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Learning new rules rapidly and effectively via instructions is ubiquitous in our daily lives, yet the underlying
cognitive and neural mechanisms are complex. Using functional magnetic resonance imaging we examined the
effects of different instructional load conditions (4 vs. 10 stimulus-response rules) on functional couplings dur-
ing rule implementation (always 4 rules). Focusing on connections of lateral prefrontal cortex (LPFC) regions,
the results emphasized an opposing trend of load-related changes in LPFC-seeded couplings. On the one hand,
during the low-load condition LPFC regions were more strongly coupled with cortical areas mostly assigned to
networks such as the fronto-parietal network and the dorsal attention network. On the other hand, during the
high-load condition, the same LPFC areas were more strongly coupled with default mode network areas. These re-
sults suggest differences in automated processing evoked by features of the instruction and an enduring response
conflict mediated by lingering episodic long-term memory traces when instructional load exceeds working mem-
ory capacity limits. The ventrolateral prefrontal cortex (VLPFC) exhibited hemispherical differences regarding
whole-brain coupling and practice-related dynamics. Left VLPFC connections showed a persistent load-related
effect independent of practice and were associated with ‘objective’ learning success in overt behavioral perfor-
mance, consistent with a role in mediating the enduring influence of the initially instructed task rules. Right
VLPFC’s connections, in turn, were more susceptible to practice-related effects, suggesting a more flexible role

possibly related to ongoing rule updating processes throughout rule implementation.

1. Introduction

Learning through symbolic instructions is one of the most remark-
able abilities within the human cognitive flexibility skillset (Cole et al.,
2017; Liefooghe et al., 2018; Meiran et al., 2017). Especially the rapid
timescale at which newly instructed rules can be encoded and exe-
cuted accurately even at the very first attempt is impressive (Cole et al.,
2013a). While in our daily lives we usually take this ability for granted,
the underlying cognitive and neuronal processes have received increas-
ing attention in the cognitive neuroscience domain over the past decade
(Greve et al.,, 2017; Hartstra et al., 2011; Lee et al., 2015; Mubhle-
Karbe et al., 2017; Ruge and Wolfensteller, 2010).

A central requirement for such successful instruction-based learn-
ing (IBL; Ruge and Wolfensteller, 2010) or ‘rapid instructed task learn-
ing’ (RITL; Cole et al., 2013a) is the transformation of abstract, sym-
bolic rule representations into pragmatic ones. This so-called ‘symbolic-
pragmatic transfer’ (Ruge and Wolfensteller, 2010) or ‘procedurali-
sation’ (Brass et al., 2017) is not a trivial process as is illustrated
by the phenomenon of goal-neglect (Bhandari and Duncan, 2014;
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Duncan et al., 2008) in which an instruction can be accurately per-
ceived, encoded and even verbally repeated (i.e., memorized) — yet it
cannot be implemented. Thus, a declarative rule representation that
merely reflects the instructed stimulus-response (S-R) association with-
out incorporation of a precise action plan seems to be insufficient for IBL
to happen. This claim is supported by a variety of imaging studies that
focused on the configuration and temporal evolution of rule represen-
tations following novel task instruction (Gonzalez-Garcia et al., 2020;
Muhle-Karbe et al., 2017; Ruge et al., 2019; Sobrado et al., 2021).
Using multivariate pattern analysis (MVPA) techniques that are sen-
sitive to subtle changes in activity patterns it has been suggested that in
the lateral prefrontal cortex (LPFC) rule representations essential to the
execution of newly instructed S-R associations can be decoded (Muhle-
Karbe et al., 2017; Palenciano et al., 2019; Woolgar et al., 2015). This
seems to be the case already at the first implementation trial and on
the level of individual S-R bindings with a particular emphasis on the
ventrolateral part (VLPFC) of the prefrontal cortex (Ruge et al., 2019).
Interestingly however, these identity-specific activity patterns were not
affected by differences in instruction load despite marked differences in
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behavioral performance accuracy (Ruge et al., 2019). This finding con-
trasted with the original hypothesis — partly derived from earlier insights
on rule integrity in error trials (Cole et al., 2016; Rigotti et al., 2013) —
suggesting that higher instruction load would result in a weaker or in-
complete prefrontal rule representation (and thus in a reduced identity-
specific MVPA effect). This raises the question of whether the detected
prefrontal rule representations actually contribute to the implementa-
tion of newly instructed S-R associations and if so in which manner.

Specifically, the degree to which instructed S-R associations are suc-
cessfully implemented might depend not (only) on the integrity of pre-
frontal rule representations but also on how mnemonic processes related
to information maintenance over time and retrieval interact with these
representations. In turn, instructional load might affect the way pre-
frontal rule representations are accessed during instruction implemen-
tation rather than representational integrity itself (cf. Bartsch and Ober-
auer, 2022). From this perspective, a more adequate analytical approach
is to ask how prefrontal rule representations might be differentially inte-
grated with other brain networks that are related to storage and retrieval
processes depending on instructional load. To address this question, the
present paper specifically focused on differential functional connectivity
patterns of IBL-critical prefrontal regions as a function of instructional
load.

Connectivity-based approaches in the context of IBL and RITL have
thus far focused mainly on global brain connectivity and large-scale net-
works (Cole et al., 2013b; Mohr et al., 2016, 2018). They have em-
phasized the importance of so-called control networks like the fronto-
parietal network (FPN) and the dorsal attention network (DAN). FPN-
regions are supposed to provide the basis of the flexible behavior es-
sential to IBL by their tendency to act as ‘flexible hubs’ (Cole et al.,
2013b, 2017). Depending on the current task demands they flexibly re-
configure their global functional connectivity (FC) patterns and seem to
have a coordinating function (Cocuzza et al., 2020). It looks like such an
involvement of the FPN is especially important during the very first im-
plementation trials after novel instructions as evidenced by an increas-
ing disengagement of the FPN — regarding activation as well as connec-
tivity measures (Hampshire et al., 2019; Mohr et al., 2016). Further-
more, the rapidly evolving familiarity with newly instructed S-R rules
has been linked to an increase in FC between prefrontal and striatal
areas (Ruge and Wolfensteller, 2013, 2015).

While such studies have focused mostly on the temporal dynamics in
IBL little is known about how interactions between brain regions are af-
fected by changes of instructional load. So far, effects of load manipula-
tion on FC have been studied extensively using standard working mem-
ory paradigms (e.g., Finc et al., 2017; Nour et al., 2019; Vatansever et al.,
2017a). The concept of working memory (i.e., short-term maintenance
and manipulation of currently relevant information e.g., D’Esposito and
Postle, 2015) is relevant to rapid forms of IBL, both from a theoretical
- e.g., due to the temporal proximity between instruction and imple-
mentation — and from an empirical perspective (Formica et al., 2020;
Pereg et al., 2019; Pereg and Meiran, 2019). Yet, the exact mecha-
nisms at work are still unclear (Monsell and Graham, 2021). Therefore,
a connectivity-based approach examining load effects specifically in the
context of newly instructed S-R rules (in contrast to ‘pure’ working mem-
ory tasks relying on continuous updating and/or manipulating of infor-
mation) might further clarify the contribution of working memory to
IBL.

Besides a potential involvement of working memory, other
mnemonic processes reaching beyond the temporal and conceptual
scope of WM have been discussed regarding their contribution to suc-
cessful IBL. Monsell and Graham (2021) demonstrated that effective rep-
resentations of S-R associations can persist for a considerable amount of
time after only very few implementation trials following a novel instruc-
tion, and concluded that such representations might be stored in long-
term memory (LTM). Another line of research focusing on ‘automatic
effects of instructions’ has linked those exact effects to episodic mem-
ory retrieval (Meiran et al., 2017). From a neuroimaging perspective,
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a set of brain regions within a so-called ‘core recollection network’ has
been implicated in such episodic memory retrieval processes (Rugg and
Vilberg, 2013) and overlaps (at least partially) with another, well in-
vestigated large-scale network, the default mode network (DMN; e.g.,
Andrews-Hanna et al., 2014; Buckner and DiNicola, 2019).

The DMN, or more precisely, the way it interacts with other networks
during task performance, has also been related to automatic processing
(e.g., Vatansever et al., 2017b). In this regard, greater DMN-decoupling
from other large-scale brain networks and increasing within-DMN cou-
pling have been observed once task rules were fully established and
could be applied in a relative ‘automatic’ fashion (Mohr et al., 2016,
2018; Vatansever et al., 2017b). Although involving little practice, and
thus seemingly at odds with traditional views that emphasize the role
of extensive practice (Logan, 1988; Schneider and Shiffrin, 1977), au-
tomaticity is a cornerstone in theories of IBL/RITL as well. Two as-
pects are frequently mentioned in this context: First, instructions are
supposed to trigger ‘automatic’ (i.e., unintended) responses that are ev-
ident already directly after getting instructed (e.g., Liefooghe et al.,
2012; Meiran et al., 2015) and seem to be quite resistant to cancelling
(Abrahamse et al., 2022). Second, rules conveyed via explicit instruc-
tions seem to need only very little time to be established — as evidenced
by rapid changes in network configuration (Mohr et al., 2016, 2018) as
well as by plateauing behavioral effects after few implementation trials
(e.g., Monsell and Graham, 2021; Ruge and Wolfensteller, 2010) - indi-
cating rapidly evolving automaticity. Both aspects — the former referred
to as ‘intention-based reflexivity’ (Meiran et al., 2012) and the latter
as ‘short-term automatization’ (Chein and Schneider, 2005; Mohr et al.,
2016) - seemingly result in similar (i.e., automatic) behavior, yet their
differences are also emphasized (cf. Cole et al., 2017).

Working memory and long-term (episodic) memory are hypothe-
sized to contribute to IBL, yet it remains relatively unclear how these
systems are engaged and balanced in the service of successful learning.
The rationale behind the work presented in this paper was to concep-
tualize instructional load as a variable that strains the capacity limits
of one (here: working memory) of the involved systems which in turn
might boost the engagement of the other (here: episodic memory) sys-
tem (Bartsch and Oberauer, 2022). As argued further above, such load-
dependent re-balancing might be reflected by altered functional inte-
gration of the lateral PFC into different functional networks support-
ing these two different memory systems. In addition, instructional load
might also affect automaticity-related effects linked to IBL and should
potentially be reflected in typical functional connectivity patterns. To
this end, we revisited the data from experiment 1 originally reported
in Ruge et al. (2019) and applied a seed-based connectivity approach.
Our goal was to reconcile insights from pervious works focusing on pre-
frontal rule representation in IBL with knowledge about load-induced
functional connectivity changes. Specifically, we focused on the func-
tional coupling of 4 prefrontal seed regions which had been shown to
play a distinctive role in cortical coding of newly instructed task rules.

2. Methods
2.1. Experiment and design

2.1.1. Sample

The original sample consisted of 68 participants of which 3 had to
be excluded due to incomplete data collection. This resulted in a final
sample of 65 participants (mean age: 24.2 years, age range: 19-33 years;
32 females, 33 males).

All participants were right-handed, neurologically healthy and had
normal or corrected-to-normal vision. The experimental protocol was
approved by the Ethics Committee of the Technische Universitdt Dres-
den and conformed to the World Medical Association’s Declaration of
Helsinki. The participants gave written consent before taking part in the
experiment and were paid 10 Euro or compensated with course credit,
respectively, for their participation.
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2.1.2. Task and experimental procedure

Over the course of the experiment the participants had to complete
multiple blocks of a rapid instruction-based learning paradigm. In each
block there were two main phases: an instruction phase followed by
an implementation phase. During the instruction phase of each block
participants were presented with a set of novel stimulus-response (S-R)
links (either 4 or 10). These mappings consisted of disyllabic German
nouns (the stimuli) and the correct response button was instructed by
spatially congruent cues. Since the pairing of each word with response
buttons was unique (i.e., the same word was not paired with another
button press over the course of the experiment) these pairings are re-
ferred to as ‘rule identities’. To minimize potential reliance on ‘short-
cut strategies’ the number of response options was varied between the
blocks with either 2 or 3 responses being possible. Hence, the chance
to infer a correct response from another mapping (e.g., ‘if response A is
not required here the other response has to be correct’) was minimized —
the memorization of the rule identity itself (e.g., ‘this stimulus requires
response B”) was encouraged (cf. Liefooghe and Houwer, 2018). To pre-
vent unintended interactions with the different experimental conditions
the blocks requiring either 2 or 3 responses were equally distributed
across the conditions. Furthermore, in blocks involving 2 different re-
sponses, an equal number of 2 stimuli (low load) or 5 stimuli (high
load) was assigned to each response during the instruction phase. For
blocks involving 3 responses, either 2 (low load) or 4 (high load) stim-
uli were assigned to one response and either 1 (low load) or 3 (high
load) stimuli were assigned to each of the remaining two responses dur-
ing the instruction phase. For the subsequent implementation phase the
scheme of to-be-implemented rules in the high-load condition was iden-
tical to that determined by the low-load condition. Specifically, either
two responses were each required twice (in blocks with 2 instructed re-
sponses) or one response was required twice and the other two responses
were each required once (in blocks with 3 instructed responses). The be-
havioral implications of this assignment focusing on ambiguities at the
response-selection level are reported in supplementary analyses 1. Each
of the 3 response options (right, middle and left) was randomly selected
to be assigned to 2 stimuli in the implementation phase in one third
of the 18 blocks that involved 3 different responses. Per subject, words
were randomly drawn from a wordlist and assigned to the different con-
ditions.

Each instruction phase started after a variable delay of 2-4 s counting
from the beginning of each measurement run or the end of a preceding
implementation phase. At the start of each instruction phase the Ger-
man word for ‘memorize’ (‘Einpragen’) was displayed in red color for
2 s on the screen. After this announcement novel nouns were shown on
the screen in rapid succession (2000 ms per noun). These nouns were
framed by two vertical bars which indicated the instructed response:
if a noun was equally close to the two vertical bars a middle finger
response was indicated, if it was closer to the right bar a ring finger
response was indicated and if it was closer to the left bar an index fin-
ger response was indicated. Each noun was presented only once during
the instruction phase and no responses were supposed to be executed
within that time span. Instructed S-R rules were presented sequentially
such that all S-R rules requiring a left (index finger) response were pre-
sented before all stimuli requiring a middle (finger) response which, in
turn, were presented before all stimuli requiring a right (ring finger re-
sponse). This chunked sequential presentation was chosen to keep the
direction (left-to-right), number, and variability of response switches
during the instruction phase relatively constant across both load condi-
tions. Specifically, we thereby ensured that the frequency of response
switches was kept within a small range between 1 and 2 equally for
both load conditions. This compares to a range between either 1 and 3
(low-load) or 1 and 9 (high-load) for randomly presented S-R rules.

The implementation phase followed immediately after the instruc-
tion phase, announced by the German expression for ‘implement’ (‘Aus-
fiihren’) that was displayed on screen in green color for 2 s. The stimuli
from the preceding instruction phase were presented in pseudo-random
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order without vertical bars framing them. Each stimulus was presented
4 times. In contrast to the instruction phase in which no responses were
required, the participants were supposed to react to the stimuli by press-
ing the button that corresponded to the instructed response. The subjects
were asked to use right hand fingers for responding and to avoid inter-
ference with handedness only right-handed subjects were recruited. No
performance feedback was provided after single trials (to rule out inter-
ference with reinforcement learning), only at the end of each block the
mean performance accuracy across all trials from that block was shown
on screen. The stimulus onset asynchrony (SOA) interval varied between
2 and 4 s in steps of 0.5 s. It was placed before the start of a new trial.
The performance feedback for each block was presented for 2 s after a
variable delay of 2-4 s counting from the end of the block’s last trial
which indicated the end of the implementation phase.

The central experimental manipulation concerned instruction load
and involved a ‘low-load’ condition and a ‘high-load’ condition: The
low-load condition comprised 4 instructed task-rules and the high-load
condition comprised 10 instructed task-rules. Importantly, the two con-
ditions did not differ regarding the number of to be executed task-rules
in the implementation phase which was always 4. While the implemen-
tation phase for the two conditions was identical, the instruction phase
differed regarding number of stimuli and encoding time: In the low-load
condition 4 nouns, each displayed for 2 s, were instructed, whereas 10
nouns, each displayed for 1 second, were instructed in the high-load
condition (for an overview, see Fig. 1). By reducing the encoding time
in the high-load condition the total instruction phase duration was ap-
proximately the same across the two conditions. Over the course of the
experiment, 18 blocks of each load condition were completed, adding
up to a total of 36 blocks. In each of the 3 consecutive scanning runs
6 blocks of each load condition were performed and each SOA level
occurred equally often in the two load conditions.

Three consecutive scanning runs each lasting approximately 13 min
were carried out adding up to a total duration of about 40 min. Before
scanning, participants were familiarized with the task by completing a
short practice session that included two task blocks (one for each experi-
mental condition) outside the scanner. The task blocks from the practice
session were not part of the final experimental task set.

2.1.3. Additional behavioral measures

After scanning was finished, participants were asked to perform a
computerized simple digit span task to obtain a measure of individual
short-term memory span (Wechsler, 1997): Random sequences of dig-
its were displayed on a screen with each individual digit being shown
for one second and appearing only once in a sequence. The presenta-
tion of a sequence was followed by the display of as many question
marks as there were digits in the preceding sequence and subjects were
prompted to reproduce the sequence either in forward or backward or-
der. If a subject reproduced a sequence correctly it advanced to the next,
longer sequence. The first sequence consisted of 3 digits and the number
of digits was increased by one with each sequence displayed (up to 10).
If a subject made an error a new sequence of the same length was dis-
played, and if this new sequence was reproduced incorrectly again the
test stopped. The length of the last successfully reproduced sequence
(i.e., maximal number of correctly remembered digits) constituted the
final score. At last, participants performed a short computerized version
of the standard progressive matrices intelligence test (Raven, 2003) in
which only the two most difficult matrix sets out of all five sets were
used (D and E). Each set consisted of 12 matrices that were presented
in progressively difficult order. The sum of all correctly solved matrices
constituted the non-standardized intelligence score.

2.2. fMRI-data acquisition and preprocessing
2.2.1. Acquisition

A Siemens 3T whole body Trio System (Erlangen, Germany) with
a 32 channel head coil was used for data acquisition. Ear plugs were
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— Fig. 1. Overview of the experimental paradigm. Each
Low-Io?d ; 2000 ms learning block comprised an instruction phase and an
Instruction Ipottle |
(4 S-R links) e 1 —— implementation phase. Novel S-R links were introduced
Left | in the instruction phase with vertical bars next to the ver-
Jhusband| bal stimuli indicating either an index finger (left), a mid-
Left — dle finger (middle) or a ring finger (right) response. The
Middle low-load condition comprised 4 novel S-R links (each
Instruction _J or - presented for 2000 ms) whereas the high-load condition
Phase :I_‘ Right comprised 10 novel S-R links (each for 1000 ms). The
[ newly instructed S-R mappings were not to be executed
during the instruction phase. Actual response execution
High-load e was required exclusively in the implementation phase
Instruction and regardless of the instructional load condition, al-
(10 S-R links) I — [...]| ! cotfeel ways only 4 S-R links had to be implemented four time
1000 ms each per learning block. No vertical bars next to the ver-
— bal stimuli were displayed during the implementation
G phase. Summary performance feedback was shown only
at the end of each learning block.
T iars 1 2. 3. 4.-16.
Implementation bottle water water [...] [ zoos correct
Phase
Required Left Right Right
: : Peromenee
N [ 16 Trials ]

used to dampen the scanner noise. Structural images were acquired after
the experimental session using a T1-weighted sequence (TR = 1900 ms,
TE = 2.26 ms, TI = 900 ms, flip = 9) with a resolution of 1 mm x 1 mm
x 1 mm. For the acquisition of functional images a gradient echo planar
sequence (TR = 2000 ms, TE = 30 ms, flip angle = 80°) was used. Each
volume contained 32 slices that were measured in ascending order. The
voxel size was 4 mm x 4 mm x 4 mm (gap: 20%). Additionally, field maps
with the same spatial resolution as the functional images were acquired
to correct for inhomogeneity of the static magnetic field (TR = 352 ms,
short TE = 5.32 ms, long TE = 7.78 ms, flip angle = 40°). The experiment
ran on E-Prime 2.0.

2.2.2. Preprocessing

After data acquisition the fMRI data were preprocessed using SPM12
running on MATLAB R2016a. The functional images were slice-time cor-
rected at first, then spatially realigned and unwarped using the acquired
field maps. The structural image from each participant was co-registered
to the mean functional image and segmented. Afterwards, spatial nor-
malization was performed by applying the deformation fields that were
generated in the segmentation process to the functional images (resolu-
tion: 3 mm x 3 mm x 3 mm). Except for the activation analyses, images
were not smoothed before general linear model (GLM) estimation. Sub-
jects’ whole-brain connectivity maps were smoothed with 6 mm FWHM
before being submitted to group level analysis.

2.3. Task-related fMRI analysis

Our primary goal was to assess load-dependent coupling of the LPFC
during instruction implementation. To this end, we employed the beta-
series correlation approach (Rissman et al., 2004). Since this approach
requires single-trial modeling we will first describe how single-trial
GLMs were estimated. After that, the beta-series correlation procedure
itself will be introduced. At last, we will describe the classical mean
activation analysis that was conducted as a complementary analysis.

2.3.1. Single-trial bold estimation

To estimate voxel-wise bold activation for each single trial the Gen-
eral Linear Model approach implemented within the SPM12 framework
was employed. A first-order auto-regressive model was used and a high-
pass filter of 1/128 Hz was included to account for slow signal drifts.

Single-trial GLMs were used to model the BOLD activations during
the implementation phase. The least-squares-separate (LSS) modeling
approach (Mumford et al., 2011, 2014) was chosen in which one re-
gressor is modeling the specific trial and additional regressors are added
to model the mean activity for all other trials according to condition.
Specifically, for each model, in addition to the single trial regressor, two
regressors were included to model correct trials separately for low-load
trials and high-load trials. Similarly, two regressors were added to model
error trials again separately for the two load conditions. Additional re-
gressors were included to model activity associated with performance
feedback presented at the end of each implementation block separately
for the two load conditions. The regressors were created using stick func-
tions convolved with SPM12’s default canonical hemodynamic response
function that were synchronized to the onsets of each implementation
trial or the onset of the feedback display. To model the activity associ-
ated with the instruction phase, Fourier basis set regressors time-locked
to the start of the instruction phase (including 20 different sinewave re-
gressors spanning 44 s) were used to appropriately account for BOLD
activation during the instruction phase that lasted either 12 (low-load)
or 14 (high-load) seconds.

In this fashion, as many independent LSS-GLMs were estimated as
there were trials, adding up to a total of 576 individual GLMs (36 blocks
times 16 trials per block).

2.3.2. Beta-series correlation

The single-trial estimates computed as described above were used for
the beta-series correlation analysis (Abdulrahman and Henson, 2016;
Rissman et al., 2004) that was employed to assess connectivity between
various seed regions and all other voxels in the brain. A trial-based con-
nectivity measure was used as we intended to (a) mainly investigate
processes directly related to instruction implementation of individual S-
R rules and (b) effectively compare load-dependent effects specifically
related to correct trials. This favourably compares to alternative block-
related connectivity measures which would confound low load vs. high
load conditions with fewer errors vs. more errors, respectively. The ba-
sic idea of this approach is to use the beta estimates from the single-trial
GLMs to form a series of beta estimates for each voxel. These estimates
can then be sorted along the different task conditions (here, this could
be instructional load or stimulus repetition) such that there is a beta-series
for each of the relevant conditions. The correlation between the beta-
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series of a given voxel (or the average beta-series of all voxels within
a ROI) and (all) other voxels (or, again, the average time series within
other ROIs) can be viewed as a measure of the functional connectivity
between specific voxels/ROIs. This results in a connectivity map where
the value assigned to each voxel represents its connectivity with the seed
region or voxel during a specific task condition. Differential connectiv-
ity between two task conditions can then be computed by contrasting
the respective connectivity maps.

Here, the mean beta-series for the seed ROIs (see below) were ex-
tracted for each task condition and the Fisher-z (Fisher, 1921) trans-
formed Pearson correlation was computed between the seed region’s
beta-series and the beta-series of each brain voxel. Connectivity maps
for each condition, each seed region, and each subject were obtained
in this way. Only the correct trials (for error-coding, see Section 2.3.6)
were included in the analyses.

The single subject’s connectivity maps were then entered into a sec-
ond level GLM and were analyzed at the group level via one-sample
t-tests. Whole-brain analyses using SPM12 running on MATLAB R2018a
were performed to identify the regions exhibiting differential func-
tional connectivity with the seed regions between the respective con-
ditions (e.g., high-load/low-load). As one explicit goal of this work
was to follow up on earlier MVPA findings, the four primary seed
ROIs were the same as those used in Ruge et al. (2019): the left/right
VLPEC as well as the left/right DLPFC. Those ROIs were adapted from
the automatic anatomical labeling (aal) atlas (Tzourio-Mazoyer et al.,
2002): aal-regions ‘inferior frontal gyrus pars opercularis’ and ‘inferior
frontal gyrus pars triangularis’ of each hemisphere were combined for
the VLPFC-seed, aal-region ‘middle frontal gyrus’ was selected for the
DLPFC seed. Unless indicated differently all whole brain analyses were
corrected for multiple comparisons using family-wise error correction at
the cluster-level, with pFWE < 0.05 and an initial threshold of p,cor.
< 0.001.

2.3.3. Standard activation analysis

Although we focus mainly on connectivity in this work, a standard
whole-brain activation analysis was conducted as well. Since the rela-
tionship between activation and connectivity is not necessarily straight-
forward (Di and Biswal, 2019) their complementary evaluation can po-
tentially reveal interesting insights (Gerchen and Kirsch, 2017).

The activation analysis was performed on the preprocessed and
smoothed (6 mm FWHM) fMRI-data. In contrast to the single-trial GLMs
that constituted the basis for our connectivity analyses a conventional
modeling approach was used here. The 8 condition-specific regressors
defined by the two conditions ‘instructional load’ (low-load and high-
load) and ‘stimulus repetition’ (1 to 4) were created by convolving stick
functions synchronized to trial onsets (correct ones only) with SPM12’s
default canonical HRF. Regressors of no-interest — error-trials, very first
trial per block and feedback after each block — were created in the same
way. Just like for the single-trial GLMs the instruction phase was mod-
elled using Fourier basis set regressors. To capture the constant activity
across each implementation phase additional regressors were created by
convolving a boxcar function synchronized to onset and duration of the
implementation blocks with the canonical HRF

Since the study design effectively equals a mixed block/event-related
design (Dosenbach et al., 2006; Visscher et al., 2003) we were interested
in both the constant activation across each implementation block and
the activation related to the specific trials. Therefore, contrast images for
the instructional load conditions were computed at the first level using
either the betas from the implementation block regressors or from the
trial-specific regressors (aggregated across stimulus repetitions). Both
kinds of contrast images were then evaluated separately at second level
using one-sample t-tests.

2.3.4. Follow-up connectivity analyses
To put the findings regarding the load-dependent connectivity pro-
files of our selected LPFC seeds into perspective we decided to conduct
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follow-up whole-brain connectivity analyses. To this end, we used some
of the regions identified via the previous LPFC-seeded whole-brain con-
nectivity analyses themselves as new seeds for further whole-brain BSC
analyses. Since there was a considerable overlap between the connec-
tivity profiles evoked by the four primary LPFC seeds we accounted for
this overlap by creating ‘combined maps’: Clusters of increased connec-
tivity that survived the whole-brain correction were extracted such that
binary whole-brain maps for each seed and each contrast direction (i.e.,
low-load>high-load and high-load>low-load) were obtained (1=voxel
within significantly connected clusters, 0=otherwise). The resulting four
binary maps per contrast direction were combined (logical or), resulting
in one ‘combined connectivity map’ (i.e., each voxel had been part of
significantly coupled cluster for at least one of the 4 primary seeds) for
each contrast. Clusters of contiguous voxels were then extracted from
those maps, resulting in specific ‘combined clusters’ for each contrast
direction that served as seeds for our follow-up whole-brain connectiv-
ity analyses.

2.3.5. Correlations with behavioral variables

To assess the behavioral relevance of the connectivity patterns we
computed the correlation between the prefrontal connections detected
in the preceding analysis steps and the behavioral measures obtained
during or after the experiment.

We chose an ROI-based approach in which we used the ‘connec-
tions’ (between seeds and significantly coupled regions) as defined in
Section 3.3.1. Average differential beta-series correlation values for each
connection were extracted from subjects’ contrast maps. Afterwards, we
computed the Pearson product-moment correlation as well as the Spear-
man rank-correlation coefficient between each extracted connection and
trait-like behavioral measures (total scores of Raven’s progressive ma-
trices, forward digit span and backward digit span) as well as first trial
accuracy (low-load, high-load, and low-load minus high-load). Correla-
tions were corrected for multiple testing by controlling the false discov-
ery rate (FDR; Benjamini and Hochberg, 1995). The amount of correla-
tions the FDR was controlled for was given by the number of connections
detected per seed (variable) times the number of behavioral variables
taken into account for analysis (always 6). FDR correction was therefore
implemented individually for each of the 4 seeds. Only correlations that
survived this correction procedure are reported.

2.3.6. Definition of correct and erroneous responses

Due to the absence of response feedback during individual imple-
mentation trials, participants could not know whether or not they had
correctly retrieved the instructed response for a certain stimulus. Hence,
it seems a reasonable strategy to stick with the response that was exe-
cuted for the same stimulus in a previous implementation trial assum-
ing it was the originally instructed one. Accordingly, we classified a
response as ‘correct’ when it matched the response given in the preced-
ing trial for the same stimulus. In the special case of the first imple-
mentation trial, a response was classified as ‘correct’ when it matched
the originally instructed response for a given stimulus, thus an ‘objec-
tive’ measure of successful instruction implementation was obtained in
this case. Only trials coded as ‘correct’ in that manner were used for
the fMRI data analyses. For a depiction of accuracy rates based on an
alternative accuracy definition (i.e., accuracy as measured by the in-
structed response at all 4 stimulus repetitions), please see supplementary
figure 1.

2.3.7. Conflict trials

The absence of direct performance feedback also creates a specific
type of potential conflict: If the implemented S-R rule does not match
the instructed S-R rule (e.g., the stimulus ‘picture’ requires a middle
finger response but an index finger response is executed) this just im-
plemented S-R rule likely becomes the new ‘self-generated’ correct rule
in the upcoming trial with the same stimulus (‘picture’ would now re-
quire an index finger response to be classified as correct). Since this
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Instruction Repetition 1 Repetition 2 Repetition 3
Middle finger Middle finger Middle finger
Middle finger Index finger Index finger

| WORD | Index finger Middle finger Middle finger
Index finger Index finger Index finger
Index finger Index finger Ring finger
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Repetition 4 Fig. 2. Illustration of several possible response tra-
jectories across the implementation phase. Correct re-
sponses (see Section 2.3.6 for error definition) are

Middle finger  printed in green and incorrect responses are printed in
red. Conflict trials (i.e., trials in which instructed and

Middie finger previous response to the same stimulus do not match)

. are underlined. The illustration is a non-exhaustive se-

Middle finger . ~ . . .
lection of a total of 34 = 81 possible trajectories.

Index finger

Ring finger

Y T

Instruction phase Implementation phase

self-generated S-R rule and the originally instructed S-R rule (‘picture’
still requires a middle finger response) are conflicting, this upcoming
trial is labelled as conflict trial (see Fig. 2 for a schematic illustration).
Behavioral performance in conflict trials provides an indication of the
extent to which the original instruction is still active even if it had not
been implemented correctly at some point in the implementation phase.
Please note, that a conflict trial can only occur at stimulus repetitions 2
to 4 as in stimulus repetition 1 there is no previously executed S-R rule.

3. Results
3.1. Behavioral performance

3.1.1. Mean response times and accuracy

Response accuracies and reaction times (RTs) were already reported
in Ruge et al. (2019). Since they are at least partly relevant for the analy-
ses conducted here, the results will be briefly summarized in this section.

Repeated measures ANOVAs were computed with the indepen-
dent variables stimulus repetition and instructional load. Accuracies (see
Fig. 3a) were found to be generally higher in the low-load condition com-
pared to the high-load condition as indicated by the main effect of instruc-
tional load (Fy g4 = 202.81; p(F) < 0.001; npz = 0.76) and increased lin-
early across stimulus repetitions (F3 195 = 71.43; p(F) < 0.001; ”pz =0.53;
linear contrast Fi64 = 111.52; p(F) < 0.001; np2 = 0.64). The increase
of accuracy was more pronounced in the high-load than in the low-load

condition as indicated by the interaction of instructional load by stimu-
lus repetition (F3 19, = 80.14; p(F) < 0.001; ,Ipz = 0.56; linear contrast
Fi 64 = 156.40; p < .001; npz = 0.71). Accuracies differed significantly
between conditions even at the fourth stimulus repetition with the per-
formance in low-load trials still being better than that in high-load trials
(t =6.26; p(t) < 0.001).

The same behavioral pattern was found when considering reaction
time (RT). A significant main effect of instructional load indicated gener-
ally higher RTs in the high-load condition (F; ¢4 = 175.15; p(F) < 0.001;
npz = 0.73). A linear RT decrease from the first towards the fourth stim-
ulus repetition was indicated as well (F3;9; = 224.87; p(F) < 0.001;
np? = 0.78; linear contrast F; ¢4 = 290.67; p(F) < 0.001; n,? = 0.82).
This RT decrease was more pronounced in the high-load than in the low-
load condition (F3 195 = 137.94; p(F) < 0.001; npz = 0.68; linear contrast
F1 64 = 252.69; p(F) < 0.001; ,Ipz = 0.80) but RTs were still longer in the
high-load than in the low-load condition at repetition 4 (t = 4,60; p(t) <
0.001).

3.1.2. Correlation between accuracy and test scores

Correlations between mean accuracy across all stimulus repetitions
and the progressive matrices score were positive for the low-load in-
structions (r = 0.32; p = .009, two-tailed) as well as for the high-load
instructions (r = 0.35; p = .005, two-tailed). Correlations with progres-
sive matrices score were still present in the low-load condition (r = 0.26;
p = .037, two-tailed) and the high-load condition (r = 0.28; p = .022,
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Fig. 3. a) Behavioral performance as measured by response accuracy (proportion correct). Response accuracy was defined relative to the previously executed response
in repetitions 2 to 4 and relative to the originally instructed response in repetition 1. b) Response accuracy in conflict trials specifically for the high-load condition. The
‘no conflict_preR’ condition indicates accuracy relative to the previously executed response in non-conflict trials. The ‘conflict_preR’ condition indicates the same for
conflict trials. The statistical analysis reported in 3.1.3 was based on these two conditions. Complementarily, the chart depicts conflict trial accuracy defined relative
to the originally instructed response (‘conflict_insR’) as well as defined relative to the remaining third response option that was neither instructed nor previously
executed (‘conflict_resR’). Please note, that for non-conflict trials accuracy relative to the previously executed response equals accuracy relative to the originally

instructed response. Error bars represent 95% confidence intervals.
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two-tailed) when selectively analysing first implementation trial accu-
racy. No correlations were observed between accuracy rates and for-
ward/backward digit span scores when considering all trials of a con-
dition (all p > .277, two-tailed). When only considering the first im-
plementation trial per stimulus of each condition, however, there was
a significant positive correlation observed between forward digit span
score (r = 0.27; p = .032, two-tailed) and low-load condition accuracy
with a trend in the same direction in the high-load condition (r. = 0.21;
p = .087, two-tailed).

3.1.3. Conflict vs. non-conflict trials

The behavioral results reported above raised the question why accu-
racy remained at a lower level in the high-load than in the low-load in-
struction condition throughout the whole implementation phase. This is
somewhat remarkable as from the second stimulus repetition onwards,
there is no obvious difference between the conditions (i.e., 4 S-R rules
have to be implemented within the same time period). A possible expla-
nation might be provided by the analysis of conflict trials which occur
more frequently in the high-load condition (about 30% of all trials per
stimulus repetition) whereas in the low-load condition accuracy levels
ceiled already at stimulus repetition 1 resulting in very few conflict tri-
als. Specifically, a lower accuracy in conflict trials than in non-conflict
trials would indicate a persisting (negative) impact of the originally in-
structed S-R rule even though a successful transfer from instruction to
implementation had originally failed in the first implementation trial.
The impact of conflict was analysed for stimulus repetitions 2 to 4 (as
by definition there is no conflict at stimulus repetition 1) and we fo-
cused on the high-load condition as there were too few conflict trials

Table 1
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in the low-load condition. As before, accuracy was defined with re-
spect to the previously executed response for a given stimulus. A 2-by-3
ANOVA with factors conflict and stimulus repetition yielded highly signif-
icant main effects of conflict (F; g4 = 412.21; p(F) < 0.001; npz =0.87)
and stimulus repetition (F2,128 = 45.51; p(F) < 0.001; ”pz = 0.41) as well
as a significant interaction of both factors (F3 ;24 = 12.84; p(F) < 0.001;
'Ip2 =0.17). As shown in Fig. 3b, this reflects, as hypothesized, an overall
higher accuracy in non-conflict trials (‘no conflict_preR’) than in conflict
trials (‘conflict preR’). While the accuracy increase towards the end of
the implementation phase was more pronounced in conflict trials than
in non-conflict trials, it is apparent that the conflict trial accuracy never
reached the same asymptotic level as in non-conflict trials. This clearly
shows that the persisting accuracy difference between the low-load and
the high-load condition shown in Fig. 3a is indeed due to conflict tri-
als. Moreover, Fig. 3b also shows that errors in conflict trials are mainly
due to choosing the originally instructed response (‘conflict_insR’) rather
than the remaining third response option that was neither instructed
nor previously executed (‘conflict_resR’). Hence, even if subjects seem to
have forgotten the originally instructed response as reflected by high er-
ror rates in the first implementation trial (repetition level 1), the above-
chance tendency to switch back to the originally instructed response
later on, suggests that this was in fact not the case.

3.2. Standard analysis of transient and sustained bold activity

First, we conducted a standard activation analysis to assess the whole
brain activation differences regarding the main effects of load (sustained
and transient) and time (see Table 1)

Results of all activation analyses. Peak voxels for each cluster are reported in MNI space.

Condition Contrast pFWE cluster Voxels pFWE peak Tpeak x/y/z Regions
LOAD-sustained LOW > HIGH < 0.001 539 .007 5.80 -6/29/ -4 Bilat. MFC
.032 48 .396 4.60 -51/-73/29 Left MTG/AG
.032 48 .888 4.08 -6/ -58/14 Left Prec./PCC
HIGH > LOW < 0.001 175 < 0.001 7.51 -30/23/-1 Left ant. Ins.
< 0.001 1395 < 0.001 7.25 -33/-55/38 Left IPL/sup. Prec.
< 0.001 641 < 0.001 6.81 45/32/32 Right MFG
< 0.001 181 < 0.001 6.77 30/26/-1 Right ant. Ins.
< 0.001 252 .010 5.72 6/20/47 Bilat.SMA
< 0.001 259 .012 5.67 -33/62/8 Left MFG
< 0.001 315 .031 5.42 —-48 /20 / 32 Left IFG/MFG
.003 78 .292 4.72 12/2/8 Right Thal.
.003 78 .445 4.54 -12/-13/11 Left Thal.
< 0.001 124 .652 4.34 27 /11 /47 Right MFG/SFG
LOAD-transient LOW > HIGH < 0.001 424 .035 5.39 -57/-19/23 Left STG/Oper.
< 0.001 136 .399 4.60 60/ -13/17 Right SMG/STG
HIGH > LOW .001 88 .365 4.64 —42 / -67 / 47 Left AG
.006 66 439 4.56 -36/11/59 Left MFG
.037 45 .526 4.48 45/17 /35 Right IFG
< 0.001 144 .533 4.47 -6/41/38 Bilat. MFC
Time EARLY > LATE < 0.001 12,824 < 0.001 11.69 -33/-58/41 Front./par. cortex
< 0.001 11.63 -33/20/-1 Left ant. Ins.
< 0.001 11.17 33/20/ -4 Right ant. Ins.
< 0.001 1273 < 0.001 9.09 9/-79/-31 Right Cer.
.002 103 < 0.001 7.13 57 / —46 / =10 Right ITG/MTG
< 0.001 381 < 0.001 6.61 -51/-46 / -10 Left MTG/ITG
.011 72 432 4.49 -18/-25/59 Left para. lob.
.006 81 442 4.48 18 /-25/59 Right para. lob.
LATE > EARLY < 0.001 793 < 0.001 7.19 30/ -85/32 Right occ. cortex
< 0.001 457 < 0.001 6.96 -3/35/-10 Orb.MFC
< 0.001 243 < 0.001 6.80 42/5/-34 ITG/temp. pole
< 0.001 255 .002 6.16 -6/62/-1 Bilat. MFC
< 0.001 457 .002 6.09 -9/ -94/32 Left occ. Cortex
.001 112 .027 5.46 -45/5/-37 Left ITG/temp. pole
.050 50 .291 4.66 27 /-67 /-7 Right fusiform gyrus

Abbreviations: ant. = anterior; bilat. = bilateral; AG = angular gyrus; cer. = cerebellum; front. = frontal; IFG/MFG/SFG = inferior/middle/superior frontal gyrus;
ins. = insula; IPL = inferior parietal lobule; ITG/MTG/STG = inferior/middle/superior temporal gyrus; mid. cing. = middle cingulate; MFC = medial frontal cortex;
occ. = occipital; orb. = orbital; oper. = operculum; par. = parietal; para. lob. = paracentral lobule; PCC = posterior cingulate gyrus; prec. = Precuneus; SFG = superior
frontal gyrus; SMA = supplementary motor area; SMG = supramarginal gyrus; sup. = superior; temp. = temporal; thal. = thalamus).
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a) block-related activation: HIGH > LOW b)

3.2.1. Effect of instructional load: block-related sustained activation

Only few areas, most notably medial prefrontal cortex, displayed
greater sustained activation in the low-load as compared to the high-load
condition. When considering the opposite contrast, high-load vs. low-
load, widespread sustained activation was detected in lateral prefrontal,
insular and posterior parietal as well as thalamic regions of both hemi-
spheres (see Fig. 4a and Table 1). Strong block-related sustained effects
seem to be in accordance with a persistent load-related difference in
accuracy and RT (see 3.1).

3.2.2. Effect of instructional load: trial-related transient activation

Regarding transient event-related effects of load (see Fig. 4b and
Table 1), two clusters around the bilateral parietal/temporal opercula
were identified to be more strongly activated during the low-load than
during the high-load condition. For the opposite contrast, high-load vs.
low-load, significant activation clusters were found in lateral/medial
frontal areas and around the left angular gyrus.

Discrepancies between block-related and trial-related activation
might be due to power differences in favor of the block-related regressor
(with a considerable share of load-dependent activation being captured
by it already). Furthermore, block-related activation might also com-
prise (sustained) processes induced by error trials which occur more
frequently in the high-load condition.

3.2.3. Effect of time

Besides cerebellar and posterior temporal sites, a very large cluster
of voxels spanning posterior parietal and frontal regions of both hemi-
spheres with activation foci in the anterior insulae and around angular
gyri was found to be more strongly activated during the early part (stim-
ulus repetitions 1 and 2) of the implementation phase as compared to
the late part (stimulus repetitions 3 and 4). For the reversed contrast,
late vs. early increased activation was predominantly detected in the bi-
lateral occipital cortices and to a lesser degree around bilateral temporal
poles and ventromedial PFC (Table 1 and supplementary figure 3).

3.3. Whole-brain connectivity: beta-series correlation for primary seeds

Our central goal in this work was to assess the load-dependent func-
tional coupling of the 4 prefrontal seeds used in Ruge et al. (2019). As
described above this was done by computing the beta-series correlation
between each specific seed region and all other brain voxels. Subse-
quently, significantly coupled voxels were assigned to large-scale net-
works based on the parcellation by Yeo et al. (2011). Table 2 provides
an overview for all 4 primary seed regions.

3.3.1. Whole brain: effect of instructional load

3.3.1.1. Left DLPFC seed. The left DLPFC (see Fig. 5a) was more
strongly coupled to a cluster around the left inferior frontal gyrus (IFG)
in the low-load as compared to the high-load condition. For the opposite
contrast direction, high-load versus low-load, increased coupling was ob-
served with ventral precuneus/posterior cingulate cortex (PCC), medial
frontal cortex (MFC) and left angular gyrus (AG).

trial-related activation: HIGH > LOW
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Fig. 4. Visualization of the standard activa-
tion analysis results. (a) Block-related load-
dependent activation (b) trial-related load-
dependent activation; positive t-values repre-
sent areas in which activation was greater in
the high-load > low-load contrast and are illus-
trated in warm colors; negative t-values repre-
sent areas in which activation was greater in
the low-load > high-load contrast and are illus-
trated in cold colors.

3.3.1.2. Right DLPFC seed. The right DLPFC (see Fig. 5b) exhibited in-
creased coupling to an area around the right supramarginal gyrus (SMG)
for the low-load vs. high-load contrast. For the reversed contrast (high-
load versus low-load) stronger coupling to ventral precuneus/PCC, MFC
and bilateral AG (reaching into posterior temporal and occipital cor-
tices) was detected.

3.3.1.3. Left VLPFC seed. Left VLPFC (see Fig. 5¢) was more strongly
coupled to both left and right SMG regions for the low-load vs. high-
load contrast. Other regions of increased coupling for the same contrast
were localized around the bilateral orbitofrontal gyri (OFG), the bilat-
eral supplementary motor areas (SMA), the left posterior insula (INS)
and within the left cerebellum. Only one cluster covering the ventral
precuneus/PCC was found to be more strongly connected in the high-
load as compared to the low-load condition.

3.3.1.4. Right VLPFC seed. For the low-load vs. high-load contrast mul-
tiple locations of strengthened coupling to the right VLPFC seed (see
Fig. 5d) were identified in and around: right anterior OFG, bilateral IFG,
right middle frontal gyrus (MFG), right SMA, left cerebellum, right ante-
rior insula (alns), right and left posterior parietal cortex around the in-
traparietal sulcus (IPS). For the opposite contrast, high-load vs. low-load,
the junction of ventral precuneus/PCC, again, was increasingly coupled
as were MFC and the bilateral AG.

3.3.2. Connectivity overlap between primary seed regions

At first glance, results of the beta-series correlation analyses appear
similar across all 4 prefrontal seeds. Comparing the low-load condition
to the high-load condition, we observed significantly increased coupling
to regions predominantly assigned to large-scale networks such as the
FPN and the dorsal/ventral attention network (DAN/VAN). Areas ex-
hibiting increased coupling to one of the 4 prefrontal seeds in the high-
load condition compared to the low-load condition, in turn, were almost
exclusively assigned to the DMN. However, while this pattern was con-
sistent across all 4 prefrontal seeds there was still considerable variation
in location and extent of the specific connectivity foci. In an attempt to
capture and quantify this variation we performed pairwise second level
t-tests in which we compared subjects’ load-related connectivity contrast
maps between the 4 seeds. Each seed was compared against each other
seed resulting in a total of 6 paired t-tests (see supplementary Table 1
and supplementary Fig. 4).

Interestingly, especially the left VLPFC’s connectivity pattern dif-
fered markedly and consistently from that of all 3 remaining seed re-
gions’ connectivity patterns. In particular, the posterior parietal, tem-
poral and medial frontal areas showed deviating load-related functional
couplings specifically with the left VLPFC seed. Although differences in
load-induced whole-brain connectivity changes were also observed be-
tween some of the remaining three pairwise comparisons between seed
regions (i.e., left DLPFC vs. right DLPFC, left DLPFC vs. right VLPFC,
right DLPFC vs. right VLPFC) no systematic pattern emerged compara-
ble to the one observed for left VLPFC-specific effects.
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a)

d)

left DLPFC: HIGH > LOW

% of 2237 voxels in network % of 92 voxels in network % of 197 voxels in network

% of 2105 voxels in network
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Fig. 5. Connectivity results based on a) left DLPFC; b) right DLPFC; c) left VLPFC and d) right VLPFC. T-value maps are thresholded at p,,correcte = 0.001 for
visualization purposes and were generated with BrainNet Viewer (Xia et al., 2013). Positive values depicted in warm colors represent areas in which coupling to the
seed-region was greater in the high-load > low-load condition. Negative values depicted in cold colors represent areas in which coupling to the seed-regions was
greater in the low-load > high-load condition. The bar graphs summarize the network assignment (Yeo et al., 2011) of all coupled voxels in the low-load > high-load
contrast (middle column) and the high-load > low-load contrast (right column). DAN = dorsal attention network; DMN = default mode network; FPN = fronto-parietal
network; VAN = ventral attention network.
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Table 2
Connectivity results for the primary prefrontal seeds. Peak voxels for each cluster are reported in MNI space.
Connection Seed Contrast PFWE cluster voxels PFWE peak Tpeak x/y/z Regions
1 left DLPFC LOW > HIGH < 0.001 197 312 4.49 —-42/20/20 Left IFG
2 HIGH > LOW < 0.001 617 < 0.001 6.55 -3/-52/26 Bilat. Prec./PCC
3 < 0.001 565 .052 5.12 0/53/-4 Bilat. MFC
4 .021 89 .300 4.50 -39/ -67 /32 Left AG
5 right DLPFC LOW > HIGH .023 92 .864 3.86 57/ -43/35 Right SMG
6 HIGH > LOW < 0.001 667 < 0.001 7.52 3/-64/29 Bilat. Prec./PCC
7 .001 163 .003 5.94 51/-64/29 right AG
8 < 0.001 927 .012 5.55 0/53/-1 Bilat. MFC
9 < 0.001 248 .035 5.23 -39/-70/38 Left AG
10 left VLPFC LOW > HIGH < 0.001 457 < 0.001 7.11 -57/-46 / 41 Left IPL/SMG
11 < 0.001 283 .005 5.81 —-42 /56 / -10 Left ant. OFC
12 < 0.001 551 .007 5.72 60/ -43 /29 Right SMG/MTG
13 < 0.001 278 .062 5.04 57/32/-4 Right OFC
14 < 0.001 232 .072 4.99 —-24/-79/-43 Left Cer.
15 < 0.001 281 126 4.81 -12/5/68 Bilat. SMA
16 .002 155 .296 4.49 —-48 /5/-10 Left Ins../temp. pole
17 HIGH > LOW < 0.001 779 < 0.001 9.93 -6/ -64/23 Bilat. Prec./Cuneus
18 right VLPFC LOW > HIGH .026 88 .005 5.83 30/59/-13 Right ant. OFC
19 < 0.001 289 .010 5.61 =27 /-49/ 44 Left IPS/SPL
20 < 0.001 418 .013 5.52 39/2/59 Right SMA/MFG
21 .013 105 .013 5.52 45/32/29 Right MFG/IFG
22 < 0.001 373 .035 5.23 -6/-79/-34 Left Cer.
23 < 0.001 487 .043 5.16 36 /-49 /65 Right IPS/SPL
24 .007 119 .049 5.12 -42/20/ 26 Left IFG
25 .030 85 .254 4.55 30/26/ -4 Right INS
26 .003 141 .308 4.47 45/11/ 26 Right IFG
27 HIGH > LOW < 0.001 835 < 0.001 9.15 0/-61/26 Bilat. Prec./PCC
28 .001 190 < 0.001 6.85 51/ -64/26 Right AG
29 < 0.001 1188 .004 5.92 0/56/ -4 Bilat. MFC
30 < 0.001 247 .005 5.84 -42/-73/35 Left AG/Occ. Cortex
Abbreviations: DLPFC/VLPFC = dorsolateral/ventrolateral prefrontal cortex; ant. = anterior; bilat. = bilateral; AG = angular gyrus; cer. = cerebel-

lum; front. = frontal; IFG/MFG/SFG

inferior/middle/superior frontal gyrus; ins. = insula; IPL = inferior parietal lobule; IPS = intraparietal sulcus;

ITG/MTG/STG = inferior/middle/superior temporal gyrus; MFC = medial frontal cortex; occ. = occipital; OFC = orbitofrontal cortex; par. = parietal; PCC = pos-
terior cingulate gyrus; prec. = precuneus; SMA = supplementary motor area; SMG = supramarginal gyrus; temp. = temporal).

3.3.3. ROI-specific ANOVAs: time and interaction load X time

After we had identified the LPFC connections sensitive to different
levels of instructional load in the previous analysis step, we were also
interested to which degree these connections changed over the course
of the implementation phase. For this purpose, we extracted subjects’
mean BSC values per condition and connection identified via the two
directions of the instructional load contrast at whole-brain level (i.e., all
combinations of seed and target-ROI from 3.3.1) and entered them as de-
pendent variables into multiple 2-by-2 repeated measures ANOVAs with
factors instructional load and time (stimulus repetitions 1 and 2 as well as
3 and 4 were aggregated resulting in an early and a late implementation
stage, respectively). A total of 30 ANOVAs were conducted. Correction
for multiple testing was implemented by controlling the false-discovery
rate individually at the level of each seed (e.g., correcting for 4 left
DLPFC-related tests). Only significant effects surviving this correction
procedure are reported here.

Besides the highly significant main effect of instructional load that
obviously had to be present for each connection mirroring the original
whole-brain results (all Fy64 > 18.45; all p(F) ( 0.001; all le2 )y 0.22),
a main effect of time was detected for several connections (all F; g4 >
13.17; all p(F) { 0.002; all npz ) 0.17) in all cases reflecting a significant
decrease in coupling strength towards the late implementation stage.
Interestingly, all these connections (6 to 9 and 27 to 30) involved right
hemispheric seed regions and were identified via the contrast direction
high-load vs. low-load in the original whole-brain analysis. Additionally,
4 connections displayed a significant instructional load x time interaction
effect (all Fi 64 > 6.79; all p(F) (0.011; all r/p2 ) 0.096). All of those con-
nections (1, 18, 20 and 22) were identified via the low-load > high-load
contrast direction in the original whole-brain analysis. The implications
of these interaction effects were heterogeneous as, for example, at con-
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nection 1 the coupling in the two load conditions converged towards
the end of the implementation phase whereas at connection 18 cou-
pling increased more strongly over time in the high-load condition (see
Table 3 for an overview and Fig. 6 for an illustration). When applying a
less liberal significance criterion, i.e., using family-wise error correction
(Holm, 1979) and taking into account all 30 ANOVAs at once, all re-
ported main effects of time (connections 6 to 9 and 27 to 30) remained
significant as did two of the reported interactions (1 and 18).

As all load-dependent connectivity results reported here are inher-
ently relative, it would be informative to compare both low-load and
high-load connectivity to a third ‘baseline’ condition. Thereby, we could
determine, for instance, whether a load-dependent connectivity increase
is due to increased high-load connectivity relative to baseline or de-
creased low-load connectivity relative to baseline. Unfortunately, the
present experiment did not comprise such an unbiased baseline con-
dition (e.g., fixation). In supplementary analyses 2 we report the re-
sults obtained based on an auxiliary and arguably suboptimal base-
line condition taken from a different experiment (‘Experiment 2’ from
Ruge et al. (2019)).

3.4. Whole-brain connectivity: follow-up analyses

The load-dependent connectivity profiles of the primary LPFC-
seeds suggested a shift from stronger coupling to areas assigned to
attention/control-related networks during the low-load condition to-
wards a stronger coupling to DMN-assigned regions during the high-
load condition. It remained unclear, however, whether such a connec-
tivity profile was specific for the pre-selected LPFC seeds (as they are
considered control regions themselves) or whether this only exempli-
fied a more general phenomenon beyond these seed regions. In par-
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ANOVA results. Connections identified in 3.3.1 were examined. P-values are printed in italic letters when trend-wise significance (p < .1) was indicated and in
bold letters when significance (p < .05) was indicated. P-values that survived FDR-correction per seed (for procedure, see 3.3.3) are denoted by (*). P-values
that survived family-wise error correction for all 30 seeds are denoted by (), additionally.

SEED region Target regions Connection time load*time
F p 12 F p 1,2
DLPFC_L Left IFG 1 1.59 212 0.024 11.79 .001*" 0.156
Bilat. Prec./PCC 2 0.96 .330 0.015 0.42 .519 0.007
Bilat. MFC 3 0.11 747 0.002 0.66 419 0.010
Left AG 4 2.81 .099 0.042 0.53 470 0.008
DLPFC R Right SMG 5 0.04 .836 0.001 2.01 162 0.030
Bilat. Prec./PCC 6 19.59 <0.001*F 0.234 0.62 433 0.010
right AG 7 13.18 .001*" 0.171 1.33 .254 0.020
Bilat. MFC 8 24.54 <0.001* 0.277 0.07 .787 0.001
Left AG 9 31.71 <0.001*F 0.331 1.13 .291 0.017
VLPFC_L Left IPL/SMG 10 0.59 .447 0.009 2.68 .106 0.040
Left ant. OFC 11 0.01 944 <0.001 3.88 .053 0.057
Right SMG/MTG 12 1.25 .268 0.019 1.97 .165 0.030
Right OFC 13 0.14 714 0.002 0.29 .592 0.005
Left Cer. 14 1.81 .183 0.028 1.12 .293 0.017
Bilat. SMA 15 2.33 132 0.035 7.73 .007 0.108
Left Ins./temp. pole 16 2.51 118 0.038 1.19 .280 0.018
Bilat. Prec./Cuneus 17 2.21 142 0.033 3.09 .083 0.046
VLPFCR Right ant. OFC 18 0.73 .396 0.011 15.52 <0.001** 0.195
Left IPS/SPL 19 0.20 .660 0.003 5.97 .017 0.085
Right SMA/MFG 20 1.26 .266 0.019 7.09 .010* 0.100
Right MFG/IFG 21 0.26 .609 0.004 4.29 .042 0.063
Left Cer. 22 0.02 .903 <0.001 6.79 .011* 0.096
Right IPS/SPL 23 0.14 713 0.002 4.57 .036 0.067
Left IFG 24 2.99 .089 0.045 5.70 .020 0.082
Right Ins. 25 0.01 925 <0.001 1.82 182 0.028
Right IFG 26 0.58 451 0.009 0.77 .385 0.012
Bilat. Prec./PCC 27 29.62 <0.001*F 0.316 3.60 .062 0.053
Right AG 28 20.32 <0.001* 0.241 4.48 .038 0.065
Bilat. MFC 29 28.74 <0.001* 0.310 0.23 .635 0.004
Left AG/Occ. cortex 30 37.77 <0.001*F 0.371 3.67 .060 0.054

Abbreviations: DLPFC/VLPFC = dorsolateral/ventrolateral prefrontal cortex; ant. =
inferior/middle/superior frontal gyrus; ins. =

lum; front. = frontal; IFG/MFG/SFG =

anterior; bilat. = bilateral; AG = angular gyrus; cer. = cerebel-
insula; IPL = inferior parietal lobule; IPS = intraparietal sulcus;

ITG/MTG/STG = inferior/middle/superior temporal gyrus; MFC = medial frontal cortex; occ. = occipital; OFC = orbitofrontal cortex; par. = parietal; PCC = pos-
terior cingulate gyrus; prec. = precuneus; SMA = supplementary motor area; SMG = supramarginal gyrus; temp. = temporal).

ticular, we were interested in whether DMN-based seeds would also ex-
hibit elevated functional coupling to other DMN-regions during the high-
load > low-load contrast. To further examine this issue we decided to
conduct additional whole-brain connectivity analyses with DMN-based
seeds. This time, the clusters identified in 3.3.1 via the high-load > low-
load contrast — almost exclusively assigned to the DMN — were used as
seed regions. Thereby, we could efficiently and simultaneously assess
both, the specificity of high-load > low-load LPFC connectivity and more
general load-dependent DMN-connectivity changes beyond the original
LPFC seed regions. As there was a considerable overlap between these
clusters, for simplification, we generated ‘combined clusters’ resulting
in 4 new seed regions (see methods Section 2.3.4 for details and Fig. 7a
for an illustration).

The connectivity patterns evoked by the high-load seeds (see Table 4
and Figs. 7b and 7c for the coupling pattern of ventral precuneus/PCC
and left AG, respectively) were very similar across all four seeds: In-
creased coupling for the low-load vs. high-load contrast was observed ex-
clusively within DMN-regions with an emphasis on precuneus/cuneus.
For the high-load vs. low-load contrast, in turn, very large clusters were
detected mostly covering areas assigned to control networks in addi-
tion to the visual network (VN). Thus, the DMN-based seeds and the
LPFC-seeds appear to elicit inverse coupling profiles during the two in-
structional load conditions.

3.5. Correlation between connectivity changes and behavioral/trait-like
variables

We used the mean difference in BSC magnitude between the low-load
and the high-load condition across all voxels within a ROI for comput-
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ing the correlation. Since these values were extracted from the single
subjects’ low-load vs. high-load contrast maps, positive difference values
indicate greater connectivity during the low-load condition in a specific
area whereas negative values indicate the opposite connectivity pattern.
For an illustration, please see Fig. 8.

When using the Pearson correlation coefficient as measure of asso-
ciation, only connections based on the left VLPFC seed survived FDR-
correction. Differential coupling of connection 14 (left VLPFC-left cere-
bellum) was positively associated with forward (r = 0.41; p < .001, two-
tailed) as well as backward (r = 0.41; p < .001, two-tailed) digit span.
Differential coupling of connections 12 (left VLPFC-right SMG) and 13
(left VLPFC-right OFG/IFG) was associated positively with first-trial ac-
curacy in the low-load condition (both r > 0.38; both p < .002, two-
tailed).!

4. Discussion

This study set out to examine load-dependent connectivity changes
emerging during the implementation of instructed novel S-R associa-
tions. In particular, we focused on the functional coupling of four lateral
prefrontal seeds (bilateral DLPFC and VLPFC) that had previously been

1 Association between conn. 14 (left VLPFC-left Cerebellum) and backward
memory span (r = .38; p = .002, two-tailed) as well as between conn. 13 (left
VLPFC-right OFG/IFG) and first-trial accuracy in the low-load condition (r = .44;
p < .001, two-tailed) was still significant when using Spearman correlation as
an alternate measure of association. No additional connectivity-behavior corre-
lation survived FDR-correction.
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0.55) 0.4} l
ow
0.2] i
§os * o 0.35] * high
kst
o
£ 0.45 0.45 0.15
S I L\—I 0.3 P\—{ I
o I 1 1
® ! !
-5 0.4 0.4] 0.25 0.1
@
8
Bosy 0.3 0.2 0.05|
0.3]
12 3 12 3 12 u 12 3
left DLPFC + bi. MFC (conn. 3) right DLPFC + left AG (conn. 9) left VLPFC + bi. Prec.JPCC (conn. 17) right VLPFC + left AG (conn. 30)
0.
03
0.3
C 0.35 03
8
© 0.25(
% 0.25 0.25]
£ 03] 1
Q 0.2]
o I T 0.2
n 0.2
Lo 015
9 0.15|
3 0.15]
[} 0.1]
o 0.2 01
0.1}
0.05
0.1! 0.05!

12
stimulus repetitions

34 12

stimulus repetitions

34

12
stimulus repetitions

34 12

stimulus repetitions

34

Fig. 6. Load-dependent connectivity as a function of time (early: stimulus repetitions 1 and 2; late stimulus repetitions 3 and 4). Results are illustrated for exemplary
connections involving each of the four primary seed regions a) left DLPFC, b) right DLPFC, c) left VLPFC and d) right VLPFC. Connections identified via the low-
load > high-load contrast are shown in the top row whereas connections identified via the high-load > low-load contrast are shown in the bottom row. Significant
interactions of instructional load by time are denoted by (*). Error bars represent 95% confidence intervals.

Table 4

Follow-up connectivity analysis results based on regions with greater high-load > low-low coupling to LPFC seeds in 3.3.1. Peak voxels for each cluster are

reported in MNI space.

Seed Contrast PFWE cluster voxels PFWE peak Tpeak x/y/z Regions
Prec./PCC LOW > HIGH < 0.001 484 < 0.001 7.63 12 /-58 /20 Bilat. Prec.
< 0.001 247 .095 4.92 -3/38/-1 Bilat. MFC
HIGH > LOW < 0.001 24,507 < 0.001 8.77 36/44 /29 Lat. front./par./temp. Cortex, occ. cortex
< 0.001 8.62 54 /17 / -7 Right temp. pole/IFG
< 0.001 8.61 -54/-43 / 47 Left SMG
MFC LOW > HIGH < 0.001 294 < 0.001 6.62 9/-58/23 Bilat. Prec./Calcarine
HIGH > LOW < 0.001 17,248 < 0.001 11.63 60/ -43 /32 Lat. front./par./temp. Cortex, occ. Cortex
< 0.001 10.08 —60/-49 /26 Left SMG
< 0.001 9.59 57 /-40/ 44 Right SMG
Right AG LOW > HIGH < 0.001 314 .003 5.96 -9/-55/14 Bilat. Prec./Calcarine
HIGH > LOW < 0.001 16,814 < 0.001 8.15 54/11/8 Lat. front./par./temp. Cortex, occ. Cortex
< 0.001 7.72 57 /-40/38 Right SMG
< 0.001 7.59 -39/5/-1 Left ant. Ins.
Left AG LOW > HIGH < 0.001 262 .003 5.98 -6/-58/17 Bilat. Prec.
.047 75 .007 5.70 -39/-76/41 Left MOG/AG
HIGH > LOW < 0.001 22,324 < 0.001 9.36 57 /-40/ 35 Lat. front./par./temp. Cortex, occ. cortex
< 0.001 9.15 -60/-49 /29 Left SMG
< 0.001 8.35 54/-52/2 Right MTG
.033 83 .348 4.42 15/-7/14 Right Thal.

Abbreviations: ant. = anterior; bilat. = bilateral; AG = angular gyrus; front. = frontal; IFG/MFG/SFG = inferior/middle/superior frontal gyrus; ins. = in-
sula; ITG/MTG/STG = inferior/middle/superior temporal gyrus; lat. = lateral; MFC = medial frontal cortex; MOG = middle occipital gyrus; occ. = occipital;
par. = parietal; PCC = posterior cingulate gyrus; prec. = precuneus; SMG = supramarginal gyrus; temp. = temporal; thal. = thalamus).

demonstrated to bear differential relevance for successful IBL. Specifi-
cally, earlier MVPA results from Ruge et al. (2019) suggested a relevant
contribution of neural rule representations in the bilateral VLPFC (but
not DLPFC) to successful rapid IBL. Notably, these VLPFC representa-
tions did not seem to be compromised with increasing instructional load
despite marked effects on behavior. By contrast, the present functional
connectivity analysis revealed that instructional load did in fact strongly
affect the functional couplings of all of these four lateral prefrontal re-
gions. In particular, it seems that lateral PFC regions are integrated into
entirely different brain systems depending on whether or not instruc-
tional load exceeded standard short term memory capacity limits.

On the one hand, across all four prefrontal seeds, we found strength-
ened couplings with regions within the lateral prefrontal and parietal
cortices, the insulae, and the cerebellum during the low-load as com-
pared to the high-load condition. Using a well-established large-scale
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network parcellation (Yeo et al., 2011) these individual regions could be
assigned to large-scale networks such as the FPN, DAN and VAN. On the
other hand, regions exhibiting tighter functional coupling with all four
prefrontal seeds during the high-load as compared to the low-load con-
ditions were almost exclusively assigned to the DMN including regions
such as the bilateral AG, mPFC, and most prominently the junction of
ventral precuneus and PCC. However, although this general pattern was
observed for all four seeds, the load-dependent coupling profile of the
left VLPFC stood out considerably from that of the other three prefrontal
seed regions. Together with the finding that significant correlations with
behavioral measures were selectively found for functional couplings in-
volving the left VLPFC seed, this suggests a specialized role of the left
VLPFC during IBL.

Our complementary analysis of local brain activity (instead of con-
nectivity) changes associated with instructional load showed results that
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Fig. 7. a) DMN-based seeds used for follow-up analyses. Seed regions are rendered on cortex in the left column. Information about the seed regions is provided
in the table in the right column. Colors in which seeds are depicted in the cortex figure correspond to the respective fond color of seeds’ names in the table. Xyz-
coordinates represent center of mass of the seed regions. Connectivity results based on b) bilateral ventral precuneus/posterior cingulate cortex and c) left angular
gyrus: thresholded t-value maps (at Pycorrected = 0-001) are provided in the left column - positive values represent areas in which coupling to the seed-region was
greater in the high-load > low-load condition and are depicted in warm colors, negative values represent areas in which coupling to the seed-regions was greater in
the low-load > high-load condition and are illustrated in cold colors; network assignment of all coupled voxels (Yeo et al., 2011) in the low-load > high-load (middle
column) and the high-load > low-load (right column) contrast (DAN = dorsal attention network; DMN = default mode network; FPN = fronto-parietal network;
VAN = ventral attention network). Cortex images were generated with BrainNet Viewer (Xia et al., 2013).

are generally in line with the common observation of fronto-parietal
activation increases at higher levels of cognitive load (Duncan, 2010;
Emch et al., 2019; Gordon et al., 2012; Woolgar et al., 2015). Specifi-
cally, these regions were more strongly activated in the higher instruc-
tion load condition and they were also more strongly activated at the
beginning of the implementation phase compared to later implemen-
tation trials supposedly reflecting higher levels of cognitive control re-
quirements early in novel task practice, which is in line with previously
reported results (Cole et al., 2013b; Duncan, 2010; Mohr et al., 2016).

Not least before this background, it might seem somewhat coun-
terintuitive that the cognitively more demanding condition (higher in-
struction load) was associated with a tighter coupling between our
LPFC seeds and various DMN regions, which have ‘historically’ been
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conceptualized as ‘task-negative’ regions exhibiting lower local activity
in the more demanding condition (Anticevic et al., 2012; Fox et al.,
2005). However, while this ‘task-negative’ DMN-conceptualization is
mainly based on local activation results there is a growing body of evi-
dence from connectivity studies (Elton and Gao, 2015; Finc et al., 2017;
Spreng et al., 2010; Wang et al., 2021) that the DMN actually has an ac-
tive role in goal-directed behavior. Accordingly, studies have reported
stronger connectivity between the DMN and other (‘task-positive’)
large-scale networks with increasing cognitive demand and stronger
within-DMN connectivity with decreasing demand (Finc et al., 2017;
Vatansever et al., 2017a). Such type of connectivity changes have been
suggested to reflect different levels of automaticity (Vatansever et al.,
2017b). A similar automaticity-based account has also been suggested in
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Fig. 8. a) correlation between differential coupling (low-load — high-load) of connection 14 and backward digit span; b) correlation between differential coupling
(low-load - high-load) of connection 12 and 1st trial accuracy in the low-load condition; scatter plots illustrating correlations are shown in the left column, seed (in
red) and ‘target’ (in blue) of the connections are depicted in the middle and right column. Coefficients and p-values are based on the Pearson (standard font) and the
Spearman (italic) correlation, respectively. Significant values after correction are denoted by (*).

the context of practice-related connectivity changes in IBL (Mohr et al.,
2016, 2018) and will be discussed in relation to our load-dependent con-
nectivity results in greater detail further below. Moreover, we will argue
that increased LPFC-DMN coupling at higher levels of instructional load
might be linked to (episodic) long-term memory contributions to IBL
(Meiran et al., 2017; Monsell and Graham, 2021), in line with previous
studies suggesting a role of DMN regions for episodic memory retrieval
(Ritchey and Cooper, 2020; Rugg and Vilberg, 2013; Vatansever et al.,
2021).

4.1. Automaticity: initial instruction-induced differences

The load manipulation — applied to the instruction phase and im-
pacting the implementation phase only indirectly - initially resulted in
a considerably lower mean accuracy in the high-load as compared to
the low-load condition from stimulus repetition 1 onwards.

An initial processing difference between the load conditions seems
to depend on multiple factors each of which might contribute to more
fluent or ‘automatic’ instruction implementation from the outset. First,
the low-load condition benefits quite obviously from the smaller number
of instructed S-R rules that arguably lies within the capacity limits that
have been suggested by theoretical frameworks on ‘instruction-based
proceduralisation’ (Brass et al., 2017). As such, low-load instructions
should be easily accessible and well-prepared for their seamless imple-
mentation. Second, subjects had twice as much potential encoding time
per individual S-R rule in the low-load as compared to the high-load con-
dition. As longer preparation time during rule encoding has been shown
to boost implementation of newly instructed rules (Cole et al., 2018) it
is likely that our participants were able to form a highly accessibly rule
representation during the instruction phase of the low-load condition
possibly through motor imagery and more extensive ‘covert practice’
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(Liefooghe et al., 2021; Ruge and Wolfensteller, 2010; Theeuwes et al.,
2018). Third, the expectation to implement an instruction might have
played a role as well. While all of the instructed S-R rules (i.e. 100%) in
the low-load condition were subsequently required to be implemented,
this was only the case for 40% of the individual S-R rules instructed
in the high-load condition. The higher expectation to actually imple-
ment a rule might have contributed to a more robust rule representation
in the low-load condition possibly comparable with the distinctive ef-
fects of intentionally preparing implementation versus mere memoriza-
tion of S-R rules (Formica et al., 2020; Liefooghe et al., 2012). Finally,
load-dependent differences in automaticity could be related to higher
levels of ambiguity during response selection in the high-load condi-
tion. Specifically, in the instruction phase, 3 to 5 stimuli are assigned
to each response in the high-load condition compared to only 1 to 2
stimuli per response in the low load condition (see supplementary analy-
ses 1 for evidence supporting the load-dependent relevance of response
ambiguity).

Benefiting from all of the above mentioned factors — probably induc-
ing strong ‘intention-based reflexivity’ (Meiran et al., 2012; Meiran and
Cohen-Kdoshay, 2012) — S-R rules in the low-load condition seem to be
highly ready for implementation from the outset. In this case, reflexivity
acquired in the instruction phase aligns with the currently relevant rule
during the implementation phase (which is almost always the originally
instructed rule). This contrasts with the high-load condition where the
originally instructed S-R rule does not align with the currently relevant
rule in a considerable amount of trials which, in turn impedes poten-
tial practice-related automatization processes in the high-load condition
(see next section for elaboration).

From a functional network perspective, in the low-load condition,
the instantaneously fluent application of the instructed S-R rules is ac-
companied by higher within-network connectivity regarding both the
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FPN (our LPFC seeds were for the most part located within the FPN)
and the DMN (as revealed by the DMN-seeded follow-up analyses). This
was particularly true for the DLPFC seeds. The VLPFC-based connec-
tions were somewhat more distributed across the brain, yet still mainly
associated with attention/control networks. By contrast, in the high-
load condition, more effortful processing and continued rule updating
demand was accompanied by increased between-network connectivity.
Here, LPFC-based connectivity was characterized by greater coupling
to DMN regions whereas the DMN-seeded follow-up analyses revealed
widely distributed increased coupling with regions located within the
DAN, FPN, VAN and the visual network. This can be taken as evidence
for reduced brain-wide modularity driven by greater DMN integration
during rule implementation in the high-load condition. Such a reduced
modularity with emphasis on DMN integration has been observed be-
fore at higher load conditions (Finc et al., 2017; Vatansever et al.,
2015) and is thought to provide a basis for global information inte-
gration (Vatansever et al., 2015) which, in turn, might also underlie
the effects induced by the present high-load instruction condition. In
line with this, another study reported a similar pattern of DMN inte-
gration and segregation during the initial acquisition and subsequent
application of new rules, respectively (Vatansever et al., 2017b). This
distinction resembles the aforementioned automaticity-related process-
ing differences between high and low instructional load in the present
study: Relatively automatic rule implementation common to both the
present low-load condition and the learnt rule application phase in
Vatansever et al. (2017b) contrasts with ongoing rule updating (see be-
low) in the present high-load condition and the acquisition phase of
Vatansever et al. (2017b). Furthermore, this rule updating might poten-
tially bear resemblance with continuous learning or inference processes
supported by the DMN (cf. Dohmatob et al., 2020).

4.2. Automaticity: the role of practice

The concept of automaticity usually involves repeated execution of
the same rule even across short time spans accompanied by increasingly
fluent application of the newly instructed rules towards the late imple-
mentation trials (Chein and Schneider, 2005; Mohr et al., 2016).

While mean accuracy remained relatively stable in the low-load con-
dition (around 90%), accuracy rates in the high-load condition increased
considerably over the course of the remaining implementation phase
from about 70% at repetition 1 to 87% at repetition 4 (still significantly
lower than in the low-load condition). This is remarkable as the two
load conditions were physically identical regarding the implementation
phase, that is, both involving the same number of 4 to-be-implemented
S-R links. Keeping in mind that from repetition 2 onwards accuracy was
defined relative to the previously executed response for a given stim-
ulus, these results imply different levels of rule processing in the two
load conditions. One the one hand, a constantly high accuracy rate in
the low-load condition implies minimal change of the behaviorally rele-
vant rule representation (i.e., the same correct rule is applied again and
again). On the other hand, in the high-load condition, increasing ac-
curacy across a learning block necessarily has to go along with at least
partial updating of rule representations (i.e., adapting the previously ex-
ecuted ‘wrong’ response to the same stimulus as the relevant rule). While
the former would be considered to be an example of relatively automatic
processing, the latter likely requires substantial cognitive control effort.
Furthermore, enduring response conflict especially in the high-load con-
dition could additionally prevent rapidly evolving practice-driven auto-
maticity across stimulus repetitions during the implementation phase
(Mohr et al., 2016). Such response conflicts (i.e. originally instructed
S-R rule and newly adapted S-R rule do not match) occur much more
frequently in the high-load condition. Our finding that accuracy in high-
load conflict trials was significantly lower than in non-conflict trials im-
plies that competing S-R rule representations in the high-load condition
contribute substantially to the persisting accuracy differences between
the instructional load conditions. This competition needs to be overcome
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(e.g., by dedicating cognitive effort to the suppression of the initially in-
structed but now irrelevant rule) before a rule can be processed more
automatically in the high-load.

Mohr et al. (2016) reported decreasing fronto-parietal activation as
well as progressing segregation of the DMN from a number of atten-
tion/control networks during the transition from early to late imple-
mentation trials. This neural pattern associated with ‘short-term autom-
atization’ resembles the one we observed between the different load
conditions in the present study. Moreover short-term automatization
across implementation trials seems to be influenced by task demands as
well (Mohr et al., 2018): DMN segregation from task-related networks
like the DAN was less pronounced during an arguably more demanding
‘reversal learning’ condition than during an initial learning condition.
If both time-related (i.e. practice-related) as well as load-related auto-
maticity differences induced similar neural (de-)coupling processes, we
would have expected the connections identified via the instructional
load contrast to show a time effect as well. This was, however, only
partly the case: First, only the DMN-related connections based on the
right hemispheric LPFC seeds showed a general connectivity decrease
across repetitions. Furthermore, we would have expected the two fac-
tors to interact (i.e. more pronounced DMN decoupling towards the end
of the implementation phase in the low-load compared to the high-
load condition). Evidence for such an interaction effect was weak at
best as only some of the DMN-related connections showed as much as
a trend towards a significant interaction effect. Regarding connections
originally identified via the low-load > high-load contrast, again a het-
erogeneous picture emerged: While all interaction effects generally in-
dicated a less pronounced coupling difference between load conditions
towards the end of the implementation phase, some of the connections
(e.g., connection 1: left DLPFC - left IFG) showed a pronounced cou-
pling decrease in the low-load condition whereas others (e.g. connec-
tion 18: right VLPFC - right anterior OFC) showed a pronounced cou-
pling increase in the high-load condition. This rather heterogeneous re-
sults pattern might reflect the specific contributions of a variety of the
previously discussed sub-processes: First, connections that do show an
interaction effect, especially driven by a coupling increase in the high
load condition (e.g., Fig. 6d, upper panel), might reflect reduced suf-
fering from interference towards the end of the implementation phase
- consistent with the decreasing conflict effect over time. Second, con-
nections that do not show such an interaction effect (i.e., the magni-
tude of the load-difference is not affected by practice), in turn, might
rather reflect a constantly ongoing S-R rule updating process that is mir-
rored by the constant slope of the overall linear accuracy increase in the
high-load condition (e.g., Fig. 6b and 6¢, upper panel). Third, interac-
tion effects specifically driven by a time-dependent coupling decrease
in the low-load condition (e.g., Fig. 6a, upper panel) might indicate a
more rapid trend towards stronger modularity (see above) due to more
rapid automatization as S-R rules are already fully established at the
outset.

A final interesting observation was that significant practice-related
effects (main effect of time as well as interaction effects) were detected
predominantly at connections involving the right VLPFC seed. This was
especially true when compared to the left VLPFC seed where load-
induced connectivity differences seemed to remain rather static and im-
plies that different rule features are conveyed by the VLPFC-region of
both hemispheres. On the one hand, the rule representation in the left
VLPFC might comprise features that are linked more closely to the orig-
inal instruction which also seems consistent with the finding that exclu-
sively the left hemispheric VLPFC connections were correlated with 1st
trial performance (see below). On the other hand, the S-R rule repre-
sentation in the right VLPFC might be more flexible: after initially be-
ing formed by the instruction it is reshaped during the implementation
phase according to self-generated rules.

To conclude, the observed load and time-dependent changes in func-
tional couplings seem to be consistent with changing levels of auto-
maticity during instruction-based learning. Yet, we also found some
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evidence that apparent automaticity-related changes in functional cou-
plings come in different flavours which we argued to be reflecting a
variety of underlying processing differences. While different degrees of
‘intention-based reflexivity’ (Cole et al., 2018; Meiran et al., 2012) might
underlie initial differences between the load conditions, persistently ele-
vated levels of conflict and response ambiguity might impair ‘short-term
automatization’ in the high-load condition (Mohr et al., 2016, 2018).
Thus, both aspects of ‘automatic’ behavior in IBL might cooperatively
engage to a greater (low-load) or a lesser degree (high-load), but a more
comprehensive characterization of their potentially multi-facetted rela-
tionship needs to be explored in future studies. Finally, at the level of
individual neural connections, the presence (right VLPFC) and virtual
absence (left VLPFC) of practice-related changes in functional couplings
implies hemispherical differences in the type and impact of the respec-
tive S-R rule representations.

4.3. Episodic memory contributions

Another, possibly related, way to interpret our connectivity results
rests on the notion of load-specific mnemonic mechanisms. On the one
hand, the pattern of greater LPFC coupling to control and attention re-
lated regions, mostly within FPN and DAN, during the low-load condi-
tion might imply that successful task implementation is guided mainly
by working memory (Curtis and D’Esposito, 2003; D’Esposito et al.,
2000; Emch et al., 2019). On the other hand, the shift to greater cou-
pling between LPFC and the DMN - especially its posterior components
— in the high-load condition might indicate an increasing involvement
of episodic (long-term) memory, taking into account the extensive liter-
ature on the neural basis of episodic memory processes (Cabeza et al.,
2008; Kim, 2010; Ritchey and Cooper, 2020; Rugg and Vilberg, 2013;
Sestieri et al., 2011; Westphal et al., 2017).

Working memory capacity is supposed to be severely limited
(Baddeley and Hitch, 1974; Logie, 2011) with a capacity limit of
around 5 or 6 words regarding the verbal component (Baddeley, 2012;
Monsell and Graham, 2021). Clearly, the decline in performance in the
high-load condition to around 70% accuracy indicates that this capacity
gap could not be fully compensated by episodic memory mechanisms.
There is even a possibility that episodic LTM does not play a role at all
and that the above-chance accuracy in the high-load condition is accom-
plished by partial WM maintenance of the whole set of instructed S-R
links: Assuming that some of the instructed 10 S-R links (e.g. 5) could be
maintained within WM, above-chance performance accuracy could be
due to the subset of memorized S-R links that were randomly selected
to be actually implemented (e.g. 2 out of 4). In this example, roughly
70% accuracy would be expected (2 correctly memorized links out of a
total of 4 to-be implemented S-R links plus, by chance, 1 out of the re-
maining 2 not-remembered links). This scenario, however, seems hard
to reconcile with our finding of increased coupling between LPFC and
DMN regions. Instead, one could argue that subjects” WM system was
overwhelmed by the sheer number and rapid presentation rate of the
10 S-R links during the instruction phase. This might have caused WM
to break down even below its normal capacity limits. In turn, ~70%
performance accuracy might have relied more than usual on memory
traces encoded within episodic LTM. Support for this latter claim comes
from a recent behavioral study (Bartsch and Oberauer, 2022) in which
it was shown that at larger set sizes — at a presentation rate identical
to the one used for our high-load condition — memory performance
was mostly determined by episodic LTM whereas only very small set
sizes were actually depending on working memory. In general, rapidly
formed episodic traces represented in the ‘activated part of LTM’ seem
to affect performance in tasks that are actually designed to test WM
(cf. Cowan, 2019). In the current study, also the conflict trial analysis
hints towards an episodic memory contribution suggesting a detrimen-
tal impact of the still lingering memory trace of the actually instructed
response. This memory trace is formed during the instruction context
and interferes with the memory trace formed during the implementa-
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tion context. For instance, if the response actually executed at stimulus
repetition 1 for a certain stimulus deviates from the originally instructed
response, the newly formed memory trace will be in competition with
the originally encoded S-R link when the same stimulus occurs the next
time. It has been argued that such kind of interference typically occurs
within episodic LTM but not within WM where newly encoded content
can be more effectively shielded against interference (cf. Bartsch and
Oberauer, 2022; Cowan et al., 2005).

Coming back to our elaboration on automaticity further above, we
would therefore argue that reduced automaticity due to increased in-
terference in the high-load condition is specifically due to lingering S-R
episodes within LTM. Consistent with this, it has been shown that un-
intended effects of instruction (here: interference due to no-longer used
instructions) are unaffected by a manipulation tackling working mem-
ory capacity whereas the actual rapid instructed learning within WM
limits is (Pereg and Meiran, 2019).

While the discussed memory-related effects in the present study are
clearly either directly or indirectly induced by instructions, it remains
to be shown whether they are specific of IBL or apply more generally to
other types of learning (e.g., trial-and-error learning).

4.4. Special role of left VLPFC couplings?

The original study (Ruge et al., 2019) suggested that specifically the
VLPFC but not the DLPFC comprised representations of the instructed
S-R rules. Hence, we were interested in whether a similar regional spe-
cialization would also be present with regard to the load-dependent con-
nectivity profiles. Interestingly, we found that the left VLPFC showed
a connectivity profile that was distinctly different not only compared
to both the left and the right DLPFC but also compared to the right-
hemispheric VLPFC pendant whereas the connectivity profiles of the
other three prefrontal seeds were relatively homogeneous. What distin-
guished the left VLPFC most from the other prefrontal seed regions was
its tendency to exhibit significantly greater coupling to the bilateral SMG
(extending into the MTG) during the low-load condition compared to
the high-load condition. At the same time, coupling between left VLPFC
and the DMN seemed to be less affected by the load manipulation than
this was the case for the other three LPFC seed regions. Following our
line of interpretation, this would indicate a DMN-based integration of
the rule representation conveyed by the left VLPFC that is similar in the
low-load and the high-load condition. However, the coupling between
left VLPFC and the precuneus/PCC was a notable exception which was
at least as load-sensitive (i.e., increasingly connected in the high-load
condition) as the other prefrontal seeds. This is in line with the notion
that the precuneus/PCC might constitute a distinct functional instance
within the DMN during task performance (Utevsky et al., 2014). Since
the right VLPFC showed load-dependent changes in DMN-coupling that
were not limited to the precuneus/PCC our results suggest that there
is a hemispheric difference in terms of the rule features the LPFC rep-
resents and how these are being integrated during instruction-based
learning.

Given the verbal nature of our stimulus material, the pronounced
coupling to the SMG, which has frequently been associated with phono-
logical processing (Deschamps et al., 2014; Sliwinska et al., 2012),
suggests a greater reliance on verbal rehearsal strategies for maintain-
ing rule representation conveyed by the left VLPFC especially in the
low-load condition. This connection’s significant relationship to suc-
cessful IBL performance exclusively in the low-load condition - partic-
ipants with greater load-dependent coupling differences between left
VLPFC and right SMG (connection 10) were more accurate at the first
implementation trial — can be taken as evidence for that claim. An-
other connection, the one between the left VLPFC and the left cere-
bellum (connection 14), again emphasizes the many different aspects
of instruction-based learning. We observed a significant relationship of
load-dependent VLPFC-cerebellar coupling with performance in word
span tests. While this can be taken as evidence that at least some of our
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participants employed a verbal rehearsal strategy there was no direct in-
dication of this connection being associated to better performance (nei-
ther in the first trial nor at later stages). This finding is reminiscent of
earlier ambiguities concerning the relationship of classical verbal work-
ing memory tests and IBL (Ruge et al., 2018).

5. Conclusion

Using a seed-based connectivity approach we found that lateral pre-
frontal cortex couplings during rule implementation were strongly af-
fected by instructional load. The low-load condition was characterized
by increased cooperation between lateral prefrontal seeds and areas
known to be relevant for goal-directed action whereas coupling shifted
towards increased DMN coupling in the high-load condition. From a
large-scale network perspective these observations likely reflect differ-
ent degrees of automated processing. Concerning the VLPFC — especially
when also taking into account practice-related effects and correlations
with behavioral measures — our results suggest that left hemispheric
VLPFC-based functional couplings are related to the enduring influence
of and guidance by the initially instructed task rules whereas the right
hemispheric VLPFC seems to have a more flexible role in rule updat-
ing during implementation. Our study informs the literature on (rapid)
instruction-based learning by focusing on functional connectivity that
might help to integrate existing ambiguities regarding rule representa-
tions in the lateral prefrontal cortex. Specifically, our results imply an
interplay of episodic memory and (procedural) working memory traces
with a shifting balance when working memory capacity is exceeded.
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