2003 ) in

hich only the two most difficult matrix sets out of all five sets were

sed (D and E). Each set consisted of 12 matrices that were presented

n progressively difficult order. The sum of all correctly solved matrices

onstituted the non-standardized intelligence score. 

.2. fMRI-data acquisition and preprocessing 

.2.1. Acquisition 

A Siemens 3T whole body Trio System (Erlangen, Germany) with

 32 channel head coil was used for data acquisition. Ear plugs were
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Fig. 1. Overview of the experimental paradigm. Each 

learning block comprised an instruction phase and an 

implementation phase. Novel S-R links were introduced 

in the instruction phase with vertical bars next to the ver- 

bal stimuli indicating either an index finger (left), a mid- 

dle finger (middle) or a ring finger (right) response. The 

low-load condition comprised 4 novel S-R links (each 

presented for 2000 ms) whereas the high-load condition 

comprised 10 novel S-R links (each for 1000 ms). The 

newly instructed S-R mappings were not to be executed 

during the instruction phase. Actual response execution 

was required exclusively in the implementation phase 

and regardless of the instructional load condition, al- 

ways only 4 S-R links had to be implemented four time 

each per learning block. No vertical bars next to the ver- 

bal stimuli were displayed during the implementation 

phase. Summary performance feedback was shown only 

at the end of each learning block. 
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v  
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G  

c  

b  

f  
sed to dampen the scanner noise. Structural images were acquired after

he experimental session using a T1-weighted sequence (TR = 1900 ms,

E = 2.26 ms, TI = 900 ms, flip = 9) with a resolution of 1 mm x 1 mm

 1 mm. For the acquisition of functional images a gradient echo planar

equence (TR = 2000 ms, TE = 30 ms, flip angle = 80°) was used. Each

olume contained 32 slices that were measured in ascending order. The

oxel size was 4 mm x 4 mm x 4 mm (gap: 20%). Additionally, field maps

ith the same spatial resolution as the functional images were acquired

o correct for inhomogeneity of the static magnetic field (TR = 352 ms,

hort TE = 5.32 ms, long TE = 7.78 ms, flip angle = 40°). The experiment

an on E-Prime 2.0. 

.2.2. Preprocessing 

After data acquisition the fMRI data were preprocessed using SPM12

unning on MATLAB R2016a. The functional images were slice-time cor-

ected at first, then spatially realigned and unwarped using the acquired

eld maps. The structural image from each participant was co-registered

o the mean functional image and segmented. Afterwards, spatial nor-

alization was performed by applying the deformation fields that were

enerated in the segmentation process to the functional images (resolu-

ion: 3 mm x 3 mm x 3 mm). Except for the activation analyses, images

ere not smoothed before general linear model (GLM) estimation. Sub-

ects’ whole-brain connectivity maps were smoothed with 6 mm FWHM

efore being submitted to group level analysis. 

.3. Task-related fMRI analysis 

Our primary goal was to assess load-dependent coupling of the LPFC

uring instruction implementation. To this end, we employed the beta-

eries correlation approach ( Rissman et al., 2004 ). Since this approach

equires single-trial modeling we will first describe how single-trial

LMs were estimated. After that, the beta-series correlation procedure

tself will be introduced. At last, we will describe the classical mean

ctivation analysis that was conducted as a complementary analysis. 

.3.1. Single-trial bold estimation 

To estimate voxel-wise bold activation for each single trial the Gen-

ral Linear Model approach implemented within the SPM12 framework

as employed. A first-order auto-regressive model was used and a high-

ass filter of 1/128 Hz was included to account for slow signal drifts. 
4 
Single-trial GLMs were used to model the BOLD activations during

he implementation phase. The least-squares-separate (LSS) modeling

pproach ( Mumford et al., 2011 , 2014 ) was chosen in which one re-

ressor is modeling the specific trial and additional regressors are added

o model the mean activity for all other trials according to condition.

pecifically, for each model, in addition to the single trial regressor, two

egressors were included to model correct trials separately for low-load

rials and high-load trials. Similarly, two regressors were added to model

rror trials again separately for the two load conditions. Additional re-

ressors were included to model activity associated with performance

eedback presented at the end of each implementation block separately

or the two load conditions. The regressors were created using stick func-

ions convolved with SPM12’s default canonical hemodynamic response

unction that were synchronized to the onsets of each implementation

rial or the onset of the feedback display. To model the activity associ-

ted with the instruction phase, Fourier basis set regressors time-locked

o the start of the instruction phase (including 20 different sinewave re-

ressors spanning 44 s) were used to appropriately account for BOLD

ctivation during the instruction phase that lasted either 12 (low-load)

r 14 (high-load) seconds. 

In this fashion, as many independent LSS-GLMs were estimated as

here were trials, adding up to a total of 576 individual GLMs (36 blocks

imes 16 trials per block). 

.3.2. Beta-series correlation 

The single-trial estimates computed as described above were used for

he beta-series correlation analysis ( Abdulrahman and Henson, 2016 ;

issman et al., 2004 ) that was employed to assess connectivity between

arious seed regions and all other voxels in the brain. A trial-based con-

ectivity measure was used as we intended to (a) mainly investigate

rocesses directly related to instruction implementation of individual S-

 rules and (b) effectively compare load-dependent effects specifically

elated to correct trials. This favourably compares to alternative block-

elated connectivity measures which would confound low load vs. high

oad conditions with fewer errors vs. more errors, respectively. The ba-

ic idea of this approach is to use the beta estimates from the single-trial

LMs to form a series of beta estimates for each voxel. These estimates

an then be sorted along the different task conditions (here, this could

e instructional load or stimulus repetition ) such that there is a beta-series

or each of the relevant conditions. The correlation between the beta-
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eries of a given voxel (or the average beta-series of all voxels within

 ROI) and (all) other voxels (or, again, the average time series within

ther ROIs) can be viewed as a measure of the functional connectivity

etween specific voxels/ROIs. This results in a connectivity map where

he value assigned to each voxel represents its connectivity with the seed

egion or voxel during a specific task condition. Differential connectiv-

ty between two task conditions can then be computed by contrasting

he respective connectivity maps. 

Here, the mean beta-series for the seed ROIs (see below) were ex-

racted for each task condition and the Fisher-z ( Fisher, 1921 ) trans-

ormed Pearson correlation was computed between the seed region’s

eta-series and the beta-series of each brain voxel. Connectivity maps

or each condition, each seed region, and each subject were obtained

n this way. Only the correct trials (for error-coding, see Section 2.3.6 )

ere included in the analyses. 

The single subject’s connectivity maps were then entered into a sec-

nd level GLM and were analyzed at the group level via one-sample

-tests. Whole-brain analyses using SPM12 running on MATLAB R2018a

ere performed to identify the regions exhibiting differential func-

ional connectivity with the seed regions between the respective con-

itions (e.g., high-load/low-load). As one explicit goal of this work

as to follow up on earlier MVPA findings, the four primary seed

OIs were the same as those used in Ruge et al. (2019) : the left/right

LPFC as well as the left/right DLPFC. Those ROIs were adapted from

he automatic anatomical labeling (aal) atlas ( Tzourio-Mazoyer et al.,

002 ): aal-regions ‘inferior frontal gyrus pars opercularis’ and ‘inferior

rontal gyrus pars triangularis’ of each hemisphere were combined for

he VLPFC-seed, aal-region ‘middle frontal gyrus’ was selected for the

LPFC seed. Unless indicated differently all whole brain analyses were

orrected for multiple comparisons using family-wise error correction at

he cluster-level, with pFWE < 0.05 and an initial threshold of p uncorr. 

 0.001. 

.3.3. Standard activation analysis 

Although we focus mainly on connectivity in this work, a standard

hole-brain activation analysis was conducted as well. Since the rela-

ionship between activation and connectivity is not necessarily straight-

orward ( Di and Biswal, 2019 ) their complementary evaluation can po-

entially reveal interesting insights ( Gerchen and Kirsch, 2017 ). 

The activation analysis was performed on the preprocessed and

moothed (6 mm FWHM) fMRI-data. In contrast to the single-trial GLMs

hat constituted the basis for our connectivity analyses a conventional

odeling approach was used here. The 8 condition-specific regressors

efined by the two conditions ‘instructional load’ (low-load and high-

oad) and ‘stimulus repetition’ (1 to 4) were created by convolving stick

unctions synchronized to trial onsets (correct ones only) with SPM12’s

efault canonical HRF. Regressors of no-interest – error-trials, very first

rial per block and feedback after each block – were created in the same

ay. Just like for the single-trial GLMs the instruction phase was mod-

lled using Fourier basis set regressors. To capture the constant activity

cross each implementation phase additional regressors were created by

onvolving a boxcar function synchronized to onset and duration of the

mplementation blocks with the canonical HRF 

Since the study design effectively equals a mixed block/event-related

esign ( Dosenbach et al., 2006 ; Visscher et al., 2003 ) we were interested

n both the constant activation across each implementation block and

he activation related to the specific trials. Therefore, contrast images for

he instructional load conditions were computed at the first level using

ither the betas from the implementation block regressors or from the

rial-specific regressors (aggregated across stimulus repetitions). Both

inds of contrast images were then evaluated separately at second level

sing one-sample t-tests. 

.3.4. Follow-up connectivity analyses 

To put the findings regarding the load-dependent connectivity pro-

les of our selected LPFC seeds into perspective we decided to conduct
5 
ollow-up whole-brain connectivity analyses. To this end, we used some

f the regions identified via the previous LPFC-seeded whole-brain con-

ectivity analyses themselves as new seeds for further whole-brain BSC

nalyses. Since there was a considerable overlap between the connec-

ivity profiles evoked by the four primary LPFC seeds we accounted for

his overlap by creating ‘combined maps’: Clusters of increased connec-

ivity that survived the whole-brain correction were extracted such that

inary whole-brain maps for each seed and each contrast direction (i.e.,

ow-load > high-load and high-load > low-load) were obtained (1 = voxel

ithin significantly connected clusters, 0 = otherwise). The resulting four

inary maps per contrast direction were combined (logical or), resulting

n one ‘combined connectivity map’ (i.e., each voxel had been part of

ignificantly coupled cluster for at least one of the 4 primary seeds) for

ach contrast. Clusters of contiguous voxels were then extracted from

hose maps, resulting in specific ‘combined clusters’ for each contrast

irection that served as seeds for our follow-up whole-brain connectiv-

ty analyses. 

.3.5. Correlations with behavioral variables 

To assess the behavioral relevance of the connectivity patterns we

omputed the correlation between the prefrontal connections detected

n the preceding analysis steps and the behavioral measures obtained

uring or after the experiment. 

We chose an ROI-based approach in which we used the ‘connec-

ions’ (between seeds and significantly coupled regions) as defined in

ection 3.3.1 . Average differential beta-series correlation values for each

onnection were extracted from subjects’ contrast maps. Afterwards, we

omputed the Pearson product-moment correlation as well as the Spear-

an rank-correlation coefficient between each extracted connection and

rait-like behavioral measures (total scores of Raven’s progressive ma-

rices, forward digit span and backward digit span) as well as first trial

ccuracy (low-load, high-load, and low-load minus high-load). Correla-

ions were corrected for multiple testing by controlling the false discov-

ry rate (FDR; Benjamini and Hochberg, 1995 ). The amount of correla-

ions the FDR was controlled for was given by the number of connections

etected per seed (variable) times the number of behavioral variables

aken into account for analysis (always 6). FDR correction was therefore

mplemented individually for each of the 4 seeds. Only correlations that

urvived this correction procedure are reported. 

.3.6. Definition of correct and erroneous responses 

Due to the absence of response feedback during individual imple-

entation trials, participants could not know whether or not they had

orrectly retrieved the instructed response for a certain stimulus. Hence,

t seems a reasonable strategy to stick with the response that was exe-

uted for the same stimulus in a previous implementation trial assum-

ng it was the originally instructed one. Accordingly, we classified a

esponse as ‘correct’ when it matched the response given in the preced-

ng trial for the same stimulus. In the special case of the first imple-

entation trial, a response was classified as ‘correct’ when it matched

he originally instructed response for a given stimulus, thus an ‘objec-

ive’ measure of successful instruction implementation was obtained in

his case. Only trials coded as ‘correct’ in that manner were used for

he fMRI data analyses. For a depiction of accuracy rates based on an

lternative accuracy definition (i.e., accuracy as measured by the in-

tructed response at all 4 stimulus repetitions), please see supplementary

gure 1. 

.3.7. Conflict trials 

The absence of direct performance feedback also creates a specific

ype of potential conflict: If the implemented S-R rule does not match

he instructed S-R rule (e.g., the stimulus ‘picture’ requires a middle

nger response but an index finger response is executed) this just im-

lemented S-R rule likely becomes the new ‘self-generated’ correct rule

n the upcoming trial with the same stimulus (‘picture’ would now re-

uire an index finger response to be classified as correct). Since this
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Fig. 2. Illustration of several possible response tra- 

jectories across the implementation phase. Correct re- 

sponses (see Section 2.3.6 for error definition) are 

printed in green and incorrect responses are printed in 

red. Conflict trials (i.e., trials in which instructed and 

previous response to the same stimulus do not match) 

are underlined. The illustration is a non-exhaustive se- 

lection of a total of 3ˆ4 = 81 possible trajectories. 
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elf-generated S-R rule and the originally instructed S-R rule (‘picture’

till requires a middle finger response) are conflicting, this upcoming

rial is labelled as conflict trial (see Fig. 2 for a schematic illustration).

ehavioral performance in conflict trials provides an indication of the

xtent to which the original instruction is still active even if it had not

een implemented correctly at some point in the implementation phase.

lease note, that a conflict trial can only occur at stimulus repetitions 2

o 4 as in stimulus repetition 1 there is no previously executed S-R rule.

. Results 

.1. Behavioral performance 

.1.1. Mean response times and accuracy 

Response accuracies and reaction times (RTs) were already reported

n Ruge et al. (2019) . Since they are at least partly relevant for the analy-

es conducted here, the results will be briefly summarized in this section.

Repeated measures ANOVAs were computed with the indepen-

ent variables stimulus repetition and instructional load . Accuracies (see

ig. 3 a) were found to be generally higher in the low-load condition com-

ared to the high-load condition as indicated by the main effect of instruc-

ional load (F 1,64 = 202.81; p(F) < 0.001; 𝜂p 
2 = 0.76) and increased lin-

arly across stimulus repetitions (F 3,192 = 71.43; p(F) < 0.001; 𝜂p 
2 = 0.53;

inear contrast F 1,64 = 111.52; p(F) < 0.001; 𝜂p 
2 = 0.64). The increase

f accuracy was more pronounced in the high-load than in the low-load
ig. 3. a) Behavioral performance as measured by response accuracy (proportion corre

n repetitions 2 to 4 and relative to the originally instructed response in repetition 1. b)

no conflict_preR’ condition indicates accuracy relative to the previously executed res

onflict trials. The statistical analysis reported in 3.1.3 was based on these two condit

o the originally instructed response (‘conflict_insR’) as well as defined relative to th

xecuted (‘conflict_resR’). Please note, that for non-conflict trials accuracy relative 

nstructed response. Error bars represent 95% confidence intervals. 

6 
ondition as indicated by the interaction of instructional load by stimu-

us repetition (F 3,192 = 80.14; p(F) < 0.001; 𝜂p 
2 = 0.56; linear contrast

 1,64 = 156.40; p < .001; 𝜂p 
2 = 0.71). Accuracies differed significantly

etween conditions even at the fourth stimulus repetition with the per-

ormance in low-load trials still being better than that in high-load trials

t = 6.26; p(t) < 0.001). 

The same behavioral pattern was found when considering reaction

ime (RT). A significant main effect of instructional load indicated gener-

lly higher RTs in the high-load condition (F 1,64 = 175.15; p(F) < 0.001;

p 
2 = 0.73). A linear RT decrease from the first towards the fourth stim-

lus repetition was indicated as well (F 3,192 = 224.87; p(F) < 0.001;

p 
2 = 0.78; linear contrast F 1,64 = 290.67; p(F) < 0.001; 𝜂p 

2 = 0.82).

his RT decrease was more pronounced in the high-load than in the low-

oad condition (F 3,192 = 137.94; p(F) < 0.001; 𝜂p 
2 = 0.68; linear contrast

 1,64 = 252.69; p(F) < 0.001; 𝜂p 
2 = 0.80) but RTs were still longer in the

igh-load than in the low-load condition at repetition 4 (t = 4,60; p(t) <

.001). 

.1.2. Correlation between accuracy and test scores 

Correlations between mean accuracy across all stimulus repetitions

nd the progressive matrices score were positive for the low-load in-

tructions ( r = 0.32; p = .009, two-tailed) as well as for the high-load

nstructions ( r = 0.35; p = .005, two-tailed). Correlations with progres-

ive matrices score were still present in the low-load condition ( r = 0.26;

 = .037, two-tailed) and the high-load condition ( r = 0.28; p = .022,
ct). Response accuracy was defined relative to the previously executed response 

 Response accuracy in conflict trials specifically for the high-load condition. The 

ponse in non-conflict trials. The ‘conflict_preR’ condition indicates the same for 

ions. Complementarily, the chart depicts conflict trial accuracy defined relative 

e remaining third response option that was neither instructed nor previously 

to the previously executed response equals accuracy relative to the originally 
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wo-tailed) when selectively analysing first implementation trial accu-

acy. No correlations were observed between accuracy rates and for-

ard/backward digit span scores when considering all trials of a con-

ition (all p > .277, two-tailed). When only considering the first im-

lementation trial per stimulus of each condition, however, there was

 significant positive correlation observed between forward digit span

core ( r = 0.27; p = .032, two-tailed) and low-load condition accuracy

ith a trend in the same direction in the high-load condition ( r . = 0.21;

 = .087, two-tailed). 

.1.3. Conflict vs. non-conflict trials 

The behavioral results reported above raised the question why accu-

acy remained at a lower level in the high-load than in the low-load in-

truction condition throughout the whole implementation phase. This is

omewhat remarkable as from the second stimulus repetition onwards,

here is no obvious difference between the conditions (i.e., 4 S-R rules

ave to be implemented within the same time period). A possible expla-

ation might be provided by the analysis of conflict trials which occur

ore frequently in the high-load condition (about 30% of all trials per

timulus repetition) whereas in the low-load condition accuracy levels

eiled already at stimulus repetition 1 resulting in very few conflict tri-

ls. Specifically, a lower accuracy in conflict trials than in non-conflict

rials would indicate a persisting (negative) impact of the originally in-

tructed S-R rule even though a successful transfer from instruction to

mplementation had originally failed in the first implementation trial.

he impact of conflict was analysed for stimulus repetitions 2 to 4 (as

y definition there is no conflict at stimulus repetition 1) and we fo-

used on the high-load condition as there were too few conflict trials
Table 1 

Results of all activation analyses. Peak voxels for each cluster are reported in MNI s

Condition Contrast pFWE cluster Voxels p

LOAD-sustained LOW > HIGH < 0.001 539 .

.032 48 .

.032 48 .

HIGH > LOW < 0.001 175 <

< 0.001 1395 <

< 0.001 641 <

< 0.001 181 <

< 0.001 252 .

< 0.001 259 .

< 0.001 315 .

.003 78 .

.003 78 .

< 0.001 124 .

LOAD-transient LOW > HIGH < 0.001 424 .

< 0.001 136 .

HIGH > LOW .001 88 .

.006 66 .

.037 45 .

< 0.001 144 .

Time EARLY > LATE < 0.001 12,824 <

<

<

< 0.001 1273 <

.002 103 <

< 0.001 381 <

.011 72 .

.006 81 .

LATE > EARLY < 0.001 793 <

< 0.001 457 <

< 0.001 243 <

< 0.001 255 .

< 0.001 457 .

.001 112 .

.050 50 .

Abbreviations: ant. = anterior; bilat. = bilateral; AG = angular gyrus; cer. = cerebel

ins. = insula; IPL = inferior parietal lobule; ITG/MTG/STG = inferior/middle/superio

occ. = occipital; orb. = orbital; oper. = operculum; par. = parietal; para. lob. = paracen

frontal gyrus; SMA = supplementary motor area; SMG = supramarginal gyrus; sup. =

7 
n the low-load condition. As before, accuracy was defined with re-

pect to the previously executed response for a given stimulus. A 2-by-3

NOVA with factors conflict and stimulus repetition yielded highly signif-

cant main effects of conflict (F 1,64 = 412.21; p(F) < 0.001; 𝜂p 
2 = 0.87)

nd stimulus repetition (F 2,128 = 45.51; p(F) < 0.001; 𝜂p 
2 = 0.41) as well

s a significant interaction of both factors (F 2,128 = 12.84; p(F) < 0.001;

p 
2 = 0.17). As shown in Fig. 3 b, this reflects, as hypothesized, an overall

igher accuracy in non-conflict trials (‘no conflict_preR’) than in conflict

rials (‘conflict preR’). While the accuracy increase towards the end of

he implementation phase was more pronounced in conflict trials than

n non-conflict trials , it is apparent that the conflict trial accuracy never

eached the same asymptotic level as in non-conflict trials. This clearly

hows that the persisting accuracy difference between the low-load and

he high-load condition shown in Fig. 3 a is indeed due to conflict tri-

ls. Moreover, Fig. 3 b also shows that errors in conflict trials are mainly

ue to choosing the originally instructed response (‘conflict_insR’) rather

han the remaining third response option that was neither instructed

or previously executed (‘conflict_resR’). Hence, even if subjects seem to

ave forgotten the originally instructed response as reflected by high er-

or rates in the first implementation trial (repetition level 1), the above-

hance tendency to switch back to the originally instructed response

ater on, suggests that this was in fact not the case. 

.2. Standard analysis of transient and sustained bold activity 

First, we conducted a standard activation analysis to assess the whole

rain activation differences regarding the main effects of load (sustained

nd transient) and time (see Table 1 ) 
pace. 

FWE peak Tpeak x / y / z Regions 

007 5.80 − 6 / 29 / − 4 Bilat. MFC 

396 4.60 − 51 / − 73 / 29 Left MTG/AG 

888 4.08 − 6 / − 58 / 14 Left Prec./PCC 

 0.001 7.51 − 30 / 23 / − 1 Left ant. Ins. 

 0.001 7.25 − 33 / − 55 / 38 Left IPL/sup. Prec. 

 0.001 6.81 45 / 32 / 32 Right MFG 

 0.001 6.77 30 / 26 / − 1 Right ant. Ins. 

010 5.72 6 / 20 / 47 Bilat.SMA 

012 5.67 − 33 / 62 / 8 Left MFG 

031 5.42 − 48 / 20 / 32 Left IFG/MFG 

292 4.72 12 / 2 / 8 Right Thal. 

445 4.54 − 12 / − 13 / 11 Left Thal. 

652 4.34 27 / 11 / 47 Right MFG/SFG 

035 5.39 − 57 / − 19 / 23 Left STG/Oper. 

399 4.60 60 / − 13 / 17 Right SMG/STG 

365 4.64 − 42 / − 67 / 47 Left AG 

439 4.56 − 36 / 11 / 59 Left MFG 

526 4.48 45 / 17 / 35 Right IFG 

533 4.47 − 6 / 41 / 38 Bilat. MFC 

 0.001 11.69 − 33 / − 58 / 41 Front./par. cortex 

 0.001 11.63 − 33 / 20 / − 1 Left ant. Ins. 

 0.001 11.17 33 / 20 / − 4 Right ant. Ins. 

 0.001 9.09 9 / − 79 / − 31 Right Cer. 

 0.001 7.13 57 / − 46 / − 10 Right ITG/MTG 

 0.001 6.61 − 51 / − 46 / − 10 Left MTG/ITG 

432 4.49 − 18 / − 25 / 59 Left para. lob. 

442 4.48 18 / − 25 / 59 Right para. lob. 

 0.001 7.19 30 / − 85 / 32 Right occ. cortex 

 0.001 6.96 − 3 / 35 / − 10 Orb.MFC 

 0.001 6.80 42 / 5 / − 34 ITG/temp. pole 

002 6.16 − 6 / 62 / − 1 Bilat. MFC 

002 6.09 − 9 / − 94 / 32 Left occ. Cortex 

027 5.46 − 45 / 5 / − 37 Left ITG/temp. pole 

291 4.66 27 / − 67 / − 7 Right fusiform gyrus 

lum; front. = frontal; IFG/MFG/SFG = inferior/middle/superior frontal gyrus; 

r temporal gyrus; mid. cing. = middle cingulate; MFC = medial frontal cortex; 

tral lobule; PCC = posterior cingulate gyrus; prec. = Precuneus; SFG = superior 

 superior; temp. = temporal; thal. = thalamus). 
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Fig. 4. Visualization of the standard activa- 

tion analysis results. (a) Block-related load- 

dependent activation (b) trial-related load- 

dependent activation; positive t-values repre- 

sent areas in which activation was greater in 

the high-load > low-load contrast and are illus- 

trated in warm colors; negative t-values repre- 

sent areas in which activation was greater in 

the low-load > high-load contrast and are illus- 

trated in cold colors. 
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.2.1. Effect of instructional load : block-related sustained activation 

Only few areas, most notably medial prefrontal cortex, displayed

reater sustained activation in the low-load as compared to the high-load

ondition. When considering the opposite contrast, high-load vs . low-

oad , widespread sustained activation was detected in lateral prefrontal,

nsular and posterior parietal as well as thalamic regions of both hemi-

pheres (see Fig. 4 a and Table 1 ). Strong block-related sustained effects

eem to be in accordance with a persistent load-related difference in

ccuracy and RT (see 3.1). 

.2.2. Effect of instructional load : trial-related transient activation 

Regarding transient event-related effects of load (see Fig. 4 b and

able 1 ), two clusters around the bilateral parietal/temporal opercula

ere identified to be more strongly activated during the low-load than

uring the high-load condition. For the opposite contrast, high-load vs .

ow-load , significant activation clusters were found in lateral/medial

rontal areas and around the left angular gyrus. 

Discrepancies between block-related and trial-related activation

ight be due to power differences in favor of the block-related regressor

with a considerable share of load-dependent activation being captured

y it already). Furthermore, block-related activation might also com-

rise (sustained) processes induced by error trials which occur more

requently in the high-load condition. 

.2.3. Effect of time 

Besides cerebellar and posterior temporal sites, a very large cluster

f voxels spanning posterior parietal and frontal regions of both hemi-

pheres with activation foci in the anterior insulae and around angular

yri was found to be more strongly activated during the early part (stim-

lus repetitions 1 and 2) of the implementation phase as compared to

he late part (stimulus repetitions 3 and 4). For the reversed contrast,

ate vs . early increased activation was predominantly detected in the bi-

ateral occipital cortices and to a lesser degree around bilateral temporal

oles and ventromedial PFC ( Table 1 and supplementary figure 3). 

.3. Whole-brain connectivity: beta-series correlation for primary seeds 

Our central goal in this work was to assess the load-dependent func-

ional coupling of the 4 prefrontal seeds used in Ruge et al. (2019) . As

escribed above this was done by computing the beta-series correlation

etween each specific seed region and all other brain voxels. Subse-

uently, significantly coupled voxels were assigned to large-scale net-

orks based on the parcellation by Yeo et al. (2011) . Table 2 provides

n overview for all 4 primary seed regions. 

.3.1. Whole brain: effect of instructional load 

.3.1.1. Left DLPFC seed. The left DLPFC (see Fig. 5 a) was more

trongly coupled to a cluster around the left inferior frontal gyrus (IFG)

n the low-load as compared to the high-load condition. For the opposite

ontrast direction, high-load versus low-load , increased coupling was ob-

erved with ventral precuneus/posterior cingulate cortex (PCC), medial

rontal cortex (MFC) and left angular gyrus (AG). 
8 
.3.1.2. Right DLPFC seed. The right DLPFC (see Fig. 5 b) exhibited in-

reased coupling to an area around the right supramarginal gyrus (SMG)

or the low-load vs . high-load contrast. For the reversed contrast (high-

oad versus low-load) stronger coupling to ventral precuneus/PCC, MFC

nd bilateral AG (reaching into posterior temporal and occipital cor-

ices) was detected. 

.3.1.3. Left VLPFC seed. Left VLPFC (see Fig. 5 c) was more strongly

oupled to both left and right SMG regions for the low-load vs . high-

oad contrast. Other regions of increased coupling for the same contrast

ere localized around the bilateral orbitofrontal gyri (OFG), the bilat-

ral supplementary motor areas (SMA), the left posterior insula (INS)

nd within the left cerebellum. Only one cluster covering the ventral

recuneus/PCC was found to be more strongly connected in the high-

oad as compared to the low-load condition. 

.3.1.4. Right VLPFC seed. For the low-load vs . high-load contrast mul-

iple locations of strengthened coupling to the right VLPFC seed (see

ig. 5 d) were identified in and around: right anterior OFG, bilateral IFG,

ight middle frontal gyrus (MFG), right SMA, left cerebellum, right ante-

ior insula (aIns), right and left posterior parietal cortex around the in-

raparietal sulcus (IPS). For the opposite contrast, high-load vs . low-load ,

he junction of ventral precuneus/PCC, again, was increasingly coupled

s were MFC and the bilateral AG. 

.3.2. Connectivity overlap between primary seed regions 

At first glance, results of the beta-series correlation analyses appear

imilar across all 4 prefrontal seeds. Comparing the low-load condition

o the high-load condition, we observed significantly increased coupling

o regions predominantly assigned to large-scale networks such as the

PN and the dorsal/ventral attention network (DAN/VAN). Areas ex-

ibiting increased coupling to one of the 4 prefrontal seeds in the high-

oad condition compared to the low-load condition, in turn, were almost

xclusively assigned to the DMN. However, while this pattern was con-

istent across all 4 prefrontal seeds there was still considerable variation

n location and extent of the specific connectivity foci. In an attempt to

apture and quantify this variation we performed pairwise second level

-tests in which we compared subjects’ load-related connectivity contrast

aps between the 4 seeds. Each seed was compared against each other

eed resulting in a total of 6 paired t-tests (see supplementary Table 1

nd supplementary Fig. 4). 

Interestingly, especially the left VLPFC’s connectivity pattern dif-

ered markedly and consistently from that of all 3 remaining seed re-

ions’ connectivity patterns. In particular, the posterior parietal, tem-

oral and medial frontal areas showed deviating load-related functional

ouplings specifically with the left VLPFC seed. Although differences in

oad-induced whole-brain connectivity changes were also observed be-

ween some of the remaining three pairwise comparisons between seed

egions (i.e., left DLPFC vs. right DLPFC, left DLPFC vs. right VLPFC,

ight DLPFC vs. right VLPFC) no systematic pattern emerged compara-

le to the one observed for left VLPFC-specific effects. 
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Fig. 5. Connectivity results based on a) left DLPFC; b) right DLPFC; c) left VLPFC and d) right VLPFC. T-value maps are thresholded at p uncorrected = 0.001 for 

visualization purposes and were generated with BrainNet Viewer ( Xia et al., 2013 ). Positive values depicted in warm colors represent areas in which coupling to the 

seed-region was greater in the high-load > low-load condition. Negative values depicted in cold colors represent areas in which coupling to the seed-regions was 

greater in the low-load > high-load condition. The bar graphs summarize the network assignment ( Yeo et al., 2011 ) of all coupled voxels in the low-load > high-load 

contrast (middle column) and the high-load > low-load contrast (right column). DAN = dorsal attention network; DMN = default mode network; FPN = fronto-parietal 

network; VAN = ventral attention network. 

9 



A.W. Baumann, T.A.J. Schäfer and H. Ruge NeuroImage 277 (2023) 120262 

Table 2 

Connectivity results for the primary prefrontal seeds. Peak voxels for each cluster are reported in MNI space. 

Connection Seed Contrast pFWE cluste r voxels pFWE peak Tpeak x / y / z Regions 

1 left DLPFC LOW > HIGH < 0.001 197 .312 4.49 − 42 / 20 / 20 Left IFG 

2 HIGH > LOW < 0.001 617 < 0.001 6.55 − 3 / − 52 / 26 Bilat. Prec./PCC 

3 < 0.001 565 .052 5.12 0 / 53 / − 4 Bilat. MFC 

4 .021 89 .300 4.50 − 39 / − 67 / 32 Left AG 

5 right DLPFC LOW > HIGH .023 92 .864 3.86 57 / − 43 / 35 Right SMG 

6 HIGH > LOW < 0.001 667 < 0.001 7.52 3 / − 64 / 29 Bilat. Prec./PCC 

7 .001 163 .003 5.94 51 / − 64 / 29 right AG 

8 < 0.001 927 .012 5.55 0 / 53 / − 1 Bilat. MFC 

9 < 0.001 248 .035 5.23 − 39 / − 70 / 38 Left AG 

10 left VLPFC LOW > HIGH < 0.001 457 < 0.001 7.11 − 57 / − 46 / 41 Left IPL/SMG 

11 < 0.001 283 .005 5.81 − 42 / 56 / − 10 Left ant. OFC 

12 < 0.001 551 .007 5.72 60 / − 43 / 29 Right SMG/MTG 

13 < 0.001 278 .062 5.04 57 / 32 / − 4 Right OFC 

14 < 0.001 232 .072 4.99 − 24 / − 79 / − 43 Left Cer. 

15 < 0.001 281 .126 4.81 − 12 / 5 / 68 Bilat. SMA 

16 .002 155 .296 4.49 − 48 / 5 / − 10 Left Ins../temp. pole 

17 HIGH > LOW < 0.001 779 < 0.001 9.93 − 6 / − 64 / 23 Bilat. Prec./Cuneus 

18 right VLPFC LOW > HIGH .026 88 .005 5.83 30 / 59 / − 13 Right ant. OFC 

19 < 0.001 289 .010 5.61 − 27 / − 49 / 44 Left IPS/SPL 

20 < 0.001 418 .013 5.52 39 / 2 / 59 Right SMA/MFG 

21 .013 105 .013 5.52 45 / 32 / 29 Right MFG/IFG 

22 < 0.001 373 .035 5.23 − 6 / − 79 / − 34 Left Cer. 

23 < 0.001 487 .043 5.16 36 / − 49 / 65 Right IPS/SPL 

24 .007 119 .049 5.12 − 42 / 20 / 26 Left IFG 

25 .030 85 .254 4.55 30 / 26 / − 4 Right INS 

26 .003 141 .308 4.47 45 / 11 / 26 Right IFG 

27 HIGH > LOW < 0.001 835 < 0.001 9.15 0 / − 61 / 26 Bilat. Prec./PCC 

28 .001 190 < 0.001 6.85 51 / − 64 / 26 Right AG 

29 < 0.001 1188 .004 5.92 0 / 56 / − 4 Bilat. MFC 

30 < 0.001 247 .005 5.84 − 42 / − 73 / 35 Left AG/Occ. Cortex 

Abbreviations: DLPFC/VLPFC = dorsolateral/ventrolateral prefrontal cortex; ant. = anterior; bilat. = bilateral; AG = angular gyrus; cer. = cerebel- 

lum; front. = frontal; IFG/MFG/SFG = inferior/middle/superior frontal gyrus; ins. = insula; IPL = inferior parietal lobule; IPS = intraparietal sulcus; 

ITG/MTG/STG = inferior/middle/superior temporal gyrus; MFC = medial frontal cortex; occ. = occipital; OFC = orbitofrontal cortex; par. = parietal; PCC = pos- 

terior cingulate gyrus; prec. = precuneus; SMA = supplementary motor area; SMG = supramarginal gyrus; temp. = temporal). 
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.3.3. ROI-specific ANOVAs: time and interaction load X time 

After we had identified the LPFC connections sensitive to different

evels of instructional load in the previous analysis step, we were also

nterested to which degree these connections changed over the course

f the implementation phase. For this purpose, we extracted subjects’

ean BSC values per condition and connection identified via the two

irections of the instructional load contrast at whole-brain level (i.e., all

ombinations of seed and target-ROI from 3.3.1) and entered them as de-

endent variables into multiple 2-by-2 repeated measures ANOVAs with

actors instructional load and time (stimulus repetitions 1 and 2 as well as

 and 4 were aggregated resulting in an early and a late implementation

tage, respectively). A total of 30 ANOVAs were conducted. Correction

or multiple testing was implemented by controlling the false-discovery

ate individually at the level of each seed (e.g., correcting for 4 left

LPFC-related tests). Only significant effects surviving this correction

rocedure are reported here. 

Besides the highly significant main effect of instructional load that

bviously had to be present for each connection mirroring the original

hole-brain results (all F 1,64 > 18.45; all p(F) ⟨ 0.001; all 𝜂p 
2 ⟩ 0.22),

 main effect of time was detected for several connections (all F 1,64 >

3.17; all p(F) ⟨ 0.002; all 𝜂p 
2 ⟩ 0.17) in all cases reflecting a significant

ecrease in coupling strength towards the late implementation stage.

nterestingly, all these connections (6 to 9 and 27 to 30) involved right

emispheric seed regions and were identified via the contrast direction

igh-load vs . low-load in the original whole-brain analysis. Additionally,

 connections displayed a significant instructional load x time interaction

ffect (all F 1,64 > 6.79; all p(F) ⟨ 0.011; all 𝜂p 
2 ⟩ 0.096). All of those con-

ections (1, 18, 20 and 22) were identified via the low-load > high-load

ontrast direction in the original whole-brain analysis. The implications

f these interaction effects were heterogeneous as, for example, at con-
 fi  

10 
ection 1 the coupling in the two load conditions converged towards

he end of the implementation phase whereas at connection 18 cou-

ling increased more strongly over time in the high-load condition (see

able 3 for an overview and Fig. 6 for an illustration). When applying a

ess liberal significance criterion, i.e., using family-wise error correction

 Holm, 1979 ) and taking into account all 30 ANOVAs at once, all re-

orted main effects of time (connections 6 to 9 and 27 to 30) remained

ignificant as did two of the reported interactions (1 and 18). 

As all load-dependent connectivity results reported here are inher-

ntly relative, it would be informative to compare both low-load and

igh-load connectivity to a third ‘baseline’ condition. Thereby, we could

etermine, for instance, whether a load-dependent connectivity increase

s due to increased high-load connectivity relative to baseline or de-

reased low-load connectivity relative to baseline. Unfortunately, the

resent experiment did not comprise such an unbiased baseline con-

ition (e.g., fixation). In supplementary analyses 2 we report the re-

ults obtained based on an auxiliary and arguably suboptimal base-

ine condition taken from a different experiment (‘Experiment 2 ′ from

uge et al. (2019) ). 

.4. Whole-brain connectivity: follow-up analyses 

The load-dependent connectivity profiles of the primary LPFC-

eeds suggested a shift from stronger coupling to areas assigned to

ttention/control-related networks during the low-load condition to-

ards a stronger coupling to DMN-assigned regions during the high-

oad condition. It remained unclear, however, whether such a connec-

ivity profile was specific for the pre-selected LPFC seeds (as they are

onsidered control regions themselves) or whether this only exempli-

ed a more general phenomenon beyond these seed regions. In par-
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Table 3 

ANOVA results. Connections identified in 3.3.1 were examined. P-values are printed in italic letters when trend-wise significance ( p < .1) was indicated and in 

bold letters when significance ( p < .05) was indicated. P-values that survived FDR-correction per seed (for procedure, see 3.3.3) are denoted by ( ∗ ). P-values 

that survived family-wise error correction for all 30 seeds are denoted by ( † ), additionally. 

SEED region Target regions Connection time load ∗ time 

F p 𝜂p 
2 F p 𝜂p 

2 

DLPFC_L Left IFG 1 1.59 .212 0.024 11.79 .001 ∗ † 0.156 

Bilat. Prec./PCC 2 0.96 .330 0.015 0.42 .519 0.007 

Bilat. MFC 3 0.11 .747 0.002 0.66 .419 0.010 

Left AG 4 2.81 .099 0.042 0.53 .470 0.008 

DLPFC_R Right SMG 5 0.04 .836 0.001 2.01 .162 0.030 

Bilat. Prec./PCC 6 19.59 < 0.001 ∗ † 0.234 0.62 .433 0.010 

right AG 7 13.18 .001 ∗ † 0.171 1.33 .254 0.020 

Bilat. MFC 8 24.54 < 0.001 ∗ † 0.277 0.07 .787 0.001 

Left AG 9 31.71 < 0.001 ∗ † 0.331 1.13 .291 0.017 

VLPFC_L Left IPL/SMG 10 0.59 .447 0.009 2.68 .106 0.040 

Left ant. OFC 11 0.01 .944 < 0.001 3.88 .053 0.057 

Right SMG/MTG 12 1.25 .268 0.019 1.97 .165 0.030 

Right OFC 13 0.14 .714 0.002 0.29 .592 0.005 

Left Cer. 14 1.81 .183 0.028 1.12 .293 0.017 

Bilat. SMA 15 2.33 .132 0.035 7.73 .007 0.108 

Left Ins./temp. pole 16 2.51 .118 0.038 1.19 .280 0.018 

Bilat. Prec./Cuneus 17 2.21 .142 0.033 3.09 .083 0.046 

VLPFC_R Right ant. OFC 18 0.73 .396 0.011 15.52 < 0.001 ∗ † 0.195 

Left IPS/SPL 19 0.20 .660 0.003 5.97 .017 0.085 

Right SMA/MFG 20 1.26 .266 0.019 7.09 .010 ∗ 0.100 

Right MFG/IFG 21 0.26 .609 0.004 4.29 .042 0.063 

Left Cer. 22 0.02 .903 < 0.001 6.79 .011 ∗ 0.096 

Right IPS/SPL 23 0.14 .713 0.002 4.57 .036 0.067 

Left IFG 24 2.99 .089 0.045 5.70 .020 0.082 

Right Ins. 25 0.01 .925 < 0.001 1.82 .182 0.028 

Right IFG 26 0.58 .451 0.009 0.77 .385 0.012 

Bilat. Prec./PCC 27 29.62 < 0.001 ∗ † 0.316 3.60 .062 0.053 

Right AG 28 20.32 < 0.001 ∗ † 0.241 4.48 .038 0.065 

Bilat. MFC 29 28.74 < 0.001 ∗ † 0.310 0.23 .635 0.004 

Left AG/Occ. cortex 30 37.77 < 0.001 ∗ † 0.371 3.67 .060 0.054 

Abbreviations: DLPFC/VLPFC = dorsolateral/ventrolateral prefrontal cortex; ant. = anterior; bilat. = bilateral; AG = angular gyrus; cer. = cerebel- 

lum; front. = frontal; IFG/MFG/SFG = inferior/middle/superior frontal gyrus; ins. = insula; IPL = inferior parietal lobule; IPS = intraparietal sulcus; 

ITG/MTG/STG = inferior/middle/superior temporal gyrus; MFC = medial frontal cortex; occ. = occipital; OFC = orbitofrontal cortex; par. = parietal; PCC = pos- 

terior cingulate gyrus; prec. = precuneus; SMA = supplementary motor area; SMG = supramarginal gyrus; temp. = temporal). 
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1 Association between conn. 14 (left VLPFC-left Cerebellum) and backward 

memory span (r = .38; p = .002, two-tailed) as well as between conn. 13 (left 

VLPFC-right OFG/IFG) and first-trial accuracy in the low-load condition (r = .44; 

p < .001, two-tailed) was still significant when using Spearman correlation as 

an alternate measure of association. No additional connectivity-behavior corre- 

lation survived FDR-correction. 
icular, we were interested in whether DMN-based seeds would also ex-

ibit elevated functional coupling to other DMN-regions during the high-

oad > low-load contrast. To further examine this issue we decided to

onduct additional whole-brain connectivity analyses with DMN-based

eeds. This time, the clusters identified in 3.3.1 via the high-load > low-

oad contrast – almost exclusively assigned to the DMN – were used as

eed regions. Thereby, we could efficiently and simultaneously assess

oth, the specificity of high-load > low-load LPFC connectivity and more

eneral load-dependent DMN-connectivity changes beyond the original

PFC seed regions. As there was a considerable overlap between these

lusters, for simplification, we generated ‘combined clusters’ resulting

n 4 new seed regions (see methods Section 2.3.4 for details and Fig. 7 a

or an illustration). 

The connectivity patterns evoked by the high-load seeds (see Table 4

nd Figs. 7 b and 7 c for the coupling pattern of ventral precuneus/PCC

nd left AG, respectively) were very similar across all four seeds: In-

reased coupling for the low-load vs . high-load contrast was observed ex-

lusively within DMN-regions with an emphasis on precuneus/cuneus.

or the high-load vs . low-load contrast, in turn, very large clusters were

etected mostly covering areas assigned to control networks in addi-

ion to the visual network (VN). Thus, the DMN-based seeds and the

PFC-seeds appear to elicit inverse coupling profiles during the two in-

tructional load conditions. 

.5. Correlation between connectivity changes and behavioral/trait-like 

ariables 

We used the mean difference in BSC magnitude between the low-load

nd the high-load condition across all voxels within a ROI for comput-
11 
ng the correlation. Since these values were extracted from the single

ubjects’ low-load vs . high-load contrast maps, positive difference values

ndicate greater connectivity during the low-load condition in a specific

rea whereas negative values indicate the opposite connectivity pattern.

or an illustration, please see Fig. 8 . 

When using the Pearson correlation coefficient as measure of asso-

iation, only connections based on the left VLPFC seed survived FDR-

orrection. Differential coupling of connection 14 (left VLPFC-left cere-

ellum) was positively associated with forward ( r = 0.41; p < .001, two-

ailed) as well as backward ( r = 0.41; p < .001, two-tailed) digit span.

ifferential coupling of connections 12 (left VLPFC-right SMG) and 13

left VLPFC-right OFG/IFG) was associated positively with first-trial ac-

uracy in the low-load condition (both r > 0.38; both p < .002, two-

ailed). 1 

. Discussion 

This study set out to examine load-dependent connectivity changes

merging during the implementation of instructed novel S-R associa-

ions. In particular, we focused on the functional coupling of four lateral

refrontal seeds (bilateral DLPFC and VLPFC) that had previously been
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Fig. 6. Load-dependent connectivity as a function of time (early: stimulus repetitions 1 and 2; late stimulus repetitions 3 and 4). Results are illustrated for exemplary 

connections involving each of the four primary seed regions a) left DLPFC, b) right DLPFC, c) left VLPFC and d) right VLPFC. Connections identified via the low- 

load > high-load contrast are shown in the top row whereas connections identified via the high-load > low-load contrast are shown in the bottom row. Significant 

interactions of instructional load by time are denoted by ( ∗ ). Error bars represent 95% confidence intervals. 

Table 4 

Follow-up connectivity analysis results based on regions with greater high-load > low-low coupling to LPFC seeds in 3.3.1. Peak voxels for each cluster are 

reported in MNI space. 

Seed Contrast pFWE cluster voxels pFWE peak Tpeak x / y / z Regions 

Prec./PCC LOW > HIGH < 0.001 484 < 0.001 7.63 12 / − 58 / 20 Bilat. Prec. 

< 0.001 247 .095 4.92 − 3 / 38 / − 1 Bilat. MFC 

HIGH > LOW < 0.001 24,507 < 0.001 8.77 36 / 44 / 29 Lat. front./par./temp. Cortex, occ. cortex 

< 0.001 8.62 54 / 17 / − 7 Right temp. pole/IFG 

< 0.001 8.61 − 54 / − 43 / 47 Left SMG 

MFC LOW > HIGH < 0.001 294 < 0.001 6.62 9 / − 58 / 23 Bilat. Prec./Calcarine 

HIGH > LOW < 0.001 17,248 < 0.001 11.63 60 / − 43 / 32 Lat. front./par./temp. Cortex, occ. Cortex 

< 0.001 10.08 − 60 / − 49 / 26 Left SMG 

< 0.001 9.59 57 / − 40 / 44 Right SMG 

Right AG LOW > HIGH < 0.001 314 .003 5.96 − 9 / − 55 / 14 Bilat. Prec./Calcarine 

HIGH > LOW < 0.001 16,814 < 0.001 8.15 54 / 11 / 8 Lat. front./par./temp. Cortex, occ. Cortex 

< 0.001 7.72 57 / − 40 / 38 Right SMG 

< 0.001 7.59 − 39 / 5 / − 1 Left ant. Ins. 

Left AG LOW > HIGH < 0.001 262 .003 5.98 − 6 / − 58 / 17 Bilat. Prec. 

.047 75 .007 5.70 − 39 / − 76 / 41 Left MOG/AG 

HIGH > LOW < 0.001 22,324 < 0.001 9.36 57 / − 40 / 35 Lat. front./par./temp. Cortex, occ. cortex 

< 0.001 9.15 − 60 / − 49 / 29 Left SMG 

< 0.001 8.35 54 / − 52 / 2 Right MTG 

.033 83 .348 4.42 15 / − 7 / 14 Right Thal. 

Abbreviations: ant. = anterior; bilat. = bilateral; AG = angular gyrus; front. = frontal; IFG/MFG/SFG = inferior/middle/superior frontal gyrus; ins. = in- 

sula; ITG/MTG/STG = inferior/middle/superior temporal gyrus; lat. = lateral; MFC = medial frontal cortex; MOG = middle occipital gyrus; occ. = occipital; 

par. = parietal; PCC = posterior cingulate gyrus; prec. = precuneus; SMG = supramarginal gyrus; temp. = temporal; thal. = thalamus). 
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emonstrated to bear differential relevance for successful IBL. Specifi-

ally, earlier MVPA results from Ruge et al. (2019) suggested a relevant

ontribution of neural rule representations in the bilateral VLPFC (but

ot DLPFC) to successful rapid IBL. Notably, these VLPFC representa-

ions did not seem to be compromised with increasing instructional load

espite marked effects on behavior. By contrast, the present functional

onnectivity analysis revealed that instructional load did in fact strongly

ffect the functional couplings of all of these four lateral prefrontal re-

ions. In particular, it seems that lateral PFC regions are integrated into

ntirely different brain systems depending on whether or not instruc-

ional load exceeded standard short term memory capacity limits. 

On the one hand, across all four prefrontal seeds, we found strength-

ned couplings with regions within the lateral prefrontal and parietal

ortices, the insulae, and the cerebellum during the low-load as com-

ared to the high-load condition. Using a well-established large-scale
12 
etwork parcellation ( Yeo et al., 2011 ) these individual regions could be

ssigned to large-scale networks such as the FPN, DAN and VAN. On the

ther hand, regions exhibiting tighter functional coupling with all four

refrontal seeds during the high-load as compared to the low-load con-

itions were almost exclusively assigned to the DMN including regions

uch as the bilateral AG, mPFC, and most prominently the junction of

entral precuneus and PCC. However, although this general pattern was

bserved for all four seeds, the load-dependent coupling profile of the

eft VLPFC stood out considerably from that of the other three prefrontal

eed regions. Together with the finding that significant correlations with

ehavioral measures were selectively found for functional couplings in-

olving the left VLPFC seed, this suggests a specialized role of the left

LPFC during IBL. 

Our complementary analysis of local brain activity (instead of con-

ectivity) changes associated with instructional load showed results that
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Fig. 7. a) DMN-based seeds used for follow-up analyses. Seed regions are rendered on cortex in the left column. Information about the seed regions is provided 

in the table in the right column. Colors in which seeds are depicted in the cortex figure correspond to the respective fond color of seeds’ names in the table. Xyz- 

coordinates represent center of mass of the seed regions. Connectivity results based on b) bilateral ventral precuneus/posterior cingulate cortex and c) left angular 

gyrus: thresholded t-value maps (at p uncorrected = 0.001) are provided in the left column – positive values represent areas in which coupling to the seed-region was 

greater in the high-load > low-load condition and are depicted in warm colors, negative values represent areas in which coupling to the seed-regions was greater in 

the low-load > high-load condition and are illustrated in cold colors; network assignment of all coupled voxels ( Yeo et al., 2011 ) in the low-load > high-load (middle 

column) and the high-load > low-load (right column) contrast (DAN = dorsal attention network; DMN = default mode network; FPN = fronto-parietal network; 

VAN = ventral attention network). Cortex images were generated with BrainNet Viewer ( Xia et al., 2013 ). 
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2  
re generally in line with the common observation of fronto-parietal

ctivation increases at higher levels of cognitive load ( Duncan, 2010 ;

mch et al., 2019 ; Gordon et al., 2012 ; Woolgar et al., 2015 ). Specifi-

ally, these regions were more strongly activated in the higher instruc-

ion load condition and they were also more strongly activated at the

eginning of the implementation phase compared to later implemen-

ation trials supposedly reflecting higher levels of cognitive control re-

uirements early in novel task practice, which is in line with previously

eported results ( Cole et al., 2013b ; Duncan, 2010 ; Mohr et al., 2016 ). 

Not least before this background, it might seem somewhat coun-

erintuitive that the cognitively more demanding condition (higher in-

truction load) was associated with a tighter coupling between our

PFC seeds and various DMN regions, which have ‘historically’ been
13 
onceptualized as ‘task-negative’ regions exhibiting lower local activity

n the more demanding condition ( Anticevic et al., 2012 ; Fox et al.,

005 ). However, while this ‘task-negative’ DMN-conceptualization is

ainly based on local activation results there is a growing body of evi-

ence from connectivity studies ( Elton and Gao, 2015 ; Finc et al., 2017 ;

preng et al., 2010 ; Wang et al., 2021 ) that the DMN actually has an ac-

ive role in goal-directed behavior. Accordingly, studies have reported

tronger connectivity between the DMN and other (‘task-positive’)

arge-scale networks with increasing cognitive demand and stronger

ithin-DMN connectivity with decreasing demand ( Finc et al., 2017 ;

atansever et al., 2017a ). Such type of connectivity changes have been

uggested to reflect different levels of automaticity ( Vatansever et al.,

017b ). A similar automaticity-based account has also been suggested in
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Fig. 8. a) correlation between differential coupling (low-load – high-load) of connection 14 and backward digit span; b) correlation between differential coupling 

(low-load – high-load) of connection 12 and 1st trial accuracy in the low-load condition; scatter plots illustrating correlations are shown in the left column, seed (in 

red) and ‘target’ (in blue) of the connections are depicted in the middle and right column. Coefficients and p-values are based on the Pearson (standard font) and the 

Spearman (italic) correlation, respectively. Significant values after correction are denoted by ( ∗ ). 
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he context of practice-related connectivity changes in IBL ( Mohr et al.,

016 , 2018 ) and will be discussed in relation to our load-dependent con-

ectivity results in greater detail further below. Moreover, we will argue

hat increased LPFC-DMN coupling at higher levels of instructional load

ight be linked to (episodic) long-term memory contributions to IBL

 Meiran et al., 2017 ; Monsell and Graham, 2021 ), in line with previous

tudies suggesting a role of DMN regions for episodic memory retrieval

 Ritchey and Cooper, 2020 ; Rugg and Vilberg, 2013 ; Vatansever et al.,

021 ). 

.1. Automaticity: initial instruction-induced differences 

The load manipulation – applied to the instruction phase and im-

acting the implementation phase only indirectly – initially resulted in

 considerably lower mean accuracy in the high-load as compared to

he low-load condition from stimulus repetition 1 onwards. 

An initial processing difference between the load conditions seems

o depend on multiple factors each of which might contribute to more

uent or ‘automatic’ instruction implementation from the outset. First,

he low-load condition benefits quite obviously from the smaller number

f instructed S-R rules that arguably lies within the capacity limits that

ave been suggested by theoretical frameworks on ‘instruction-based

roceduralisation’ ( Brass et al., 2017 ). As such, low-load instructions

hould be easily accessible and well-prepared for their seamless imple-

entation. Second, subjects had twice as much potential encoding time

er individual S-R rule in the low-load as compared to the high-load con-

ition. As longer preparation time during rule encoding has been shown

o boost implementation of newly instructed rules ( Cole et al., 2018 ) it

s likely that our participants were able to form a highly accessibly rule

epresentation during the instruction phase of the low-load condition

ossibly through motor imagery and more extensive ‘covert practice’
14 
 Liefooghe et al., 2021 ; Ruge and Wolfensteller, 2010 ; Theeuwes et al.,

018 ). Third, the expectation to implement an instruction might have

layed a role as well. While all of the instructed S-R rules (i.e. 100%) in

he low-load condition were subsequently required to be implemented,

his was only the case for 40% of the individual S-R rules instructed

n the high-load condition. The higher expectation to actually imple-

ent a rule might have contributed to a more robust rule representation

n the low-load condition possibly comparable with the distinctive ef-

ects of intentionally preparing implementation versus mere memoriza-

ion of S-R rules ( Formica et al., 2020 ; Liefooghe et al., 2012 ). Finally,

oad-dependent differences in automaticity could be related to higher

evels of ambiguity during response selection in the high-load condi-

ion. Specifically, in the instruction phase, 3 to 5 stimuli are assigned

o each response in the high-load condition compared to only 1 to 2

timuli per response in the low load condition (see supplementary analy-

es 1 for evidence supporting the load-dependent relevance of response

mbiguity). 

Benefiting from all of the above mentioned factors – probably induc-

ng strong ‘intention-based reflexivity’ ( Meiran et al., 2012 ; Meiran and

ohen-Kdoshay, 2012 ) – S-R rules in the low-load condition seem to be

ighly ready for implementation from the outset. In this case, reflexivity

cquired in the instruction phase aligns with the currently relevant rule

uring the implementation phase (which is almost always the originally

nstructed rule). This contrasts with the high-load condition where the

riginally instructed S-R rule does not align with the currently relevant

ule in a considerable amount of trials which, in turn impedes poten-

ial practice-related automatization processes in the high-load condition

see next section for elaboration). 

From a functional network perspective, in the low-load condition,

he instantaneously fluent application of the instructed S-R rules is ac-

ompanied by higher within -network connectivity regarding both the
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PN (our LPFC seeds were for the most part located within the FPN)

nd the DMN (as revealed by the DMN-seeded follow-up analyses). This

as particularly true for the DLPFC seeds. The VLPFC-based connec-

ions were somewhat more distributed across the brain, yet still mainly

ssociated with attention/control networks. By contrast, in the high-

oad condition, more effortful processing and continued rule updating

emand was accompanied by increased between -network connectivity.

ere, LPFC-based connectivity was characterized by greater coupling

o DMN regions whereas the DMN-seeded follow-up analyses revealed

idely distributed increased coupling with regions located within the

AN, FPN, VAN and the visual network. This can be taken as evidence

or reduced brain-wide modularity driven by greater DMN integration

uring rule implementation in the high-load condition. Such a reduced

odularity with emphasis on DMN integration has been observed be-

ore at higher load conditions ( Finc et al., 2017 ; Vatansever et al.,

015 ) and is thought to provide a basis for global information inte-

ration ( Vatansever et al., 2015 ) which, in turn, might also underlie

he effects induced by the present high-load instruction condition. In

ine with this, another study reported a similar pattern of DMN inte-

ration and segregation during the initial acquisition and subsequent

pplication of new rules, respectively ( Vatansever et al., 2017b ). This

istinction resembles the aforementioned automaticity-related process-

ng differences between high and low instructional load in the present

tudy: Relatively automatic rule implementation common to both the

resent low-load condition and the learnt rule application phase in

atansever et al. (2017b) contrasts with ongoing rule updating (see be-

ow) in the present high-load condition and the acquisition phase of

atansever et al. (2017b) . Furthermore, this rule updating might poten-

ially bear resemblance with continuous learning or inference processes

upported by the DMN (cf. Dohmatob et al., 2020 ). 

.2. Automaticity: the role of practice 

The concept of automaticity usually involves repeated execution of

he same rule even across short time spans accompanied by increasingly

uent application of the newly instructed rules towards the late imple-

entation trials ( Chein and Schneider, 2005 ; Mohr et al., 2016 ). 

While mean accuracy remained relatively stable in the low-load con-

ition (around 90%), accuracy rates in the high-load condition increased

onsiderably over the course of the remaining implementation phase

rom about 70% at repetition 1 to 87% at repetition 4 (still significantly

ower than in the low-load condition). This is remarkable as the two

oad conditions were physically identical regarding the implementation

hase, that is, both involving the same number of 4 to-be-implemented

-R links. Keeping in mind that from repetition 2 onwards accuracy was

efined relative to the previously executed response for a given stim-

lus, these results imply different levels of rule processing in the two

oad conditions. One the one hand, a constantly high accuracy rate in

he low-load condition implies minimal change of the behaviorally rele-

ant rule representation (i.e., the same correct rule is applied again and

gain). On the other hand, in the high-load condition, increasing ac-

uracy across a learning block necessarily has to go along with at least

artial updating of rule representations (i.e., adapting the previously ex-

cuted ‘wrong’ response to the same stimulus as the relevant rule). While

he former would be considered to be an example of relatively automatic

rocessing, the latter likely requires substantial cognitive control effort.

urthermore, enduring response conflict especially in the high-load con-

ition could additionally prevent rapidly evolving practice-driven auto-

aticity across stimulus repetitions during the implementation phase

 Mohr et al., 2016 ). Such response conflicts (i.e. originally instructed

-R rule and newly adapted S-R rule do not match) occur much more

requently in the high-load condition. Our finding that accuracy in high-

oad conflict trials was significantly lower than in non-conflict trials im-

lies that competing S-R rule representations in the high-load condition

ontribute substantially to the persisting accuracy differences between

he instructional load conditions. This competition needs to be overcome
15 
e.g., by dedicating cognitive effort to the suppression of the initially in-

tructed but now irrelevant rule) before a rule can be processed more

utomatically in the high-load. 

Mohr et al. (2016) reported decreasing fronto-parietal activation as

ell as progressing segregation of the DMN from a number of atten-

ion/control networks during the transition from early to late imple-

entation trials. This neural pattern associated with ‘short-term autom-

tization’ resembles the one we observed between the different load

onditions in the present study. Moreover short-term automatization

cross implementation trials seems to be influenced by task demands as

ell ( Mohr et al., 2018 ): DMN segregation from task-related networks

ike the DAN was less pronounced during an arguably more demanding

reversal learning’ condition than during an initial learning condition.

f both time-related (i.e. practice-related) as well as load-related auto-

aticity differences induced similar neural (de-)coupling processes, we

ould have expected the connections identified via the instructional

oad contrast to show a time effect as well. This was, however, only

artly the case: First, only the DMN-related connections based on the

ight hemispheric LPFC seeds showed a general connectivity decrease

cross repetitions. Furthermore, we would have expected the two fac-

ors to interact (i.e. more pronounced DMN decoupling towards the end

f the implementation phase in the low-load compared to the high-

oad condition). Evidence for such an interaction effect was weak at

est as only some of the DMN-related connections showed as much as

 trend towards a significant interaction effect. Regarding connections

riginally identified via the low-load > high-load contrast, again a het-

rogeneous picture emerged: While all interaction effects generally in-

icated a less pronounced coupling difference between load conditions

owards the end of the implementation phase, some of the connections

e.g., connection 1: left DLPFC – left IFG) showed a pronounced cou-

ling decrease in the low-load condition whereas others (e.g. connec-

ion 18: right VLPFC – right anterior OFC) showed a pronounced cou-

ling increase in the high-load condition. This rather heterogeneous re-

ults pattern might reflect the specific contributions of a variety of the

reviously discussed sub-processes: First, connections that do show an

nteraction effect, especially driven by a coupling increase in the high

oad condition (e.g., Fig. 6 d, upper panel), might reflect reduced suf-

ering from interference towards the end of the implementation phase

 consistent with the decreasing conflict effect over time. Second, con-

ections that do not show such an interaction effect (i.e., the magni-

ude of the load-difference is not affected by practice), in turn, might

ather reflect a constantly ongoing S-R rule updating process that is mir-

ored by the constant slope of the overall linear accuracy increase in the

igh-load condition (e.g., Fig. 6 b and 6 c, upper panel). Third, interac-

ion effects specifically driven by a time-dependent coupling decrease

n the low-load condition (e.g., Fig. 6 a, upper panel) might indicate a

ore rapid trend towards stronger modularity (see above) due to more

apid automatization as S-R rules are already fully established at the

utset. 

A final interesting observation was that significant practice-related

ffects (main effect of time as well as interaction effects) were detected

redominantly at connections involving the right VLPFC seed. This was

specially true when compared to the left VLPFC seed where load-

nduced connectivity differences seemed to remain rather static and im-

lies that different rule features are conveyed by the VLPFC-region of

oth hemispheres. On the one hand, the rule representation in the left

LPFC might comprise features that are linked more closely to the orig-

nal instruction which also seems consistent with the finding that exclu-

ively the left hemispheric VLPFC connections were correlated with 1st

rial performance (see below). On the other hand, the S-R rule repre-

entation in the right VLPFC might be more flexible: after initially be-

ng formed by the instruction it is reshaped during the implementation

hase according to self-generated rules. 

To conclude, the observed load and time-dependent changes in func-

ional couplings seem to be consistent with changing levels of auto-

aticity during instruction-based learning. Yet, we also found some
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vidence that apparent automaticity-related changes in functional cou-

lings come in different flavours which we argued to be reflecting a

ariety of underlying processing differences. While different degrees of

intention-based reflexivity’ ( Cole et al., 2018 ; Meiran et al., 2012 ) might

nderlie initial differences between the load conditions, persistently ele-

ated levels of conflict and response ambiguity might impair ‘short-term

utomatization’ in the high-load condition ( Mohr et al., 2016 , 2018 ).

hus, both aspects of ‘automatic’ behavior in IBL might cooperatively

ngage to a greater (low-load) or a lesser degree (high-load), but a more

omprehensive characterization of their potentially multi-facetted rela-

ionship needs to be explored in future studies. Finally, at the level of

ndividual neural connections, the presence (right VLPFC) and virtual

bsence (left VLPFC) of practice-related changes in functional couplings

mplies hemispherical differences in the type and impact of the respec-

ive S-R rule representations. 

.3. Episodic memory contributions 

Another, possibly related, way to interpret our connectivity results

ests on the notion of load-specific mnemonic mechanisms. On the one

and, the pattern of greater LPFC coupling to control and attention re-

ated regions, mostly within FPN and DAN, during the low-load condi-

ion might imply that successful task implementation is guided mainly

y working memory ( Curtis and D’Esposito, 2003 ; D’Esposito et al.,

000 ; Emch et al., 2019 ). On the other hand, the shift to greater cou-

ling between LPFC and the DMN – especially its posterior components

in the high-load condition might indicate an increasing involvement

f episodic (long-term) memory, taking into account the extensive liter-

ture on the neural basis of episodic memory processes ( Cabeza et al.,

008 ; Kim, 2010 ; Ritchey and Cooper, 2020 ; Rugg and Vilberg, 2013 ;

estieri et al., 2011 ; Westphal et al., 2017 ). 

Working memory capacity is supposed to be severely limited

 Baddeley and Hitch, 1974 ; Logie, 2011 ) with a capacity limit of

round 5 or 6 words regarding the verbal component ( Baddeley, 2012 ;

onsell and Graham, 2021 ). Clearly, the decline in performance in the

igh-load condition to around 70% accuracy indicates that this capacity

ap could not be fully compensated by episodic memory mechanisms.

here is even a possibility that episodic LTM does not play a role at all

nd that the above-chance accuracy in the high-load condition is accom-

lished by partial WM maintenance of the whole set of instructed S-R

inks: Assuming that some of the instructed 10 S-R links (e.g. 5) could be

aintained within WM, above-chance performance accuracy could be

ue to the subset of memorized S-R links that were randomly selected

o be actually implemented (e.g. 2 out of 4). In this example, roughly

0% accuracy would be expected (2 correctly memorized links out of a

otal of 4 to-be implemented S-R links plus, by chance, 1 out of the re-

aining 2 not-remembered links). This scenario, however, seems hard

o reconcile with our finding of increased coupling between LPFC and

MN regions. Instead, one could argue that subjects’ WM system was

verwhelmed by the sheer number and rapid presentation rate of the

0 S-R links during the instruction phase. This might have caused WM

o break down even below its normal capacity limits. In turn, ∼70%

erformance accuracy might have relied more than usual on memory

races encoded within episodic LTM. Support for this latter claim comes

rom a recent behavioral study ( Bartsch and Oberauer, 2022 ) in which

t was shown that at larger set sizes – at a presentation rate identical

o the one used for our high-load condition – memory performance

as mostly determined by episodic LTM whereas only very small set

izes were actually depending on working memory. In general, rapidly

ormed episodic traces represented in the ‘activated part of LTM’ seem

o affect performance in tasks that are actually designed to test WM

cf. Cowan, 2019 ). In the current study, also the conflict trial analysis

ints towards an episodic memory contribution suggesting a detrimen-

al impact of the still lingering memory trace of the actually instructed

esponse. This memory trace is formed during the instruction context

nd interferes with the memory trace formed during the implementa-
16 
ion context. For instance, if the response actually executed at stimulus

epetition 1 for a certain stimulus deviates from the originally instructed

esponse, the newly formed memory trace will be in competition with

he originally encoded S-R link when the same stimulus occurs the next

ime. It has been argued that such kind of interference typically occurs

ithin episodic LTM but not within WM where newly encoded content

an be more effectively shielded against interference (cf. Bartsch and

berauer, 2022 ; Cowan et al., 2005 ). 

Coming back to our elaboration on automaticity further above, we

ould therefore argue that reduced automaticity due to increased in-

erference in the high-load condition is specifically due to lingering S-R

pisodes within LTM. Consistent with this, it has been shown that un-

ntended effects of instruction (here: interference due to no-longer used

nstructions) are unaffected by a manipulation tackling working mem-

ry capacity whereas the actual rapid instructed learning within WM

imits is ( Pereg and Meiran, 2019 ). 

While the discussed memory-related effects in the present study are

learly either directly or indirectly induced by instructions, it remains

o be shown whether they are specific of IBL or apply more generally to

ther types of learning (e.g., trial-and-error learning). 

.4. Special role of left VLPFC couplings? 

The original study ( Ruge et al., 2019 ) suggested that specifically the

LPFC but not the DLPFC comprised representations of the instructed

-R rules. Hence, we were interested in whether a similar regional spe-

ialization would also be present with regard to the load-dependent con-

ectivity profiles. Interestingly, we found that the left VLPFC showed

 connectivity profile that was distinctly different not only compared

o both the left and the right DLPFC but also compared to the right-

emispheric VLPFC pendant whereas the connectivity profiles of the

ther three prefrontal seeds were relatively homogeneous. What distin-

uished the left VLPFC most from the other prefrontal seed regions was

ts tendency to exhibit significantly greater coupling to the bilateral SMG

extending into the MTG) during the low-load condition compared to

he high-load condition. At the same time, coupling between left VLPFC

nd the DMN seemed to be less affected by the load manipulation than

his was the case for the other three LPFC seed regions. Following our

ine of interpretation, this would indicate a DMN-based integration of

he rule representation conveyed by the left VLPFC that is similar in the

ow-load and the high-load condition. However, the coupling between

eft VLPFC and the precuneus/PCC was a notable exception which was

t least as load-sensitive (i.e., increasingly connected in the high-load

ondition) as the other prefrontal seeds. This is in line with the notion

hat the precuneus/PCC might constitute a distinct functional instance

ithin the DMN during task performance ( Utevsky et al., 2014 ). Since

he right VLPFC showed load-dependent changes in DMN-coupling that

ere not limited to the precuneus/PCC our results suggest that there

s a hemispheric difference in terms of the rule features the LPFC rep-

esents and how these are being integrated during instruction-based

earning. 

Given the verbal nature of our stimulus material, the pronounced

oupling to the SMG, which has frequently been associated with phono-

ogical processing ( Deschamps et al., 2014 ; Sliwinska et al., 2012 ),

uggests a greater reliance on verbal rehearsal strategies for maintain-

ng rule representation conveyed by the left VLPFC especially in the

ow-load condition. This connection’s significant relationship to suc-

essful IBL performance exclusively in the low-load condition – partic-

pants with greater load-dependent coupling differences between left

LPFC and right SMG (connection 10) were more accurate at the first

mplementation trial – can be taken as evidence for that claim. An-

ther connection, the one between the left VLPFC and the left cere-

ellum (connection 14), again emphasizes the many different aspects

f instruction-based learning. We observed a significant relationship of

oad-dependent VLPFC-cerebellar coupling with performance in word

pan tests. While this can be taken as evidence that at least some of our
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articipants employed a verbal rehearsal strategy there was no direct in-

ication of this connection being associated to better performance (nei-

her in the first trial nor at later stages). This finding is reminiscent of

arlier ambiguities concerning the relationship of classical verbal work-

ng memory tests and IBL ( Ruge et al., 2018 ). 

. Conclusion 

Using a seed-based connectivity approach we found that lateral pre-

rontal cortex couplings during rule implementation were strongly af-

ected by instructional load. The low-load condition was characterized

y increased cooperation between lateral prefrontal seeds and areas

nown to be relevant for goal-directed action whereas coupling shifted

owards increased DMN coupling in the high-load condition. From a

arge-scale network perspective these observations likely reflect differ-

nt degrees of automated processing. Concerning the VLPFC – especially

hen also taking into account practice-related effects and correlations

ith behavioral measures – our results suggest that left hemispheric

LPFC-based functional couplings are related to the enduring influence

f and guidance by the initially instructed task rules whereas the right

emispheric VLPFC seems to have a more flexible role in rule updat-

ng during implementation. Our study informs the literature on (rapid)

nstruction-based learning by focusing on functional connectivity that

ight help to integrate existing ambiguities regarding rule representa-

ions in the lateral prefrontal cortex. Specifically, our results imply an

nterplay of episodic memory and (procedural) working memory traces

ith a shifting balance when working memory capacity is exceeded. 
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