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1   |   INTRODUCTION

In every moment, we are surrounded by a wealth of visual 
signals that can guide our behavior, regardless of whether 

they are continuously present, temporarily occluded, or 
have just disappeared from view. For instance, when wait-
ing at a crosswalk, we visually assess the distance to the 
opposite side of the street, the color that the traffic light 
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Abstract
Virtual reality (VR) offers a powerful tool for investigating cognitive processes, as 
it allows researchers to gauge behaviors and mental states in complex, yet highly 
controlled, scenarios. The use of VR head-mounted displays in combination with 
physiological measures such as EEG presents new challenges and raises the ques-
tion whether established findings also generalize to a VR setup. Here, we used a 
VR headset to assess the spatial constraints underlying two well-established EEG 
correlates of visual short-term memory: the amplitude of the contralateral delay 
activity (CDA) and the lateralization of induced alpha power during memory 
retention. We tested observers' visual memory in a change detection task with 
bilateral stimulus arrays of either two or four items while varying the horizontal 
eccentricity of the memory arrays (4, 9, or 14 degrees of visual angle). The CDA 
amplitude differed between high and low memory load at the two smaller eccen-
tricities, but not at the largest eccentricity. Neither memory load nor eccentricity 
significantly influenced the observed alpha lateralization. We further fitted time-
resolved spatial filters to decode memory load from the event-related potential 
as well as from its time-frequency decomposition. Classification performance 
during the retention interval was above-chance level for both approaches and 
did not vary significantly across eccentricities. We conclude that commercial VR 
hardware can be utilized to study the CDA and lateralized alpha power, and we 
provide caveats for future studies targeting these EEG markers of visual memory 
in a VR setup.
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is currently displaying, and whether cars are approach-
ing from either side. Now, if a car suddenly passes us, it 
will occlude relevant parts of the scene and we can no 
longer directly access these previously available visual 
signals. Such information, however, is available in visual 
short-term memory which allows us to maintain repre-
sentations of the most relevant objects in the visual scene 
(e.g., the number of approaching cars) and use them for 
informing our actions. Several fundamental functions of 
visual cognition rely on visual short-term memory. As an 
example, consider the challenge to compare the visual 
impressions of the street scene before and after the car 
blocked our view. The capacity of visual short-term mem-
ory, however, is limited, which implies that only a small 
fraction of the visual details in our environment can be 
maintained (Cowan, 2010; Luck & Vogel, 1997; Marois & 
Ivanoff, 2005; Pashler, 1988).

A powerful window into this domain of human cog-
nition is provided by neuroscientific approaches, such 
as electroencephalography (EEG), that offer physiolog-
ical markers for visual short-term memory processes. 
One of the best-established markers is the contralat-
eral delay activity (CDA), a lateralized component of 
the event-related potential (ERP). Its amplitude in-
creases with the number of items maintained in vi-
sual short-term memory and reflects the individual 
short-term memory capacity (Luria et al., 2016; Vogel & 
Machizawa,  2004). In addition to the CDA, the power 
of oscillations in the alpha frequency range (8–13 Hz) 
constitutes a further component of the EEG signal 
that has been associated with visual short-term mem-
ory (Pavlov & Kotchoubey,  2022; Sauseng et al.,  2009; 
Woodman et al.,  2021). More specifically, after encod-
ing lateralized stimuli, alpha oscillations recorded in 
EEG channels contralateral to the memorized stim-
ulus exhibit less power than those in ipsilateral chan-
nels (de Vries et al., 2020; Hakim et al., 2019; Leenders 
et al., 2018). The relationship between this lateralization 
of alpha power, the CDA, and the aspects of visual short-
term memory that they each reflect has been discussed 
several times (Fukuda et al.,  2015; Hakim et al.,  2019; 
Nikulin et al., 2007; van Dijk et al., 2010), but has not yet 
been conclusively unraveled.

Using immersive virtual reality (VR) promises to ap-
proximate more naturalistic (i.e., less constrained) con-
texts for the investigation of the CDA and lateralized 
alpha oscillations as well as their role for visual short-
term memory than standard laboratory experiments. 
VR technologies offer the possibility to simulate com-
plex and interactive spatial scenarios under rigorous ex-
perimental control in laboratory conditions. By tracking 
body movements (e.g., of head and limbs), a VR setup 
can dynamically adapt the computer-generated stimuli, 

thereby modeling the spatial structures of the surround-
ings and the constant interaction with them. Current VR 
headsets use two screens—one for each eye—to display 
virtual content, enabling stereoscopic depth perception. 
In addition, VR allows researchers to easily collect vari-
ous motion measures (e.g., head and hand movements, 
gaze patterns) and to link them to the virtual scene as 
well as to synchronously collected neurophysiological 
data streams (e.g., EEG). For example, combining eye 
tracking and VR allowed to disentangle the contribu-
tions of retinotopic and spatiotopic memory representa-
tions around self-movements (Draschkow et al., 2022), 
demonstrating how experiments in the context of nat-
ural behavior can inform studies of visual short-term 
memory (see Kristjánsson & Draschkow,  2021, for re-
view). However, testing visual short-term memory with 
a VR headset while simultaneously recording EEG poses 
several challenges for the EEG setup. For instance, the 
headset exerts a mechanical effect on the physiologi-
cal sensors, emits electromagnetic radiation, imposes a 
weight on the wearer that leads to tensing of head and 
neck muscles, and invites the observer to explore the 
surrounding virtual environment which is usually ac-
companied by (head, eye, and body) movements. All of 
these aspects are known to impact the signal quality of 
EEG (Luck,  2014). Previous studies have investigated 
the effects of VR headsets on EEG signal quality (Cattan 
et al.,  2018; Tauscher et al.,  2019; Weber et al.,  2021). 
Examining resting-state data, as well as EEG paradigms 
that elicit prototypical EEG components (e.g., oddball 
paradigms and median nerve stimulation), their find-
ings suggest that VR headsets can introduce artifacts 
and distortions to EEG signals. The impact depends on 
the type of the headset, the extent and sort of move-
ments performed by the participant, and the EEG com-
ponent of interest. Whether common EEG components 
related to visual short-term memory processing and 
their specific properties (e.g., cue-dependent lateraliza-
tion, scaling with memory load), which have been pre-
viously studied in conventional laboratory settings, can 
also be observed when using a VR headset, has not yet 
been investigated.

Furthermore, studies investigating EEG correlates of 
visual short-term memory have typically presented the 
stimuli in or close to the foveal and parafoveal parts of 
the visual field (i.e., the central 5 and 8.4 degrees of vi-
sual angle, dva; Sakurai, 2015). Typical stimulus eccen-
tricities in these previous studies ranged between 1 dva 
(e.g., Berggren & Eimer,  2016) and 7 dva (e.g., Adam 
et al.,  2018) and were normally held constant (apart 
from some random jitter) within a given experiment. 
It is therefore not clear how EEG components like the 
CDA or alpha power lateralization depend on stimulus 
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eccentricity and if they occur in a memory task that in-
cludes larger eccentricities. A better understanding of 
such spatial constraints is particularly interesting for 
VR studies, given that immersive setups aim to evoke 
the impression of being surrounded by the virtual world 
through stimulating the largest possible part of the vi-
sual field. Especially in setups which allow the partic-
ipant to move, relevant stimuli may therefore occur at 
various retinotopic locations, well into the periphery 
of visual perception. With larger receptive fields in the 
periphery as compared to foveal and parafoveal vision 
(Freeman & Simoncelli,  2011), peripheral stimuli are 
processed by fewer neurons and could thereby evoke 
altered neurophysiological responses. Also, stimuli at 
different eccentricities will elicit responses in different 
parts of the retinotopically organized visual cortices, 
which might, due to cortical folding, result in altered 
amplitudes or topographies of EEG responses. Indeed, 
various EEG components vary with stimulus eccen-
tricity (Bahramisharif et al.,  2011; Busch et al.,  2004; 
Capilla et al.,  2016; Domínguez-Martínez et al.,  2015; 
Papaioannou & Luck,  2020). For example, in a recent 
experiment studying visual attention, Papaioannou and 
Luck (2020) showed that the Post-N2pc Positivity (PNP), 
a lateralized component of the ERP, exhibits higher am-
plitudes for stimuli with larger eccentricities. However, 
whether and how also EEG components related to visual 
short-term memory vary as a function of stimulus ec-
centricity has not yet been investigated. A strong mod-
ulation by eccentricity or even their absence beyond a 
particular eccentricity would constitute a major con-
straint for future studies combining EEG and VR in vi-
sual short-term memory tasks.

In the present study, we asked whether the CDA and 
lateralized alpha power—two prominent EEG mark-
ers of visual short-term memory—can be observed in a 
well-controlled change detection task implemented in a 
VR setup and whether they depend on the eccentricity 
of the memory stimulus. Classical inferential analyses 
and recently introduced multivariate decoding methods 
revealed the presence of the CDA, a lateralization of 
alpha power, and the availability of information about 
the memory load in lateralized and non-lateralized fea-
tures of the EEG signal. Hence, despite the technical 
challenges of neurophysiological recordings in a VR 
setup, visual short-term memory-related EEG compo-
nents can still be observed. However, the results were 
less conclusive for stimuli presented at an eccentricity of 
14 dva compared to when they were presented at eccen-
tricities of 4 and 9 dva, suggesting that large eccentrici-
ties have an impact on some of the components. Overall, 
we provide a basis for future studies of visual short-term 
memory using EEG together with VR hardware. All data 

and code necessary to reproduce our results are publicly 
available: https://osf.io/btrws/.

2   |   METHOD

2.1  |  Participants

We tested 26 naïve participants (20–38 years, M = 26.62, 
SD = 4.92, 12 female, 21 right-handed) with normal or 
corrected-to-normal vision according to self-report. 
Persons wearing glasses could not participate in the study 
due to incompatibility with the eye tracker. A total of 21 
out of these 26 participants contributed to the final sam-
ple: Two participants opted out before the end of the ex-
periment, and we excluded the data of three participants 
based on an excessive number of rejected trials (as de-
scribed in the section EEG preprocessing).

Using Ishihara's color test (Clark,  1924) and a 
Titmus test (Fly-S Stereo Acuity Test, Vision Assessment 
Corporation, Hamburg, Germany), we ensured partic-
ipants' intact color vision and stereopsis. None of the 
participants reported psychiatric, neurological, or cardio-
vascular conditions. The study was approved by the eth-
ics committee of the Department of Psychology at the 
Humboldt-Universität zu Berlin and participants provided 
their written consent prior to participation. Participants 
were compensated with 9€ per hour. The experimental 
session took 4.5 h on average.

2.2  |  Materials

The experiment was conducted using a VR head-
mounted display (HTC Vive Pro, HTC) with one 
AMOLED display per eye (refresh rate: 90 Hz, spatial 
resolution: 1440 × 1600 px, field of view: 55 degrees 
of visual angle; for an in-depth discussion of relevant 
hardware parameters see Lynn et al., 2020). At the be-
ginning of the session, the VR headset was adjusted to 
match the interpupillary distance of each individual 
participant. We tracked participants' eyes with a sam-
pling frequency of 200 Hz using the Pupil Labs VR/AR 
eye tracking add-on mounted within the headset (Pupil 
Labs). Participants reported their memory by pressing 
one of two buttons (the trigger button or the trackpad) 
on one handheld controller of the HTC Vive Pro VR 
system. The assignment of the function of the two but-
tons, as well as the choice of whether to use the left or 
the right hand, was randomized and counterbalanced 
across participants.

For the implementation of the experiment, we used 
the Unity software (v2018.3.11; Unity Technologies) in 
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combination with the SteamVR Unity plugin (v2.0.1, 
Valve Corporation) and ran it on a VR-ready PC (Intel 
Core i9-9900K, 3.6 GHz, 32 GB RAM, NVIDIA RTX 
2080Ti GPU, Windows 10). The computer was con-
nected to the EEG amplifier via an analog port (D-SUB 
25) to enable synchronization of the EEG data with the 
experimental events. We used the Unity Experiment 
Framework (UXF; Brookes, 2019; Brookes et al.,  2020) 
for structuring the experiment and recording events as 
well as for tracking the behavioral data (i.e., memory 
responses, head, and controller movements). The eye 
tracker was interfaced from the experimental code using 
the Unity plugin hmd-eyes (Pupil Labs, 2019a) and the 
Pupil software (Pupil Labs, 2019b; Kassner et al., 2014). 
To synchronize the data streams (i.e., behavioral re-
ports, eye positions, EEG), we used custom C# scripts 
and network-based communication (i.e., timestamps in 
the eye tracking data) as well as analog triggers (EEG). 
We recorded EEG and electrooculogram (EOG) data 
using the BrainVision Recorder software (v1.22.0101; 
BrainProducts). Before and after the VR-based part of 
the experiment, participants filled in questionnaires im-
plemented in SoSciSurvey (Leiner, 2019).

Participants' EEG was sampled at a rate of 500 Hz 
(including a hardware-based lowpass filter at 131 Hz; 
third order sinc filter, −3 dB cutoff) with a 64-channel 
LiveAmp and actiCAP snap electrodes (both by 
BrainProducts) from 60 scalp locations according to 
the International 10/20 system. We further measured 
the horizontal and vertical EOG with four electrodes 
attached next to the outer canthi and below both eyes. 
All electrodes were referenced to electrode FCz (ground: 
FPz). At the beginning of each experimental session, 
all impedances were below 25 kΩ. The VR headset was 
carefully placed on top of the EEG cap which was cov-
ered by a disposable shower cap. The flat design of the 
actiCAP snap electrodes and the large cushion on the 
HTC Vive Pro covering the back of the head allowed 
for a broad, evenly spread weight distribution without 
excessive pressure on any single electrode. A custom-
ized facial interface cushion (VR Cover) with recesses 
at the appropriate sites helped to avoid pressure on the 
frontal EEG electrodes (Fp1/2) by the facial mask of the 
headset.

Due to the in-built Fresnel lenses in the VR headset 
and the prewarping of the image to counteract distortions 
by the lenses, the size and position of stimuli in terms of 
dva cannot simply be calculated from their size and po-
sition expressed in pixels on the displays. Therefore, we 
used the units of the virtual environment for calculating 
size and positions of the stimuli. Distances in the virtual 
environment are approximately equivalent to distances in 

the physical environment and the hardware setup of the 
HTC Vive Pro allows for a minimal angular resolution of 
0.041 dva (Lynn et al., 2020).

2.3  |  Stimuli

We presented all stimuli against a uniform gray back-
ground on an imaginary sphere (diameter: 1 m) surround-
ing the head of the participant in the virtual space. The 
white fixation symbol was a combination of a cross-hair 
(diameter: 1 dva) and a bull's eye (Thaler et al.,  2013) 
which we presented in the center of the field of view of 
the headset (irrespective of the position and rotation of the 
participant's head). The memory and distractor items were 
colored circles with a diameter of 0.8 dva. In each trial, 
the colors were randomly chosen (without replacement) 
from a set of nine perceptually distinct colors as defined 
in CIE-LAB color space (Hinshaw, 2012; Holy, 2011). To 
determine the positions of the items in the memory array, 
we randomly selected horizontal and vertical coordinates 
within a spherical rectangle (with a width of 4 dva and a 
height of 8 dva) and ensured that the center points of adja-
cent circles were at least 1.6 dva apart.

2.4  |  Procedure

We tested participants' visual working memory in a 
change detection task with bilateral stimulus arrays. More 
specifically, participants memorized the colors of two or 
four circles presented in the cued visual hemifield and 
reported, after a retention interval, whether one of the 
colors had changed in a subsequent memory test. At the 
beginning of each trial, we presented participants with the 
central fixation symbol and instructed them to maintain 
fixation on this symbol throughout the duration of the 
trial (Figure 1a). After an initial fixation period of 800 ms, 
the fixation symbol turned into an arrow cue for 800 ms 
pointing with equal probability either to the left or to the 
right. Subsequently, either two or four colored circles (i.e., 
low vs. high memory load, respectively) appeared in each 
visual hemifield for 200 ms. Participants were instructed 
to remember only the circles displayed in the hemifield 
initially cued by the arrow (i.e., the memory array) and to 
ignore the ones in the opposite hemifield (i.e., the distrac-
tor array). The arrays appeared at an eccentricity of either 
4, 9, or 14 dva—as defined for the center of the invisible 
rectangles—measured along the horizontal meridian and 
relative to the fixation cross. Therefore, they had fixed co-
ordinates relative to the participant's field of view, inde-
pendent of changes in head location or orientation (i.e., 
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head-contingent presentation). Stimulus eccentricity was 
manipulated orthogonally to memory load. Previous stud-
ies with varying stimulus eccentricities increased the stim-
ulus size as a function of eccentricity, to counteract the 
cortical magnification (Cowey & Rolls, 1974). However, in 
most VR paradigms (as well as in everyday life), the size 
of a stimulus is a constant and not dependent on its posi-
tion relative to the observer. One of the goals of our study 
was to provide parameters also for such more naturalistic 
VR experiments; therefore, we refrained from scaling the 
stimuli as a function of eccentricity. Following 2000 ms 
after stimulus offset, we probed participants' memory by 
displaying the memory arrays again with the same spatial 
layout. Importantly, in half of the trials, one of the circles 
in the memory array (i.e., in the cued hemifield) showed 
a different color which was randomly chosen from the re-
maining set of colors not yet used in this trial. Participants 
reported in a yes-no format whether any of the circles in 
the cued hemifield had changed its color.

At the beginning of the experimental session, 10 train-
ing trials allowed the participants to familiarize themselves 
with the task. The main experiment consisted of 10 blocks 
with 72 trials each. Between blocks, participants could 
take off the VR headset and rest until they felt ready to 
continue. We tested the two memory load conditions and 
the three stimulus eccentricities in randomly interleaved 

trials. Each combination of memory load and stimulus ec-
centricity occurred 12 times per block, resulting in a total 
of 720 trials in the main memory task. At the beginning 
of each block and after every 24 trials, we calibrated the 
eye tracker. In case of poor eye tracking quality, the ex-
perimenter launched additional calibrations. Based on the 
recommendations by Pupil Labs, 16 calibration targets 
were sequentially displayed in the center of the field of 
view and on three concentric circles (radii: 2, 4, and 8 dva) 
surrounding it. Noteworthy, the real-time headtracking of 
the VR system allowed us to present all stimuli in relation 
to the current position of the participant's head. Hence, 
also small head movements during a trial did not displace 
the stimuli within the participant's field of view.

Prior to the main experiment, participants performed 
the same task but without any retention interval. In half 
of these trials, immediately after displaying the mem-
ory array for 200 ms, one of the circles on the cued side 
changed its color. This change detection task without 
memory retention tested the perceptual difficulty of the 
paradigm in the VR setup and whether stimuli and po-
tential color changes were equally recognizable at all ec-
centricities. We did not record EEG in these perceptual 
control trials. Again, participants performed 10 training 
trials to get acquainted with the task, before running 72 
trials of the perceptual task.

F I G U R E  1   (a) Design of a single trial with low memory load in the change detection task and the experimental setup. For the 
perceptual control trials, the retention interval was omitted. (b) Behavioral results of the memory task and (c) the perceptual task. Error bars 
indicate ±1 SEM, taking into account the repeated measures design (Baguley, 2012; Morey, 2008).
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3   |   DATA ANALYSIS

3.1  |  Behavioral data

All analyses of behavioral data were completed using the 
R environment (R Core Team, 2021) and RStudio (RStudio 
Team, 2021). To assess the effects of memory load and stim-
ulus eccentricity on memory performance, we performed a 
repeated measures analysis of variance (rmANOVA) with 
the within-participant factors memory load (low: 2 items, 
high: 4 items) and stimulus eccentricity (4, 9, 14 dva). These 
analyses were conducted separately for data from the 
memory task and the perceptual task. To further assess sig-
nificant effects in the ANOVA, we calculated pairwise, two-
tailed t tests between the single experimental conditions.

3.2  |  Eye tracking data

We analyzed eye positions in an interval from 200 ms before 
to 2200 ms after memory array onset using custom scripts in 
R. To account for the spherical presentation of the stimuli, the 
gaze vectors for each eye were translated to spherical coor-
dinates (inclination, ρ, and azimuth, θ) with the origin set to 
the center of the respective eyeball (reconstructed by the 3D 
pupil detection during recording; Pupil Labs, 2019b) and the 
zenith (ρ = θ = 0 dva) set to the position of the fixation cross. 
Here, horizontal and vertical gaze deviations from the fixa-
tion cross correspond to azimuth and elevation, respectively, 
of the gaze vectors per eye. Before detecting saccades, we 
linearly interpolated eye tracking samples with confidence 
values—provided by the Pupil Labs software—smaller than 
0.60 (range: 0–1.00). Whenever more than 100 consecutive 
samples were affected by low confidence, they were not in-
terpolated. Saccade detection was based on a velocity-based 
algorithm with noise-dependent threshold (i.e., 6 SDs veloc-
ity threshold and minimum duration of 4 samples; Engbert 
& Kliegl,  2003; Engbert & Mergenthaler,  2006; Engbert 
et al., 2015). We detected saccades using only data from the 
eye with higher average confidence values throughout the 
trial and ignored saccades that overlapped with blinks (i.e., 
100 ms before and after the blink). Blinks were identified by 
using the confidence-based blink detection implemented in 
the Pupil Player software (Pupil Labs, 2019b). We rejected 
any trials from all further statistical analyses (but not from 
EEG preprocessing), which contained a saccade with an 
amplitude of 2 dva or larger.

3.3  |  EEG preprocessing

For the EEG data analyses, we used MNE-Python (v0.24; 
Gramfort et al.,  2013), scikit-learn (v1.0.2; Pedregosa 

et al.,  2011), and NumPy (v1.21.5; Harris et al.,  2020). 
Eye movement and blink artifacts in the EEG record-
ings were removed using ICA decomposition (extended 
Infomax). To improve the fit of the ICA, we made a copy 
of the raw data and filtered it between 1 and 40 Hz (FIR 
filter with a hamming window of length 1651 samples, 
lower/upper passband edge: 1.00/40.00 Hz, lower/upper 
transition bandwidth: 1.00/10.00 Hz, lower/upper −6 dB 
cutoff frequency: 0.50/45.00 Hz). From this copy, we re-
moved epochs with particularly noisy EEG signals which 
we identified using the autoreject software (v0.3; Jas 
et al., 2017). No data interpolation was performed in this 
step and the rejected EEG epochs were only discarded 
from the copy of the data used for determining the ICA 
decomposition. After fitting the ICA, we identified and 
removed the two components with the highest correla-
tion with the bipolar EOG channels. The remaining ICA 
weights were used to clean a separate copy of the continu-
ous data which we filtered between 0.1 and 40 Hz (FIR 
filter with hamming window of length 16,501 samples, 
lower/upper passband edge: 0.10/40.00 Hz, lower/upper 
transition bandwidth: 0.10/10.00 Hz, lower/upper −6 dB 
cutoff frequency: 0.05/45.00 Hz). For the CDA analysis, we 
extracted epochs of 2900 ms length from −600 to 2300 ms, 
relative to the onset of the memory array. For the analysis 
of lateralized alpha power, we extracted longer epochs, 
from −1400 to 2500 ms relative to stimulus onset, entail-
ing the cue period as well as some buffer on both ends to 
reflect signal changes already in response to the cue and 
to avoid edge artifacts when performing wavelet convolu-
tion. We baseline-corrected these data by subtracting the 
mean voltage during the baseline intervals (i.e., 200 ms 
before stimulus/cue onset for CDA/alpha power analysis, 
respectively) and used autoreject for local (i.e., per partici-
pant, sensor, and epoch) interpolation and trial rejection. 
Finally, all trials with bad EEG or the presence of saccadic 
eye movements were removed. Importantly, EEG- and 
eye tracking-based rejections were performed indepen-
dently, allowing also trials with saccadic eye movements 
to inform ICA decomposition. We excluded participants 
with more than 20% of rejected trials (n = 3) from all fur-
ther analyses. For the remaining participants, 1736 trials 
were rejected due to eye movements or poor EEG qual-
ity, leaving 13,384 trials in total for further EEG analy-
sis (M = 88.52% per participant, range: 73.47%–98.61%). 
In the condition with the largest stimulus eccentricity, 
a significantly lower number of trials were rejected (on 
average 5.46% of trials in the 14 dva condition) compared 
to the conditions with smaller eccentricities (4 dva: 8.77%; 
9 dva: 7.24%), whereas the memory load conditions did 
not differ significantly in the number of rejected trials 
(low load: 6.96%; high load: 7.35%; see Supplementary 
Material S1 for details).
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3.4  |  CDA analysis

For the CDA analysis, we pooled the data from the two 
cuing conditions (i.e., memory array in the left or right 
hemifield) and computed CDA amplitudes by specifying 
a bilateral region of interest (ROI) that comprised parietal 
and occipital electrodes (P3/4, P5/6, PO3/4, PO7/8, O1/2). 
The selection of this ROI followed Hakim et al. (2019) who 
investigated the same EEG components collected with a 
conventional lab setup. On a single-trial basis, we calcu-
lated the lateralized signal by subtracting the average sig-
nal in channels ipsilateral to the memory stimulus from 
the average signal in contralateral channels. The temporal 
evolution of the CDA was assessed using the collapsed lo-
calizer approach suggested by Luck and Gaspelin (2017). 
To this end, we pooled the data across all experimental 
conditions (all memory loads and eccentricities) and ap-
plied cluster-based permutation testing to identify time 
windows of strong lateralization. We calculated the aver-
age CDA wave form for each participant and, on the group 
level, applied two-tailed, one-sample t tests against zero 
for each time point during the retention interval. Adjacent 
time points with p values smaller than the initial thresh-
old (0.05) were summarized as a cluster by adding their 
t values. Significance of the clusters was determined by 
repeated sign flipping, that is in 10,000 permutations, we 
multiplied each of the CDA time series (averaged per par-
ticipant and cropped to the retention time window) ran-
domly either with 1 or −1. The mass of the largest cluster 
in each repetition was used to form a null distribution (i.e., 
for the hypothesis of no difference between contra- and 
ipsilateral signals). For statistical significance testing, we 
compared the cluster masses computed for the unshuffled 
data with this distribution. This allowed us to test whether 
the grand-average CDA amplitude (i.e., across all experi-
mental conditions) was significantly different from zero 
(p < .05; cluster-corrected) during the retention interval 
and which time windows were driving this effect. To as-
sess the effects of the experimental manipulations (mem-
ory load, stimulus eccentricity) and their interaction, we 
calculated the mean CDA amplitude in the identified time 
windows and modeled it on the participant level with a 
rmANOVA.

3.5  |  Decoding from the ERP

We complemented the univariate statistics by a multivariate 
approach to increase the sensitivity of the analyses. By fitting 
a sliding linear classifier, we decoded at various time points 
during the retention interval whether the sample was meas-
ured during the maintenance of a high or low memory load 
(Adam et al., 2020). The samples consisted of the average 

ERP in mini-batches of 10 trials from the same memory load 
condition. Using averaged data from mini-batches has been 
found to improve the performance of classifiers trained on 
EEG data (Adam et al., 2020; Grootswagers et al., 2017) due 
to suppression of noise by averaging. Furthermore, the sig-
nal was downsampled by calculating the average voltage in 
subsequent time windows of 10 samples (i.e., 20 ms). For 
each time window, we then trained a logistic regression 
model (solver: liblinear, L2-regularization: λ = 1.0) on the 
data from all 60 EEG sensors. The decoding performance 
was assessed using a randomized 5-fold cross-validation 
(CV) regime. That is, in each of 5 iterations, we trained the 
model on 80% of the averaged mini-batches and assessed 
its predictive performance on the remaining 20%. The area 
under the curve of the receiver operating characteristic 
(ROC-AUC), averaged across CV folds, served as a measure 
for the decoding performance. We repeated this decoding 
procedure 100 times for each participant and time window 
to obtain a more robust estimate. Random allocation of tri-
als into mini-batches and random splits of mini-batches into 
test and training sets were performed in each repetition. An 
overall decoding score per time window and participant 
was obtained by averaging the ROC-AUC scores across all 
repetitions. For a physiological interpretation of the decod-
ing results, we calculated the “patterns” of the classifier (by 
multiplying the covariance of the EEG data with the filter 
weights; Haufe et al., 2014) for each time window, repeti-
tion, and participant. To determine whether the decoding 
performance was significantly higher than chance level dur-
ing the retention interval, a cluster-based permutation test 
was conducted on the group level using the same procedure 
as outlined for the CDA analysis. For each time window, we 
assessed whether the decoding scores per participant were 
significantly higher than chance level by conducting one-
sided paired t tests. To obtain an empirical estimate of the 
chance level of the classifier (for each participant and time 
window), the same classification procedure was conducted, 
this time randomly shuffling the decoding target in each 
repetition, which broke the mapping between the memory 
load condition and the EEG data.

Finally, we trained separate classifiers on the data of 
each eccentricity condition. One-way rmANOVAs were 
used to test for differences between the three eccentric-
ity conditions in decoding performance at each time point 
(cluster-corrected), the peak performance throughout the 
retention interval, and its latency.

3.6  |  Lateralized alpha power

We employed complex Morlet wavelets to analyze the 
time-frequency decomposition of the epoched EEG 
signal. Wavelets were generated at 20 evenly spaced 
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frequencies between 6 and 25 Hz, each with a width 
of 500 ms. Hence, the number of cycles in each wave-
let equaled its frequency divided by 2. We calculated 
induced power (Kalcher & Pfurtscheller, 1995) by sub-
tracting the averaged evoked response (i.e., the ERP) 
per experimental condition from the corresponding 
single-trial data, before convolving it with the wavelet, 
to separate the oscillatory dynamics from phase-locked 
phenomena. To normalize the single-trial power time 
courses, the average power during a 200 ms baseline, 
from −300 to −100 ms relative to cue onset, was sub-
tracted. This early baseline allowed us to avoid that the 
lateralization of alpha power already in response to the 
presentation of the arrow cue (i.e., in the time window 
directly preceding the onset of the memory array; see 
Figure 3) biases the baseline. The lateralized difference 
in (induced) power per frequency was calculated by 
subtracting the power time courses of ipsilateral sen-
sors from those on the contralateral side and averag-
ing the results across sensors within the same bilateral 
ROI used for the CDA analysis, in accordance with the 
procedure reported by Hakim et al. (2019). Alpha later-
alization during vSTM retention has been observed for 
parietal and occipital channels (e.g., Fukuda et al., 2015; 
Hakim et al., 2019; Sauseng et al., 2009), suggesting that 
the ROI used by Hakim et al.  (2019) is an appropriate 
choice of channels to capture such effects. To test the ef-
fect of memory load and stimulus eccentricity on alpha 
power, the results for the frequencies in the alpha range 
(8–13 Hz) were averaged to form a single time series of 
lateralized power. We applied the same statistical ap-
proach to analyze the effect of the experimental ma-
nipulations on this time series as we did for the CDA 
analysis. The lateralized signal was pooled across all 
experimental conditions and subjected to t tests at each 
time point to identify windows in which this signal was 
different from zero, indicating substantial lateralization. 
We extracted the averaged signal within the identified 
clusters (p < .05 after cluster correction for multiple 
comparisons) and used it as dependent variable for the 
same statistical test (rmANOVA) as applied to the mean 
CDA amplitudes.

3.7  |  Decoding from time-frequency data

For further analysis of the time-frequency features of the 
data, we applied a multivariate decoding approach on 
the single-participant level, similar to the time-domain 
analysis. We used the Common Spatial Patterns (CSP) 
algorithm (Blankertz et al., 2008; Ramoser et al., 2000), 
as implemented in MNE-Python, which was originally 
established in the field of brain computer interfaces to 

extract discriminative spectral features from the EEG 
for the classification of dichotomous states. CSP solves a 
Generalized Eigenvalue Decomposition problem by fit-
ting a spatial filter to the EEG data. It allows a linear 
projection of band-pass filtered data onto components 
whose power maximally relates to the prevalence of one 
of two dichotomous states. This allowed us to test the 
discriminability of trials with low memory load from tri-
als with high memory load by means of their spectral 
features.

We extracted epochs of 3000 ms length (−500 to 
2500 ms relative to memory array onset) and subtracted 
the grand-average ERP from each epoch and channel to 
remove evoked activity before band-pass filtering (ham-
ming window FIR filter, default settings implemented 
in MNE) the EEG signals into 10 frequency bands of 
equal width (2 Hz each), ranging from 6 to 26 Hz. For 
each frequency band, we calculated the CSP projection 
in a coarsely time-resolved fashion by sliding a 500 ms 
time window in steps of 250 ms (50% overlap) along 
the epoch. To obtain robust estimates of the covariance 
matrices necessary for the CSP decomposition, shrink-
age regularization (shrinkage parameter λ = 0.4) was 
applied. The logarithmized power of the 6 CSP com-
ponents with the most extreme eigenvalues formed the 
feature vector for training a linear discriminant analysis 
(LDA) classifier to distinguish between trials with low 
and high memory load. This procedure was embedded 
in a 5-fold cross-validation to assess the decoding perfor-
mance. In each fold, the spatial filters for the CSP pro-
jection and the LDA weights were fitted to 80% of the 
data and their discriminability between high and low 
memory load was tested on the remaining 20% of the tri-
als, using the ROC-AUC as the outcome metric. To yield 
more robust results, we repeated the cross-validation 10 
times, randomly varying the allocation of trials to the 
training and test set. ROC-AUC values were averaged 
across folds and repetitions of the cross-validation re-
gime, yielding a time series of ROC-AUC scores for each 
of the frequency bands.

To assess the chance level for this classification pro-
cedure, we calculated the empirical chance performance 
for each participant by shuffling the decoding targets 
(memory load condition) at the beginning of each rep-
etition and before applying the same cross-validated de-
coding pipeline. This yielded a ROC-AUC value for each 
combination of time window and frequency band when 
decoding an arbitrary target. For the frequency bands 
covering the alpha range (8–10, 10–12, and 12–14 Hz) we 
tested whether the actual decoding performance signifi-
cantly differed from chance. To this end, we averaged the 
ROC-AUC time series across these frequency bands and 
applied, on the group level, cluster-corrected one-sided 
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      |  9 of 19KLOTZSCHE et al.

paired t tests for each time point, following the same prin-
ciples as for the decoding from the ERP data.

Finally, we compared the three eccentricity conditions 
by training and testing separate (CSP + LDA) classifiers on 
the data of each eccentricity condition. To test for signif-
icant differences in decoding performance between the 
conditions, we calculated one-way rmANOVAs per time 
point (cluster-corrected), for the peak performance in the 
retention interval, and its latency.

4   |   RESULTS

We tested participants' memory in a change detection 
task, manipulating memory load and the eccentricity 
of the memory array, to assess the neural correlates of 
visual working memory in a VR setup with concurrent 
EEG recording. Participants correctly detected a change 
in M = 85.18% of the trials (range: 78.48%–92.73%). 
Memory performance was strongly modulated by mem-
ory load and varied only little as a function of eccen-
tricity (Figure  1b). Participants showed a significantly 
higher proportion of correct reports in trials with low 
(M = 94.44%, SD = 2.65, 95% CI [92.94, 95.93]), as com-
pared to high memory load (M = 75.89%, SD = 7.33, 95% CI 
[74.40, 77.39]; F(1, 20) = 166.34, p < .001). The influence of 
eccentricity was comparatively small but significant (F(2, 
40) = 4.10, p = .024). Participants' memory performance 
was lowest for the eccentricity of 14 dva (M = 84.00%, 
SD = 5.12, 95% CI [83.23, 84.76]) and significantly worse 
than memory for stimuli presented at 9 dva (M = 85.91%, 
SD = 4.54, 95% CI [85.13, 86.68]) or 4 dva (M = 85.68%, 
SD = 4.81, 95% CI [84.98, 86.38]), as corroborated by 
post hoc t tests (Δperformance9–14 = 1.91%, 95% CI [0.33, 
3.49], t(20) = 2.52, p = .020; Δperformance4–14 = 1.68%, 
95% CI [0.25, 3.11], t(20) = 2.46, p = .023). There was no 
significant difference between the two smaller eccen-
tricities (Δperformance4–9 = −0.23%, 95% CI [−1.68, 1.23], 
t(20) = −0.33, p = .748). The interaction between memory 
load and eccentricity did not affect memory performance 
(F(2, 40) = 1.45, p = .247).

In additional control trials, we assessed whether lower 
memory performance at the larger eccentricities could be 
accounted for by diminished stimulus visibility at these ec-
centricities. Here, the probe appeared immediately after the 
200 ms encoding phase (i.e., there was no retention inter-
val). Also in this perceptual control task, the performance 
was lowest at the largest eccentricity of 14 dva (Figure 1c). 
We corroborated this finding using a two-way rmANOVA 
and observed a significant main effect of eccentricity (F(2, 
40) = 11.85, p < .001). Post hoc t tests revealed lower per-
formance at 14 dva (M = 89.46%, SD = 5.70, 95% CI [87.82, 
91.10]) as compared to 9 dva (M = 94.99%, SD = 4.71, 

95% CI [93.55, 96.44]; Δperformance9–14 = 5.54%, 95% CI 
[2.33, 8.74], t(20) = 3.61, p = .002), and 4 dva (M = 95.76%, 
SD = 4.23, 95% CI [94.40, 97.13]; Δperformance4–14 = 6.30%, 
95% CI [3.25, 9.36], t(20) = 4.31, p < .001). Performance did 
not differ significantly between the two smaller eccen-
tricities (Δperformance4–9 = 0.77%, 95% CI [−1.87, 3.40], 
t(20) = 0.61, p = .550). Neither the number of stimuli (low 
memory load: M = 94.13%, SD = 4.37, 95% CI [92.81, 95.45]; 
high memory load: M = 92.69%, SD = 4.19, 95% CI [91.37, 
94.01]; F(1, 20) = 1.33, p = .262) nor the interaction with 
eccentricity significantly influenced performance in the 
perceptual task (F(2, 40) = 1.11, p = .338). Thus, although 
performance in the perceptual task was significantly lower 
for the largest eccentricity, it was nevertheless very high 
on an absolute scale. This mirrors the behavioral results 
in the memory task, where performance was significantly 
lower for the largest eccentricity, but overall very high 
with a clear influence of memory load on performance 
even at the largest eccentricity. For both tasks, we found 
the same pattern of results when using d’ (i.e., a bias-free 
measure of sensitivity) instead of the number of correct 
responses as the indicator of memory performance (see 
Supplementary Material S1).

4.1  |  CDA and PNP

We observed a typical CDA (Figure  2a), that is, a later-
alization of the ERP which started around 400 ms after 
onset of the memory array and was enhanced for the 
higher memory load. Cluster-based permutation testing 
in combination with the collapsed localizer method (Luck 
& Gaspelin,  2017) revealed significant lateralization in 
the a priori-defined ROI (electrodes: P3/4, P5/6, PO3/4, 
PO7/8, O1/2) during the retention interval (200–2200 ms 
after memory array onset). Two clearly distinguishable 
clusters drove this effect. Note that the exact temporal 
extent of these clusters should be interpreted cautiously 
as cluster-based permutation tests only allow statistical 
conclusions about the entire population of tested sam-
ples (Sassenhagen & Draschkow, 2019). In our analyses, 
we used the time windows of the clusters as a data-driven 
proxy to determine intervals which showed a reliably lat-
eralized signal to then assess the influence of memory load 
and stimulus eccentricity in these time windows. The first 
of these clusters extended from 200 ms (start of the ana-
lyzed time window) to 344 ms after memory array onset 
(mean amplitude: 0.58 μV, SD = 0.56, 95% CI [0.33, 0.84]). 
The second cluster (mean amplitude: −0.54 μV, SD = 0.56, 
95% CI [−0.80, −0.29]) extended from 388 to 1088 ms after 
stimulus onset. Based on their different polarity and tem-
poral characteristics, we will refer to the earlier cluster as 
PNP component (Papaioannou & Luck, 2020) and to the 
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second one as CDA component. The CDA component var-
ied significantly with memory load as corroborated by a 
two-way rmANOVA (F(1, 20) = 19.84, p < .001). Trials with 
high memory load evoked significantly larger (i.e., more 
negative) mean CDA amplitudes (M = −0.75, SD = 0.66, 
95% CI [−1.05, −0.45]) than trials with low memory load 
(M = −0.35, SD = 0.53, 95% CI [−0.59, −0.11]). Stimulus 
eccentricity did not significantly influence the mean CDA 
amplitude (F(2, 40) = 0.84, p = .439) but interacted with 
the effect of memory load (F(2, 40) = 4.55, p = .017). Post 
hoc paired t tests showed that the difference between tri-
als with low and high memory load was significant for the 
eccentricities of 4 dva (ΔCDAlow–high = 0.57, 95% CI [0.27, 
0.87], t(20) = 3.97, p = .001) and 9 dva (ΔCDAlow–high = 0.45, 
95% CI [0.21, 0.68], t(20) = 3.99, p = .001), but not for 14 dva 

(ΔCDAlow–high = 0.16, 95% CI [−0.04, 0.36], t(20) = 1.66, 
p = .113). For the mean PNP amplitude, we obtained a 
different pattern: It was significantly modulated by stim-
ulus eccentricity (F(2, 40) = 14.93, p < .001), with larger 
eccentricities yielding higher PNP amplitudes. Post hoc 
t tests confirmed a significant difference between the 
mean PNP amplitude at 4 and 9 dva (ΔPNP4–9 = −0.41, 
95% CI = [−0.62, −0.21], t(20) = −4.19, p < .001) and be-
tween 4 and 14 dva (ΔPNP4–14 = −0.53, 95% CI = [−0.78, 
−0.27], t(20) = −4.32, p < .001), but not between the two 
larger eccentricities (ΔPNP9–14 = −0.11, 95% CI = [−0.28, 
0.05], t(20) = −1.44, p = .167). Memory load did not have 
a significant main effect on mean PNP amplitude (F(1, 
20) = 0.01, p = .917) nor did it interact with eccentricity 
(F(2, 40) = 0.44, p = .646).

F I G U R E  2   Contralateral delay activity (CDA) plotted for (a) set sizes of two and four memory items and (b) the three stimulus 
eccentricity conditions. The gray shading indicates the time window during which the stimulus arrays were visible. The thin line at the 
top of the figure marks the retention interval (i.e., the time window between memory array offset and memory probe onset). The thick line 
marks the time window of the CDA which was identified using the grand-average across all conditions. (c) The mean CDA amplitudes in 
this interval per load and eccentricity condition. (d) Time-resolved decoding performance when decoding the memory load from the ERP 
data. Significance was tested against results from decoding with shuffled labels (light-gray line) and only during the retention interval. (e) 
The spatial patterns of the classifier for selected time points during the retention interval, normalized and averaged across participants. 
Since we pooled across the two cue conditions (left vs right hemifield), electrode locations here are relative to the cued side (by convention; 
left channels: contralateral, right channels: ipsilateral). (f) Time-resolved performance of the classifier decoding memory load separately for 
the three stimulus eccentricities. The thick colored lines mark the clusters which drove the finding of above-chance decoding. The shaded 
areas in (a), (b), (d), (f) as well as the error bars in (c) indicate ±1 SEM (taking into account the repeated measures design; Baguley, 2012; 
Morey, 2008).

(a) (b) (c)

(d) (e) (f)
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4.2  |  Decoding from the ERP

In complementary analyses, we applied a multivariate 
decoding approach to test whether the memory load (i.e., 
high vs. low) can be decoded from the broadband EEG data 
during the retention interval in our setup. A cluster-based 
permutation test, comparing the decoding performance 
against chance level, yielded a significant difference, 
driven by a large cluster extending from 209 to 2169 ms 
after stimulus onset (Figure 2d). We observed the highest 
decoding performance (ROC-AUC; M = 0.79, SD = 0.05, 
95% CI [0.76, 0.81]) for most participants at Mdn = 309 ms 
(SD = 174.31, 95% CI [280.14, 435.00]) after stimulus onset. 
The topographies of the decoding models (patterns of the 
classifier normalized per participant and time point, then 
averaged across participants) confirmed that predomi-
nantly parieto-occipital channels were informative for the 
classification of memory load (Figure 2e). The spatial pat-
terns of the linear decoding models varied substantially 
between participants (see Supplementary Material S1 for 
individual patterns). Moreover, we determined whether 
the decoding of the memory load was modulated by ec-
centricity. To this end, we trained models that predicted 
memory load separately for each eccentricity. Decoding 
performance was significantly above-chance level dur-
ing the retention interval for all stimulus eccentricities 
(Figure 2f) and did not vary between the single eccentrici-
ties. A cluster-corrected one-way rmANOVA did not re-
veal any significant differences in memory load decoding 
performance between the eccentricity conditions at any 
of the tested time points. Furthermore, there were no sig-
nificant differences between the eccentricity conditions in 

peak decoding performance (F(2, 40) = 2.33, p = .110) or 
the timing of the decoding peak (F(2, 40) = 1.00, p = .375).

4.3  |  Lateralized alpha power

Figure 3a shows the difference in time-frequency decom-
positions between contra- and ipsilateral regions of interest 
(ROIs), pooled across cue directions. We observed a sig-
nificant difference in induced power between contra- and 
ipsilateral signals during the retention interval, with more 
power in signals measured from electrodes ipsilateral to 
the target stimulus. This difference was most prominent in 
the alpha frequency range and was consistently observed 
across most participants (see Supplementary Material S1). 
As in the ERP analyses, we pooled the data across all ex-
perimental conditions (collapsed localizer method; Luck & 
Gaspelin, 2017) to determine time windows during which 
the induced power in the alpha range (8–13 Hz) was sub-
stantially lateralized. During the retention interval, the lat-
eralization of alpha power was most pronounced for a single 
cluster extending from 506 ms after memory array onset to 
the end of the retention interval (i.e., 2200 ms after memory 
array onset). We used a two-way rmANOVA to investigate 
the influence of memory load and stimulus eccentricity 
on the average lateralization of alpha power (expressed 
as the difference between contra- and ipsilateral power) 
in this time window (M = −235.36 μV2, SD = 280.16, 95% 
CI [−362.89, −107.83]). Neither memory load nor eccen-
tricity significantly influenced the lateralization (memory 
load: F(1, 20) = 1.25, p = .277; eccentricity: F(2, 40) = 0.40, 
p = .672; interaction: F(2, 40) = 0.68, p = .515).

F I G U R E  3   (a) Lateralized power (i.e., after subtracting ipsi- from contralateral induced power time courses, relative to the side of 
the memory array) for different frequencies. The dashed lines mark the a priori-defined alpha frequency range (8–13 Hz). Direction and 
strength of the lateralization are color-coded. The gray box indicates the time window (0.2 s) during which the memory stimulus was 
visible. We observed lateralization of power predominantly in the alpha frequency range—both, while the cue was visible (−0.8 to 0 s) and 
during memory retention (0.2–2.2 s). (b, c) The time course of the lateralized power averaged across the alpha frequencies as a function of 
memory load (b) and eccentricity (c). The shaded areas indicate ±1 SEM (taking into account the repeated measures design; Baguley, 2012; 
Morey, 2008).

(a) (b) (c)
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4.4  |  Decoding from time-frequency data

To complement this approach, we applied a multivari-
ate classifier based on CSP transformation and LDA clas-
sification to decode memory load from spectral features. 
More precisely, we trained and tested separate models on 
a sliding time window during the retention interval and 
on different frequency bands. The highest decoding per-
formances were observed for the alpha frequency range 
(8–13 Hz, Figure 4a). A cluster-based permutation test con-
firmed that the decoding was significantly above-chance 
level during the retention interval for these frequencies. 
This was driven by a single cluster which spanned almost 
the entire retention interval (Figure 4b). However, as men-
tioned above, the nature of the cluster-based permutation 
approach and the broad time bins used for feature extrac-
tion (500 ms) prohibit a strong interpretation of the start 
and end times of this cluster as defining the exact time 
window during which decodable information about mem-
ory load is present. Across all participants, the decoding 
performance (ROC-AUC) was highest from frequencies in 
the alpha range (M = 0.57, SD = 0.04, 95% CI [0.55, 0.59]) 
and in the time bin centered around 1000 ms (SD = 411.88, 
95% CI [995.61, 1361.54]) after stimulus onset. Plotting the 
patterns (i.e., the inverse filter weights; Haufe et al., 2014) 
of the first CSP component revealed that parieto-occipital 
channels contributed the most discriminative features, 
without very clear lateralization (see Supplementary 
Material S1 for the spatial patterns of the most discrimi-
native CSP component). To investigate the effect of stimu-
lus eccentricity on the success of decoding memory load, 

we trained and tested separate models on data from the 
different eccentricity conditions. We found clusters with 
above-chance decoding performance (p < .05) for all three 
eccentricity conditions (Figure  4c). As for the decoding 
from the broadband ERP data, one-way rmANOVAs con-
trasting the eccentricity conditions did not indicate sig-
nificant differences in decoding performance at any time 
point, in peak performance (F(2, 40) = 0.19, p = .825) or in 
the timing of the decoding peak (F(2, 40) = 2.14, p = .131).

5   |   DISCUSSION

We investigated two well-established EEG components 
related to visual short-term memory processes, the CDA 
and lateralized alpha power, in a virtual reality setup. 
Increasing memory load resulted in diminished memory 
performance and we observed both a pronounced CDA 
and a lateralization of alpha power during the retention 
interval. Moreover, we explored potential spatial con-
straints by varying the horizontal stimulus eccentricity 
which played a distinct role for these correlates of visual 
short-term memory. While we observed the CDA as well 
as a lateralization of alpha power during memory reten-
tion at all tested eccentricities, the characteristic memory 
load effect on the CDA amplitude was present only for the 
two smaller eccentricities (4 and 9 dva) but not for stim-
uli with an eccentricity of 14 dva. To corroborate these 
findings, we used multivariate approaches to decode the 
memory load from the EEG signals. This analysis revealed 
information about the memory load across all tested 

F I G U R E  4   (a) Classifier performance for decoding memory load (CSP + LDA) for different frequency bands and time points. The 
dotted lines mark the frequency bands that cover the a priori-defined alpha frequency range (8–13 Hz). (b) The mean (±1 SEM) decoding 
performance (classifying memory load) across the frequencies covering the alpha band. Significance was tested against decoding with 
shuffled labels (gray line) for all time windows covering the retention interval. The horizontal black line at the bottom of the plot indicates 
the time window where this difference was significant. (c) Like (b) but decoding memory load separately per stimulus eccentricity condition.

(a) (b) (c)
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      |  13 of 19KLOTZSCHE et al.

eccentricities, both when decoding from broadband ERP 
data and from alpha power signals.

Participants' memory performance decreased for trials 
with higher memory load and was similar as in previous 
(non-VR-based) studies that tested comparable memory 
loads (e.g., Feldmann-Wüstefeld,  2021). Memory perfor-
mance decreased for stimulus arrays at an eccentricity 
of 14 dva as compared to the smaller eccentricities (4 and 
9 dva), and the influence of memory load on performance 
was comparable at all three eccentricities. Importantly, 
performance in the perceptual task mirrored the role of 
eccentricity in the memory task, suggesting that the de-
cline in memory performance at an eccentricity of 14 dva 
can be accounted for, at least in part, by perceptual rather 
than memory-related processes. Encoding difficulties 
might arise from the VR headset (e.g., the Fresnel lens 
setup in the HTC Vive Pro makes the perceived image 
substantially blurrier toward the edges). In preliminary 
tests of the setup, we observed that stimuli presented at 
eccentricities beyond 15 dva were increasingly blurred 
and harder to perceive. Therefore, we kept the center of 
the stimulus arrays at 14 dva or smaller. However, since 
the stimuli were spatially jittered around the array cen-
ters, single stimuli in the 14 dva condition might have 
appeared blurry—possibly resulting in worse perception 
in such trials. Alternatively, the lower perceptual per-
formance at the largest eccentricity could simply reflect 
coarser resolution of human visual perception toward the 
periphery of the visual field (Anstis, 1998) where the re-
ceptive fields of neurons are larger than in the fovea and 
parafovea (Freeman & Simoncelli, 2011). Also the percep-
tion of color declines in a similar manner toward the pe-
riphery of the visual field (Hansen et al., 2009; Noorlander 
et al., 1983; Tyler, 2015). Increasing the stimulus size as a 
function of eccentricity, to counteract cortical magnifica-
tion (Cowey & Rolls, 1974), might improve performance 
at the largest eccentricity. However, as we aimed to pro-
vide insights also for more naturalistic VR experiments, 
in which (just as in everyday life) stimuli usually have a 
constant size, independent of their position in the field of 
view of the observer, we decided against scaling stimulus 
size as a function of eccentricity. Overall, the behavioral 
results demonstrate that participants were able to per-
form the task with a VR headset and that the manipu-
lation of memory load yielded the intended effect at all 
eccentricities.

In studying the neurophysiological concomitants of vi-
sual short-term memory, we found a clear CDA and its ex-
pected amplitude scaling with memory load, that is, more 
negative amplitudes in trials with higher memory load. 
Therefore, the interferences with the EEG signals caused 
by wearing a VR headset are not an insurmountable ob-
stacle for studying the CDA in immersive VR setups. In 

comparison to other VR-based paradigms, our study was 
still highly controlled in the sense that participants did 
not move during the performance of the task and that 
the stimuli were minimalistic. In settings that require 
more movements or use more complex stimuli—which 
is the case for many VR paradigms—noise levels may be 
substantially higher and the CDA harder to find. While 
other EEG components have been observed successfully 
in experiments where participants could move more freely 
than in our study (e.g., Hofmann et al., 2021; Krugliak & 
Clarke, 2022; Liang et al., 2018; Tauscher et al., 2019), it 
will be important to determine whether also the CDA can 
be observed in less constrained VR setups. Especially in 
settings for which one expects higher levels of physiolog-
ical and movement-related noise (i.e., a lower signal-to-
noise ratio), one should aim for a sufficiently large sample 
size or number of trials to allow detecting the CDA or 
an influence of memory load on the CDA (see Ngiam 
et al., 2021, for a helpful guideline).

Stimulus eccentricity played a critical role for the in-
fluence of memory load on the CDA amplitude. More 
specifically, we did not observe a significantly different 
CDA amplitude between the two memory loads at the 
largest eccentricity (14 dva). Our results do not allow con-
cluding whether this negative finding resulted from a re-
duced CDA in the high load condition, a stronger CDA in 
the low load condition, or both, as the post hoc tests re-
mained inconclusive in this regard. We ruled out that the 
absence of a memory load effect in the largest stimulus 
eccentricity condition was due to lower statistical power 
(resulting from a smaller number of trials). To this aim, we 
examined the distribution of rejected trials across the ec-
centricity conditions (see Supplementary Material S1 for 
details). We found that for the condition with the largest 
stimulus eccentricity, a significantly lower number of tri-
als were rejected compared to the conditions with smaller 
eccentricities, yielding the highest statistical power for 
the condition in which we did not observe the CDA. The 
difference in the number of rejected trials was due to a 
considerably higher number of detected (and rejected) 
saccades in trials with smaller eccentricities. Rejections 
based on EEG data quality were evenly distributed across 
conditions. We suspect that in conditions with smaller 
eccentricities, there were more saccadic eye movements 
due to the increased difficulty in suppressing reflexive eye 
movements toward task-relevant stimuli located near the 
current fixation point. There may be another factor that in-
fluences both the probability of performing a saccadic eye 
movement and the CDA. Also Kang and Woodman (2014) 
reported a similar modulation of both CDA amplitude and 
eye movements. However, they were able to demonstrate 
that the observed eye movements did not account for the 
observed changes in CDA amplitude.
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Perceptual effects—that might have led to the small 
decrease in behavioral performance for the largest 
eccentricity—could also underlie the effect on the CDA. 
This effect is particularly relevant for the condition with a 
greater number of stimuli, since here more stimuli are po-
sitioned in a perceptually problematic eccentricity range. 
Therefore, in some trials of the high memory load con-
dition, participants might have encoded and maintained 
only a fraction of the displayed stimuli, which in turn 
would be reflected in a similar CDA as in the low memory 
load condition. Another interpretation is that hampered 
perception (e.g., of colors) in the periphery leads to al-
tered ERPs and that such an effect is more pronounced 
for conditions with a higher number of stimuli. However, 
Papaioannou & Luck, (2020) found that scaling their 
stimuli according to cortical magnification did not affect 
lateralized EEG components, and there was no interac-
tion with the effect of stimulus eccentricity in particular. 
Another possible explanation is that the CDA was—at 
least partially—overlaid by the PNP component, which 
exhibits an opposite polarity. Indeed, we found that the 
amplitude of the PNP increases with larger stimulus eccen-
tricities, therefore replicating the finding of Papaioannou 
and Luck (2020). Given that the two components are su-
perimposed in sensor space, higher stimulus eccentricity 
might lead to a weaker CDA. Trials with more stimuli (i.e., 
higher memory loads) may be affected disproportionally 
stronger. In an exploratory analysis (see Supplementary 
Material  S1) we revealed that stimulus eccentricity par-
ticularly affected the early parts of the CDA time window, 
where also the strongest memory load effects on the CDA 
are observed. This is relevant for studies in which eccen-
tricity of the stimuli varies between trials: Stimulus eccen-
tricity will influence early, attention-related components 
(e.g., the PNP) which in turn might bias the CDA results.

Preceding the PNP (around 100 ms after stimulus 
onset), we observed a separate sharp lateralized potential, 
yielding a positive deflection contralateral to the stim-
ulus. This potential was neither modulated by memory 
load nor by stimulus eccentricity (see Supplementary 
Material S1). It might have been caused by the offset of 
the asymmetric cue which indicated the relevant hemi-
field for the subsequent memory task (Figure 1). Its offset 
coincided with the onset of the memory and distractor ar-
rays. Alternatively, it might indicate enhanced perceptual 
processing of the relevant stimuli (i.e., on the cued side) 
and be independent of the timing of the cue, as suggested 
by findings of Livingstone et al. (2017). A similar compo-
nent can also be observed in previous studies investigating 
the CDA with different experimental paradigms (see Roy 
& Faubert, 2023, for an exemplary overview), making it a 
likely concomitant of the CDA. Future studies should con-
sider using symmetrically shaped cues and implementing 

varying stimulus onset asynchronies between cue and 
memory array in order to decrease the impact of the cue 
itself on lateralized evoked responses that are time-locked 
to the onset of the memory array. However, as this compo-
nent did not temporally overlap with the components of 
interest in our study and did not vary as a function of our 
experimental manipulations, it is unlikely that it affected 
the visual memory-related EEG components of primary 
interest here.

There was a robust lateralization of alpha power 
during the retention interval, with less power in contra-
lateral than in ipsilateral signals. However, we did not 
find any effect of memory load on alpha lateralization, 
contrary to previous research (Adam et al., 2018; Hakim 
et al.,  2019; Sauseng et al.,  2009; but see also Figueira 
et al., 2020; Fukuda et al., 2016). This discrepancy may be 
due to a low signal-to-noise ratio for alpha power signals 
resulting from our VR-EEG setup or the manipulation of 
stimulus eccentricity. The clearly accentuated alpha peak 
in the power spectrum observed for all eccentricity condi-
tions (see Supplementary Material S1) speaks against this 
interpretation but cannot fully refute it. Alternatively, in-
sufficient power in the study design may have contributed 
to the absence of an effect of memory load on lateralized 
alpha power. However, our study included a comparable 
number of participants and a substantially larger num-
ber of trials than the study of Sauseng et al.  (2009) who 
reported such effects. Adam et al.  (2018) found a stron-
ger alpha lateralization (with less power contra- than 
ipsilateral) when participants were maintaining three or 
six items, as compared to a single item. However, there 
was no difference between three and six items. Hakim 
et al.  (2019) reported the opposite pattern, with stron-
ger lateralization for two as compared to four items. 
Some previous studies have found that non-lateralized 
alpha power is modulated by memory load (Pavlov & 
Kotchoubey, 2022). In an exploratory control analysis, we 
found evidence for such a modulation of (non-lateralized) 
alpha power by memory load in parieto-occipital sensors 
along the midline (see Supplementary Material S1)—and 
independent of the stimulus eccentricity. Overall, previ-
ous research on the influence of memory load on alpha 
power and its lateralization has produced inconsistent 
results and our findings contribute to this heterogeneous 
picture. Ultimately, the lateralization of alpha power in 
(lateralized) visual short-term memory tasks might reflect 
the unilateral allocation of attention rather than memory 
processes (Fukuda et al., 2015; Hakim et al., 2019; Wang 
et al.,  2019) and therefore be independent of the mem-
ory load. The link between the spatial focus of attention 
and the pattern of alpha power measured with EEG is 
well-established (Foster et al., 2017; Worden et al., 2000). 
Our findings align with the idea that the lateralization of 
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alpha power during the retention interval reflects a shift 
of attention, as evidenced by the similar pattern of alpha 
lateralization in response to the lateralized cue, observed 
before any memory processes were required (Figure  3). 
Furthermore, the lateralization of alpha power increased 
toward the end of the retention interval (while the mem-
ory load-dependent CDA peaked substantially earlier), 
possibly because participants shifted their attention to the 
expected location of the memory probe. Similar shifts of 
attention have been observed when participants prepare 
saccades to lateral, parafoveal targets (e.g., during left-to-
right reading; Kornrumpf et al., 2017). While we cannot 
draw definite conclusions about the relationship between 
attention, memory processes, the lateralization of alpha 
power, and the CDA, our experiment shows that VR 
technology can be used to study them in novel and more 
complex experimental settings. Combining the existing 
knowledge about the CDA and alpha lateralization with 
the new capabilities of VR headsets, such as large visual 
fields, stereoscopic stimulation, or the integration of head 
and body movements in experimental designs, will yield 
new insights into the characteristics and interrelation of 
these components.

We complemented our univariate analyses with mul-
tivariate approaches, by decoding memory load from 
EEG signals during the retention interval. These methods 
have been shown to be more sensitive than univariate ap-
proaches, as they combine EEG channels in an optimal 
way to solve classification or regression problems (Adam 
et al.,  2020). Above-chance decoding performance indi-
cates—in a time-resolved fashion—that the EEG contains 
information about the decoding target. We were able to 
decode the memory load from both, the phase-locked data 
(i.e., the ERP) as well as from induced alpha power (i.e., 
the result of the time-frequency decomposition of the sig-
nal) throughout the retention interval. Compared to our 
univariate analyses of lateralized signals (i.e., hemispheric 
differences) in a pre-defined ROI, the multivariate classifi-
ers were trained on data from all channels, allowing them 
to pick up non-lateralized features and information from 
channels outside the ROI. The complementary nature of 
this approach became particularly evident when investi-
gating effects on alpha power, where we did not observe a 
significant effect of memory load in the univariate analysis 
but were able to decode the level of memory load using the 
multivariate classifier. Furthermore, the decoding perfor-
mance and lateralized alpha power showed different time 
courses—the decoding performance peaked in the middle 
of the retention interval, while the lateralization of alpha 
power increased toward the end. This suggests that the de-
coding exploits additional, likely non-lateralized, features. 
Interestingly, the decoding performance was independent 
of stimulus eccentricity for both the time-locked signals 

(ERP) and the time courses of alpha power, despite being 
a more sensitive measure than univariate approaches. 
Therefore, the perceptual confounds that slightly im-
pacted behavioral memory performance at the largest ec-
centricity may not fully explain the interaction between 
stimulus eccentricity and memory load in the CDA anal-
ysis. If the largest eccentricity systematically led to the 
encoding and maintenance of less information during the 
retention interval, particularly for trials with high mem-
ory load, the classifier should have performed worse on 
data from these trials. The comparable decoding perfor-
mance suggests that the amount of information present is 
similar across eccentricity conditions. However, how (or 
where) this information is encoded or maintained (e.g., 
in different areas of the cortex) might vary as a function 
of stimulus eccentricity. If there were substantial differ-
ences in spatial activation patterns during memory reten-
tion between eccentricity conditions, a spatial filter-based 
classifier trained to distinguish between memory loads 
of stimuli displayed at a small eccentricity (4 dva) should 
perform worse on stimuli with large eccentricity (e.g., 
14 dva). To test the hypothesis of a spatially specific clas-
sification performance, we conducted a cross-decoding 
analysis from the ERP data. We trained a memory load 
classifier on (80% of the data of) one given eccentricity 
and tested its performance separately on independent test 
sets (20% of the respective data) from all three eccentric-
ity conditions. The decoders yielded above-chance-level 
performance for all test sets. Importantly, classification 
performance was not significantly different when tested 
on data from the same condition they were trained on as 
compared to data from the other two eccentricities (see 
Supplementary Material S1). This suggests that the EEG 
features underlying the decoding of memory load are not 
fundamentally distinct for stimuli displayed at different 
eccentricities. However, due to volume conduction and 
the limited spatial resolution of EEG, cortical sources that 
are distinct but spatially close to each other (e.g., differ-
ent parts of the same substructure of the visual cortex) 
may lead to patterns that are similar enough to result in 
comparable outcomes during cross-decoding. To rule out 
this possibility, more specific analyses such as source re-
construction should be conducted, which are beyond the 
scope of this article. Overall, our decoding results show 
that the ERP and induced alpha power contain informa-
tion about memory load during the retention interval and 
across all tested eccentricities. Multivariate approaches 
can be effective at detecting this information, particularly 
in conditions of low signal-to-noise ratios.

One of the benefits of using VR setups for experi-
mentation is the ability to obtain and utilize a larger 
number of measures in comparison to many classical 
lab setups (Draschkow, 2022). VR headsets, for example, 
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allow for real-time tracking of head position and orien-
tation. We used this feature to ensure a reliable cranio-
topic presentation of our stimuli. To achieve this (i.e., a 
stable spatial relation between stimulus and observer) in 
conventional laboratory setups, experimenters typically 
need to constrain participants' head movements (e.g., by 
using a chin rest) which can be inconvenient and unnat-
ural. In a VR setup, experimenters can easily incorporate 
head movements instead of physically restricting them. 
Furthermore, there is a growing number of VR hardware 
products with built-in eye tracking capabilities. We used 
the eye tracker in our VR headset to ensure (post hoc) that 
participants maintained stable fixation and to exclude 
trials where this was not the case. In future studies, VR 
headsets with eye tracking capabilities could be used for 
gaze-contingent paradigms, presenting stimuli in relation 
to both the head position and the current direction of the 
eye gaze. However, currently available VR hardware and 
software solutions still pose challenges (e.g., high laten-
cies) for adapting these techniques to scientific standards 
(Stein et al., 2021).

VR is increasingly being used to study visual short-
term memory (e.g., Draschkow et al.,  2020; Draschkow 
et al., 2022; Thom et al., 2023) by offering a practical and 
well-controlled way to conduct experiments which incor-
porate (some of) the complexities of everyday life and to 
use its sophisticated tracking and stimulation opportuni-
ties. Up to now, most of these studies focus on behavioral 
and eye tracking measures. Our findings encourage the 
use of VR to measure EEG signals related to visual short-
term memory and attention (e.g., the CDA or the lateral-
ization of alpha power), and identify caveats for future 
experimental designs.
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