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Methods 

MRI pre-processing and validation 1 

First, we used the AAL template to parcellate the entire brain into 90 regions (cortical and 2 

subcortical regions but without the cerebellum)(Tzourio-Mazoyer et al., 2002). The linear 3 

registration tool from the FSL toolbox (www.fmrib.ox.ac.uk/fsl, FMRIB, Oxford)(Jenkinson et al., 4 

2002) was used to co-register the EPI image to the T1-weighted structural image. The T1-5 

weighted image was co-registered to the T1 template of ICBM152 in MNI space. The resulting 6 

transformations were concatenated and inversed and further applied to warp the AAL template 7 

from MNI space to the EPI native space, where interpolation using nearest-neighbour method 8 

ensured that the discrete labelling values were preserved. Thus, brain parcellation was 9 

conducted in each individual’s native space. We then pre-processed the functional fMRI data 10 

using MELODIC (Multivariate Exploratory Linear Decomposition into Independent Components) 11 

Version 3.14(Beckmann & Smith, 2004), part of FSL (FMRIB's Software Library, 12 

www.fmrib.ox.ac.uk/fsl). We used the default parameters of this imaging pre-processing pipeline 13 
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on all participants: motion correction using MCFLIRT non-brain removal using BET(Smith, 2002); 14 

spatial smoothing using a Gaussian kernel of FWHM 5mm; grand-mean intensity normalization 15 

of the entire 4D dataset by a single multiplicative factor and linear de-trending over 50 second 16 

intervals. Importantly, MELODIC was used as a pre-processing pipeline only and not to identify 17 

and discard components. 18 

 19 

Results 

Linear regression results for correlation of RSN Occupancy with UPDRS-III: 

Linear regression analysis was used to investigate correlations between UPDRS-III and occupancy 20 

of the BOLD PL states identified (SPSS, IBM). UPDRS-III scores did not meet statistical significance 21 

for correlation with occupancy of these PL states. With STN-DBS OFF, somatomotor RSN 22 

occupancy explains 34.3% of the variation in UPDRS-III Score (R2= 0.343, p=0.075). With STN-DBS 23 

ON, the somatomotor RSN occupancy explains 24.9% of the variation in UPDRS-III (R2=0.320, 24 

p=0.142). By comparison linear regression results for diffuse limbic RSN occupancy explained 25 

1.4% of the variation in UPDRS-III (R2=0.014, p=0.743) with STN-DBS OFF and 2.5% with STN-DBS 26 

ON (R2=0.025, p=0.663). Orbitofrontal RSN occupancy explains 0.2% of the variation in UPDRS-III 27 

(R2= 0.002, p=0.901) with STN-DBS OFF and 22.8% with STN-DBS ON (R2=0.228, p=0.163). 28 

 29 

Leave-one-out sensitivity analysis 30 

A sensitivity analysis was conducted with patient 7 removed from the analysis. Patient 7 was 31 

removed due to the stimulation frequency of 80Hz compared to higher frequencies used for DBS 32 

in other participants. This also served to confirm the RSN modulation observed with all 33 

participants included would be reflected in a leave-one-out analysis. Again, the RSN that showed 34 
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the most significant change in occupancy during STN-DBS involves regions within the OFC (Sup. 35 

Fig. 1).  36 

Supplementary Figure 1: Leave-one-out analysis. The 15 RSNs identified in the patients’ fMRI 37 

data. The repertoire of BOLD PL states obtained for k=15 with patient 7 removed is 38 

demonstrated. Modulation of an orbitofrontal RSN is again the most modulation seen. * p < 39 

0.05. 40 

Discussion 

These regression models do not meet statistical significance (set at p=0.05). Previous studies 41 

have demonstrated modulation of components of the somatomotor network with STN-DBS in 42 

PD; this may be a result of the small sample size which leads to a high risk of type II error. It is 43 

arguably likely that somatomotor RSN occupancy does explain some variation in UPDRS-III and 44 

we would expect to see this in larger data sets. The SD is relatively large and this variability in the 45 

dataset will increase the risk of type II error within a small dataset. In addition, UPDRS-III standard 46 

deviation is higher in the STN-DBS ON state when compared to STN-DBS OFF. It is also possible 47 

that a combination of network effects partially explain this. A regression analysis of non-motor 48 

scores was not conducted since these non-motor UPDRS-I scores are only semiquantitative, are 49 

not continuous or normally distributed variables, and to avoid multiple comparisons across 50 

multiple domains. 51 

 52 
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Methodologically, LEiDA defines the ‘dominant’ RSN at each epoch. As described in the main text, 53 

LEiDA defines the ‘dominant’ RSN using the leading eigenvector of each phase-locking correlation 54 

matrix at each epoch. This means that there may be modulation of other RSNs that is not 55 

detected using this method. Previous studies have demonstrated that there is modulation of the 56 

somatomotor RSN but due to the marked modulation in OFC RSN occupancy, this may not be 57 

detected here. Additionally, only RSN occupancy is interpreted here. Other metrics of RSN 58 

dynamics such as transition frequency/stability may also contribute to clinical outcome, but this 59 

was not analysed here. It is reassuring that a leave-one-out sensitivity analysis yields similar 60 

results but this reduces the statistical power for detecting other dominant networks such as the 61 

somatomotor RSN.  62 

 63 

Of note, Shen et al. previously conducted a similar linear regression analysis of neurocircuit 64 

activity versus UPDRS-III score. They found that within subject improvement in UPDRS-III 65 

correlated with increased activity in a GPi-thalamus-deep cerebellar circuit(Shen et al., 2020). No 66 

correlation was found between an M1-putamen-cerebellar circuit. It is difficult to directly 67 

compare these findings with this study since only cortical brain regions were included in analysis 68 

here, in keeping with cortical RSNs identified by Yeo et al. (2011)(Yeo et al., 2011). Nevertheless, 69 

it is possible that similar correlations would be found with somatomotor RSN occupancy with a 70 

larger sample size. 71 
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